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Abstract

Optimal control is a successful approach to generate motions for complex robots, in particular for

legged locomotion. However, these techniques are often too slow to run in real time for model pre-

dictive control or one needs to drastically simplify the dynamics model. In this work, we present a

method to learn to predict the gradient and hessian of the problem value function, enabling fast reso-

lution of the predictive control problem with a one-step quadratic program. In addition, our method

is able to satisfy constraints like friction cones and unilateral constraints, which are important for

high dynamics locomotion tasks. We demonstrate the capability of our method in simulation and

on a real quadruped robot performing trotting and bounding motions.

Keywords: Trajectory optimization, value function learning, model based method, quadruped

robot

1. Introduction

Motion generation algorithms for legged robots can be broadly classified in two classes. On one

side, there are optimal control methods Ponton et al. (2021); Shah et al. (2021); Carpentier and

Mansard (2018); Mastalli et al. (2020); Winkler et al. (2018). These methods are very general and

versatile but are computationally demanding to run in realtime, for model-predictive control (MPC),

on a robot. Oftentimes, optimal trajectories are computed offline first before being executed on the

robot. On the other side are policy learning techniques like reinforcement learning Lee et al. (2020);

Peng et al. (2020); Rudin et al. (2021); Xie et al. (2020); Tan et al. (2018), which learn a control

policy directly as a neural network. The policy is trained to optimize a long horizon reward. These

methods are often sample inefficient, are prone to sim-to-real issues when transferring the simulated

policy to the real robot and have a “hard-coded” policy as a neural network with limited constraint

satisfaction guarantees.

To improve sample efficiency and solve times, model based optimal control algorithms have

been used speed up policy learning. The Guided Policy Search algorithm Levine and Koltun (2013)

uses an iterative linear quadratic regulator (iLQR) and optimizes trajectories together with a neural

network policy till convergence. The work in Mordatch and Todorov (2014) also uses trajectory

based optimization method and optimizes a neural network policy at the same time. However, these
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methods do not preserve all the information from the initial trajectory optimizer. In addition, there

is no way to add constraints when running the policy.

Alternatively, learning a value function from iLQR has been explored. In Zhong et al. (2013)

the authors approximate the value function at the terminal step of a MPC problem using different

function approximators. In Lowrey et al. (2018) the authors learn the value function and use MPC

for control as well. The authors do not incorporate constraints when solving for the final control

and also are limited by the speed of the MPC solver.

The idea to use an optimization algorithm with future reward prediction is part of the paper

from Kalashnikov et al. (2018). There, the authors learn the Q function for a problem for visual

manipulation. The optimal action to use on the robot is found by maximizing samples from the Q

function given the current state. However, this method does not rely on a model of the dynamics.

Closer to our work, the authors in Parag et al. (2022) propose a method to predict the value func-

tion gradient and hessian using Sobolev learning. However, we were not able to get good learning

results using Sobolev learning for our quadruped locomotion experiments. They also used a MPC

approach with a longer horizon, which increases solve times but potentially improves robustness to

the quality of learned value function. While they demonstrate promising results on simulated low

dimensional problems, their method was not tested on systems with complexity comparable to a

legged robot nor was it tested on real hardware.

In this paper, we propose a method to learn the gradient and Hessian of a value function orig-

inally computed by an optimal control solver (iLQR). We then formulate a simple quadratic pro-

gram (QP) which efficiently uses these learned functions for one-step model predictive control at

high control rates. Our method enables to significantly decrease computation time while retaining

the ability to generate the complex locomotion movements. By using the QP we are also able to

enforce constraints on our solution like friction and unilateral contact force constraints, which is not

possible with policy learning methods or with the iLQR algorithm. With this approach, we gen-

erate different dynamic locomotion gaits on a real quadruped robot such as trotting and bounding.

We show that it is possible to robustly generate these dynamic motions, with a single step horizon,

affording computation of optimal controls at 500 Hz.

Specifically, the paper contributions are as follows: 1) We propose a method for learning the

value function gradient and Hessian information from iLQR, 2) we introduce our method for com-

puting control commands from value function gradients and Hessians taking constraints into ac-

count, and 3) we demonstrate our method on two locomotion tasks on a real robot. In the following

sections we explain in detail our method. After this we describe our experimental setup and show

results on the simulated and real robot. Finally, we conclude.

2. Method

The method proposed in this paper is as follows. First, we optimize motions from different starting

positions and with different properties (e.g. different desired velocity) using iLQR. Second, we use

the optimized trajectories together with the associated value function expansion to learn a mapping

between the current feature transformed state φ(xt) to the value function gradient and hessian at the

next time step. Finally, at run time, our optimal control problem is reduced to the resolution of a

simple quadratic program (QP) which minimizes the learned value function for the state at the next

time step while including important constraints such as friction pyramids and unilateral constraints.
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recursive update equations for the value function V and Q function are:

Qx
t = lxt + fxT

t V x
t+1 (2)

Qu
t = lut + fuT

t V x
t+1 (3)

Qxx
t = lxxt + fxT

t V xx
t+1f

x
t (4)

Qux
t = luxt + fuT

t V xx
t+1f

x
t (5)

Quu
t = luut + fuT

t V xx
t+1f

u
t (6)

V x
t = Qx

t −Qxu
t (Quu

t )−1Qu
t (7)

V xx
t = Qxx

t −Qxu
t (Quu

t )−1Qux
t , (8)

where ·xt , ·
u
t denotes the gradient at time t with respect to x and u and ·xxt , ·uxt , ·uut denotes the

Hessian terms with respect to xx, ux and uu at time t.
In the forward pass, a line search is used to determine the best update αδu that would reduce

the trajectory cost when integrating the dynamics forward. To compute the control update δu, we

use the BoxDDP algorithm (Tassa et al. (2014)). This allows us to put bounds on the control and

e.g. avoid negative forces in the vertical direction.

2.2. Solving for control using a QP

From Bellman’s principle of optimally, it follows that to compute the optimal control ut and value

function at time t, it is sufficient to know the current cost and value function at time t+ 1:

V (xt) = min
ut

[lt(xt, ut) + V (ft(xt, ut))]. (9)

Our goal is then to reduce the original optimal control problem to a one-step optimization problem

(as a QP) that will leverage a learned value function gradient and Hessian. We write this equation

as a constrained optimization problem:

V (xt) = min
ut,xt+1

[lt(xt, ut) + V (xt+1)]. (10)

subject to xt+1 = ft(xt, ut)

Recall that in iLQR the value function is expressed along a nominal trajectory x̂t. We denote the

second order approximation for the value function as V (xt+1) ≈ V 0
t+1 + V x

t+1(xt+1 − x̂t+1) +
1
2(xt+1 − x̂t+1)

TV xx
t+1(xt+1 − x̂t+1). Assuming a cost term of the form lt(xt, ut) = lt(xt) +

1
2u

T
t R

uu
t ut we can solve for the arguments in the last minimization problem as follows:

argmin
ut,xt+1

[

lt(xt) +
1

2
uTt R

uu
t ut + V 0

t+1 + V x
t+1(xt+1 − x̂t+1) +

1

2
(xt+1 − x̂t+1)

TV xx
t+1(xt+1 − x̂t+1)

]

subject to xt+1 = f(xt, ut)

which is equivalent to

argmin
ut,xt+1

[

(V x
t+1 − x̂Tt+1V

xx
t+1)xt+1 +

1

2
(xTt+1V

xx
t+1xt+1 + uTt R

uu
t ut)

]

, (11)

subject to xt+1 = f(xt, ut)
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where we removed constant terms and used the fact that V xx
t+1 is symmetric. Interestingly, our

problem only involves the gradient and Hessian of the value function and not its actual value. We

can efficiently solve the above optimization problem with a QP to obtain the optimal control ut.

2.3. Using the dynamics structure to reduce the QP

Since we work with system with a second order dynamics, we can separate the state xt into the

position st and velocity vt part xt =
[

st, vt
]

. We then explicitly include the numerical integra-

tion scheme to simplify the previous QP. This will be important to facilitate learning. Starting

from eq. (11), defining the block components of V xx
t+1 corresponding to st and vt as

[

V ss
t+1 V sv

t+1

V vs
t+1 V vv

t+1

]

:=

V xx
t+1 and

[

V s
t+1

V v
t+1

]

:= (V x
t+1 − x̂Tt+1V

xx
t+1) we get

argmin
ut,vt+1

[

[

V s
t+1

V v
t+1

]T [
st+1

vt+1

]

+
1

2

(

[

st+1

vt+1

]T [
V ss
t+1 V sv

t+1

V vs
t+1 V vv

t+1

] [

st+1

vt+1

]

+ uTt R
uu
t ut

)]

, (12)

subject to

[

st+1

vt+1

]

=

[

st +∆t vt
vt +Buut +B0

]

where we rewrote the constraints on the dynamics using an Euler integration scheme st+1 = st +
∆t vt and linearization of the velocity dynamics Bu and offset B0. Because st+1 is constrained

by st and vt, which are not part of the optimization variables, st+1 can be replaced in the last

optimization with st +∆t vt. Applying this substitution and simplifying terms yields:

u∗t , v
∗

t+1 =argmin
ut,vt+1

[

(V v
t+1 + st+1V

sv
t+1)vt+1 +

1

2

(

vt+1V
vv
t+1vt+1 + uTt R

uu
t ut

)

]

. (13)

subject to vt+1 = vt +Buut +B0

This formulation of the problem has multiple important benefits. First, the dimension of the op-

timization problem is smaller. In addition, the vector (V v
t+1 + xt+1V

sv
t+1) and the matrix V vv

t+1 are

smaller compared to equivalent entities written in the original problem. This size reduction will be

very important to yield good results once we learn these quantities using a neural network. Finally,

it will be easy to add state and control constraints to this QP, as we will show in the subsequent

sections.

2.4. Learning the value function gradient and Hessian

Given optimized iLQR trajectories, we can also recover the value function gradient and Hessian

at each time steps (cf. recursions of Sec. 2.1). We aim to predict the value function gradient

gt+1 = (V v
t+1 + st+1V

sv
t+1) and Hessian V vv

t+1. We do this by regressing the gradient and Hessian

directly to a feature transformed input state φ(xt) (we will give an example of a feature transfor-

mation of the input state in the experimental section below). The regression is solved under a L1

loss using gradient descent and a neural network. We call the neural network the value function

network (ValueNet). As for the network output, we flatten the Hessian matrix V vv
t+1 into a vector

and concatenate it with the gradient g into a single target vector for the regression task. To use the
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Hessian V vv
t+1 in the QP we must ensure that the matrix is positive definite. We do this as follows:

First, we make sure the matrix is symmetric by instead computing 1/2
(

V vv
t+1 + V vvT

t+1

)

. Then, we

compute the eigenvalue and eigenvector of the matrix and set negative eigenvalues to small positive

eigenvalues. We found in our experimental results that this regularization worked well.

In all our experiments, we use the same neural network architecture. We use a 3 layer fully

connected feedforward neural network with 256 neurons per layer. As activation function we use

tanh. The network is trained for 256 epochs with a batch size of 128 using Adam and a learning

rate of 3e-4. During our experiments we noticed that small changes in the predicted gradient and

Hessian lead to drastic different results when solving the QP. To mediate this problem, we found it

useful to normalize the gradient and hessian prediction to zero mean and unit variance.

3. Experimental setup

In the following, we describe our experimental setup and experiments. We demonstrate our method

on two kinds of locomotion tasks: bounding and trotting on a simulated and real quadruped robot,

where the desired velocity can be controlled and the robot can handle push perturbations. In our

experiments we use the Solo12 quadruped from the Open Dynamic Robot Initiative (Grimminger

et al. (2020)). The 12 joints are torque controlled, making it an ideal platform to test model predic-

tive control methods. In all experiments, we use a Vicon motion capture system and IMU to get an

estimate of the robot base position and velocity.

3.1. Dynamics model

To illustrate the capabilities of our approach, we use a standard, simplified centroidal dynamics

model of a quadruped. We model the state xt as xt = [ct, αt, ċt, ω] where ct is the position of the

center of mass (CoM), αt is the orientation of the base and ċt, ω are the respective velocities. All

quantities are expressed in an inertial (world) frame. The control inputs are the forces applied by

the feet of the quadruped Fi, where Fi denotes the contact force at the i-th leg and ri the position of

the i-th leg contact location. The discretized dynamics equations are then









ct+1

αt+1

ċt+1

ωt+1









=









ct
αt

ċt
ωt









+∆t









ċt
ωt

∑

i
Fi

m
−G

∑

i
Fi×(ri−ct)

I









, (14)

where G = [0, 0, 9.81]T m/s2 is the gravity vector and m = 2.5 kg is the robot mass. I denotes

the rotational inertia mass matrix of the base joint. Since the inertia mass matrix does not change

significantly for trotting and bounding, we keep it constant throughout all of our experiments. Note

however that the associated optimal control problem is not convex due to the cross product.

3.2. Pattern generator

To generate example bounding and trotting motions, we need to know the desired foot locations ri.
For this, we utilize a pattern generator. Given an initial CoM position and velocity, desired CoM

velocity and information about the gait (i.e. the sequence of end effector contacts with the ground),

the pattern generator generates the foot locations ri.
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When the foot i goes into contact, the foot location is computed using the following Raibert-

inspired heuristic Raibert et al. (1984)

ri = ct + shoulderi +
tstance

2
ċ+ kraibert(vcmd − ċ), (15)

where shoulderi is the offset of the end effector in the neutral position from the CoM, tstance is

stance phase duration, kraibert is a constant (we choose 0.03 in all our experiments) and vcmd is

the commanded / desired velocity of the CoM. To evaluate this equation, we interpolate between

the current CoM velocity ċ and the desired velocity. In particular, at each timestep we update the

planned CoM velocity as

ċ = (1− vα) ċ+ vα vcmd, (16)

where we choose vα as 0.02 in all our experiments. Using this control, the robot will bring the base

velocity slowly towards the desired velocity.

3.3. iLQR data generation and network training

To train our ValueNet we use samples from iLQR optimized trajectories. We generate many iLQR

trajectories by putting the robot into a random initial state (random initial position and velocity),

sample a desired velocity command in a random direction (up to 0.6 m/s) and generate the feet

locations ri using the pattern generator. As iLQR cost l(xt, ut) in eq. (1) we use a quadratic cost

between the current state xt and desired state x̂t where there is no weight for the horizontal position.

The desired state is x̂ = [0, 0, 0.21, vxcmd, v
y
cmd, 0, . . . , 0]. In addition, we use a quadratic cost to

regularize the control.

Given that we optimize a finite horizon problem, we know that the value function gradient and

Hessian will be very different from their stationary values for the infinite horizon problem towards

the end of the horizon. This change in magnitude makes learning to predict the value function

gradient and Hessian difficult if value function information at the end of the optimized trajectory

was used. To overcome this problem, we optimize many small iLQR trajectories and use only the

information from the first timestep. We do this as follows: We first optimize a longer (four gait

cycles long) horizon trajectory from a random initial configuration using iLQR. Then, for each of

the timesteps belonging to the first 1.5 cycles along this trajectory, we initialize a shorter iLQR

trajectory (2.5 gait cycles long). These shorter iLQR trajectories are warm started using the longer

iLQR trajectories and optimized. We then store the information from the first time step in form

of φ(x0) as well as value function gradient and Hessian. For the trotting and bounding motion

we optimize 2048 long iLQR trajectories leading to around 313000 training samples. As time

discretization we use ∆t = 0.004 s.

As discussed before, we perform a feature transformation φ(xt) on our states before using them

as input to the neural network. It is important that the network does not overfit to the current absolute

position of the robot in the horizontal plane. Therefore, φ(xt) is using the full state xt besides the

CoM position in horizontal plane. Besides this reduced state, we found it beneficial to include also

the relative positions of the end effectors with respect to the CoM in φ(xt). We also incorporate

information whether an end effector is in contact with the ground at a given state. We do this by

encoding the active/inactive contact state as {0, 1} respectively and pass four numbers (one for each

leg) as input. Lastly, we also pass the desired velocity vcmd and the contact time of each leg as input.

The contact time is the time until the foot either is about to leave contact or how long it is still in

contact (depending on the current contact configuration).

7







VALUENETQP

accompanying video. As one can see in the video, our method is able to keep the robot stable when

moving over the obstacles and is robust to random pushes.

4.3. Smoothness of control profile

Recall that our method is computing desired forces at the end effectors as control output. Espe-

cially when working on the real hardware it is important that the computed forces (and thereby the

computed torques using eq. (18)) are smooth enough to prevent the robot from shaking and desta-

bilizing. In fig. 4, we show the force profile generated by our method on the bounding task shown

in fig. 2 for the first second.

As one can see from the plot, the force profile is quite smooth in simulation. On the real robot,

the forces are a bit more noisy but this is expected given noisy measurements from the real robot

that are fed back in the QP (our simulation is noise free). Still, the forces on the real system are

smooth enough and not destabilize the bounding or trotting motion.

4.4. Necessity for QP constraints

One of the benefits of our method is that we are able to add constraints when solving for the control

in eq. (13). We verify the necessity for the bounds by disabling them for the trotting and bounding

motion. When we disable the QP bounds for the trotting motion, we see negative Fz forces being

applied. Still, the motion of the robot stays robust. In contrast, when disabling the QP bounds on the

bounding motion, the legs start slipping and the robot motion becomes unstable. This demonstrates

the necessity of the QP bounds and the benefit of having these constraints.

4.5. Reducing value function gradient and hessian prediction frequency

By default we are evaluating the neural network to get a new value function gradient and Hessian

at each control step at 500 Hz. In this experiment we study the prediction frequency has on the

stability of the motion on the robot. To do this, we reduce the update frequency of the predicted

gradient and Hessian while running the rest of the controller (evaluating the QP and impedance

controller) at 500 Hz. When running the bounding motion, we are able to reduce the value function

prediction from 500 Hz to 62.5 Hz before the robot becomes unstable (shown in the accompanying

video). This is an interesting observation, as it shows that it is not necessary to evaluate the value

function at the same rate as the controller, therefore reducing computation.

5. Conclusion and future work

In this paper, we presented a method to reduce a (non-convex) optimal control problem into a one-

step QP by learning the value function gradients and Hessians computed on the original problem.

We demonstrated the approach on trotting and bounding motions with velocity control and showed

that the method could be directly used on a real quadruped robot. This approach enables to signif-

icantly reduce computational complexity, enabling model predictive control to generate non-trivial

locomotion behaviors. We demonstrated the robustness and capabilities of this method in simula-

tion and on a real quadruped robot. As future work we are planning to study how the learned value

function gradient and Hessian information can be used as terminal costs for longer horizon model

predictive control. In addition, we intend to apply the method on a biped robot, which is more

unstable and a humanoid robot with more degrees of freedom.
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