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Abstract— This work addresses the problem of risk-sensitive
control for nonlinear systems with imperfect state observations,
extending results for the linear case. In particular, we derive an
algorithm that can compute local solutions with computational
complexity similar to the iterative linear quadratic regulator al-
gorithm. The proposed algorithm introduces feasibility gaps to
allow the initialization with non-feasible trajectories. Moreover,
an approximation for the expectation of the general nonlinear
cost is proposed to enable an iterative line search solution to the
planning problem. The optimal estimator is also derived along
with the controls minimizing the general stochastic nonlinear
cost. Finally extensive simulations are carried out to show
the increased robustness the proposed framework provides
when compared to the risk neutral iLQG counter part. To
the authors’ best knowledge, this is the first algorithm that
computes risk aware optimal controls that are a function of
both the process noise and measurement uncertainty.

I. INTRODUCTION

Recently there has been an increased interest in computing

optimal decisions that reason not only about the mean of a

certain outcome or cost [1], [2] but also about the higher

order statistics of the problem. A particular class of such

algorithms is known as risk sensitive optimal control, which

takes into account the variability of a certain cost and

is concerned with the infrequent occurrences of undesired

events besides the frequent most common outcomes. Risk

sensitive problems have been widely used in economics [3],

[4] and have recently gained popularity in robotics [5], [6]

and reinforcement learning [7].

In linear quadratic Gaussian (LQG) control [8], the expec-

tation of a quadratic cost function E [L] is minimized over

the decision variables. The main result in LQG theory, is that

the optimal control is the same as that of the deterministic

linear quadratic regulator (LQR) case. This is not the case

anymore in the linear risk-sensitive control case with noisy

measurements.

The risk-sensitive optimal control problem of interest in

this paper was introduced by Jacobson [9] which instead

minimizes the cost

J = −σ−1 lnE
[
e−σL

]
(1)

where σ is a scalar whose role will become clear later. Under

this particular transformation, and in the limit as σ → 0 this
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transformed cost can be approximated as

J ≈ E [L]−
σ

2
V ar [L] + . . . (2)

where . . . contains terms that are functions of higher order

moments of L. For σ < 0 (risk-averse case) the variability

of the original cost L contributes positively to the newly

transformed cost, thus an optimizer will seek a solution

reducing the variability of the original cost and minimizing

the possibility of infrequent events occurring. The opposite

is true for the case of σ > 0 (risk-seeking case). Other

forms of risk sensitivity have been studied [10], [11] and

will not be considered in this paper. The solution for the

stochastic optimal control problem under the exponential

transformation given linear process model with additive

Gaussian noise and a quadratic cost which we shall denote

LQEG was derived by Jacobson [9].

The case with noisy measurements (and no direct access

to the state) was studied in Speyer [12], who introduced

a solution that grows with the history of observations for

linear process and measurement models. The problem involv-

ing linear process and measurement models was eventually

solved satisfactorily by Whittle [13] for the quadratic cost

case. Variations of this problem were later studied either for

the case of partially observable systems [14], [15] or the

nonlinear case with full state knowledge [16]. Ponton [17]

proposed an iterative algorithm to solve the case with

measurement noise that requires augmenting the true state

dynamics with the dynamics of an Extended Kalman Filter.

However the derivation was heuristic with an incorrect line-

search step which led to difficult to converge iterations and

an incorrect update of the feedforward control.

This work aims to provide the first iterative algorithm

that computes a locally optimal solution to the nonlinear

risk-sensitive optimal control problem with measurement

uncertainty. We extend the results of Whittle [13] to the

general nonlinear case of process and measurement dy-

namics with additive Gaussian noise. We propose a two-

stage algorithm, where the first stage computes a nominal

trajectory given the observations available at the starting

point using an efficient line-search method. The second

stage computes the optimal estimator along with the control

optimizing the risk sensitive cost function as measurements

are made during execution. Finally, extensive simulations

of a nonlinear dynamical system involving stiff interactions

with the environment demonstrate the capability of such

controllers.

Notation: The gradient of a function f with respect to

a vector v is denoted as fv , similarly for second order

a
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derivatives w.r.t vectors u, v will be denoted as fuv . The

determinant of a matrix M will be denoted by |M |. All

functions are assumed to be C2 unless otherwise stated. If

(vi)i∈N is a sequence of vectors, then vk:t denotes the batch

vector of all vi for k ≤ i ≤ t.

II. BACKGROUND

This section gives an overview of the Linear Quadratic

Exponential Gaussian problem (LQEG), where both process

and measurement models are linear and the cost is an

exponential of a quadratic in the state and control variables.

We go over the main results from Jacobson [9] and Whittle

[13] which we will build upon for our extension to the

general nonlinear problem. Consider the following discrete

time process and observation models,

xt+1 = fx
t xt + fu

t ut + ωt+1 (3a)

yt+1 = hx
t xt + γt+1 (3b)

where xt, yt and ut are the state, observation and control

at time t respectively. Given a belief x̂0, the initial state is

assumed to follow a Gaussian distribution x0 ∼ N (x̂0, χ0).
The process and measurement disturbances are considered

to be Gaussian and denoted by ωt ∼ N (0,Ωt) and γt ∼
N (0,Γt). Then, given control inputs (or a policy), the joint

probability density of the entire trajectory can be written

p (x0, w1:T , γ1:T ) =
1

κ
exp (−D) (4)

where D = d0 +

T∑

t=1

dt

d0 =
1

2
(x0 − x̂0)

Tχ−1
0 (x0 − x̂0)

dt =
1

2
ωT
t Ω

−1
t ωt +

1

2
γT
t Γ

−1
t γt

κ = |2πχ0|
1
2

T∏

t=1

|2πΩt|
1
2 |2πΓt|

1
2

Observations available at time t are denoted by Wt and

take the form

Wt = (x̂0, y1:t, u0:t−1) . (5)

It is important to note that the observation history also

includes x̂0 the belief of the initial state. Then, the risk-

sensitive optimal control problem of the imperfectly observ-

able system at time t becomes a problem of computing the

optimal policy π to minimize the following cost function

J (π,Wt) = −σ
−1 ln (Eπ [exp (−σL) | Wt]) (6)

where L =
1

2
xT
T l

xx
T xT +

1

2

T−1∑

t=0

xT
t l

xx
t xt + uT

t l
uu
t ut

where the expectation is taken over every wt, γt and x0.

Taking the expectation conditioned on Wt determines u0:t−1,

however, control inputs, ut:T , are taken according to the

policy π. We consider policies that only depend on previous

observations. Before time t, observations are determined by

Wt but after time t, the observations are random variable

therefore future control inputs are also random variables.

The optimal policy is then a function of the current available

observations

π⋆(Wt) = argmin
π

J (π,Wt) (7)

A. Optimal Control with Imperfect Observations

The expectation at time t = 0 of the total cost of the

control problem can be expressed as

Eπ

[
e−σL

∣
∣W0] =

∫

e−σLp (x0, w1:T , γ1:T ) dx0dw1:T dγ1:T

=
1

κ

∫

e−σ(L+σ−1
D)dx0dw1:T dγ1:T (8)

Defining the total stress as S = L + σ−1D. Whittle then

uses the quadratic lemma introduced by Jacobson [9] and

summarized in Appendix A in order to compute the expec-

tation in (8). The main idea is that an integration over an

exponential of a quadratic of a variable x can be replaced

by an optimization over the exponential of a quadratic of this

variable. Then using induction, Whittle [13] proves that

Eπ⋆

[

e(−σL) | Wt

]

=
αt

p(Wt)
e(−σSt(Wt)) (9)

where αt is provided in appendix B and

St(Wt) = min
ut

ext
yt+1

St+1(Wt+1) (10a)

ST (WT ) = ext
x0,...,xT

S (10b)

Here ext denotes an extremization, i.e. computation of either

a maximum or a minimum. We say that a variable extremizes

S if it minimises S when σ < 0 and maximizes S when σ >

0. This is due to the fact that the total stress could possess

either a maximum or a minimum in the random variables

depending on the sign of σ. Obtaining the optimal policy

then boils down to the following minimization

min
ut,...,uT−1

ext
x0,...,xT

ext
yt+1,...,yT

S (11)

The optimal ut is then the optimal control at time t given

the current observations. Whittle’s certainty equivalence prin-

ciple says that the order of the successive extremization and

minimization can be interchanged. If σ is negative, then the

minimization problem is well defined only if S is negative

definite in the extremizing variables. This condition ensures

that the optimal cost is finite. More precisely, there exist a

threshold value σ̄ < 0 depending on the problem parameters

such that for all σ > σ̄, the problem 7 is well defined. The

implications of this condition on σ will become obvious later.

We provide a brief proof of these results in Appendix B.

Unlike the iterative linear quadratic Gaussian iLQG [2], or

the fully observable case of LQEG [9], the optimal control

cannot be obtained with a single backward recursion in a

dynamic programming fashion. This is due to the fact that

the terminal condition (10b) includes an optimization over

the entire state trajectory.



B. Separation principle

As Whittle concluded, at time t the problem includes

minimizing over future controls, and extremizing over future

observations and the entire state trajectory. Whittle [13] then

suggested breaking the problem into two sub problems while

keeping the current state xt as a free variable, thus introduc-

ing the past stress P (xt,Wt) and future stress F (xt) at each

time t1, which are defined by

P (xt,Wt) = ext
x0:t−1

t−1∑

i=0

li + σ−1
t∑

i=0

di, (12)

F (xt) = min
ut:T−1

ext
xt+1:T

yt+1:T

T∑

i=t

li + σ−1
T∑

i=t+1

di. (13)

The past and future stress problems can then be computed

sequentially separately as

P (xt,Wt) = ext
xt−1

lt−1 + σ−1dt + P (xt−1,Wt−1) , (14)

F (xt) = min
ut

ext
xt+1

lt + σ−1dt+1 + F (xt+1) , (15)

where Whittle shows that optimizing over future observations

yt+1:T yields a prediction of the form yt+1 = hx
t xt. In other

words, for all h > t + 1, γt = 0. The recursions have the

following boundary conditions:

σP(x0,W0) =
1

2
(x0 − x̂0)

Tχ−1
0 (x0 − x̂0), (16)

F(xT ) =
1

2
xT
T l

xx
T xT . (17)

As the the current state xt has been kept as a free variable

in optimization, the optimal control can be written as a

function of xt: ut = πxt
(Wt). xt is then determined by

the last extremization

x̌t = argmin
xt

P (xt,Wt) + F (xt) (18)

The solution x̌t of this extremization then gives us the

optimal control: u⋆
t = πx̌t

(Wt) = π⋆(Wt). This means

that the optimal control is not obtained by only solving

a backward recursion, but instead by optimizing an entire

trajectory of states, while the policy as a function of these

optimal states is obtained during the backward recursion.

We will appeal next to these results to deriving an iterative

algorithm for the nonlinear case.

III. ALGORITHM OVERVIEW

To solve the nonlinear problem, we propose an algorithm

consisting of two stages. The first stage (discussed in details

in Sec. IV) optimizes a nominal trajectory X ,U and a policy

π(δx̌t) where δx̌t is the deviation of the state minimizing

the total stress S from the nominal trajectory. The second

stage (discussed in Sec. V) is executed at run-time as

measurements are made available and includes computing the

1Note that P and F should be index by t, but in order to simplify the
notations, we omit this time index as the latter can be inferred thanks to xt.

minimum stress deviations δx̌t along with the corresponding

optimal policy.

Then the algorithm proceeds at follows, first, before run-

time, the nominal trajectory and the policy π are optimized

according to Algorithm 1 until convergence. Once Algo-

rithm 1 has converged, the reference trajectory X along with

the policy parameters kt and Kt and the future stress Hessian

and gradient along the trajectory Vt and vt are stored for the

second stage.

The second stage happens at run-time. As each observa-

tions yt becomes available, the past stress is propagated one

time step forward as described in Algorithm 2 to obtain x̂t

and Pt, then the minimum stress estimate x̌t at time t is

computed, and the optimal control is obtained and executed.

IV. NOMINAL TRAJECTORY OPTIMIZATION

Consider the general nonlinear process and measurement

models with independent identically distributed (i.i.d) addi-

tive Gaussian noise ωt and γt

xt+1 = ft (xt, ut) + ωt+1 (19a)

yt+1 = ht (xt) + γt+1 (19b)

where ft and ht are differentiable. Along with the general

nonlinear cost function of the form

L = lT (xT ) +
T−1∑

0

lt (xt, ut) (20)

where lt (xt, ut) is any twice differentiable nonlinear func-

tion of the states and controls. With this cost, the minimiza-

tion (7) generally leads to an intractable optimal control

problem that might possess multiple local minima [18]. A

common approach to find one such local minimum is to

follow an iterative approach similar to that of iterative linear

quadratic regulator [1] and perform a line search on the cost

function [19] until some convergence criteria is achieved.

So, we seek some iterative updates to the state and control

trajectories in the form

[
X
U

]i+1

=

[
X
U

]i

+ α

[
δX
δU

]i

(21)

X and U denote the nominal state and control trajectories

at the indicated iterations respectively. The δ is used to

denote a small change around these trajectories and α is

the step length corresponding to the search direction δX , δU
and determined via line search.

A. Step Direction

In order to generate a descent direction for the line search a

linear approximation of the dynamics and observations along

the nominal trajectory is computed and a quadratic approx-

imation of the cost is considered. These approximations are

computed along the nominal trajectory at iteration i denoted

by X i,U i and are given by

xt+1 ≈ ft(x
i
t, u

i
t) + fx

t δxt + fu
t δut + ωt+1 (22a)

yt+1 ≈ ht(x
i
t) + hx

t δxt + γt+1 (22b)



and

lt
(
xi
t + δxt, u

i
t + δut

)
≈ lt

(
xi
t, u

i
t

)
+ δlt (23)

where δxt = xt − xi
t, δut = ut − ui

t and δyt = yt − ht(x
i
t).

In the remainder of the paper we will omit the dependence

of f(x, u) and l(x, u) on x and u for brevity. The quadratic

approximation of the cost is then given by

δlt =
1

2





1
δxt

δut





T 



0 lx
T

t lu
T

t

lxt lxxt lxut
lut luxt luut









1
δxt

δut



 (24)

Following [20] we introduce feasibility gaps along the

nominal trajectory to form

f̄t+1 = f(xi
t, u

i
t)− xi

t+1 (25)

Hence, we optimize Eπ

[
e−σδL

]
subject to the process and

observation deviation dynamics

δxt+1 = fx
t δxt + fu

t δut + f̄t+1 + ωt+1 (26a)

δyt+1 = hx
t δxt + γt+1 (26b)

The optimal search direction at iteration i is obtained by

computing the optimal control deviation δu⋆
t according to

the future stress. We provide an alternative derivation to that

of Whittle’s in an extended document provided along with

the code in 2. The document proves that the future stress

optimization is independent of the future observations. The

optimal control deviations are then given by the following

theorem

Theorem 4.1: Assuming that F(δxt+1) has the form

F(δxt+1) =
1

2
δxT

t+1Vt+1δxt+1 + δxT
t+1vt+1 + v̄t+1 (27)

Then the optimal control deviations δu⋆
t minimizing

Eπ

[
e−σδL|W0

]
are given recursively by

δu⋆
t = −Quu−1

t Qu
t

︸ ︷︷ ︸

kt

−Quu−1

t Qux

︸ ︷︷ ︸

Kt

δxt (28)

where Qu
t , Quu

t and Qux
t are defined in (31).

Proof:

We start by writing the future stress, we know from [13]

that the measurement uncertainty yields a prediction and that

the future stress takes the form

F (δxt) =min
δut

ext
δxt+1

lt + F(δxt+1) (29)

+
σ−1

2
(δxt+1 − zt)

T
Ω−1

t+1 (δxt+1 − zt)

where zt = fx
t δxt+fu

t δut+f̄t+1. The first step is to optimize

with respect to δxt+1 and rearrange the partially optimized

future stress into a quadratic in the current controls and states

δut and δxt respectively

2https://github.com/hammoudbilal/irisc

F (δxt) = min
δut

1

2





1
δxt

δut





T 



q̄t QxT

t QuT

t

Qx
t Qxx

t Qxu
t

Qu
t Qux

t Quu
t









1
δxt

δut



 (30)

where

Qx
t = lxt + fxT

t Mtf̄t+1 + fxT

t Nt (31a)

Qu
t = lut + fuT

t Nt + fuT

t Mtf̄t+1 (31b)

Quu
t = luut + fuT

t Mtf
u
t (31c)

Qux
t = luxt + fuT

t Mtf
x
t (31d)

Qxx
t = lxxt + fxT

t Mtf
x
t (31e)

Mt =
(
σΩt+1 + V −1

t+1

)−1
(31f)

Nt = vt+1 − σMtΩt+1vt+1 (31g)

And where q̄t is a constant. Being quadratic in δut, the re-

maining optimization is obtained by solving ∇δut
F(δxt) =

0 which concludes the proof for the control recursions. A

more detailed version of the proof that includes straightfor-

ward yet lengthy algebraic manipulations is provided in our

public repository along with the code implementing all the

simulations.

Theorem 4.2: The future stress is a quadratic in the state

deviations δxt and takes the form

F(δxt) =
1

2
δxT

t Vtδxt + δxT
t vt + v̄t (32)

where

Vt = Qxx
t +KT

t Q
uu
t Kt +KT

t Q
ux
t +Qxu

t Kt (33a)

vt = Qx
t +KT

t Q
uu
t kt +KT

t Q
u
t +Qxu

t kt (33b)

v̄t =
1

2
q̄t + kTt Q

u
t +

1

2
kTt Q

uu
t kt (33c)

Proof: The proof follows directly by replacing the

optimal controls in F(δxt) and regrouping, details of the

calculations are provided in the accompanying repository.

B. Approximating the Cost Expectation

In order to implement a line search procedure, it is neces-

sary to evaluate the nonlinear risk sensitive cost. However,

for a general nonlinear cost, computing the expectation

is generally intractable analytically. Therefore, we use a

quadratic approximation of the cost and a linearization of

the dynamics to obtain an approximation of the risk sensitive

cost. The linearization and quadratic approximations are

done only over the states as the candidate control trajectory

is considered to be fixed. More precisely, given a candidate

control sequence U and a nominal trajectory X , we evaluate:

J̃ = −σ−1 ln
(

E

[

e−σL̃|u0:T−1

])

(34)

subject to

δx0 = x0 − x̂0 (35a)

δxt+1 = fx
t δxt + f̄t+1 + ωt+1 (35b)



with:

L̃ =

T∑

t=0

l(xn
t , ut)

︸ ︷︷ ︸

l̄t

+
1

2
δxT

t l
xx
t δxt + lx

T

t δxt

︸ ︷︷ ︸

δlt

(36)

Theorem 4.3:

J̃ = σ−1 ln(α) + v̄0 −
1

2
vT0 (V0 + σ−1χ−1

0 )−1v0 (37)

with

α = |I + σV0χ0|
1
2 ΠT

t=1|I + σVtΩt|
1
2 (38)

and where v̄0, v0, V0 are the terminal values of the recursion:

Vt = lxxt + fx
t
T
Mtf

x
t (39a)

vt = lxt + fx
t
T
Mtf̄t+1 + fx

t
T
Nt (39b)

v̄t = l̄t + v̄t+1 + f̄T
t+1Nt +

1

2
f̄T
t+1Mtf̄t+1 (39c)

−
1

2
vTt+1(Vt+1 + σ−1Ω−1

t+1)
−1vt+1

where Mt and Nt have the same form as (31f) and (31g)

but evaluated at Vt and vt given in (39)

Proof: The proof follows a similar logic of theorem 4.1

and is provided fully in the repository.

C. Step Length & Partial Update of the Gaps

We choose to update the gaps partially as is done in [21].

This allows for a partial contraction of the gaps unless a full

step α = 1 is taken thus allowing for a better convergence

when initialized from infeasible nominal trajectories, the

update equations are then

ui+1
t = ui

t − αkt −Kt

(
xi+1
t − xi

t

)
, (40)

xi+1
t+1 = ft

(
xi+1
t , ui+1

t

)
− (1− α) f̄ i

t+1. (41)

with the initial condition xi+1
0 = xi

0. We perform a simple

backtracking line search for a set of values of α until no more

decrease in the approximated cost is observed. The pseudo-

code algorithm is provided in Algorithm 1.

V. ESTIMATION & OPTIMAL CONTROLS

The actual optimal control problem of the imperfectly

observable system is not fully solved yet. So far we only

have the optimal control if optimal xt were known. The next

step consists of solving for the past stress

A. Past Stress Optimization

The solution to the past stress (12) optimization with

the cost approximation (37) and linear dynamics (26) can

be obtained using a forward recursion as described in the

following theorem:

Theorem 5.1:

σP(δxt,Wt) =
1

2
(δxt − δx̂t)

T
P−1
t (δxt − δx̂t) (42)

Algorithm 1: Planning Phase

Input: nonlinear cost, nonlinear dynamics, nonlinear

measurement, sensitivity, X 0, U0

1 Initialization: compute dynamics & cost

approximations (26), (24)

2 while Not Converged do
// backward pass

3 for t = T ; t ≥ 0; t - - do

4 kt,Kt ← eqn. (28)

5 Vt, vt, v̄t ← eqn. (33)

6 end

// forward pass

7 for α ∈ A do

8 for t = 0; t++; t ≤ T do

9 ui+1
t ← eqn. (40)

10 xi+1
t ← eqn. (41)

11 end

12 J i+1 ← eqn. (37)

13 if J i+1 ≤ J i then

14 X ,U ← xi+1
0:T , ui+1

0:T−1

15 compute dynamics & cost

approximations (26), (24)

16 break

17 end

18 end

19 if |J i+1 − J i| ≤ 10−12 then

20 Converged← True

21 end

22 end

Output: X , U , K0:T−1, V0:T , v0:T

where Pt and δx̂t are subject to the following recursion

δx̂t+1 = fx
t δx̂t + fu

t δut + f̄t+1 +Gt (δyt+1 − hx
t δx̂t)

− σfx
t Ht (l

xx
t δx̂t + lxut δut + lxt ) (43)

Ht =
(

P−1
t + hxT

t Γ−1
t+1h

x
t + σlxxt

)−1

(44a)

Gt = fx
t Hth

xT

t Γ−1
t+1 (44b)

Pt+1 = Ωt+1 + fx
t Htf

xT

t (44c)

Proof: The proof is done by induction. Given

P (δxt−1,Wt−1), We first notice that:

σlt−1 + σP (δxt−1,Wt−1) = (45)

1

2
(δxt−1 − δx̃t−1)

T
P̃−1
t−1 (δxt−1 − δx̃t−1) + Cste

where:

P̃t−1 =
(
P−1
t−1 + σlxxt−1

)−1
(46a)

δx̃t−1 = P̃t−1

(
P−1
t−1δx̂t−1 − σlxut−1δut−1 − σlxt−1

)
(46b)

Hence, (12) can be written as:
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APPENDIX

A. Integration of Exponential of a Quadratic form.

Lemma 1.1: For a quadratic form in x and y

Q(x, y) =
1

2





1
x

y





T 



q̄ qTx qTy
qx Qxx Qxy

qy Qyx Qyy









1
x

y



 (51)

We have:
∫

exp (−Q(x, y)) dx = |2πQ−1
xx |

1
2 exp (−Q(x̂, y)) (52)

x̂ = argmin
x

Q(x, y) = −Q−1
xx (Qxyy + qx) (53)

Proof: We notice that:

Q(x, y)−Q(x̂, y) =
1

2
(x− x̂)TQxx(x− x̂) (54)

Then, the following equality concludes the proof:
∫

exp

(

−
1

2
(x− x̂)TQxx(x− x̂)

)

dx =

√

|2πQ−1
xx | (55)

B. main theorem

Theorem 1.2:

Eπ⋆ [exp (−σL) | Wt] =
αt

p(Wt)
exp (−σSt(Wt)) (56)

Proof:

According to [22], we have

Eπ⋆ [exp (−σL) |Wt] (57)

= ext
ut

∫

Eπ⋆ [exp (−σL) |Wt+1] p(yt+1|Wt)dyt+1

The proof is then a backward induction based on the

recursion equality (57). We first notice that:

Eπ⋆ [exp (−σL) |WT ] (58)

=

∫

e−σL p(x0:T |WT )dx0:T

=
1

p(WT )

∫

e−σL p(x0:T , y0:T )dx0:T

= αT exp(−σ min
x0,...xT

S)

The last equality comes from the lemma therefore, we

have:

αT =
|2πσ ∂2

S

∂2x0:T
|
1
2

p(WT )|2πχ0|
1
2

∏T
t=1 |2πΩt|

1
2

(59)

Now, assuming the Equation 56 for t + 1, let’s show the

property at time t: Thanks to (57), we have

Eπ⋆ [exp (−σL) |Wt] (60)

=ext
ut

∫
αt+1

p(Wt+1)
exp [−σ(St+1(Wt+1))] p(yt+1|Wt)dyt+1

=
αt+1

p(Wt)
ext
ut

∫

exp [−σSt+1(Wt+1)] dyt+1

=
αt

p(Wt)
ext
ut

ext
yt+1

exp [−σSt(Wt)]

The last equality comes from the lemma therefore, we

have:

αt = αt+1

∣
∣
∣
∣
2πσ

∂2St+1(Wt+1)

∂2yt+1

∣
∣
∣
∣

1
2

(61)


