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Figure 1. Glass segmentations obtained with the RGB-only method of Lin et al. [21] (GSD) and the monochromatic polarization method

of Kalra et al. [17] (P Mask R-CNN) compared to our glass segmentation network. The detected region is indicated by the orange masks.

Both prior methods fail to cleanly separate the non-glass regions with similar appearance. In contrast our method accurately segments the

glass region with the help of the spectral polarization cues.

Abstract

Transparent and semi-transparent materials pose sig-

nificant challenges for existing scene understanding and

segmentation algorithms due to their lack of RGB texture

which impedes the extraction of meaningful features. In

this work, we exploit that the light-matter interactions on

glass materials provide unique intensity-polarization cues

for each observed wavelength of light. We present a novel

learning-based glass segmentation network that leverages

both trichromatic (RGB) intensities as well as trichromatic

linear polarization cues from a single photograph captured

without making any assumption on the polarization state of

the illumination. Our novel network architecture dynami-

cally fuses and weights both the trichromatic color and po-

larization cues using a novel global-guidance and multi-

scale self-attention module, and leverages global cross-

domain contextual information to achieve robust segmen-

tation. We train and extensively validate our segmenta-

tion method on a new large-scale RGB-Polarization dataset

(RGBP-Glass), and demonstrate that our method outper-

forms state-of-the-art segmentation approaches by a signif-

icant margin.

⋆ Xin Yang (xinyang@dlut.edu.cn) and Xiaopeng Wei are the corre-

sponding authors. Xin Yang and Bo Dong lead this project.

1. Introduction

Autonomous robots, aerial drones, and self-driving ve-

hicles rely on an array of sophisticated sensors and algo-

rithms that enable them to sense and understand their en-

vironment. However, objects with transparent or semi-

transparent materials remain an open challenge for exist-

ing scene understanding methods. In contrast to opaque

materials, transparent materials typically lack texture, and

their complex dynamic appearance depends over various lo-

cal and global properties, ranging from light-matter interac-

tions (i.e., reflection, refraction, and transmission), object

shape, and background, resulting in out-of-distribution ob-

servations that are difficult to model.

The majority of existing segmentation methods for trans-

parent materials leverage either contextual information [27,

41] or rely on boundary detection [11, 40]. Both strategies

operate in the RGB domain where the interactions between

light waves and transparent materials only produce weak

cues. A few works have investigated leveraging richer rep-

resentations of light-matter interactions for transparent ma-

terial recognition, such as light fields [23,34,43] and polar-

ization [17,19,20,37,39]. However, these method also rely

on strong assumption on the target size and reflectivity, or

assume restricted capture conditions.

In this work, based on that glass materials often pro-

vide a distinctive spectral-polarimetric response, we lever-



age both trichromatic intensity and trichromatic linear po-

larization cues from images captured in-the-wild to infer

rich contextual information for robust transparent material

segmentation. Linear polarization cues, described by the

degree of linear polarization (DoLP) and the angle of po-

larization (AoLP), can provide strong cues [17] for trans-

parent object segmentation (Figure 1) and can be thought of

as intrinsic object textures for transparent materials. How-

ever, depending on the view and lighting conditions, these

cues might not be equally informative over all three wave-

lengths, or even confound valid RGB intensity cues. To

address these challenges, we design a Polarization Glass

Segmentation Network, which we dub ªPGSNetº, that uti-

lizes an Early Dynamic Attention (EDA) module to dynami-

cally estimate three global scaling weights for each channel

of the trichromatic DoLP and AoLP. The weighted DoLP

and AoLP, together with the RGB image features, are fed

into a Conformer [31] backbone network to extract robust

global and local features. The multi-modal local features

are then fused by a Dynamic Multimodal Feature Integra-

tion (DMFI) module guided by the global features, and

subsequently used by a Global Context Guided Decoder

(GCGD).

To train PGSNet, we introduce a large-scale RGB-

Polarization dataset, dubbed RGBP-Glass, which contains

4,511 manually annotated RGB intensity images and the

corresponding trichromatic (i.e., RGB) AoLP and DoLP

images. To ensure diversity, we capture the images in the

RGBP-Glass dataset from different real-world scenes that

have significant variations in location, type, shape, color

contrast, and light conditions.

We demonstrate the effectiveness of our approach and

show the importance of multi-chromatic polarization cues

for glass segmentation. Our extensive experiments show

that our method significantly outperforms competing meth-

ods. We make the following contributions

• the first learning based method to exploit multi-

chromatic polarization cues for glass segmentation on

photographs taken in-the-wild;

• a novel attention-based glass segmentation network

that dynamically fuses RGB and multi-chromatic po-

larization cues; and

• a new and unique large-scale RGB-P glass segmenta-

tion dataset.

2. Background and Related Work

Polarization. Light is composed of transverse waves of

electric and magnetic fields, and its polarization state

describes the orientation of the transverse electric field.

Within a non-zero finite time of observation, this orienta-

tion can be randomly distributed (unpolarized), biased to-

ward a single direction (linearly polarized), or in between

the two extremes (partially linearly polarized). We focus

our discussion on linear polarization supported by emerg-

ing polarization-array CMOS sensors, and omit polarization

states such as circular and elliptical polarization. Typically,

these ‘polarization’ cameras record four linear polarization

states of light: I0◦ , I45◦ , I90◦ , and I135◦ , where Ix describes

the image captured by a linear polarizer at the angle x.

The polarization state of light can be described using a

Stokes vector S = [S0, S1, S2, S3], where S0 stands for

the total light intensity, S1 and S2 describe the ratio of the

0◦/45◦ linear polarization over its perpendicular counter-

part, and S3 is the circular polarization power. The Stokes

elements S0, S1, S2 can be computed from the measure-

ments I0◦ , I45◦ , I90◦ , and I135◦ as:

S0 = I0◦ + I90◦ = I45◦ + I135◦ ,
S1 = I0◦ − I90◦ ,
S2 = I45◦ − I135◦ .

(1)

The degree of linear polarization (DoLP) and angle of linear

polarization (AoLP) are then formally defined as:

DoLP =

√

S2
1 + S2

2

S0

, AoLP =
1

2
arctan

(

S2

S1

)

. (2)

The type and composition of materials are known to be

highly correlated to the DoLP and AoLP observations [4]

as illustrated for transparent glass materials in Figure 2.

However, this correlation is often challenging to analyti-

cally characterize for real-world scenes due to the many fac-

tors that contribute to the observations, and a key challenge

that we address through the various components that com-

prise PGSNet (section 4).

We are not the first to consider polarization cues. The use

of polarization cues has a rich history in computer vision

for a wide range of tasks such as estimating shape and/or

surface normals (e.g., [1±3, 6, 16, 33]), reflectance compo-

nent separation (e.g., [19, 20, 37]), and semantic segmenta-

tion (e.g., [17, 39]).

Transparent Object Segmentation. The majority of

glass object segmentation techniques work on regular RGB

images [11, 27, 40, 41, 46]. While these methods have

been able to achieve impressive results, RGB images only

provide weak glass segmentation cues and the efficacy of

these methods is reduced for cluttered scenes and print-out

spoofs [17]. To improve robustness, richer records of light-

matter interactions have been considered for transparent and

semi-transparent object segmentation, such as distortions

due to transparency in light-fields [23, 34, 43] and depth in-

formation [10, 32]. Despite the richer input sources, these

methods still rely on additional assumptions such as weak

specular reflections [23, 34, 43], limited object shapes [10],

or isolated objects [32], thereby limiting their generality.

Closest related to our work is the glass segmentation

network of Kalra et al. [17] that takes as input both in-

tensity image as well as polarization cues (i.e., AoLP and
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Figure 2. RGBP-Glass Examples. For each exemplar we show

two rows, with in the first column the RGB intensity (top) and ref-

erence glass segmentation (bottom), and in the last three columns

the polarization measurements for the red, green, and blue chan-

nels, respectively (top: AoLP, bottom: DoLP). The top exemplar

exhibits clear glass cues in both RGB and polarization. The mid-

dle exemplar features weak intensity cues, but a strong polariza-

tion cues in the red channel. The bottom exemplar does not show

strong cues in either RGB or polarization.

DoLP). However, Kalra et al. focus on robotic bin picking

and train their network on a proprietary training set of 1,600
monochromatic images of small transparent objects, ignor-

ing potential wavelength dependent cues embedded in the

AoLP and the DoLP. The lack of a large-scale dataset con-

taining in-the-wild transparent objects such as glass walls

and windows precludes the exploitation of polarization cues

for more general application scenarios . While we also

exploit polarization cues, our glass segmentation network

(PGSNet) differs in two critical aspects from the method of

Kalra et al. First, we use trichromatic polarization cues and

introduce a publicly-available large-scale RGB-P dataset of

in-the-wild transparent objects. Second, whereas Kalra et

al. only leverage local contextual attention, our method is

guided by both global and local contextual attention.

3. RGB-P Glass Segmentation Dataset

We collected a large-scale polarization glass segmen-

tation dataset, named RGBP-Glass using a trichromatic

polarizer-array camera (LUCID PHX050S) that records

four different linear-polarization directions (0◦, 45◦, 90◦,

Whole Dataset

Training Set

Testing Set

1

0

Whole Dataset

Training Set

Testing Set

1

0

(a) glass location distribution (b) glass instance/area log distr.

Figure 3. The RGBP-Glass dataset has a wide variation in (a) glass

location and (b) number of glass instances and relative size.

Datasets
Segmentation Modality Total Num.Num.

task Color Pol. Images Train Test

GDD [27] Glass RGB × 3916 2980 936

Trans10K-Stuff [40, 41] Glass RGB × 4226 2455 1771

GSD [21] Glass RGB × 4102 3202 810

ZJU-RGB-P [39] Semantic RGB Tri 394 344 50

Polarized Monochrome [17] Glass Gray Mono 1600 1000 600

RGBP-Glass (Ours) Glass RGB Tri 4511 3207 1304

Table 1. Comparison of existing glass segmentation datasets.

and 135◦) for each color channel (i.e., R, G, and B) at a

612 × 512 resolution per polarization direction. RGBP-

Glass contains 4,511 RGB intensity and corresponding

pixel-aligned trichromatic AoLP and DoLP images with

manually annotated pixel-level accurate reference glass-

masks and associated bounding-boxes. Each image in

RGBP-Glass contains at least one in-the-wild glass object.

To ensure diversity of scenes, we capture the dataset from

different locations, view angles, lighting conditions, types

of glass, and shapes of glass. The polarization filter mask of

the camera reduces the light efficiency of the sensor, and we

compensate for this by using a f/1.6 aperture and manually

adjust the exposure time. Table 1 compares RGBP-Glass to

other similar datasets, and Figure 2 provides representative

examples. To avoid overfitting to glass location, object size

or number of glass instances, we ensure RGBP-Glass covers

a wide distribution of glass locations (Figure 3(a)), ratio of

glass area (Figure 3(b)), and number of glass instances per

image (Figure 3(b)). To the best of our knowledge, RGBP-

Glass is the most extensive publicly-available RGB-P-based

dataset for glass-like object segmentation tasks.

4. Spectral-Polarimetric Glass Segmentation

The three selected examples in Figure 2 show that po-

larization measurements can provide strong additional cues

for glass segmentation. However, naively including these

measurements in existing glass segmentation networks does

not necessarily yield the expected improvement in perfor-

mance. In typical cases, both RGB and polarization ob-

servations provide meaningful cues for glass segmentation

(e.g., Figure 2(a)). However, under certain light conditions
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Figure 4. Overview of PGSNet (a) and the three main building blocks: (b) the Dynamic Multimodal Feature Integration (DMFI) module,

(c) the Global Context Generation (GCG) module, and (d) an Attention Enhancement (AE) module.

and/or view angles, the polarization cues may be weak or

even non-existent, providing no meaningful cues for seg-

mentation (e.g., Figure 2(c)). Similarly, under adverse con-

ditions (e.g., fog), RGB intensities might not provide mean-

ingful cues either. Furthermore, even within a modality, the

cues provided by the different color channels might not be

equally important (e.g., Figure 3(b)), or even provide con-

tradictory cues. Effectively and dynamically fusing between

and within the multimodal cues is essential for robust mul-

timodal glass segmentation.

We introduce a novel Polarization Glass Segmentation

Network (PGSNet) that aims to dynamically fuse multi-

modal intensity and polarization measurements for robust

segmentation by leveraging both local and global contex-

tual information. PGSNet follows an encoder-decoder ar-

chitecture, summarized in Figure 4(a). During encoding,

an early dynamic attention module (EDA; subsection 4.1)

estimates global scaling weights for balancing the different

color channels within each of the trichromatic AoLP and

DoLP. Next, the weighted trichromatic AoLP and DoLP

along with the RGB intensity image are passed into three

separate Conformer [31] branches for feature extraction.

The goal of the Conformer stage is to balance differences

between glass and non-glass objects within each of the dif-

ferent sources. For example, if there is no or little polar-

ization observed on glass-like objects, then PGSNet should

leverage any potential global and local contextual informa-

tion between glass and non-glass objects in the polariza-

tion cues. In the final encoding step, we employ a novel

Dynamic Multimodal Feature Integration (DMFI) module

(subsection 4.2) to dynamically fuse together the extracted

local features from the three input sources (i.e., RGB, AoLP,

and DoLP) guided by the global features.

During decoding, we rely on the global contextual cues

to avoid over-segmentation. To avoid diluting global con-

text features with subsequent steps in the decoding pipeline,

we introduce a novel Global Context Guided Decoder

(GCGD; subsection 4.3) that employs an Attention En-

hancement (AE) module to dynamically provide global

guidance based on the multimodal global features from the

three Conformer branches.

4.1. Early Dynamic Attention (EDA)

The purpose of the EDA module is to estimate global

weight factors to balance the color channels in the AoLP

and DoLP measurements. We employ a ResNet-18 [13]

(with shared weights between color channels) followed by

a fully connected layer and a SoftMax operator to estimate

appropriate weights for each of the color channels. For-

mally, the EDA module can be denoted as:

wr, wg, wb = σ(⟨G(pr), G(pg), G(pb)⟩),
P = [wrpr, wgpg, wbpb], (3)

where p{r,g,b} are the red, green, or blue polarization mea-

surements (AoLP or DoLP) with weights w{r,g,b} respec-

tively; [·, ·, ·] indicates the concatenation operation over the

channel dimension; σ is the SoftMax function; ⟨·, ·, ·⟩ de-

notes a vector; and G is the weight estimation network.



4.2. Dynamic Multimodal Feature Integration
(DMFI)

The importance of the cues gathered from the different

modalities (i.e., RGB intensity, AoLP, and DoLP), is scene-

dependent (cf. Figure 2). A naive combination of these cues

can dilute the impact of strong cues with weak signals, or

even amplify adverse effects of confounding cues . A Dy-

namic Multimodal Feature Integration (DMFI) addresses

the robust fusing of features from the three input domains by

leveraging global and local information. The DMFI mod-

ule, illustrated in Figure 4(b), consists of two blocks: a Dy-

namic Fusion (DF) block and a Multi-Scale Dependency

Perception (MSDP) block.

Dynamic Fusion (DF). The DF block first generates three

spatial attention maps on the three sequences of token em-

beddings provided by three Conformers [31] for each of the

three input modalities (see the supplemental material for de-

tails on Conformers). The extracted convolution features

are subsequently weighted by the attention maps and fused

(summer) together:

M4
I ,M

4
φ,M

4
ρ = σ(⟨Ω(T 4

I ),Ω(T
4
φ),Ω(T

4
ρ )⟩),

FDF =M4
I ⊗ C4

I +M4
φ ⊗ C4

φ +M4
ρ ⊗ C4

ρ , (4)

whereM are the attention maps generated from I , ϕ, and ρ,

the RGB intensity, AoLP, and DoLP input respectively, and

Ω is a function that first reduces the dimensions of every

token embedding to one via a fully connected layer, and

then subsequently reshapes the resulting embedding to a

2D map. C and T are the convolution features and token

embeddings generated by the conv and the trans branch in

the Conformer [31], respectively, where the superscript de-

notes the index of Conformer’s internal block, and ⊗ is the

element-wise multiplication.

Multi-Scale Dependency Perception (MSDP). To re-

duce the impact of shape variations and locations of the

glass objects, the MSDP block enhances the global de-

pendencies for locating glass objects in the dynamically

fused feature FDF using a specially designed multi-scale

self-attention mechanism. By varying the perceptive scales,

the MSDP block can effectively detect correlations between

regions at different scales. Formally:

FV = ψbr
3 (FDF ),

Fn
DP = ℑn(FV ) = FV + α ∗ U(N (An(FV ))),

FMSDP = [FDF , F
5
DP , F

7
DP , F

9
DP , F

11
DP ], (5)

where ψbr
k is a k × k convolution layer followed by a

Batch Normalization (BN) and ReLU activation function.

An is an adaptive average pooling with target size n ×
n, U is a bilinear upsampling, and α is a learnable pa-

rameter. N (x) is the self-attention operation defined as

V(x)(σ(K(x)TQ(x))); Q, K, and V are three learnable lin-

ear embedding functions, implemented as three fully con-

nected layers. Our MSDP block is similar to existing at-

tention schemes (e.g., PPM [47], ASPP [5] non-local atten-

tion [35]). We refer to the supplementary material for addi-

tional experiments validating that MSDP outperforms prior

schemes.

The final output of the DMFI block applies an additional

3×3 convolution to the output features of the MSDP block:

FDMFI = ψbr
3 (FMSDP ).

4.3. Global Context Guided Decoder (GCGD)

Global contextual cues are essential to avoid over-

segmentation during the decoding phase. Typically, these

global contextual cues are injected in the decoder via the

high-level features. However, as the decoding process pro-

ceeds to lower-level features, the influence of the global

contextual features dilutes. To retain the global contextual

information during the decoding process, we introduce a

novel Global Context Guided Decoder (GCGD) that con-

sists of a Global Context Generation (GCG) module (Fig-

ure 4(c)) that forms global guidance cues across the three

input domains, and an Attention Enhancement (AE) mod-

ule (Figure 4(d)) that leverages these global guidance cues

to enhance the low-level features.

Global Context Generation (GCG). Key to the GCG is

the observation that the token embeddings T 4
I , T 4

φ , and T 4
ρ

from the Conformers [31] are inherently global-aware char-

acteristics. We leverage these token embeddings by first

computing a set of cross-correlation features:

Fxy = X (T 4
x , T

4
y ),

= T 4
x +Υ(T 4

x , T
4
y ),

= T 4
x + ς(Q(T 4

y )K(T 4
x )

T /
√
d)V(T 4

x ), (6)

where xy ∈ {Iϕ, Iρ, ϕI, ϕρ, ρI, ρϕ}, ς is the sigmoid func-

tion, and d denotes the length of a token embedding. These

cross-correlation features are then combined via a linear

projection Γ, implemented by a fully connected layer:

T = Γ([FIφ, FIρ, FφI , Fφρ, FρI , Fρφ]). (7)

Attention Enhancement (AE). The AE utilizes the com-

bined features from the GCG module to enhance the input

features by computing and combining a spatial enhance-

ment map E and channel features e. In the GCGD, we de-

ploy four AE blocks, and the decoder features go through

the 4th AE block first. Mathematically, the j-th AE block is

defined as:

ej = R(F j) ∗ R(Tg)

Ej = PC(F
j ′) ∗ PT (ts, Tg),

F j ′′ = F j ′ ∗ Ej + F j ′, F j ′ = F j ∗ ej + F j ,

F j
AE = ψbr

3 (F j ′′) j ∈ [1, 4], (8)



where F 4 = FDMFI and F i = F i
BD = ψbr

3 (Ci
I +

U(ψbr
3 (F i+1

AE ))), i ∈ [1, 3]. R(x) is the channel feature

generator defined as ς(ψ1(ψ
br
1 (A1(x)))); PC(x) is a spa-

tial map generator based on convolution features, defined as

ς(ψ7(x)); and PT (x, y) is also a spatial map generator but

based on token embeddings, defined as ς(Ω(y +Υ(x, y))).
Tg and ts are n glass and segmentation tokens in T .

4.4. Loss Function

We supervise both the encoder and decoder during train-

ing. For the encoder, we follow the training process for

Conformers [31], and apply two loss functions, LC
m and LT

m,

for the conv and the trans-branches:

LE = Σm(LC
m + LT

m),m ∈ {I, ϕ, ρ}, (9)

where LC
m and LT

m are both the sum of a binary cross-

entropy (BCE) loss ℓbce and a IoU loss ℓiou [25].

For the decoder, we apply supervision on the features

generated by the deepest three AE modules and the features

generated by the GCG module:

LD = Σ4
i=2(Li

AE) + LGCG, (10)

where the losses on the AE modules and the GCG module

are computed again as: ℓbce + ℓiou. Finally, we combine

the losses for both the encoder LE and decoder LD with the

BCE and IoU loss on the final output mask. To promote

clear mask boundaries, we also add an edge loss ℓedge [48]

(weighted by ω = 10 empirically determined):

L = LE + LD + ℓbce + ℓiou + ωℓedge, (11)

5. Assessment

We implemented PGSNet in PyTorch [30] and train our

network for 180 epochs with a batch size of 18 using

stochastic gradient descent with a momentum of 0.9 and

a weight decay of 5 × 10−4. We employ the poly strat-

egy [22] and set the initial learning rate and power to 0.001

and 0.9, respectively. We initialize PGSNet randomly, ex-

cept EDA which is initialized with ResNet-18 [13] and the

Conformer-B model [31] which is initialized with a model

pre-trained on ImageNet. All input images are resized to

416× 416 for both training and testing, and the final output

is bilinearly resized back to the original input resolution.

We use four metrics for validation and ablation: inter-

section over union (IoU ), weighted F-measure (Fw
β ) [24],

mean absolute error (MAE), and balance error rate

(BER) [28]. For IoU and Fw
β , higher is better, while for

MAE and BER, lower is better. We refer to the supple-

mentary materials for a formal definition of each metric.

5.1. Qualitative and Quantitative Evaluation

We extensively compare the effectiveness of our method

to 22 state-of-the-art methods across different related tasks

Methods IoU↑ F
w
β
↑ MAE↓ BER↓

Mask R-CNN◦ [12] 63.59 0.677 0.224 22.62

PSPNet◦ [47] 74.49 0.786 0.128 14.76

DenseASPP◦ [44] 75.18 0.793 0.119 14.28

DANet◦ [9] 75.64 0.793 0.121 14.15

CCNet◦ [15] 76.52 0.799 0.117 13.44

SETR◦ [49] 77.60 0.817 0.114 11.46

SegFormer◦ [42] 78.42 0.815 0.121 13.03

DSS△ [14] 69.32 0.707 0.183 17.33

CPD△ [38] 75.60 0.790 0.127 13.25

F3Net△ [36] 73.03 0.764 0.146 14.92

MINet-R△ [29] 70.56 0.746 0.147 15.92

PFNet▽ [26] 76.26 0.790 0.130 12.83

SINet-V2▽ [7] 76.86 0.796 0.126 12.76

PraNet§ [8] 75.45 0.781 0.133 13.80

BDRAR•† [50] 69.13 0.732 0.173 18.68

MirrorNet⋊† [45] 76.49 0.796 0.126 13.52

GDNet* [27] 77.64 0.807 0.119 11.79

TransLab* [40] 73.59 0.772 0.148 15.73

Trans2Seg* [41] 75.21 0.799 0.122 13.23

GSD*† [21] 78.11 0.806 0.122 12.61

EAFNet⋄ [39] 53.86 0.611 0.237 24.65

P Mask R-CNN⋆ [17] 66.03 0.714 0.178 18.92

PGSNet (Ours) 81.08 0.842 0.091 9.63

PGSNet ([39] data) 77.70 0.839 0.007 6.92

Table 2. Quantitative comparison against state-of-the-art: in-

stance/semantic segmentation methods (marked by the ◦ sym-

bol), salient object detection methods (△), camouflaged object

segmentation methods (▽), medical image segmentation method

(§), shadow detection method (•), mirror segmentation method

(⋊), RGB glass segmentation methods (*), RGB+P semantic seg-

mentation method (⋄), monochromatic intensity, and polarization-

based glass segmentation methods (⋆). All methods are retrained

and tested on the RGBP-Glass dataset (excl. the last row which

demonstrates that PGSNet generalize to other datasets). Meth-

ods that require an additional CRF [18] post-processing step are

marked with the † symbol. The first, second, and third best results

are highlighted in red, green, and blue, respectively.

such as instance/semantic, salient/camouflaged objects,

shadow/mirror segmentation, and glass region/instance seg-

mentation (Table 2). For a fair comparison, all methods

are re-trained and tested on the RGB-P Glass segmenta-

tion dataset. Of the compared methods, EAFNet [39] and P

Mask R-CNN [17] are the only two that also leverage polar-

ization cues. GDNet [27], TransLab [40], Trans2Seg [41],

and GSD [21] are in-the-wild glass segmentation methods,

but only rely on RGB intensity input. From Table 2 we

can see that the proposed method offers the best perfor-

mance for all four metrics, outperforming the other compet-

ing methods by a significant margin. The two polarization-

based approaches, P Mask R-CNN [17] and EAFNet [39],

do not perform well. P Mask R-CNN [17] extends Mask R-

CNN [12] with a cross-domain attention scheme. Mask R-

CNN work well on small objects, as is the case for Kalra et

al.’s intended task of robotic bin picking, but its perfor-

mance suffers when segmenting larger objects, even when

including polarization cues. Furthermore, P Mask R-CNN
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Figure 5. Qualitative comparison of PGSNet against state-of-the-art glass segmentation methods retrained on the RGBP-Glass dataset.

only uses monochromatic cues for both intensity and po-

larization, which is less effective than using trichromatic

cues. While EAFNet [39] also explored multichromatic

DoLP and AoLP, Xiang et al. concluded that EAF-A (i.e.,

RGB+AoLP) performs best for semantic segmentation with

EAFNet, and in our comparisons we follow this approach.

However, as our ablation study will show (subsection 5.2),

the DoLP is more informative than AoLP for glass segmen-

tation. The lower accuracy of EAFNet is partially because

it is designed to solve a more general problem (semantic

vs. glass segmentation) and partially because it places a

higher emphasis on performance than PGSNet. We refer to

the supplemental material for a performance comparison.

Finally, we also trained and tested PGSNet on the smaller

ZJU-RGB-P dataset (last row of Table 2), demonstrating

that PGSNet generalizes well to other datasets with similar

performance gains. Figure 5 further qualitatively demon-

strates the benefits of our method:

1. The reflections in the glass in the bathroom scene

share the same texture as the wall. Only our method is

able to accurately segment the glass. The monochro-

matic polarization information leveraged by P Mask

R-CNN as well as the employed fusion scheme are not

powerful enough to successfully segment the glass.

2. Glass in metal door-frame: all methods except

PGSNet and Trans2Seg confuse the metal material for

glass. Trans2Seg’s glass segmentation is less accu-

rate than our method’s result which leverages both the

strong polarization cues as well as global contextual

information to achieve the best performance.

3. In the 3rd and 4th example, even though the glass is in-

visible in the RGB intensity image, we still observe

strong AoLP and DoLP cues. Despite also leveraging

polarization cues, P Mask R-CNN fails on the 4th ex-

ample. In contrast, our method succeeds thanks to our

dynamic context-aware attention-based fusion.

5.2. Ablation Study

Next, we investigate (a) the impact of spectral polariza-

tion cues and (b) influence of each component in PGSNet.

For each experiment we fully retrain each model.

Impact of Spectral Polarization Cues. We conduct a

series of ablation experiments to demonstrate the effects

of spectral polarization cues on glass segmentation Ta-

ble 3: (A) PGSNet baseline; (B ) with RGB intensity

cues only; (C ) with AoLP, but without DoLP; (D) with

DoLP, but without AoLP; (E ) monochromatic intensity plus

monochromatic polarization cues; and (F ) RGB intensity

cues with monochromatic polarization cues. Comparing B

(RGB only) with C , D , or F , we can see that adding any

form of polarization cues to the RGB intensity cues im-

proves the segmentation accuracy. Furthermore, we observe

that DoLP cues (D) have a greater impact than AoLP cues

(C ). In contrast to the findings by Kalra et al. [17], the

differences between E and F indicate that spectral RGB

intensity information has a major impact. Finally, the dif-

ferences between our baseline (A) and (F ) further demon-

strates that spectral polarization cues are more informative

than monochromatic polarization cues. Figure 6 visually

supports the above quantitative observations.

Influence of Early Dynamic Attention (EDA). The

EDA module balances the different spectral components

in both the DoLP and AoLP. Comparing Table 3 A (with

EDA) versus G (without EDA) shows significant perfor-

mance gain when including EDA, validating the dynami-

cally balancing the contributions of each wavelength.

Influence of PGSNet Components. We demonstrate the

influence and importance of each of the components that

comprise PGSNet by gradually removing different compo-

nents. First, we ablate the decoder by removing the GCG

from the GCGD (Table 3 H ) which results in a reduction in

performance compared to the baseline (Table 3 A). Next,
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Figure 6. Qualitative comparison of different PGSNet ablatives.

Networks
RGBP-Glass Testing Set

IoU↑ F
w
β
↑ MAE↓ BER↓

A PGSNet (original) 81.08 0.842 0.091 9.63

B Input RGB only 76.11 0.797 0.126 13.08

C Input RGB + trichromatic AoLP 77.23 0.807 0.117 12.04

D Input RGB + trichromatic DoLP 79.73 0.826 0.105 10.46

E Input Gray + Mono AoLP + Mono DoLP 75.99 0.793 0.123 12.75

F Input RGB + Mono AoLP + Mono DoLP 79.01 0.819 0.105 11.06

G PGSNet w/o EDA 80.23 0.833 0.097 10.04

H B + DMFI + GCGD w/o GCG 79.64 0.826 0.102 10.35

I B + DMFI + BD 79.18 0.824 0.103 10.73

J B + DMFI w/o MSDP + BD 78.65 0.819 0.106 11.09

K B + BI + GCGD 79.03 0.821 0.104 10.82

L B + BI + BD 77.24 0.809 0.111 11.35

Table 3. Quantitative ablation comparisons showing that: a) spec-

tral and polarization cues promote more robust glass segmenta-

tion, and b) all component of PGSNet contributes to the overall

performance. We denote the backbone network (EDA + Con-

former) with ‘B’, where ‘EDA’ is the Early Dynamic Attention

module. ‘BI’ denotes a basic integration unit (i.e., element-wise

addition), used for ablating the Dynamic Multimodal Feature In-

tegraion (DMFI) module, and ‘BD’ denotes a Basic Decoder used

to ablate the Global Context Generation (‘GCG’) module.

we remove the four AE blocks and replace the GCGD by

a basic decoder (BD) further reducing performance (I ).

On the encoder side, we then simplify the DMFI mod-

ule by removing the MSDP block (J ). Adding back the

full GCGD, but exchanging the DMFI by a basic integra-

tion module (BI) that sets all values in the attention map

M4
x , x ∈ {I, ϕ, ρ} to 1 in Equation 4, yields an improve-

ment (K vs. J ), but is still slightly below the full integra-

tion module with a basic decoder (I ). This shows that both

components (GCGD and DMFI) contribute to the overall

performance of PGSNet. Comparing I (2nd best) versus

J (2nd worst) demonstrates the importance of using multi-

scale dependencies. Finally, we replace all components by

their basic counterpart, yielding a worst performance (L),

illustrating the importance of each component in PGSNet.

5.3. Limitations

When polarization only provides weak or no cues, the

effectiveness of our method decreases; Figure 7 demon-

strates such a case. However, even without polarization

RGB Image

P Mask R-CNN GSD

PGSNet (Ours) GTDegree of Linear Polarization

Angle of Linear Polarization

AoLP_R AoLP_G AoLP_B

DoLP_R DoLP_G DoLP_B

Figure 7. PGSNet’s effectiveness is reduced for scenes with weak

polarization cues.

cues, our method (Table 3 B ) still performs well compared

to prior glass segmentation methods. Even with RGB only

input, our method still outperforms existing glass segmen-

tation methods that leverage polarization cues. In addition,

PGSNet expects at least one glass object in the photograph,

and it fails when no such object is present. Note that this

can be resolved by training on RGBP-Glass augmented with

images without glass objects from ZJU-RGB-P [39].

6. Conclusion

In this paper we presented a robust glass segmentation

network, PGSNet, to dynamically fuse trichromatic inten-

sity and polarization cues recorded in-the-wild. The pro-

posed network includes several novel modules. On the en-

coder side, a DMFI module integrates multimodal trichro-

matic measurements by leveraging multi-scale pixel-wise

dependencies to dynamically enhance local contextual cues.

On the decoder side, a novel GCGD leverages cross-modal

global contextual information to provide robust segmenta-

tion. To promote polarization as a valuable cue for vision

tasks, we also introduce a large-scale RGBP-Glass dataset

that we also use to train PGSNet. Our validation and ab-

lations demonstrate the value of trichromatic polarization

cues as well as the effectiveness and robustness of PGSNet.
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