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Abstract

We consider the problem of quantifying uncertainty for the estimation error of
the leading eigenvector from Oja’s algorithm for streaming principal component
analysis, where the data are generated IID from some unknown distribution. By
combining classical tools from the U-statistics literature with recent results on
high-dimensional central limit theorems for quadratic forms of random vectors
and concentration of matrix products, we establish a weighted χ2 approximation
result for the sin2 error between the population eigenvector and the output of Oja’s
algorithm. Since estimating the covariance matrix associated with the approximat-
ing distribution requires knowledge of unknown model parameters, we propose a
multiplier bootstrap algorithm that may be updated in an online manner. We estab-
lish conditions under which the bootstrap distribution is close to the corresponding
sampling distribution with high probability, thereby establishing the bootstrap as a
consistent inferential method in an appropriate asymptotic regime.

1 Introduction

Since its discovery over a century ago [13], principal component analysis (PCA) has been a corner-
stone of data analysis. In many applications, dimension reduction is paramount and PCA offers an
optimal low-rank approximation of the original data. PCA is also highly interpretable as it projects
the dataset onto the directions that capture the most variance known as principal components.

Important applications of PCA include image and document analysis, where the largest few principal
components may be used to compress a large dimensional dataset to a manageable size without
incurring much loss; for a discussion of some other applications of PCA, see for example, [28]. In
these settings, the original dimensionality, which could be the number of pixels in an image or the
vocabulary size after removing stop-words, is in the tens of thousands. An offline computation of the
principal components would require the computation of eigenvectors of the sample covariance matrix.
However, in high-dimensional settings, storing the covariance matrix and subsequent eigen-analysis
can be challenging. Streaming PCA methods have gained significant traction owing to their ability to
iteratively update the principal components by considering one data-point at a time.

One of the most widely used algorithms for streaming PCA is Oja’s algorithm, proposed in the
seminal work of [41]. Oja’s algorithm involves the following update rule:

wt+1 − wt = η(wTt Xt)Xt; wTt+1wt+1 = 1, (1)

where Xt ∈ Rd is the tth data point and wt is the current estimate for the leading eigenvector of
Σ = EXXT after t data-points have been seen. The parameter η can be thought of as a learning rate,
which can either be fixed or varied as a function of t. In this paper we fix the learning rate, similar
to [26].
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Contribution: In the present work, we consider the problem of uncertainty quantification for the
estimation error of the leading eigenvector from Oja’s algorithm, which is one of the most commonly
used streaming PCA algorithms. Our contributions may be summarized as follows:

1. We derive a high-dimensional weighted χ2 approximation to the sin2 error for the leading
eigenvector of Oja’s algorithm. We recover the optimal convergence rate O(1/n) while
allowing d to grow at a sub-exponential rate under suitable structural assumptions on the
covariance matrix, matching state-of-the-art theoretical results for consistency of Oja’s
algorithm. Our result provides a distributional characterization of the sin2 error for Oja’s
algorithm for the first time in the literature. The approximation holds for a wide range of
step sizes.

2. Since the weighted χ2 approximation depends on unknown parameters, we propose an online
bootstrap algorithm and establish conditions under which the bootstrap is consistent. Our
bootstrap procedure allows the approximation of important quantities such as the quantiles
of the error associated with Oja’s algorithm for the first time.

Prior analysis of Oja’s algorithm. While Oja’s algorithm was invented in 1982 it was not until
recently that the theoretical workings of Oja’s algorithm have been understood. A number of papers
in recent years have focused on proving guarantees of convergence of the iterative update in (1)
toward the principal eigenvector of the (unknown) covariance matrix EXXT , which can be recast as
stochastic gradient descent (SGD) on the quadratic objective function

min
w

wTw=1

−trace(wTΣw), Σ = EXXT , (2)

projected onto the non-convex unit sphere. We assume that the data-points are mean zero. Despite
being non-convex and thus falling outside the framework for which theory for stochastic gradient
descent convergence is firmly established, the output of Oja’s algorithm be viewed as a product of
random matrices and shares similar structure to other important classes of non-convex problems, such
as matrix completion [27, 29], matrix sensing [27], and subspace tracking [4]. Thus, studying this
optimization problem serves as a natural first step toward understanding the behavior of SGD in more
general non-convex settings.

Let v1 denote the principal eigenvector of Σ, and let v̂1 = wn be the solution to the stochastic iterative
method applying Eq 1. Finally, let λ1 > λ2 be the first and second principal eigenvalues of Σ. Sharp
rates of convergence for Oja’s updates were established in [25]. Under boundedness assumptions on
‖XiX

T
i − Σ‖, they show that with constant probability, the square of the sine of the angle between

v1 and w satisfies:

1− (vT1 v̂1)2 = O

(
1

n

)
(3)

where the O hides a constant which depends in the optimal way on the eigengap between the top
two eigenvalues, and independent of n or d, improving on previous error bounds for Oja’s algorithm
[46, 18, 3, 47, 38, 2] which showed convergence rates that deteriorate with the ambient dimension
d, and thus did not fully explain the efficiency of Oja’s update. This sharp rate is remarkable, as it
matches the error of the principal eigenvector of the sample covariance matrix, which is the batch
or offline version of PCA. Other notable work include [31, 33] for unbounded Xi, analysis of Oja’s
algorithm for computing top k principal components [1, 24].

The bootstrap. The bootstrap, proposed by [9], is one of the most widely used methods for
uncertainty quantification in machine learning and statistics and accordingly has a vast literature.
We refer the reader to [17, 49] for expositions on the classical theory of the bootstrap for IID data.
Recently, since the groundbreaking work of [7, 8], the bootstrap has seen a renewed surge of interest
in the context of high-dimensional data where d can be potentially exponentially larger than n. Of
particular relevance to the present work are high-dimensional central limit theorems (CLTs) for
quadratic forms, which have been studied by [43, 51, 15]. In particular, our CLT for the estimation
error of Oja’s algorithm invokes a modest adaptation of [51] to independent but non-identically
distributed random variables. In machine learning, bootstrap methods have been used to estimate
the uncertainty of randomized algorithms such as bagging and random forests [35], sketching for
large scale singular value decomposition (SVD) [36], randomized matrix multiplication [37], and
randomized least squares [34].
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A standard notion of bootstrap consistency is that, conditioned on the data, the distribution of the
suitably centered and scaled bootstrap functional approaches the true distribution with high probability
in some norm on probability measures, typically the Kolmogorov distance, which is the supremum
of the absolute pointwise difference between two CDFs. Bootstrap consistency is often established
by deriving a Gaussian approximation for the sampling distribution and showing that the bootstrap
distribution is close to the corresponding Gaussian approximation with high probability.

It may seem that if one knows that the approximating distribution of a statistic is Gaussian, this defeats
the purpose of bootstrap. However, for most statistics, the parameters of the normal approximation
depend on unknown model parameters, and have to be estimated if one intends to use the normal
approximation. Furthermore, the CLT only gives a first-order correct approximation of the target
distribution, i.e. with O(1/

√
n) error. In contrast, the bootstrap of a suitably centered and scaled

statistic has been shown to be higher order correct for many functionals [16, 17, 19].

Quantifying uncertainty for SGD. Behind the recent success of neural networks in a wide range
of sub-fields of machine learning, the workhorse algorithm has become Stochastic gradient descent
(SGD) [42, 40, 44]. For establishing consistency of bootstrap, one requires to establish asymptotic
normality [11, 42, 45, 39]. There has also been many works on uncertainty estimation of SGD [6,
32, 12, 48]. However, all these works are for convex, and predominantly strongly convex loss
functions. Only recently, [52] has established asymptotic normality for nonconvex loss functions
under dissipativity conditions and appropriate growth conditions on the gradient, which are weaker
conditions than strong convexity but not significantly so.

Now, in Section 2 we present notation and do setup, present our main theoretical results in Section 3,
followed by simulations in Section 4.

2 Preliminaries

We consider a row-wise IID triangular array, where the random vectors {Xi} in the nth row take val-
ues in Rdn , with E[Xi] = 0 and Var(Xi) = Σn. Note that the triangular array allows {X1, . . . , Xn}
to come from a different distribution for each n and the setting where d is fixed and n grows is a
special case. For readability, we drop the subscript n from Σn. We use ‖ · ‖ to denote the Euclidean
norm for vectors and the operator norm for matrices and ‖ · ‖F to denote the Frobenius norm.

Expanding out the recursive definition in Eq 1, we see that Oja’s iteration can be expressed as
wt+1 = (Id + ηXtX

T
t )wt. Thus, after n iterations the vector can be written as a matrix-vector

product, where the matrix is a product of n independent matrices. Expanding out the recursive
definition, we get:

Bn :=
n∏

i=1

(Id + ηXiX
T
i ) v̂1 =

Bnu0

‖Bnu0‖
, (4)

where Id is a d× d identity matrix. where u0 is a random unit vector in d dimensions. In the scalar
case, when η = 1/n, for large n, the numerator of Eq 4 behaves like exp(

∑
iX

2
i /n), which in turn

converges to exp(E[X2
1 ]). For matrices, one hopes that, by independence, a result of the same flavor

will hold. And in fact if it does hold, then for η = logn
n , the numerator in Eq 4 will concentrate

around exp(log nΣ). The spectrum of this matrix is dominated by the principal eigenvector, i.e. the
ratio of the first eigenvalue to the second one is exp(log n(λ1 − λ2)), where λi is the ith eigenvalue
of the covariance matrix Σ. This makes it clear that Oja’s algorithm is essentially a matrix vector
product of this matrix exponential (suitably scaled) and a random unit vector.

However, the intuition from the scalar case is nontrivial to generalize to matrices due to non-
commutativity. Limits of products of random matrices have been studied in mathematics in the
context of ergodic theory on Markov chains (see [14, 30, 5, 10] etc.). However, until recent results of
[23], which extended and improved results in [21], there has not been much work on quantifying the
exact rate of convergence, or finite-sample large deviation bounds for how a random matrix product
deviates from its expectation.

We reparametrize η as ηn/n, where ηn is chosen carefully to obtain a suitable error rate. Note that
this is not a scheme where we decrease η over time as in [20], but hold it as a constant which is a
function of the total number of data-points.
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2.1 The Hoeffding decomposition

The Hoeffding decomposition, attributed to [22], is a key technical tool for studying the asymptotic
properties of U-statistics. However, the idea generalizes far beyond U-statistics; see Supplement
Section A for further discussion. In the present work, we use Hoeffding decompositions for matrix
and vector-valued functions of independent random variables taking values in Rd to facilitate analysis
for Bn.

A concept closely related to the Hoeffding decomposition is the more well-known Hájek projection,
which gives the best approximation (in an L2 sense) of a general function of n independent random
variables by a function of the form

∑
i gi(Xi), where gi are measurable functions satisfying a square

integrability condition. The Hájek projection facilitates distributional approximations for complicated
statistics since this linear projection is typically more amenable to analysis. However, establishing a
central limit theorem requires showing the negligibility of a remainder term, which can be large if the
projection is not accurate enough.

The Hájek projection may be viewed as the first-order term in the Hoeffding decomposition, a general
way of representing functions of independent random variables. The Hoeffding decomposition
consists of a sum of projections onto a linear space, quadratic space, cubic space, and so on. Each
new space is chosen to be orthogonal to the previous space. Thus, the Hoeffding decomposition can
be thought of as a sum of terms of increasing levels of complexity. Even if the remainder of the Hájek
projection turns out to be small, the Hoeffding decomposition can be easier to work with due to the
orthogonality of the projections.

The Hoeffding decomposition for the matrix product. Let Yi = XiX
T
i −Σ and let S ⊆ {1, . . . n}.

By Corollary A.1 of the Supplement Section A, the Hoeffding Decomposition for Bn is given by:

Bn =
n∑

k=0

Tk, Tk =
∑

|S|=k
H(S). (5)

where H(S) =
∏n
i=1A

(S)
i and A(S)

i is given by: A(S)
i =

{ηn
n Yi if i ∈ S
I + ηn

n Σ otherwise
.

The above expansion has favorable properties that facilitate second-moment calculations. In fact, as a
consequence of the orthogonality property of Hoeffding projections, we have that

E
[
‖Bn‖2F

]
=

n∑

k=0

∑

|S|=k
E

[
‖

n∏

i=1

H
(S)
i ‖2F

]

E
[
‖Bnx‖2

]
=

n∑

k=0

∑

|S|=k
E

[
‖

n∏

i=1

H
(S)
i x‖2

]

where the second statement holds for any x ∈ Rd; see Proposition A.2 in Supplement Section A.

2.2 Online bootstrap for streaming PCA

To approximate the sampling distribution, we consider a Gaussian multiplier bootstrap procedure. As
observed by [7], a Gaussian multiplier random variable eliminates the need to establish a Gaussian
approximation for the bootstrap since conditional on the data, it is already Gaussian. It is not hard to
see that this is a natural candidate for the online setting; the multiplier bootstrap has been used for
bootstrapping the stochastic gradient descent estimator in [12].

We present our bootstrap in Algorithm 1. In our procedure, we update m+1 vectors at every iteration.
The first one is v̂, which will result in the final Oja estimate of the first principal component. The
other vectors {v∗(j), j = 1, . . .m} are obtained by perturbing the basic Oja update (Eq 1).

The Wi’s are the multiplier random variables, which are scaled mean zero scaled Gaussians with
variance 1/2. The update of the v∗(j) is novel because it preserves the mean and the variance of the
original Oja estimator while not requiring access to the full sample covariance matrix. Consequently,
we can make our updates online and attain both a point estimate and a confidence interval for the
principal eigenvector, while increasing the computation and storage by only a factor of m.
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Algorithm 1: Bootstrap for Oja’s algorithm
Input: Datapoints X1, . . . , Xn, stepsize η, number of bootstrap replicates m
Output: Oja’s solution v̂1 and m bootstrapped versions of it v∗(1)

1 , . . . , v
∗(m)
1

Draw g ∼ N(0, Id)
Create unit vector u0 ← g/‖g‖
Initialize v̂1, v

∗(1)
1 , . . . , v

∗(m)
1 ← u0

for t=2,. . . , n do
Update v̂1 ← v̂1 + η(XT

t v̂1)v̂1

Normalize v̂1 to have unit norm;
for i=1:m do

Draw Wi ∼ N(0, 1/2);
Let h(i) ← (XT

t v
∗(i)
1 )Xt;

Let g(i) ← (XT
t−1v

∗(i)
1 )Xt−1;

Update v∗(i)1 ← v
∗(i)
1 + η

(
h(i) +Wi(h

(i) − g(i))
)
;

Normalize v∗(i)1 to have unit norm;
end

end

3 Main results

In this section we present our main contributions: a CLT for the error of Oja’s algorithm and
consistency of an online multiplier bootstrap for error.

3.1 Central limit theorem for the error of Oja’s algorithm

We start by stating a CLT for the error of Oja’s algorithm. To state this theorem, we will need to
introduce some notation.

Let v̂1 denote the Oja vector and V⊥ the d×d−1 matrix with 2, . . . , d eigenvectors of Σ on its columns.
Note that V⊥ is not uniquely defined, but V⊥V T⊥ = I − v1v

T
1 is if the leading eigenvalue is distinct

and consequently, norms of the form ‖V T⊥ x‖ for x ∈ Rd are well-defined. Let λ1 ≥ · · · ≥ λd denote
the eigenvalues of Σ and Λ⊥ be a diagonal matrix with Λ⊥(i, i) = (1 + ηnλi+1/n)/(1 + ηnλ1/n),
i = 1, . . . , d− 1. Also let

M := E
[
V T⊥ (XT

1 v1)2X1X
T
1 V⊥

]
(6)

Now we define

V̄n =
ηn
n

∑

i

E[V⊥Λi−1
⊥ V T⊥ (XiX

T
i − Σ)v1v

T
1 (XiX

T
i − Σ)V⊥Λi−1

⊥ V T⊥ ]

=
ηn
n
V⊥

(∑

i

Λi−1
⊥ MΛi−1

⊥

)
V T⊥ (7)

We have the following result:
Theorem 1. Suppose that u0 is drawn from the uniform distribution on Sd−1, λ1 = O(1).
Choose ηn → ∞ such that nd · exp(−ηn(λ1 − λ2)) → 0, (ηn∨ log d) η2n(M2

d∨1)
n → 0, where

Md = E[
∥∥XiX

T
i − Σ

∥∥2
]. Further, let Z̃n be a mean 0 Gaussian matrix such that Var(Z̃n) =

Var((X1X
T
1 − Σ)v1) and suppose that:

‖M‖F ≥ c > 0 (8)

E
[∥∥V T⊥ Z̃n

∥∥6
]
∨ E

[∥∥V T⊥ (X1X
T
1 − Σ)v1

∥∥6
]

‖M‖3F
= o(n) (9)
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Then, for a sequence of Gaussian distributions {Zn}n≥1 with mean 0 and covariance matrix V̄n (see
Eq 7), the following holds:

sup
t∈R

∣∣P
(
n/ηn sin2(v̂1, v1) ≤ t

)
− P (ZTn Zn ≤ t)

∣∣→ 0 (10)

Theorem 1 is very general. We allow the dimension to grow with the number of observations, which
is typical in the high-dimensional bootstrap literature. Note that the case of fixed d and growing n is
also a special case of this setup.

We want to point out that while previous literature obtained sharp bounds on the sin2 error 1−(vT1 v̂1)2,
we go a step further. We establish an approximating distribution for n/ηn(1− (vT1 v̂1)2).
Remark 1 (Condition on norm). For simplicity, we assume λ1 = O(1), which can be easily
relaxed to grow slowly with n. We do not assume that the ‖XiX

T
i − Σ‖2 is bounded almost

surely. However, the norm of XiX
T
i − Σ comes into play implicitly via the assumption in Eq 9.

Consider the case where Xi are drawn from some multivariate Gaussian distribution. We use
this to build intuition about the assumptions in Eq 8 and 9. In this case, XT

1 V⊥ is a Gaussian of

independent entries and thus E
[∥∥V⊥(X1X

T
1 − Σ)v1

∥∥6
]

= E‖XT
1 v1‖6E

(∑
j>1(XT

j vj)
2
)3

. Note

that
∑
j>1((XT

j vj)
2 − λj) is a sub-exponential random variable with parameters (c1

∑
j>1 λj , c2).

Furthermore, ‖M‖2F = λ1

∑
i>1 λi. Thus Eq 9 reduces to checking if

λ
3/2
1 (

∑
j>1 λj)

3

(
∑
i λ

2
i )

3/2
= o(n)

Remark 2 (Coordinates with summable sub-Gaussian parameters). Eq 9 imposes a growth condition
on the moments of both the data and a Gaussian analog. One setting for which both growth rates are
in fact bounded is if the coordinates of X are sub-Gaussian and the sub-Gaussian parameters satisfy∑d
i=1 νi < C <∞ following similar arguments to Proposition 1.

Remark 3 (Constant vs Adaptive Learning Rate). Adaptive learning rates are also commonly studied
in the literature on Oja’s algorithm and have the advantage that they require no prior knowledge of
the sample size. It should be noted that our results hold for a wide range of learning rates, ranging
from log(nd)� ηn � n1/3, so our results will still apply so long as in the initial guess of the sample
size is not off by orders of magnitude. We leave a detailed study of the adaptive learning rate setting
to future work.

As a corollary of our main theorem, we obtain the following error bound on the sin2 error.
Corollary 1. Under the conditions in Theorem 1, we have

sin2(v̂1, v1) = OP

(
ηnMd

n(λ1 − λ2)

)

Remark 4 (Comparison with previous work). As a byproduct of our analysis, we recover the sharpest
convergence rates for Oja’s algorithm in the literature. If we set ηn = c1 log nd/(λ1 − λ2), for large

enough c1, the dominating term in the error is OP

(
Md log nd

n(λ1 − λ2)2

)
under mild conditions on d. This

matches the bound in [25].
Remark 5 (Rate of convergence in Kolmogorov distance). To simplify the theorem statement, we
have stated Theorem 1 without giving an explicit rate of convergence in the Kolmogorov distance.
Convergence rates depend on the rate of decay of the remainder terms, which are worked out in
Supplement Section B.3, and the magnitude of the quantity in Eq 9. The contribution of the latter
quantity to the rate is worked out in the IID case in [51].
Remark 6 (Lower bound on norm). While our rate matches the sharp bounds in literature and our
assumptions on norm upper bounds are similar or weaker than previous work, we do assume a lower
bound on the Frobenius norm of the covariance matrix as in Eq 8. Note that if indeed all Xi’s were
a scalar multiple of v1, then the V̄n matrix in Eq 7 will be zero. This will lead to a perfect point
estimate, but there will not be any variability from the data and hence there will be no non-degenerate
approximation. The lower bound on the norm is not resulting from loose analysis. Similar lower
bounds on the variance are imposed in the high-dimensional CLT literature [7, 8].
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Now we provide a proof sketch of Theorem 1 below.

Proof sketch for Theorem 1. We provide the main steps in our derivation. The detailed calculations
can be found in Supplement Section B.

1. We start by expressing the sin2 error as a quadratic form:

sin2(v1, v̂1) = 1− uT0 B
T
n v1v

T
1 Bnu0

uT0 B
T
nBnu0

=
uT0 B

T
n (I − v1v

T
1 )Bnu0

uT0 B
T
nBnu0

=
(V⊥V T⊥Bnu0)T (V⊥V T⊥Bnu0)

‖Bnu0‖2
(11)

where in the last line we used the fact that V⊥V T⊥ is idempotent. Our proof strategy for the central
limit theorem involves further approximating Eq 11 with an inner product of the Hájek projection
(first-order) term in Eq 5.

2. Our second step is to show that ‖Bnu0‖ concentrates around its expectation (1+ηnλ1/n)n|vT1 u0|.

3. Next we establish that ‖V⊥V⊥BnV⊥V
T
⊥ u0‖2

‖Bnu0‖ is OP

(√
d · exp{−ηn(λ1 − λ2)}+

√
η3nM

2
d log d

n2

)
.

This is achieved by using a similar recursive argument as in [25], but with the crucial observation
that the residual or common difference term is of a lower order because it can be replaced by a
matrix product minus its expectation.

4. Now we go back to the expansion in Eq 5.

(vT1 u0)V⊥V
T
⊥Bnv1 = (vT1 u0)

∑

k

V⊥V
T
⊥ Tkv1

Since T0 = (I + ηn/nΣ)n, V⊥V T⊥ T0v1 is the zero vector. Now we examine the
(vT1 u0)V⊥V T⊥ (Bn − T1)v1 term. Here we use the structure of the higher order terms Tk. In
particular, we use the fact that it is a matrix product interlaced with k XiX

T
i − Σ matrices. For

example, for k = 2 we have

T2 =
η2
n

n2

∑

i<j

(
I +

ηn
n

Σ
)i−1

Yi

(
I +

ηn
n

Σ
)j−i−1

Yj

(
I +

ηn
n

Σ
)n−j

We show that the norm of (vT1 u0)V⊥V T⊥ (Bn − T1)v1, normalized by the denominator, is
O(η2

nM
2
d/n

2). The fact that the summands of Tk are uncorrelated and Tk and T` are uncor-
related for k 6= ` makes this possible.

5. Finally, we are left with V⊥V T⊥ T1v1(vT1 u0). Note that this is of the following form:

ηn
n

(vT1 u0)V⊥V T⊥ T1v1

|vT1 u0|(1 + λ1ηn/n)n
=
ηnsgn(vT1 u0)

n

n∑

i=1

V⊥Λi−1
⊥ V T⊥ (XiX

T
i − Σ)v1

It is not hard to see that this is a sum of independent random vectors with covariance matrix
ηn/nV̄n (see Eq 7).

6. We adapt a result of distributional convergence of squared norm of sums of IID random vectors
in [51] to squared norm of sums of independent random vectors. Under the assumptions 9 and 8,
the conditions of distributional convergence are satisfied.

7. Finally, all the error terms are combined along with an anti-concentration argument for χ2 to
establish the final result. The full proof and accompanying lemmas are in Section B of the
Supplement.
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3.2 Bootstrap consistency

Using the weighted χ2 approximation for inference requires estimating the eigenvalues of Σ and
other population quantities; however, accurate estimates may not be available in a streaming setting.
Instead, we propose a streaming bootstrap procedure that mimics the properties of the original Oja
algorithm. While a similar structure leads to error terms that are similar to the CLT, the analysis of the
bootstrap presents its own technical challenges. In what follows let P ∗ denote the bootstrap measure,
which is conditioned on the data, and let E∗[·] denote the corresponding expectation operator.

A common strategy for establishing consistency of the Gaussian multiplier bootstrap is to invoke a
Gaussian comparison lemma. Since the multipliers are themselves Gaussian and the data is treated
as fixed, the idea is that one can use specialized results for comparing the distributions of two
Gaussians (bootstrapped Z∗n and approximating Zn from the CLT) that only depend on how close
the covariance matrices E∗[Z∗nZ∗Tn ] and E[ZnZ

T
n ] are in an appropriate metric. Using a Gaussian

comparison lemma for quadratic forms (see Supplement Section C.3), we have the following result
for the bootstrapped sin2 error:

Lemma 1. [Bounding the difference between the bootstrap covariance and true covariance] Let:

Z∗n = sgn(vT1 u0)

√
ηn
n

∑

i

WiV⊥Λi−1
⊥ V T⊥ (XiX

T
i −Xi−1X

T
i−1)v1. (12)

Recall the definition of V̄n from Eq 7. We have,

|trace(E∗[Z∗nZ∗Tn ]− V̄n)|, ‖E∗[Z∗nZ∗Tn ]− V̄n‖F = OP



√

E‖X1XT
1 − Σ‖4

n(λ1 − λ2)




With this lemma in hand, we are ready to state our bootstrap result.

Theorem 2 (Bootstrap Consistency). Suppose that the conditions of Theorem 1 are satisfied.
Furthermore, let αn be a sequence such that P (Acn) → 0, where An is defined as An ={

maxi≤i≤n ‖Xi‖2 ≤ αn
}

. Further suppose that Md log2 d η2n
n → 0, (α3

n∨Md log d) αnη
3
n

n → 0,
αnMdη

2
n

n(λ1−λ2) → 0, and
E[‖X1X

T
1 −Σ‖4]

n(λ1−λ2) → 0. Then,

sup
t∈R

∣∣P ∗(n/ηn sin2(v∗1 , v̂1) ≤ t)− P (n/ηn sin2(v̂1, v1) ≤ t)
∣∣ P−→ 0

Proof sketch of Theorem 2. The proof follows a similar route to Theorem 2. We provide a detailed
analysis in Supplementary Section. We use a bootstrap version of the Hoeffding decomposition
conditioned on the data, stated in Supplement Section. In step one we have B∗n replace Bn, where
B∗n is given by:

B∗n =
n∏

i=1

(
I + ηn/n(XiX

T
i +Wi(XiX

T
i −Xi−1X

T
i−1)

)

We work out Step 1 using concentration of matrix products [23]. For steps 2-3, we see that T ∗k has
the same structure as Tk with the difference that (I + ηnΣ/n)i is replaced by its sample counterpart
which is a product of i independent matrices of the form I + ηn/nXjX

T
j . Concentration of these

terms in operator norm are established with results from [23]. Finally for step 4, we see that the main
term that approximates the bootstrap residual V̂⊥V̂ T⊥B

∗
nu0 is given by

√
ηn/nZ

∗
n, where Z∗n is given

in Eq 12. Conditioned on the data, this is already Normally distributed since the multiplier random
variables Wi are themselves Gaussian. We then invoke the Gaussian comparison result Lemma 1 to
obtain convergence to the weighted χ2 approximation.

We now make a couple of points regarding our analysis. It should be noted that the terms in the
product are weakly dependent, which is different from the CLT and would seem to complicate
concentration arguments used to establish bootstrap consistency. However, the dependence is not
strong and second-moment methods may be used. We also operate on a good set in which the norms

8



of the the updates are not too large, which is far less restrictive than assuming an almost sure bound
on the norm.

In theorem above, we have stated the good set An in an abstract manner, but one may wonder how
stringent the condition is in various problem settings. Below, we describe a general setup with
sub-Gaussian entries of Xi in which αn grows as log n; under milder forms of various decay, all we
need is for αn to grow slowly with n. Here ‖·‖ψ1

is the sub-Exponential Orlicz norm and ‖·‖ψ2
is

the sub-Gaussian Orlicz norm (see, for example [50]).

Proposition 1 (The effect of variance decay on the norm). For each 1 ≤ j ≤ p, suppose that
X1j satisfies ‖X1j‖ψ2

≤ νj
∑p
j=1 νj ≤ C1 < ∞. Then, for some universal constant C2 > 0,∥∥∥

∑p
j=1(X2

1j − E[X2
1j ])
∥∥∥
ψ1

< C2, and for some c1, c2 > 0,

P

(
max

1≤i≤n
‖Xi‖2 > c1 log n

)
≤ c2

n

We now present experimental validation of our bootstrap procedure below.

4 Experimental validation of the online multiplier bootstrap

We draw Zij
IID∼ Uniform(−

√
3,
√

3), for i = 1, . . . , n and j = 1, . . . d. Consider a PSD matrix
Kij = exp(−|i− j|c) with c = 0.01. We create a covariance matrix such that Σij = K(i, j)σiσj .
We consider σi = 5i−β for β = 0.2 and β = 1. Now we transform the data to introduce dependence
by letting Xi = Σ1/2Zi. By construction, we have that E[XiX

T
i ] = Σ for all 1 ≤ i ≤ n. Our

goal is to simply demonstrate that the bootstrap distribution of sin2 errors closely match that of the
sampling distribution. To this effect, we fix u0 and draw 500 datasets and run streaming PCA on
each and then construct an empirical CDF (F ) from the sin2 error with the true v1. This is the point
of comparison for the bootstrap distribution (F ∗), for which we fix a dataset X . We then invoke
algorithm 1 to obtain 500 bootstrap replicates v̂∗1 as well as the Oja vector for the dataset v̂1. The
bootstrap distribution is the empirical CDF of 1− (v̂T1 v̂

∗
1)2. We use ηn = log n. In Figure 1, we see

that for β = 0.2 (see (A) and (B)), where the variance decay is slow and therefore the error bounds
of the residual terms are expected to be large, the quality of approximation is poorer compared to
(C) and (D), where β = 1. However, even for β = 0.2, increasing n improves performance. Also
note that, for (A) and (B) the variance decay does not satisfy our theorem’s conditions and thus,
the normalized error does not behave like a OP (1) random variable. However, for (C) and (D) the
variance decay satisfies the conditions and in this case the normalized error is OP (1), which happens
to be in the [0,1] range for this example.

5 Discussion

Modern tools in non-asymptotic random matrix theory have given rise to recent breakthroughs
in establishing pointwise convergence rates for stochastic iterative methods in optimizing certain
nonconvex objectives, including the classic Oja’s algorithm for online principal component analysis.
By synthesizing modern random matrix theory tools with classic results from the U-statistics literature
and recently developed high-dimensional central limit theorems, we extend the error analysis of Oja’s
algorithm from pointwise convergence rates to distributional convergence and moreover establish
an efficient online bootstrap method for Oja’s algorithm to quantify the error on the fly. Our results
are a first step toward incorporating uncertainty estimation into the general framework of stochastic
optimization algorithms, but we acknowledge the present limitations of our analysis: new tools will
be needed to extend the current analysis to estimating higher-dimensional principal subspaces, and
additional tools will be needed to account for non-independent matrix products which appear beyond
the setting of online PCA.

9



(A) (B)

(C) (D)

Figure 1: Bootstrapped and sampling CDF for n = 1000, d = 500 in (A) and (C) and for n =
10, 000, d = 500 in (B) and (D). (A) and (B) use β = 0.2 whereas (C) and (D) use β = 1.
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Supplementary Material

In this document we provide the detailed proofs of results presented in the main manuscript. In
Section A, we provide a proof for the Hoeffding expansion of the matrix product in Eq 5 of the main
document. We also provide the Hoeffding decomposition for the bootstrap in Proposition A.4. In
Section B we provide all results needed for a complete proof of Theorem 1. In Sections B.1, B.2,
and B.3 we provide the proof of Theorem 1, the adaptation of high dimensional CLT of [8] to our
setting and all supporting lemmas, respectively.

In Section C we provide all details of the proof of the Bootstrap consistency, i.e. Theorem 2. To be
specific, Section C.1 has the proof of Theorem 2; Section C.2 has the proof of Lemma 1, Section C.3
has the statement and proof of the Gaussian comparison lemma, and Section C.4 has all the supporting
lemmas. Finally, in Section D, we provide a proof of Proposition 1.

A On the Hoeffding decomposition

We discuss Hoeffding decompositions for a function f of n independent random variablesX1, . . . Xn,
where the random variables take values in an arbitrary space and the function takes values1 in Rd×d
or Rd. The following exposition largely follows [6].

With Hoeffding decompositions, we project T (X1, . . . , Xn) onto spaces of increasing complexity
that are orthogonal to each other. In our setup, orthogonality means 〈f, g〉L2 = 0 where 〈f, g〉L2 =∫
〈f, g〉dP . Here, 〈f, g〉 = Trace(fT g) in the matrix case and 〈f, g〉 = fT g in the vector case. The

first-order projection, also known as a Hájek projection, involves projecting our function onto a space
of functions of the form

g(i)(Xi)

where g(i) satisfies E[g(i)] = 0. We will let H(i)(Xi) denote the corresponding projection. Since the
functions g(i), g(j) are mutually orthogonal for i 6= j, the sum of the projections is equivalent to the
projection onto the space spanned by functions of the form:

n∑

i=1

g(i)(Xi)

The higher-order spaces have the form:

g(S)(Xi : i ∈ S)

1The math generalizes to Hilbert spaces due to the Hilbert projection theorem but we specialize to these
cases for concreteness.
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where S ⊆ {1, . . . , n} and the functions satisfy E[g(S) | Xi : i ∈ R] = 0 for any R ⊂ S, including
R = ∅, which implies E[g(S)] = 0. If R 6⊂ S and S 6⊂ R, 〈g(S), g(R)〉L2 = 0 since, by conditional
independence given {Xi : i ∈ R ∩ S}:

E[E[〈g(S), g(R)〉 | Xi : i ∈ R ∩ S] ] = E
[〈
E[g(S) | Xi : i ∈ R ∩ S], E[g(R) | Xi : i ∈ R ∩ S]

〉]
= 0

(S.1)

Combining these projections leads to the following representation, known as the Hoeffding decompo-
sition:

T (X1, . . . , Xn) =
n∑

k=0

∑

|S|=k
H(S)(Xi : i ∈ S)

While the following proposition is stated for real-valued functions in [6][Lemma 11.11], it turns out
that the proof there generalizes to our setting without difficulty due to machinery for projections in
Hilbert spaces.

Proposition A.1 (Hoeffding projections). Let X1, . . . , Xn be arbitrary random variables and let
suppose 〈T, T 〉L2

<∞. Then the projection on the the space of functions of the form g(S)(Xi : i ∈ S)
with E[g(S) | Xi : i ∈ R] = 0 for any R ⊂ S has the form:

H(S)(T ) =
∑

R⊆S
(−1)|S|−|R| E [T | Xi : i ∈ R]

For completeness, we provide a proof of the proposition below.

Proof. We begin by verifying that the space of all random matrices (vectors) satisfying ‖A‖L2 <∞
forms a Hilbert Space. First, it is clear that 〈·, ·〉L2 is indeed an inner product. Linearity follows
from linearity of the inner product 〈·, ·〉 and linearity of expectations and conjugate symmetry follows
from this property holding pointwise in Ω for 〈·, ·〉. Positive definiteness again follows from the
fact that this property holds pointwise in Ω; then a standard contradiction argument yields that if
〈x, x〉L2 = 0, but x is not equal to 0 almost surely, there exists some M such that for some δ > 0,
P (‖x‖ > 1

M ) ≥ δ and hence
∫
〈x, x〉dP ≥ δ/M > 0, a contradiction.

One can again adapt standard arguments for completeness of L2 spaces to our setting; namely, show
that Cauchy sequences converging in L2 implies convergence almost everywhere, and then invoke
completeness of the Hilbert space over matrices/vectors along with integral convergence theorems;
see for example, the proof of Theorem 1.2, page 159 in [5].

Now to verify that this function is indeed the projection, we invoke the Hilbert Projection Theorem;
see for example, Lemma 4.1 of [5]. To use this theorem, we need to check that the space spanned
by functions of the form g(S) satisfying the condition E[g(S) | Xi : i ∈ R] = 0 for any R ⊂ S
is a closed subspace. Linearity of the space follows from the fact that the sum of such functions
satisfies the constraint; therefore it is a subspace. To check closure, let ‖f‖2 = 〈f, f〉 and consider
some (convergent) sequence in this subspace (g

(S)
α )α≥1 where g(S)

α → g(S) and observe that, for any
R ⊂ S:

E[‖g(S)
α − g(S)‖2] = E[ E[‖g(S)

α − g(S)‖2 | Xi : i ∈ R] ]

≥ E
[
‖E[g(S)

α − g(S) | Xi : i ∈ R]‖2
]

≥ E
[
‖E[g(S) | Xi : i ∈ R]‖2

]

where above we used the fact that E[g
(S)
α | Xi : i ∈ R] = 0 for all α by assumption. Since the LHS

converges to 0, it follows that E[g(S) |Xi : i ∈ R] must be equal to 0 almost surely. Since the limit
satisfies E[g(S) |Xi : i ∈ R] = 0 for all R ⊂ S, it belongs in the space, proving closure.
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Now, we show that the stated expression is indeed the Hoeffding projection. First, to show that
belongs in this space, we have, following analogous reasoning to [6], for any C ⊂ A,

E[H(A)(T ) | Xi : i ∈ C] =
∑

B⊆A
(−1)|A|−|B|E[T | Xi : i ∈ B ∩ C]

=
∑

D⊆C

|A|−|C|∑

j=0

(−1)|A|−(|D|+j)
(|A| − |C|

j

)
E[T | Xi : i ∈ D]

=
∑

D⊆C
(−1)|C|−|D| E[T | Xi : i ∈ D] (1− 1)|A|−|C| = 0

where the last line follows from the Binomial Theorem. Now as a consequence of the Hilbert
Projection Theorem, it suffices to show that H(A)(T ) satisfies the property:

〈T −H(A)(T ), g(A)〉L2 = 0

for any g(A) in the space. In the matrix case, we have

〈T −H(A)(T ), g(A)〉L2 =

d∑

j=1

d∑

k=1

E[(Tjk − E[Tjk | Xi : i ∈ A]) · g(A)
jk ]

+
d∑

j=1

d∑

k=1

∑

B⊂A
E
[
(−1)|A|−|B|E[Tjk | Xi : i ∈ B] · E[g

(A)
jk | Xi : i ∈ B]

]

The first term above is 0 since conditional expectations may be viewed as an orthogonal projection in
the Hilbert Space with inner product

∫
fg dP into the closed subspace of σ(Xi : i ∈ A)-measurable

functions. The second term is zero since E[g
(A)
jk |Xi : i ∈ B] = 0 for any B ⊂ A. The vector case is

analogous.

Since this property holds, it must be the unique (up to measure 0 sets) minimizer and projection.

Now an immediate corollary for our setting follows.
Proposition A.2 (Orthogonality of Hoeffding projections). Let:

Bn =

n∑

k=0

∑

|S|=k
H(S)

where A(S) is the Hoeffding projection corresponding to the set S ⊆ {1, . . . , n}. Then,

E
[
‖Bn‖2F

]
=

n∑

k=0

∑

|S|=k
E
[
‖A(S)‖2F

]

E
[
‖Bnx‖2

]
=

n∑

k=0

∑

|S|=k
E
[
‖A(S)x‖2

]

where the last inequality holds for all x ∈ Rd.

Proof. Letting g(S) = H(S) and g(R) = H(R) in Eq S.1, we have that 〈H(S), H(R)〉L2 = 0 for all
R 6= S and the result follows.

It remains to be shown that Hoeffding decomposition has the form stated in Eq 5. Deriving all
projections in the Hoeffding decomposition for a general function is typically non-trivial, but the
product structure facilitates our proof below. Before establishing the Hoeffding decomposition,
following for example, [1] observe that the following inverse relation holds:
Proposition A.3 (Conditional expectation and Hoeffding projections).

E [T | Xi : i ∈ S] =
∑

R⊆S
H(R)(T )

3



Proof. Observe that:

E[T |Xi : i ∈ S] =

n∑

k=0

∑

|R|=k
E[H(R)(T ) | Xi : i ∈ S]

Since the conditional expectation is zero for R 6⊆ S and for R ⊆ S, the Hoeffding projection is fixed,
the result follows.

Now we are ready to establish the form of the Hoeffding projection for any S ⊆ {1, . . . , n}. We in
fact prove a slightly stronger statement, which makes the induction argument more natural. In what
follows let S[i] denote the ith element in S. We will also use H(S) instead of H(S)(T ) when it is
clear from the context.
Theorem A.1 (Hoeffding projections for Oja’s algorithm). Define:

T−j =
n∏

i=j+1

(
I +

ηn
n
XiX

T
i

)
, T = T−0 =

n∏

i=1

(
I +

ηn
n
XiX

T
i

)
,

Then for any S ⊆ {1, . . . , n} and for all 0 ≤ j < S[1], we have the Hoeffding projection of T−j onto
{Xi : i ∈ S} may be expressed as:

H
(S)
−j =

n∏

i=j+1

A
(S)
i , H(S) = H

(S)
−0 (S.2)

where:

A
(S)
i =

{ηn
n (XiX

T
i − Σ) i ∈ S

I + ηn
n Σ i 6∈ S

Proof. We will conduct (strong) induction on k = |R|, where R ⊆ S. We will start with the base
case k = 1; k = 0 is simply the expectation. For the base case |R| = 1, a direct calculation is
possible, since:

H
(R)
−j = E[T−j | Xi : i ∈ R]− E[T−j ],

which has the stated form. Now, we will suppose that the inductive hypothesis holds. In what follows,
let S[1] = k and define the conditional expectation for any set S as:

E [T−j | Xi : i ∈ S] =
n∏

i=j+1

E
(S)
i ,

where:

E
(S)
i =

{
I + ηn

n XiX
T
i i ∈ S

I + ηn
n Σ i 6∈ S

We will now add and subtract a product where an entry corresponding to S[1] in E[T−j | Xi : i ∈ S]
is replaced by (I + ηn

n Σ). Doing, so we have

E[T−j | Xi : i ∈ S] = E [T−j | Xi : i ∈ S]− (I +
ηn
n

Σ)k−j ×
n∏

i=k+1

E
(S)
i

+ (I +
ηn
n

Σ)k−j ×
n∏

i=k+1

E
(S)
i

We recognize the second summand as E[T−j | Xi : i ∈ S−k], where S−k = {i ∈ S, i 6= k}. Now
for the first summand, taking the difference we have the term

(I +
ηn
n

Σ)k−j−1 × ηn
n

(XkX
T
k − Σ)×

n∏

i=k+1

E
(S)
i

= (I +
ηn
n

Σ)k−j−1 × ηn
n

(XkX
T
k − Σ)× E [T−k | Xi : i ∈ S−k]
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By Proposition A.3, we may represent a conditional expectation as:

E [T−k | Xi : i ∈ S−k] =
∑

R⊆S−k
H

(R)
−k (S.3)

Furthermore, by the inductive hypothesis, each H(R)
−k takes the form in Eq S.2. Now, combining the

two parts, we have

E[T−j | Xi : i ∈ S] =
∑

R⊆S−k
(I +

ηn
n

Σ)k−j−1 × ηn
n

(XkX
T
k − Σ)×H(R)

−k

+
∑

R⊆S−k
(I +

ηn
n

Σ)k−j ×H(R)
−k

=
n∏

i=j+1

A
(S)
i +

∑

R⊂S
H

(R)
−j

For the last step, notice that with the exception of R = S−k in the first sum, each product in the sum
corresponds to a Hoeffding projection of some set of size less than k by the inductive hypothesis.
The first term must be the Hoeffding projection onto S (with S[1] = k > j) by the same argument as
Eq S.3, i.e.

H
(S)
−j =

n∏

i=j+1

A
(S)
i ,

proving the desired result.

Now, since the Hoeffding decomposition is a sum of Hoeffding projections by definition, we have the
following corollary.

Corollary A.1 (Hoeffding decomposition for Oja’s algorithm).

Bn =

n∑

k=0

∑

|S|=k
H(S)

where A(S) is given by H(S) in Eq S.2.

It turns out that the bootstrap Hoeffding decomposition can be proved using the same strategy in
Theorem A.1, where X1, . . . , Xn is treated as fixed in the bootstrap measure. We state the result
below.

Proposition A.4 (Hoeffding decomposition for the bootstrap).

B∗n =
n∑

k=0

∑

|S|=k
α(S)

where α(S) =
∏n
i=1 α

(S)
i and α(S)

i is given by:

α
(S)
i =

{ηn
n Wi · (XiX

T
i −Xi−1X

T
i−1) if i ∈ S

I + ηn
n XiX

T
i otherwise

B Central limit theorem for Oja’s algorithm

B.1 Proof of Theorem 1

Proof of Theorem 1. Our strategy will be to approximate sin2 distance for estimated eigenvector with
a quadratic form, and invoke a high-dimensional central limit theorem result. The remainder terms
will be bounded using an anti-concentration result for weighted χ2 random variables due to [8].
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Observe that sin2(v̂1, v1) has the representation:

1−
(
vT1

Bnu0

‖Bnu0‖

)2

=
uT0 B

T
n (I − v1v

T
1 )Bnu0

‖Bnu0‖2

Let V⊥V T⊥ = I − v1v
T
1 . Clearly, V⊥V T⊥ is idempotent and is a projection matrix, implying that it is

also symmetric. Therefore,

n

ηn
· sin2(un, v1) =

(
√
n/ηnV⊥V T⊥Bnu0)T (

√
n/ηnV⊥V T⊥Bnu0)

‖Bnu0‖2
(S.4)

Let a1 = (vT1 u0) denote the scalar projection of u0 so that u0 = a1v1 + w, where w is in the
orthogonal complement of v1.

Our first reduction of (S.4) is to approximate the denominator with a more convenient quantity. By
Lemma B.2, we have that (S.4) may be written as

(
√
n/ηn · V⊥V T⊥Bnu0)T (

√
n/ηn · V⊥V T⊥Bnu0)

a2
1(1 + ηn

n λ1)2n
·R1

where

R1 =
‖Bnu0‖2

a2
1(1 + ηn

n λ1)2n
= 1−OP

(
√
d exp

(
−ηn

2
(λ1 − λ2)

)
+

√
η2
nMd log d

n

)

While the aforementioned Lemma is stated for ‖Bnu0‖
|a1|(1+ ηn

n λ1)n
, the relationship holds for the squared

quantity since with high probability for n large enough, | ‖Bnu0‖
|a1|(1+ ηn

n λ1)n
| ≤ 2 and |x2−12| ≤ 3|x−1|

for all −2 ≤ x ≤ 2.

We will further approximate the quantity
√
n/ηn · V⊥V T⊥Bnu0. First we will bound the contribution

of V⊥V T⊥BnV⊥V
T
⊥ . By Lemma B.3 we have that:

R2 :=

√
n

ηn
· V⊥V

T
⊥BnV⊥V

T
⊥ u0

|a1|(1 + ηnλ1

n )n
= OP

(√
nd

ηn
· exp{−ηn(λ1 − λ2)}+

√
η2
nM

2
d log d

n

)

Now it remains to bound the term V⊥V T⊥Bnv1(vT1 u0). First, by Corollary A.1, Bn can be decom-
posed as:

Bn =

n∑

k=0

Tk

where for S ⊆ {1, . . . , n}, Tk is defined as:

Tk =
∑

|S|=k
A(S) (S.5)

with A(S) taking the form in Eq S.2.

Since v1 is orthogonal to V⊥:
√

n

ηn
· V⊥V T⊥ T0 v1a1

|a1|(1 + ηn/nλ1)n
=

√
n

ηn
· sign(a1)(I − v1v

T
1 )v1 = 0.

Furthermore, by Lemma B.4, since η3nM
2
d

n → 0 by assumption,

R3 :=

√
n

ηn
· V⊥V

T
⊥ (Bn − T1)v1a1

|a1|(1 + ηn/nλ1)n
= OP

(√
η3
nM

2
d

n

)
(S.6)
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Now our term of interest is given by:

(
√
n/ηn · V⊥V T⊥ T1v1)T (

√
n/ηn · V⊥V T⊥ T1v1)

(1 + ηn
n λ1)2n

(S.7)

Now, observe that (I+ ηn
n Σ) and v1v

T
1 share a common eigenspace and therefore commute. Therefore,

the terms in the product to the left of T1 may be written as:

V⊥V T⊥ (I + ηn
n Σ)i−1

(1 + ηn
n λ1)i−1

=

d∑

j=2

(
1 + ηn

n λj

1 + ηn
n λ1

)i−1

vjv
T
j := Di−1, say. (S.8)

Hence,

√
n

ηn
· V⊥V

T
⊥ T1v1

(1 + ηn
n λ1)n

=

√
ηn
n

n∑

i=1

(
1 +

ηn
n
λ1

)−1

Di−1(XiX
T
i − Σ)v1

= Sn =
√
n
(

1 +
ηn
n
λ1

)−1 1

n

n∑

i=1

Ui, say,

where

Ui = Di−1(XiX
T
i − Σ)v1. (S.9)

Observe that Sn is a sum of independent but non-identically distributed random variables with mean
0. Therefore, if the conditions of Proposition B.5 are satisfied, we may approximate STn Sn with
ZTn Zn, where E[Zn] = 0, Var(Zn) = Var(Sn). Below define Z̃i to be a Gaussian vector with
Var(Z̃i) = Var((XiX

T
i − Σ)v1). Now define Zi = Di−1Z̃i. We now verify these conditions.

First, we derive a lower bound on
∥∥V̄n

∥∥
F

that will be used in all of the following bounds. Observe
that

∥∥V̄n
∥∥
F

= ηn
n

∥∥∑
i Λi−1
⊥ MΛi−1

⊥
∥∥
F

and the klth entry of
∑
i Λi−1
⊥ MΛi−1

⊥ is lower bounded by:

ηn
n

∑

i≥1

(
1 + ηnλk+1/n

1 + ηnλ1/n

)i−1(
1 + ηnλ`+1/n

1 + ηnλ1/n

)i−1

M(k, `)

≥
1− exp(−2ηn(λ1 − λ2))

(
1− η2nλ

2
1

n

)−2

2λ1 − (λk+1 + λk+1) + ηn
n (λ2

1 − λkλl)
M(k, `)

≥
1− exp(−2ηn(λ1 − λ2))

(
1− η2nλ

2
1

n

)−2

2λ1 + ηn
n λ

2
1

M(k, `)

≥ c

λ1
M(k, `)

(S.10)

for some c > 0 and n large enough since exp(−ηn(λ1 − λ2))→ 0.

For the first term of Lq , q = 3 we have

LU3,1 ≤
1√
n

max
i

E(UTi V̄nUi)3/2

‖V̄n‖3F

≤ M
3/2
d√
n

E‖V T⊥ (XiX
T
i − Σ)v1‖3

‖V̄n‖3F
Since ‖V̄n‖ ≤Mdηn from Eq 7

≤ CM
3/2
d η3

nλ
3
1√

n
E
(‖V T⊥X1X

T
1 v1‖

‖M‖F

)3

7



Similarly, for the Gaussian analog, we have that:

LZ3,1 ≤
1√
n

max
i

E(ZTi V̄nZi)3/2

‖V̄n‖3F

≤ M
3/2
d η

3/2
n√

n
max
i

E‖Zi‖3
‖V̄n‖3F

≤ M
3/2
d η

3/2
n√

n

E‖Z̃i‖3
‖V̄n‖3F

≤ CM
3/2
d η3

nλ
3
1√

n
E

(
‖Z̃1‖
‖M‖F

)3

For the second term, using the definition of Ui in Eq S.9 we have:

LU3,2 ≤
1

n
max
i<j

E|UTi Uj |3
‖V̄n‖3F

=
1

n
max
i<j

E|vT1 (XiX
T
i − Σ)Di+j−2(XjX

T
j − Σ)v1|3

‖V̄n‖3F

≤ 1

n

(
E‖V T⊥ (XiX

T
i − Σ)v1‖3

)2

‖V̄n‖3F
≤ η3

nλ
3
1

n

(
E‖V T⊥ (XiX

T
i )v1‖3

)2

‖M‖3F

For K3, we have:

K3
3 =

1

n

n∑

i=1

E
∣∣∣∣
UTi Ui − E(UTi Ui)

f

∣∣∣∣
3

≤ max
i

E(UTi Ui)
3 + (EUTi Ui)

3

f3
≤ 2 max

i

E(UTi Ui)
3

‖V̄n‖3F
≤ 2η3

nλ
3
1

E‖V T⊥ (XiX
T
i − Σ)v1‖6

‖M‖3F

Finally, for J1 we have:

Jn =

∑n
i=1 Var(UTi Ui)

(nf)2
≤
∑n
i=1 E(UTi Ui)

2

n2f2

≤ η2
nλ

2
1

n

E[‖V⊥(X1X
T
1 − Σ)v1‖4]

‖M‖2F

The first makes L3,2,K3
3/n and Jn go to zero. The two conditions also imply E[‖V⊥(X1X

T
1 −Σ)v1‖3]

‖M‖3F
=

o(
√
n), which implies L3,1 → 0.

Finally, we collect remainder terms and show that their contribution to the inner product is negligible
using anti-concentration. Observe that,

sup
t∈R

∣∣P (n/ηn sin2(w, v) ≤ t)− P (ZTn Zn ≤ t)
∣∣

= sup
t∈R

∣∣∣∣P
(
R1 ·

(Sn +R2 +R3)T (Sn +R2 +R3)

f
≤ t
)
− P

(
ZTn Zn
f

≤ t
)∣∣∣∣

(S.11)
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Now will will lower bound the above quantity. Observe that

P

(
R1 ·

(Sn +R2 +R3)T (Sn +R2 +R3)

f
≤ t
)

≥ P
(
R1 ·

STn Sn
f

(
1 +

2 ‖R2‖+ 2 ‖R3‖2√
STn Sn

)
+
R1 · ‖R2 +R3‖2

f
≤ t
)

= P

(
R′ · S

T
n Sn
f

+ R̃ ≤ t
)
, say.

(S.12)

Now, for δn = o(
√
f), we have that:

P
(
STn Sn ≤ δ2

n

)
≤ sup

t∈R

∣∣P (STn Sn ≤ t)− P (ZTn Zn ≤ t)
∣∣+ P (ZTn Zn ≤ δ2

n)→ 0 (S.13)

Note that δn = o(1) suffices since f is bounded away from zero under Eq 8 as shown in Eq S.10.

Now, choose εn satisfying εn = o(1) εn = ω

(√
η3nM

2
d log d

n

)
, define the set:

G =

{
|R′ − 1| ≤ εn,

∣∣R̃
∣∣ ≤ εn

}

so that P (Gc)→ 0 with the choice of δn in Eq. S.13. By using the fact that, for any two sets A and
B, 1 ≥ P (A) + P (B)− P (A ∩B) and hence P (A ∩B) ≥ P (A)− P (Bc), we have that:

P

(
R′ · S

T
n Sn
f

+ R̃ ≤ t
)

= P
(
R′ · STn Sn/f + R̃ ≤ t ∩ G

)
+ P

(
R′ · STn Sn/f + R̃ ≤ t ∩ Gc

)

≥ P
(
STn Sn
f
≤ t

1 + εn
− εn

)
− P (Gc)

(S.14)

Therefore,

P

(
n/ηn sin2(w, v)

f
≤ t
)
− P

(
ZTn Zn
f

≤ t
)

≥ P
(
STn Sn
f
≤ t

1 + εn
− εn

)
− P

(
ZTn Zn
f

≤ t

1 + εn
− εn

)

+ P

(
ZTn Zn
f

≤ t

1 + εn
− εn

)
− P

(
ZTn Zn
f

≤ t
)
− P (Gc) = I + II − III

(S.15)

Now, we may upper bound III → 0 arising from our choice of δn, and II goes to 0 if the conditions
of Proposition B.5 are satisfied, and I → 0 due to Proposition B.7.

Now for the upper bound, since ‖Ri‖2 ≥ 0, observe that we may bound Eq S.11 with:

P

(
R1 ·

(Sn +R2 +R3)T (Sn +R2 +R3)

f
≤ t
)

≤ P
(
R1 ·

STn Sn
f

(
1− 2 ‖R2‖+ 2 ‖R3‖√

STn Sn

)
− R1 · ‖R2‖ ‖R3‖

f
≤ t
)

We may now lower bound the negative terms and arrive at an identical expression to the lower bound.
The result follows.

With the central limit theorem in hand, we are now ready to give the proof for Corollary 1.
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Proof of Corollary 1. Observe that the approximating distribution ZTn Zn has expectation trace(V̄n)
and variance f =

∥∥V̄n
∥∥
F

. Therefore, for any M > 0, it follows that:

P

(
n/ηn sin2(v̂1, v1)− trace(V̄n)

f
> M

)

≤ sup
t∈R

∣∣P
(
n/ηn sin2(v̂1, v1) > t

)
− P

(
ZTn Zn > t

)∣∣+ P

(
ZTn Zn − trace(V̄n)

f
> M

)

The first term goes to zero under the conditions of Theorem 1. Chebychev’s inequality implies that
there exists M > 0 such that the latter probability can be made smaller than ε/2 for any ε > 0.
Hence,

n/ηn sin2(v̂1, v1)− trace(V̄n)

f
= OP (1).

Therefore, under the conditions in Theorem 1,

sin2(v̂1, v1) =
ηn
n

[
trace(V̄n) +OP

(∥∥V̄n
∥∥
F

)]

We now derive bounds for trace(V̄n) and
∥∥V̄n

∥∥
F

. Let Λ⊥ be a diagonal matrix with Λ⊥(i, i) =
(1 + ηnλi+1/n)/(1 + ηnλ1/n), i = 1, . . . , d− 1. Recall that:

M := E
[
V T⊥ (XT

1 v1)2X1X
T
1 V⊥

]
. (S.16)

V̄n =
ηn
n
V⊥

(∑

i

Λi−1
⊥ MΛi−1

⊥

)
V T⊥

So now observe that,

∥∥V̄n
∥∥
F

=
ηn
n

∥∥∥∥∥
∑

i

Λi−1
⊥ MΛi−1

⊥

∥∥∥∥∥
F

trace(V̄n) =
ηn
n

trace

(∑

i

Λi−1
⊥ MΛi−1

⊥

)

A direct calculation shows that the k, `th entry of the sum
∑
i Λi−1
⊥ MΛi−1

⊥ is:

∑

i≥1

(
1 + ηnλk+1/n

1 + ηnλ1/n

)i−1(
1 + ηnλ`+1/n

1 + ηnλ1/n

)i−1

M(k, `)

≤ nM(k, `)

ηn

(1 + λ1ηn
n )2

2λ1 − (λk+1 + λk+1) + ηn
n (λ2

1 − λkλl)

≤ n

ηn

CM(k, `)

λ1 − λ2

(S.17)

for some 0 < C <∞.

Therefore, by Eq 7, we have

trace(V̄n) ≤ C trace(M)

λ1 − λ2
≤ C Md

λ1 − λ2

‖V̄n‖F ≤
C‖M‖F
λ1 − λ2

≤ C ′ Md

λ1 − λ2

The last step is true since:

trace(M) = trace(E
[
V T⊥ (XT

1 v1)2X1X
T
1 V⊥

]
)

= trace(E
[
V T⊥ (X1X

T
1 − Σ)v1v

T
1 (X1X

T
1 − Σ)V⊥

]
)

= E
(
trace

[
V T⊥ (X1X

T
1 − Σ)v1v

T
1 (X1X

T
1 − Σ)V⊥

])

= E‖V T⊥ (X1X
T
1 − Σ)v1‖2 ≤Md

10



Similarly,

‖M‖F =
∥∥E
[
V T⊥ (XT

1 v1)2X1X
T
1 V⊥

]∥∥
F

=
∥∥E
[
V T⊥ (X1X

T
1 − Σ)v1v

T
1 (X1X

T
1 − Σ)V⊥

]∥∥
F

≤ E‖X1X
T
1 − Σ‖2op = Md

where in the last line we used the fact that
∥∥xxT

∥∥
op

=
∥∥xxT

∥∥
F

for x ∈ Rd since xxT is rank 1.

B.2 Adaptation of high-dimensional central limit theorem

Let U1, . . . , Un, be independent random vectors in Rp such that E(Ui) = 0 and Var(Ui) = Vi.
Define a Gaussian analog of Yi, denoted Zi, which satisfies E(Zi) = 0 and Var(Zi) = Vi. Further-
more, let V̄n = 1

n

∑n
i=1 Vi, gi = Var(UTi Ui), f1 = trace(V̄n), and f =

∥∥V̄n
∥∥
F

. For 0 < δ ≤ 1,
q = 2 + δ, and β ≥ 2 define the following quantities:

LUq =
1

n

n∑

i=1

E(UTi V̄nUi)q/2

nδ/2fq
+

1(
n
2

)
∑

1≤i<j≤n

E(|UTi Uj |q)
nδfq

LZq =
1

n

n∑

i=1

E(ZTi V̄nZi)q/2

nδ/2fq

Kβ
β =

1

n

n∑

i=1

E

∣∣∣∣
UTi Ui − E(UTi Ui)

f

∣∣∣∣
β

Jn =

∑n
i=1 gi

(nf)2

The following proposition is an adaptation of [8], which is stated for IID random variables, to
independent but non-identically distributed random variables. While the changes are minor, we
provide a proof below detailing the adaptation for completeness.

Proposition B.5. Suppose that LUq → 0, LZq → 0, Jn → 0, n1−βKβ
β → 0. Then,

sup
t∈R

∣∣P
(
nŪTn Ūn ≤ t

)
− P

(
nZ̄Tn Z̄n ≤ t

)∣∣→ 0

Proof. Since a Lindeberg argument is easier with diagonals removed, we will show that the removal
of these terms is negligible. Observe that:

sup
t∈R

∣∣P (nŪTn Ūn ≤ t)− P (nZ̄Tn Z̄n ≤ t)
∣∣

≤ sup
t′∈R

∣∣∣∣∣P
(
nŪTn Ūn − f1

f
≤ t′

)
− P

(∑
i6=j U

T
i Uj

nf
≤ t′

)∣∣∣∣∣

+ sup
t′∈R

∣∣∣∣∣P
(∑

i 6=j U
T
i Uj

nf
≤ t′

)
− P

(∑
i 6=j Z

T
i Zj

nf
≤ t′

)∣∣∣∣∣

+ sup
t′∈R

∣∣∣∣∣P
(∑

i 6=j Z
T
i Zj

nf
≤ t′

)
− P

(
nZ̄Tn Z̄n − f1

f
≤ t′

)∣∣∣∣∣
= I + II + III, say.

We will start by bounding III . First note that 1√
n

∑n
i=1 Zi ∼ N (0, V̄n). Let V̄n = QTDQ denote

the eigendecomposition, with diagonal entries of D given by λ1 ≥ . . . ≥ λd and let g ∼ N (0, Id). It
follows that:

nZ̄Tn Z̄n
d
= (QD1/2QT g)T (QD1/2QT g)

d
= gTDg

11



Notice that V := gTDg ∼ ∑d
r=1 λrηr, where η1, . . . , ηd ∼ χ2(1). Now define RZn =

1
n

∑n
i=1 Z

T
i Zi−f1

f . Notice that:

P

(
nZ̄Tn Z̄n − f1

f
≤ t
)
− P

(∑
i6=j Z

T
i Zj

f
≤ t
)

= P

(
nZ̄Tn Z̄n − f1

f
≤ t
)
− P

(
nZ̄Tn Z̄n − f1

f
−RZn ≤ t

)

≤ P (t′ ≤ V ≤ t′ + hn) + P (|RZn | > hn)

(S.18)

Under the conditions Jn → 0, n1−βKβ
β → 0, Nagaev’s inequality implies that one may choose

hn → 0 such that P (|RZn | > hn) → 0. The desired anti-concentration for the first term in the
previous display follows from Lemma S2 of [8]. We may also derive the lower bound P (t′ ≤ V ≤
t′ + hn)− P (|RZn | > hn) in a similar manner.

To adapt II , consider the smoothed indicator function:

gψ,t(x) =
[
1−min{1,max(x− t, 0)}4

]4
.

This function satisfies:

max
x,t
{|g′ψ,t(x)|+ |g′′ψ,t(x)|+ |g′′′ψ,t(x)|} <∞

1x≤t ≤ gψ,t ≤ 1x≤t+ψ−1 .

Therefore, we may bound the approximation error with smoothed indicator function by again using
anti-concentration of the weighted χ2. In what follows, let:

SUn =
1

nf

∑

i 6=j
UTi Uj , SZn =

1

nf

∑

i 6=j
ZTi Zj

We have that:
P (SUn ≤ t)− P (SZn ≤ t)

≤ P (SUn ≤ t)− P (SZn ≤ t+ ψ−1) + P (SZn ≤ t+ ψ−1)− P (SZn ≤ t)
≤ Egψ,t(SUn )− Egψ,t(SZn ) + III + P (t ≤ V ≤ t+ ψ−1).

An analogous argument establishes a lower bound of gψ,t(SUn )−Egψ,t(SZn )− III − P (t− ψ−1 ≤
V ≤ t). Choosing ψn →∞, the last term goes to zero. A Lindeberg telescoping sum argument leads
to the following bound for the leading term:

∣∣Egψ,t(SUn )− Egψ,t(SZn )
∣∣ ≤

n∑

i=1

cq(E|∆i|q + E|Γi|q),

where:

Hi =

i=1∑

j=1

Ui +

n∑

j=i+1

Zi, ∆i =
UTi Hi

nf
, Γi =

ZTi Hi

nf
.

We may use analogous reasoning to bound these terms. Let ξ ∼ N(0, 1). Conditioning on U1 = ui,
by Rosenthal’s inequality:

E
[∣∣∆i

∣∣q | Ui
]
≤

i−1∑

j=1

E[|UTj ui|q]
nqfq

+
n∑

j=i+1

E[|ZTj ui|q]
nqfq

+ nq/2
(
uTi V̄nui

)q/2

nqfq

≤
i−1∑

j=1

E[|UTj ui|q]
nqfq

+
n∑

j=i+1

‖ξ‖qq
(
uTi Vjui

)q/2

nqfq
+

(
uTi V̄nui

)q/2

nq/2fq

(S.19)

Taking expectations, it follows that:
n∑

i=1

E
[∣∣∆i

∣∣q] . 1(
n
2

)
∑

1≤i<j≤n

E
[
|UTi Uj |q

]

nδfq
+

1

n

n∑

i=1

E
∣∣UTi V̄nUi

∣∣q/2

nδ/2fq

12



Now, for Γi, we may use Rosenthal’s inequality so that:

n∑

i=1

E
[∣∣Γi

∣∣q] ≤ 1

n

n∑

i=1

E
∣∣UTi V̄nUi

∣∣q/2

nδδfq
+

1

n

n∑

i=1

E
[∣∣ZTi V̄nZi

∣∣q/2
]

nδδfq
+

1

n

n∑

i=1

E
(
ZTi V̄nZi]

)q/2

nq/2fq

While omitted in the original proof, in the IID case, the latter terms may be bounded by using
an eigendecomposition along with properties of the Gaussian. However, since the Zi do not have
variance matrix Vn, we instead oppose the additional condition for LZq . By the assumptions made in
theorem, it follows that II → 0.

Finally, for I , we have that:

P

(
nŪTn Ūn − f1

f
≤ t
)
− P

(∑
i 6=j U

T
i Uj

nf
≤ t
)

≤ P (SXn ≤ t+ hn)− P (SUn ≤ t+ hn) + P (|RXn | > hn)

+ P (t ≤ V ≤ t+ 2hn) + P (|SZn | > hn)

Using bounds from II and III along with anti-concentration properties, we may conclude that
I → 0.

B.3 Supporting lemmas for CLT

In several of our lemmas, we use the following technique from [4] that facilitates analysis for
initializations from a uniform distribution on Sd−1 particularly when d is large.

Proposition B.6 (Trace trick). Suppose that u is drawn from a uniform distribution on Sd−1. Then,
for any A ∈ Rd×d and v ∈ Rd satisfying ‖v‖ = 1, with probability at least 1− Cδ, for some C > 0
independent of A and 0 < δ < 1,

uTATAu

(vTu)2
≤ log(1/δ) trace(AAT )

δ2

Proof. First, we recall the well-known fact that u = g/ ‖g‖, where g ∼ N(0, Id). Therefore, ‖g‖
cancels as follows:

uTATAu

(vTu)2
=
gTATAg

(vT g)2

Furthermore, observe that gTATAg may be viewed as a weighted sum of independent χ2(1) random
variables. In particular, by an eigendecomposition argument, for η1, . . . ηr ∼ χ2(1) andA = V DV T ,

gT (V DV T )(V DV T )g = gTV D2V T g

d
= gTD2g

=

p∑

r=1

λ2
rηr = ψ, say

where above we used the fact that V T g ∼ N(0, Id). Now observe that E[ψ] =
∑p
r=1 λ

2
r = ‖A‖2F

and that ηr is sub-Exponential. Therefore, by by Bernstein’s inequality (see for example Theorem
2.8.2 of [7]), for some K > 0, C1 > 0, 0 < δ < 1,

P
(
ψ − E[ψ] > (log(1/δ)− 1) ‖A‖2F

)
≤ exp

{
−min

(
log2(1/δ) ‖A‖4S2

4K2 ‖A‖4S4
,

log(1/δ) ‖A‖2S2
2K ‖A‖2S∞

)}

≤ exp

{
−min

(
log2(1/δ)

4K2
,

log(1/δ)

2K

)}
≤ C1δ

13



where above ‖·‖Sp is the pth Schatten-Norm, defined as (
∑d
r=1 s

p
r)

1/p, where sr is the rth singular
value and satisfies ‖·‖Sq ≤ ‖·‖Sp for p ≤ q. Now for the denominator, since vT g ∼ N(0, 1) and
(vT g)2 ∼ χ2(1), Proposition B.7 yields:

P ((vT g)2 ≤ δ2) ≤ 2δ√
π

The result follows.

The following anti-concentration result for weighted χ2 distributions is also used in several places.

Proposition B.7 (Weighted χ2 anti-concentration, [8]). Let a1 ≥ · · · ≥ ap ≥ 0 such that
∑p
r=1 a

2
i =

1 and suppose that ξ1, . . . , ξp ∼ χ2(1). Then,

sup
t∈R

P

(
t ≤

p∑

r=1

arξr ≤ t+ h

)
≤
√

4h

π

We now present a concentration result for matrix products that follow immediately from Corollary
5.4 of [3].

Lemma B.1 (Expectation bounds for operator norms of of matrix products). Let Bk =
∏k
j=1(I +

ηnXjX
T
j /n). We have,

E‖Bk − EBk‖2 ≤
Mdeη

2
n(1 + 2 log d)k

n2
(1 + ηnλ1/n)2k. (S.20)

For the expectation, we have, if (1+2 log d)Mdη
2
n

n ≤ 1:

E‖Bk‖2 ≤ exp

(
2

√
2Md

kη2
n

n2

(
2Md

kη2
n

n2
∨ log d

))
(1 + ηnλ1/n)

2k
. (S.21)

Proof. We invoke Corollary 5.4 in [3] with ‖E(I + ηn/nXiX
T
i )‖ ≤ 1 + ηnλ1/n, σ2

i = Md
η2n
n2 , and

ν = Md
kη2n
n2 . Note that for a random matrix M with Schatten norm ‖M‖Sp , E‖M‖ ≤

√
E‖M‖2Sp

and hence the same argument as in their proof invoking Eq 5.5 and 5.6 works.

Lemma B.2 (Concentration of the norm for the CLT). For some C > 0, and any ε > 0, 0 < δ < 1,

P

(∣∣∣∣
‖Bnu0‖

|a1|(1 + ηnλ1/n)n
− 1

∣∣∣∣ ≥ ε
)

≤
d exp

(
−ηn(λ1 − λ2) +

η2n
n (λ2

1 +Md)
)

+
η2n
n Md exp

(
η2n
n

)

4 log−1(1/δ)δ2ε2
(

1 +
η2nλ

2
1

n

) +
e2η2

nMd(1 + log d)

nε2
+ Cδ

Proof. Consider the bound:
∣∣∣∣

‖Bnu0‖
|a1|(1 + ηnλ1/n)n

− 1

∣∣∣∣ ≤
∣∣∣∣
‖Bnv1a1‖ − ‖a1T0v1‖
|a1|(1 + ηnλ1/n)n

∣∣∣∣+
‖BnV⊥(V T⊥ u0)‖
|a1|(1 + ηnλ1/n)n

We will start by bounding the second term.

Using Proposition B.6, observe that, with probability at least 1− Cδ,

‖(BnV⊥V T⊥ g‖2
|vT1 g|2(1 + ηnλ1/n)2n

≤ log(1/δ)trace(V⊥BnBnV T⊥ ))

δ2(1 + ηnλ1/n)2n

14



Let G denote the good set for which the upper bound above holds. Markov’s inequality on the good
set, together with Lemma 5.2 of [4] with Vn ≤Md yields that:

P

( ‖BnV⊥V T⊥ g‖
(1 + ηnλ1/n)n

≥ ε/2 ∩ G
)

≤
d exp

(
−ηn(λ1 − λ2) +

η2n
n (λ2

1 +Md)
)

+
η2n
n Md exp

(
η2n
n

)

4δ2 log−1(1/δ) ε2
(

1 +
η2nλ

2
1

n

)

Now we will bound the first summand. By Lemma B.1 Eq S.20, we have by Markov’s inequality,

P

(‖(Bn − T0)‖op
(1 + ηnλ1/n)n

> ε/2

)
≤ e2Md(1 + log d)

nε2

Combining the two bounds and the probability of Gc, the result follows.

Lemma B.3 (Negligibility of V⊥ for the CLT). Let V⊥ denote the matrix of eigenvectors orthogonal
to v1. Also let λi denote the ith largest eigenvalue of Σ. For some C > 0, and any ε > 0, 0 < δ < 1,

P

(√
n

ηn

∥∥V⊥V T⊥BnV⊥V T⊥ u0

∥∥
|a1|(1 + ηnλ1

n )n
≥ ε
)

≤ nd log(1/δ) exp
{
−2ηn(λ1 − λ2) + η2

n(λ2
1 +Md)/n

}

ηnε2δ2
+
eM2

d (1 + 2 log d)η2
nε
−2 log(1/δ)δ−2

n2(λ1 − λ2) + η2
n(λ2

1 − λ2
2 −Md)

+ Cδ

Proof. We consider bounding the squared quantity. We have, with probability at least 1− Cδ, using
Proposition B.6, this quantity is upper bounded by:

∥∥(V⊥V T⊥BnV⊥V⊥)g
∥∥2

(vT1 g)2(1 + ηnλ1/n)2n

≤ trace
(
(V⊥V T⊥BnV⊥V

T
⊥ )(V⊥V T⊥BnV⊥V

T
⊥ )T

)

δn(vT1 g)2(1 + ηnλ1/n)2n

=
trace

(
V T⊥BnV⊥V

T
⊥BnV⊥

)

δ3
n(1 + ηnλ1/n)2n

Now we will bound the expectation of the numerator.

We will denote η = ηn
n for simplicity. Let Ui = I + ηXiX

T
i and Yi = XiX

T
i − Σ. We have that:

αn := E
〈
BnV⊥V

T
⊥B

T
n , V⊥V

T
⊥
〉

= E
〈
Bn−1V⊥V

T
⊥B

T
n−1, UnV⊥V

T
⊥ U

T
n

〉

=
〈
EBn−1V⊥V

T
⊥B

T
n−1,EUnV⊥V T⊥ UTn

〉
(S.22)

Now we have:

EUnV⊥V T⊥ UTn = E (I + ηΣ)V⊥V
T
⊥ (I + ηΣ)

T
+ η2EYnV⊥V T⊥ Y Tn

� (1 + 2ηλ2 + λ2
2η

2)V⊥V
T
⊥ + η2Md(V⊥V

T
⊥ + v1v

T
1 )

� (1 + 2ηλ2 + λ2
2η

2 + η2M2
d )V⊥V

T
⊥ + η2Mdv1v

T
1 (S.23)

Finally, using Eqs S.22 and S.23, we have:

αn ≤
(
1 + 2ηλ2 + η2(λ2

2 +Md)
)
αn−1 + η2Md

〈
EBn−1V⊥V

T
⊥B

T
n−1, v1v

T
1

〉
(S.24)

We will use the fact that,

〈(I + ηΣ)n−1V⊥V
T
⊥ (I + ηΣ)n−1, v1v

T
1 〉 = 0.
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Thus, for someN such that the condition η2
nMd(1+2 log d)/n ≤ 1 holds for all rows of the triangular

array with index n > N , we have by Lemma B.1,
〈
EBn−1V⊥V

T
⊥B

T
n−1, v1v

T
1

〉

=
〈
E(Bn−1 − (I + ηΣ)n−1)V⊥V

T
⊥ (Bn−1 − (I + ηΣ)n−1)T , v1v

T
1

〉

≤ ‖E(Bn−1 − (I + ηΣ)n−1)V⊥V
T
⊥ (Bn−1 − (I + ηΣ)n−1)T ‖

≤ E‖Bn−1 − (I + ηΣ)n−1‖2

≤Mdeη
2n(1 + 2 log d)(1 + ηnλ1/n)2(n−1).

Thus, Eq S.24 gives:

αn ≤
(
1 + 2ηλ2 + η2(λ2

2 +Md)
)

︸ ︷︷ ︸
c1

αn−1 + η4M2
d e(1 + 2 log d) (n− 1)(1 + ηλ1)2(n−1)

︸ ︷︷ ︸
(n−1)cn−1

2

= c1αn−1 + η4M2
d e(1 + 2 log d)(n− 1)cn−1

2

= cn1α0 + η4M2
d e(1 + 2 log d)

∑

i

ci−1
1 (n− i)cn−i2

≤ cn2
(
d(c1/c2)n +

eM2
d (1 + 2 log d)η4n

c2 − c1

)

≤ (1 + ηnλ1/n)2n

(
d(1− λ2

1η
2
n/n) exp{−2ηn(λ1 − λ2) + η2

n(λ2
1 +Md)/n}

+
eM2

d (1 + 2 log d)η3
n/n

2

2(λ1 − λ2) + η2
n/n(λ2

1 − λ2
2 −Md)

)

where above we used the fact ex(1− x2

n ) ≤ (1 + x
n )n ≤ ex for |x| ≤ n to bound (c1/cn)n.

Lemma B.4 (Negligibility of higher-order Hoeffding projections for the CLT). Let βn =
η2nMd

n and
suppose that 0 ≤ βn ≤ 1. Then, for some C > 0 and any ε > 0,

P




√
n
ηn

∥∥V⊥V T⊥
∑
k>1 Tkv1

∥∥

(1 + ηnλ1

n )n
> ε


 ≤ Cβnηn

(1− βn)ε2

Proof. By Markov’s inequality, it follows that:

P

( √
n

ηn

∥∥V⊥V T⊥
∑
k>1 Tkv1

∥∥

(1 + ηnλ1

n )n
> ε

)
≤

n
η2n

E
[∥∥V⊥V T⊥

∑
k>1 Tkv1

∥∥2
]

ε2(1 + ηnλ1

n )2n

Now, by submultiplicativity of the operator norm and the fact that E[(PS1
T )T (PS2

)T ] = 0 for any
two Hayek projections, the numerator is upper bounded by:

(
n

ηn

) n∑

k=2

(ηn
n

)2k ∑

|S|=k
E
[
(v′ASu0)2

]
≤
(
n

ηn

) n∑

k=2

∑

|S|=k

(ηn
n

)2k

E
[
‖AS‖2op

]

≤
(
n

ηn

) n∑

k=2

(ηn
n

)2k ∑

|S|=k

(
1 +

ηnλ1

n

)2(n−k)

Mk
d

≤ ηnMd

(
1 +

ηnλ1

n

)2n n∑

k=2

(
Mdη

2
n

n

)k−1

≤
(

1 +
ηnλ1

n

)2n
βnηnMd

1− βn
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The result follows.

C Consistency of the online bootstrap

In this section, we provide the detailed proof of Bootstrap consistency, i.e Theorem 2.

C.1 Proof of bootstrap consistency

Proof of Theorem 2. Similar to the CLT, we will establish the negligibility of remainder terms and
then use anti-concentration terms to argue that the contribution to the Kolmogorov distance is
small. We then show that the bootstrap covariance of the main term approaches the weighted χ2

approximation in Theorem 1 with high probability. Let v̂1 denote the leading eigenvector estimated
from Oja’s algorithm and let V̂⊥ denote its orthogonal complement. Again, we have that:

n

ηn
sin2(v∗1 , v̂1) =

n

ηn

(B∗nu0)T V̂⊥V̂ T⊥ (B∗nu0)

‖B∗nu0‖2

=
(
√
n/ηnV̂⊥V̂ T⊥B

∗
nu0)T (

√
n/ηnV̂⊥V̂ T⊥B

∗
nu0)

‖B∗nu0‖2

We aim to show that the bootstrap distribution conditional on the data is close to the weighted χ2

approximation with high probability; therefore we may work the good setAn. With the a slight abuse
of notation, in the remainder terms below, OP will be on the measure restricted to An.

We first approximate the norm using Lemma C.7. Analogous to the CLT, the corresponding remainder
is given by:

R∗1 =
‖B∗nu0‖2

a2
1(1 + ηn

n λ1)2n
= 1−OP

(
√
d exp

(
−ηn

2
(λ1 − λ2)

)
+

√
η2
nMd log d

n
+
ηnαn√
n

)

Next, we bound the contribution of the higher-order Hoeffding projections. This step is different
from the CLT in the sense that we handle both v1 and V⊥, using the fact that on the good set, even
the Frobenius norm of certain terms are well-behaved. By Lemma C.8 we have that:

R∗3 :=

√
n

ηn
· V̂⊥V̂

T
⊥ (B∗n − T ∗1 )u0

|a1|(1 + ηn/nλ1)n
= OP

(
exp

(√
CM2

dη
2
n log d

n

)√
α4
nη

3
n

n

)

Next, we bound the contribution of V⊥ to the Hájek projection using Lemma C.10, as long as
λ1Md(log d)2 η

2
n

n → 0,

R∗2 =

√
n

ηn
· V̂⊥V̂

T
⊥ T
∗
1 V⊥V

T
⊥ u0

|a1|(1 + ηn/nλ1)n
= OP

(√
αnMdη2

n

n(λ1 − λ2)

)

The final remainder term arises from the disparity between the orthogonal complements and the
residuals of matrix products from their expectation. By Lemma C.6, with ∆i = XiX

T
i −Xi−1X

T
i−1,

R∗4 =

√
n

ηn

∥∥∥∥∥
V̂⊥V̂ T⊥ T

∗
1 v1(vT1 u0)

|vT1 u0|(1 + ηnλ1/n)n
− ηn

n

∑

i

WiDi−1∆iv1

∥∥∥∥∥ = OP

(√
Mdαnη3

n log d

n

)

Now, define:

S∗n =

√
n

ηn

V⊥V T⊥ T
∗
1 v1

(1 + ηnλ1

n )n
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Consider the following bound:

P

{
sup
t∈R

∣∣P ∗(n/ηn sin2(v∗1 , v̂1) ≤ t)− P (ZTZ ≤ t)
∣∣ > ε

}

= PAn

{
sup
t∈R

∣∣∣∣P ∗
(
R∗1 ·

(S∗n +R∗2 +R∗3 +R∗4)T (S∗n +R∗2 +R∗3 +R∗4)

f
≤ t
)
− P

(
ZTZ

f
≤ t
)∣∣∣∣ > ε

}

+PAcn

{
sup
t∈R

∣∣∣∣P ∗
(
R∗1 ·

(S∗n +R∗2 +R∗3 +R∗4)T (S∗n +R∗2 +R∗3 +R∗4)

f
≤ t
)
− P

(
ZTZ

f
≤ t
)∣∣∣∣ > ε

}

(S.25)

The second term is easily upper-bounded by P (Acn)→ 0, so we will bound the first term. To lower
bound the Kolmogorov metric, we may follow the same reasoning used in Eqs S.12, S.14, S.15, to
deduce, on the good set An, we have the lower bound:

P ∗
(
S∗Tn S∗n
f

≤ t

1 + εn
− εn

)
− P

(
ZTZ

f
≤ t

1 + εn
− εn

)

+ P

(
ZTZ

f
≤ t

1 + εn
− εn

)
− P

(
ZTZ

f
≤ t
)
− P ∗ (Gboot ∩ An) = I∗ + II∗ + III∗

where Gboot satisfies P (Gcboot) = 0 and for some εn → 0, is defined as:

Gboot = {|R∗1 − 1| ≤ εn, |R∗2|, |R∗3|, |R∗4| ≤ εn }
For I , we may use Lemma 1, which establishes that bootstrap version of the covariance matrix,
which consists of empirical covariances, is close to the Gaussian approximation, implying, by our
Gaussian comparison result Lemma C.5:

I∗ = OP



(
E[
∥∥XiX

T
i − Σ

∥∥4
]

n(λ1 − λ2) ‖M‖2F

)1/4



For II∗, we may use the anti-concentration result and P ∗(Gboot ∩An)
P−→ 0 by Markov’s inequality

since the Lemmas hold for the unconditional measure, which is the expectation of the bootstrap
measure. We may use analogous reasoning to the CLT for the upper bound and the result follows.

C.2 Proof of Lemma 1

Proof. Let Yi := XiX
T
i − Σ. Also let Mi = E[Di−1Yiv1v

T
1 YiDi−1]. First note that

E∗ZZT − V̄n =
ηn
2n

∑

i

Di−1(Yi − Yi−1)v1v
T
1 (Yi − Yi−1)Di−1

=
ηn
n

∑

i

(
Di−1Yiv1v

T
1 YiDi−1 −Mi

)
+
(
Di−1Yi−1v1v

T
1 Yi−1Di−1 −Mi

)

2

+
ηn
n

∑

i

(
Di−1Yiv1v

T
1 Yi−1Di−1 +Di−1Yi−1v1v

T
1 YiDi−1

)
(S.26)

We first compute trace.

trace(E∗ZZT − V̄n) =
ηn
2n

∑

i

(
‖Di−1Yiv1‖2 − E‖Di−1Yiv1‖2

)
︸ ︷︷ ︸

U1,i

+
ηn
2n

∑

i

(
‖Di−1Yi−1v1‖2 − E‖Di−1Yi‖2

)
︸ ︷︷ ︸

U2,i

+
ηn
n

∑

i

v1YiD2(i−1)Yi−1v1︸ ︷︷ ︸
U3,i
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The last step is true because D2
i−1 = D2(i−1). We start with the first term.

EU2
i,1 ≤ E‖Di−1Yiv1‖4 ≤ E‖Yi‖4

(
1 + ηnλ2/n

1 + ηnλ1/n

)4(i−1)

Var(
∑

i

U1,i) ≤ E‖Y1‖4
∑

i

(
1 + ηnλ2/n

1 + ηnλ1/n

)4(i−1)

≤ n

ηn(λ1 − λ2)

≤ n

ηn
E‖Y1‖4 min

(
1

λ1 − λ2
, ηn

)

Finally,

E[U2
3,i] ≤ E

(
v1YiD2(i−1)Yi−1v1

)2 ≤M2
d

(
1 + ηnλ2/n

1 + ηnλ1/n

)2(i−1)

Thus, we have

ηn
2n

∑

i

U1,i = OP

(√
E‖Y1‖4

n(λ1 − λ2)

)

We also have,

ηn
2n

∑

i

U2,i = OP

(√
E‖Y1‖4

n(λ1 − λ2)

)

Also note that while U3,i terms are 1-dependent, they are in fact uncorrelated. Thus, we have:

Var(
∑

i

U3,i) ≤
M2
dn

(λ1 − λ2)
,

and,

trace(E∗ZZT − V̄n) = OP



√

E‖XiXT
i − Σ‖4

n(λ1 − λ2)




Now we bound the Frobenius norm. We will start with the expected Frobenius norm of the first term
of Eq S.26.

A1 = E

∥∥∥∥∥
1

2n

n∑

i=1

Di−1Yiv1v
T
1 YiDi−1 −Mi

∥∥∥∥∥

2

F

≤ 1

4n2

∑

i

E‖Di−1Yiv1v
T
1 YiDi−1‖2F ≤

E‖Y1‖4
4nηn(λ1 − λ2)

Similarly,

A2 = E

∥∥∥∥∥
1

n

∑

i

Di−1Yiv1v
T
1 Yi−1Di−1

∥∥∥∥∥

2

F

≤ 1

nηn(λ1 − λ2)
M2
d

Thus ,

∥∥E∗ZZT − V̄n
∥∥
F

= OP



√

E‖X1XT
1 − Σ‖4

n(λ1 − λ2)
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C.3 The Gaussian comparison lemma

We use the following lemma to compare to Gaussian random variables with mean 0 and different
covariance matrices. Our result is related to [2], but our lemma below is easier to implement and does
not require that 3‖Σ‖2 ≤ ‖Σ‖2F .

Lemma C.5. [Comparison lemma for inner products of Gaussian random variables]

Suppose that Z ∼ N(0,V), Ž ∼ N(0, V̌), f = ‖V‖F , and ∆1 = tr(V − V̌). Then, there exists
some constant K > 0 such that for any ε > 0,

sup
t∈R

∣∣P (ZTZ ≤ t)− P (ŽT Ž ≤ t)
∣∣ .

√
|∆1|+ ε

f
+ exp

{
−
(

ε2

K2‖V− V̌‖2F

∧ ε

K‖V− V̌‖

)}

Proof. Let λ1 ≥ . . . ≥ λp denote the eigenvalues V, γ ≥ . . . ≥ γp denote the eigenvalues of V̌.
Recall that ZTZ ∼ ∑p

r=1 λrηr, Ž
T Ž ∼ ∑p

r=1 γrηr, where ηr ∼ χ2(1). We upper bound the
difference between the CDFs uniformly in t; the argument for the lower bound is analogous. For
ε > 0, let t′ = t− |∆1| − ε. It follows that:

P (ZTZ ≤ t)− P (ŽT Ž ≤ t)

= P

(∑p
r=1 λrηr
f

≤ t

f

)
− P

(∑p
r=1 λrηr +

∑p
r=1(γr − λr)ηr −∆1

f
≤ t−∆1

f

)

≤ P
(
t′

f
≤
∑p
r=1 λrηr
f

≤ t′ + |∆1|+ ε

f

)
+ P

(∣∣∣∣∣

p∑

r=1

(γr − λr)ηr −∆1

∣∣∣∣∣ > ε

)

Observe that
∑p
r=1(λr − γr)2 ≤ ‖V− V̌‖2F by Hoffman-Wielandt inequality and maxr |λr − γr| ≤

‖V− V̌‖op by Weyl’s inequality. Since χ2(1) is sub-Exponential, by Bernstein’s inequality (see for
example Theorem 2.8.2 of [7]:

P

(∣∣∣∣∣

p∑

r=1

(γr − λr)ηr −∆1

∣∣∣∣∣ > ε

)
≤ exp

{
−
(

ε2

K2‖V− V̌‖2F

∧ ε

K‖V− V̌‖

)}

The upper bound follows from an application of Proposition B.7. The lower bound is analogous.

C.4 Other supporting lemmas for bootstrap consistency

Before presenting our supporting lemmas, we present some events we will use frequently. Let Asin

denote the set

Asin :=

{
1− (vT1 v̂1)2 ≤ εsin

δn

}
. (S.27)

Using Corollary 1, and the remark thereafter, we have:

P

(
1− (vT1 v̂1)2 ≥ εsin

δn

)
≤ δn, (S.28)

where, under the assumptions of Theorem 1,

εsin = C3
Mdηn

n(λ1 − λ2)
(S.29)

Also let,

An =

{
max

1≤i≤n
‖Xi‖22 ≤ αn

}
(S.30)
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Lemma C.6. [Bounding the norm of bootstrap residual from T ∗1 ] Let ∆i = XiX
T
i −Xi−1X

T
i−1 and

assume the conditions in Theorem 1. Let Di = V⊥Λi⊥V
T
⊥ , where Λ⊥(k, `) = 1+ηnλk+1/n

1+ηnλ1/n
1(k = `).

For any ε, δ > 0, we have:

P

({√
n

ηn

∥∥∥∥∥
V̂⊥V̂ T⊥ T

∗
1 v1(vT1 u0)

|vT1 u0|(1 + ηnλ1/n)n
− ηn

n

∑

i

WiDi−1∆iv1

∥∥∥∥∥ ≥ ε
}
∩ An

)

≤ C ′′αnMdη
3
n log d

nε2δ
+ δ

Proof.

V̂⊥V̂ T⊥ T
∗
1 v1(vT1 u0)

|vT1 u0|(1 + ηnλ1/n)n−1

= sign(vT1 u0)
ηn
n

∑

i

WiDi−1∆iv1

+ sign(vT1 u0)
ηn
n

(V̂⊥V̂
T
⊥ − V⊥V T⊥ )

∑

i

WiDi−1∆iv1

︸ ︷︷ ︸
r1

+ sign(vT1 u0)
ηn
n




∑

i

Wi

(
R1,i−1∆iv1

(1 + λ1ηn/n)
i

)

︸ ︷︷ ︸
r2

+
Wi(I + ηnλ1/n)i−1∆iRi,nv1

(1 + λ1ηn/n)
n−1

︸ ︷︷ ︸
r3

+Wi
R1,i−1∆iRi,nv1

(1 + λ1ηn/n)
n−1

︸ ︷︷ ︸
r4




Define

B1,j =

j∏

i=1

(
I +

ηn
n
XiX

T
i

)
Bj,n =

n∏

i=j

(
I +

ηn
n
XiX

T
i

)
(S.31)

When j = 0, B1,j = I .

Using Lemma B.1 we have:

R1,i = B1,i − (I + ηnΣ/n)i Ri,n = Bi,n − (I + ηnΣ/n)n−i (S.32)

E‖R1,i−1‖2 ≤ eMd(1 + 2 log d)
η2
n

n2
i (1 + ηnλ1/n)

2i (S.33)

E‖Ri,n‖2 ≤ eMd(1 + 2 log d)
η2
n

n2
(n− i) (1 + ηnλ1/n)

2(n−i) (S.34)

We have, on the good set Asin,

E∗‖r1‖2 ≤ nαn
εsin
δn

We also have:

E
[
E∗‖r2‖21(An)

]
≤ η2

n

n2
αn
∑

i

E[‖R2
1,i1(An)‖2]

≤ eMd(1 + 2 log d)αnη
2
n
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The last step is true because E[‖R2
1,i1(An)‖2] ≤ E[‖R2

1,i‖2]. Similarly

E
[
E∗‖r3‖21(An)

]
≤ eMd(1 + 2 log d)αnη

2
n

and

E
[
E∗‖r4‖21(An)

]
≤ e2M2

d (1 + 2 log d)2αnη
4
n/n

Finally, we have:

P






ηn
n
‖
∑

j

rj‖2 ≥ ε



 ∩ An


 ≤ P





4

ηn
n

∑

j

‖rj‖2 ≥ ε



 ∩ An




≤
∑

i

P

({
‖ri‖2 ≥

nε

16ηn

}
∩ An ∩ Asin

)
+ δn

≤ C
∑

i

E
[
E∗‖ri‖21(An ∩ Asin)

]
× ηn
nε

+ δn

(i)

≤ C ′
(
nαn

εsin
δn

+Md log dαnη
2
n

)
× ηn
nε

+ δn

(ii)

≤ C ′′
αnMdη

3
n log d

nεδn
+ δn

Step (i) is true because Md log dη2
n/n→ 0. Step (ii) is true because of Eq S.29. Now setting δn to

any δ > 0 gives the result.

Lemma C.7 (Concentration of the norm for the bootstrap). Let u0 be uniformly distributed on Sd−1

and a1 = u′0v1 and V⊥V T⊥ is orthogonal complement. Suppose that (αn)n≥1 satisfies 0 ≤ (ηnαn)2

n ≤
1. Then, for any ε > 0, 0 < δ < 1 and some C > 0,

P

({∣∣∣∣
‖B∗nu0‖

|a1|(1 + ηnλ1/n)n
− 1

∣∣∣∣ ≥ εn
} ⋂

An
)

≤
d exp

(
−ηn(λ1 − λ2) +

η2n
n (λ2

1 +Md)
)

+
η2n
n Md exp

(
η2n
n

)

8 log−1(1/δ)δ2 ε2
(

1 +
η2nλ

2
1

n

)

+
e2η2

nMd(1 + log d)

2nε2
+
Cβ∗n log(1/δ)

(1− β∗n)δ2ε2
+ Cδ,

where β∗n is defined in (S.36) and An is defined in Eq S.30.

Proof. First note that we may reduce the problem as follows:

P

({∣∣∣∣
‖B∗nu0‖

|a1|(1 + ηnλ1/n)n
− 1

∣∣∣∣ ≥ ε
}
∩ An

)

≤ P
({ ‖B∗nu0 −Bnu0‖2
|a1|(1 + ηnλ1/n)n

+

∣∣∣∣
‖Bnu0‖2

|a1|(1 + ηnλ1/n)n
− 1

∣∣∣∣ > ε

}
∩ An

)

≤ E
[
P ∗
( ‖B∗nu0 −Bnu0‖2
|a1|(1 + ηnλ1/n)n

>
ε

2

)
1(An)

]
+ P

(∣∣∣∣
‖Bnu0‖2

|a1|(1 + ηnλ1/n)n
− 1

∣∣∣∣ >
ε

2

)

The bound for the second term follows from Lemma B.2. For the first term, we invoke Proposition B.6
so that, with probability at least 1− Cδ,

‖(B∗n −Bn)g‖22
(vT1 g)2(1 + ηnλ1/n)2n

≤ log(1/δ) ‖B∗n −Bn‖2F
δ2(1 + ηnλ1/n)2n
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Now, using the fact that for any two Hayek projections P ∗S and P ∗T , E[(P ∗S)TP ∗T ] = 0 and for any two
matrices ‖AB‖F ≤ ‖A‖F ‖B‖op, we have on the high probability set:

E∗‖B∗n −Bn‖2F

≤
n∑

k=1

∑

|S|=k

(ηn
n

)2k k∏

i=1

∥∥∥XS[i]X
′
S[i] −XS[i]−1X

′
S[i]−1

∥∥∥
2

F

k+1∏

j=1

∥∥∥B(S)
j,n

∥∥∥
2

op
,

where B(S)
j,n denotes a contiguous block of I + ηn

n XiX
T
i only. More precisely, suppose |S| = k. Let

S[i] denote the ith element of S, with S[0] = 0 and S[k + 1] = n− 1. For each 1 ≤ j ≤ k + 1 if
S[j] > S[j − 1] + 1 define Bj,n as:

B(S)
j,n =

S[j]−1∏

i=S[j−1]+1

(
I +

ηn
n
XiX

T
i

)
(S.35)

otherwise, set B(S)
j,n = I . Now, we may repeat arguments in Lemma C.8 equations (S.37), (S.38), and

(S.39) to conclude that, for some C > 0,

P

(
log(1/δ) ‖B∗n −Bn‖2F
δ2(1 + ηnλ1/n)2n

> ε
⋂
An
)
≤ C log(1/δ)β∗n

(1− β∗n)δ2ε2

The result follows.

Lemma C.8 (Negligibility of higher-order Hoeffding projections for the bootstrap). Suppose αn is
defined so that 0 ≤ β∗n ≤ 1, where

β∗n = exp

(√
CM2

dη
2
n log d

n

)
4η2
nα

2
n

n
(S.36)

Then for any ε > 0, 0 < δ < 1 and for some C > 0,

P








√
n
ηn

∥∥∥V̂⊥V̂ T⊥
∑
k>1 T

∗
k u0

∥∥∥
|a1|(1 + ηnλ1

n )n
> εn




⋂
An




≤ exp

(√
CM2

dη
2
n log d

n

)
log(1/δ)

δ2

α2
nβ
∗
nηn

(1− β∗n)ε2
+ Cδ,

where An is defined in Eq S.30.

Proof. Using the trace trick in Proposition B.6 again, we have that, with probability at least 1− Cδ
for some C > 0,

n
ηn

∥∥∥V̂⊥V̂ T⊥
∑
k>1 T

∗
k g
∥∥∥

2

(vT1 g)2(1 + ηnλ1

n )2n
≤

n
ηn

log(1/δ)
∥∥∑

k>1 Tk
∥∥2

F

δ2(1 + ηnλ1

n )2n

The Hoeffding decomposition (Proposition A.4), together with the fact that ‖AB‖F ≤ ‖A‖F ‖B‖op
implies:

E∗


∥∥∥∥∥
∑

k>1

T ∗k

∥∥∥∥∥

2

F


 = E∗

[∑

k>1

‖T ∗k ‖2F

]

≤
n∑

k=2

∑

|S|=k

(ηn
n

)2k k∏

i=1

∥∥∥XS[i]X
T
S[i] −XS[i]−1X

T
S[i]−1

∥∥∥
2

F

k+1∏

j=1

∥∥∥B(S)
j,n

∥∥∥
2

op

(S.37)
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Now, that expectation corresponding to a given summand is given by:

∫

An

∥∥∥XS[i]X
T
S[i] −XS[i]−1X

T
S[i]−1

∥∥∥
2

F

k+1∏

j=1

∥∥∥B(S)
j,n

∥∥∥
2

dP

≤
∫

An

k∏

i=1

4α2
n

k+1∏

j=1

∥∥∥B(S)
j,n

∥∥∥
2

dP

≤
(
4α2

n

)k k+1∏

j=1

E
[∥∥∥B(S)

j,n

∥∥∥
2
]

(S.38)

where B(S)
j,n is defined in Eq S.35.

To bound E
[∥∥∥B(S)

j,n

∥∥∥
2
]

, we invoke Lemma B.1 Eq S.21. For some C > 0 uniformly in S:

k+1∏

j=1

E
[∥∥∥B(S)

j,n

∥∥∥
2
]
≤ exp

(√
CM2

dη
2
n log d

n

)k+1(
1 +

ηnλ1

n

)2(n−k)

Therefore, by Markov’s inequality,

P








√
n
ηn

∥∥∥V̂⊥V̂ T⊥
∑
k>1 T

∗
k u0

∥∥∥
(1 + ηnλ1

n )n
> εn




⋂
An




≤ n

δ3ε2nηn
exp

(√
CM2

dη
2
n log d

n

)
n∑

k=2

(
4η2
nα

2
n

n
exp

(√
CM2

dη
2
n log d

n

))k

≤ α2
nηnδ

−3
n ε−2

n exp

(√
CM2

dη
2
n log d

n

)
n∑

k=1

(
4η2
nα

2
n

n
exp

(√
CM2

dη
2
n log d

n

))k

≤ exp

(√
CM2

dη
2
n log d

n

)
α2
nβ
∗
nηn

(1− β∗n)ε2nδ
3
n

(S.39)

where the last line follows from a geometric series argument.

Lemma C.9.
n∑

i=0

(
1− ηn/n(λ1 − λ2)

1 + ηnλ1/n

)2i

≤ n

ηn
min

(
ηn,

1

λ1 − λ2

)

Proof. This follows from the definition of a geometric series.

Lemma C.10 (Bounding the leading Hoeffding projection for the bootstrap on V⊥). Let
λ1Md(log d)2 η

2
n

n → 0, and nd exp(−ηn(λ1 − λ2)) → 0. For any ε, δ > 0, and C1, C2 ≥ 0,
we have:

P

({√
n

ηn

‖V̂⊥V̂ T⊥ T ∗1 V⊥V T⊥ u0‖
(1 + ηnλ1/n)n|vT1 u0|

≥ ε
}
∩ An

)
≤ C1αnMdη

2
n log(1/δ)

n(λ1 − λ2)δ3

1

ε2
+ C2δ
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Proof. Using Proposition B.6, with probability at least 1− δ,

‖V̂⊥V̂ T⊥ T ∗1 V⊥V T⊥ u0‖2
(1 + ηnλ1/n)2n‖vT1 u0‖2

≤
log(1/δ)

∥∥∥V̂⊥V̂ T⊥ T ∗1 V⊥V T⊥
∥∥∥

2

F

δ2(1 + ηnλ1/n)2n

=
log(1/δ)trace(V̂⊥V̂ T⊥ T

∗
1 V⊥V

T
⊥ T
∗
1 V̂⊥V̂

T
⊥ )

δ2(1 + ηnλ1/n)2n

=
log(1/δ)

∥∥∥V̂⊥V̂ T⊥ T ∗1 V⊥
∥∥∥

2

F

δ2(1 + ηnλ1/n)2n
(S.40)

First note that,

‖V⊥V T⊥ − V̂⊥V̂ T⊥ ‖2F = ‖v1v
T
1 − v̂1v̂

T
1 ‖2F = 2(1− (vT1 v̂1)2)

Thus, we have

E∗‖V̂⊥V̂ T⊥ T ∗1 V⊥‖2F

=
η2
n

n2

∑

i

‖V̂⊥V̂ T⊥ B1,i−1(XiX
T
i −Xi−1X

T
i−1)Bi+1,nV⊥‖2F

≤ 4
η2
n

n2

∑

i

6∑

j=1

‖rj,i‖2F , (S.41)

where B1,i are defined in Eq S.32, and the residual vectors rk,i are defined as follows. Recall the
definition of R1,i and Ri,n from Eq S.32. Now define the following vectors which contribute to the
remainder.

r1,i = V̂⊥V̂
T
⊥R1,i−1(Yi − Yi−1)Ri+1,nV⊥

r2,i = V̂⊥V̂
T
⊥R1,i−1(Yi − Yi−1)(I + ηn/nΣ)n−iV⊥

r3,i = V⊥V
T
⊥ (I + ηn/nΣ)n−i(Yi − Yi−1)Ri+1,nV⊥

r4,i = V⊥V
T
⊥ (I + ηn/nΣ)n−i(Yi − Yi−1)(I + ηn/nΣ)n−iV⊥

r5,i = (V̂⊥V̂
T
⊥ − V⊥V T⊥ )(I + ηn/nΣ)n−i(Yi − Yi−1)Ri+1,nV⊥

r6,i = (V̂⊥V̂
T
⊥ − V⊥V T⊥ )(I + ηn/nΣ)n−i(Yi − Yi−1)(I + ηn/nΣ)n−iV⊥

First we will bound ‖r1,i‖2F . Recall the set An where the maximum norm is bounded from S.30.

E1,i :=

∫

An
‖r1,i‖2F dP ≤ 2αn

∫

An
‖R1,i−1‖2‖Ri+1,n‖2dP

≤ 2αn

∫
‖R1,i‖2‖Ri+1,n‖2dP ≤ 2αnE‖R1,i‖2E‖Ri+1,n‖2 (S.42)

Similarly,

E2,i =

∫

An
‖r2,i‖2F dP ≤ 2αn (1 + ηnλ2/n)

2(n−i) E‖R1,i−1‖2 (S.43)

E3,i =

∫

An
‖r3,i‖2F dP ≤ 2αn (1 + ηnλ2/n)

2(i−1) E‖Ri+1,n‖2 (S.44)

Similarly,

E4,i =

∫

An
‖r4,i‖2F dP ≤ 2αn (1 + ηnλ2/n)

2(n−1) (S.45)
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Recall the set Asin from Eq S.27. With probability at least 1− δn,

E5,i =

∫

An∩Asin

‖r5,i‖2F dP ≤ 4αn
εsin
δn

(1 + ηnλ1/n)
2(i−1) E‖Ri+1,n‖2

E6,i =

∫

An∩Asin

‖r6,i‖2F dP ≤ 2αn
εsin
δn

(1 + ηnλ1/n)
2(i−1)

(1 + ηnλ2/n)
2(n−i)

Observe that, using Eq S.32, we have,

E1 :=
∑

i

E1,i ≤
2αne

2M2
d (1 + 2 log d)2η4

n

n
(1 + ηnλ1/n)2(n−1)

E2 :=
∑

i

(E2,i + E3,i) ≤
4αneMd(1 + 2 log d)η3

n

n
min

(
ηn,

1

λ1 − λ2

)
(1 + ηnλ1/n)2n−1

E3 :=
∑

i

E4,i ≤ 2αnn (1 + ηnλ2/n)
2n

With probability at least 1− δn, we have

E4 :=
∑

i

E5,i ≤ 4αn
εsin
δn

eMd(1 + 2 log d)η2
n(1 + ηnλ1)2(n−1)

E5 :=
∑

i

E6,i ≤ 2αn
εsin
δn

n

ηn
min

(
ηn,

1

λ1 − λ2

)
(1 + ηnλ1)2(n−1)

If λ1Md(log d)2 η
2
n

n → 0, then E4 ≤ C1E5 for some positive constant C1. If nd exp(−2ηn(λ1 −
λ2))→ 0, then E3 ≤ C2E5.

Thus, under these conditions,

E1, E2 ≤ C4E5

With probability at least 1− δn, for some positive constant C ′,

∑5
i=1 Ei

(1 + ηnλ1/n)2n
≤ C ′αn

εsin
δn

Finally, using Eq S.41 we get:

∫
Asin∩An E

∗‖V̂⊥V̂ T⊥ T ∗1 V⊥‖2F dP
(1 + ηnλ1/n)2n

≤ C ′′αn
η2
n

n

εsin
δn

(S.46)
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Let A1 denote the set where Eq S.40 holds.

P

({
n

ηn

‖V̂⊥V̂ T⊥ T ∗1 V⊥V T⊥ u0‖2
(1 + ηnλ1/n)2n(vT1 u0)2

≥ ε
}
∩ An

)

≤ P








∥∥∥V̂⊥V̂ T⊥ T ∗1 V⊥
∥∥∥

2

F

(1 + ηnλ1/n)2n
≥ εδ2

log(1/δ)

ηn
n




∩ An ∩ A1


+ 2δ

≤ P








∥∥∥V̂⊥V̂ T⊥ T ∗1 V⊥
∥∥∥

2

F

(1 + ηnλ1/n)2n
≥ εδ2

log(1/δ)

ηn
n




∩ An ∩ A1 ∩ Asin


+ 2δ + δn

≤ E



E∗
∥∥∥V̂⊥V̂ T⊥ T ∗1 V⊥

∥∥∥
2

F

(1 + ηnλ1/n)2n
× log(1/δ)n

εδ2ηn
1(An ∩ A1 ∩ Asin)


+ 2δ + δn

(i)

≤ C ′′αnηn log(1/δ)

δnδ2

εsin
ε

+ 2δ + δn

(ii)

≤ C ′′′αnMdη
2
n log(1/δ)

n(λ1 − λ2)δnδ2

1

ε
+ 2δ + δn

Step (i) follows from Eq S.46. Step (ii) follows from the definition of εsin in Eq S.29. Now setting
εsin = δ, we get the result.

D Proof of Proposition 1

Proof of Proposition 1. Since ‖X1j‖ψ2
≤ νj it follows that

∥∥X2
1j

∥∥
ψ1
≤ ν2

j . Observe that

(X2
1j − EX2

1j)/ν
2
j is sub-Exponential with parameter at most 1 since

∥∥(X2
1j − E[X2

1j ])/ν
2
j

∥∥
ψ1
≤

∥∥X2
1j

∥∥
ψ1
/ν2
j = 1. By multivariate Holder inequality with pj =

∑d
j=1 ν

2
j /ν

2
j and property (e) of

Proposition 2.7.1 of [7], for |λ| < 1/(
∑d
i=1 ν

2
i ):

E


exp


λ

d∑

j=1

(X2
1j − E[X2

1j ])




 ≤

d∏

j=1

E

[
exp

(
λ(X2

1j − E[X2
1j ])
)

∑d
i=1 ν

2
i

ν2
j

] ν2j∑d
i=1

ν2
i

=
d∏

j=1

E

[
exp

(
λ(
∑d
i=1 ν

2
i )(X2

1j − E[X2
1j ])

ν2
j

)] ν2j∑d
i=1

ν2
i

≤
d∏

j=1

exp

(
Kλ2(

∑d
i=1 ν

2
i )2ν2

j∑d
i=1 ν

2
i

)

= exp



Kλ

2

(
d∑

i=1

ν2
i

)2




Therefore,
∥∥∥
∑d
i=1X

2
1i

∥∥∥
ψ1

≤ ∑d
i=1 ν

2
i . Since a subexponential random variable T satisfy the tail

condition:

P (T − E[T ] > t) ≤ exp(−t/Kν)

for another universal constant K > 0, the second claim follows by a union bound and noting that
E[‖X1‖22] ≤∑d

i=1 ν
2
i < C2 since absolute summability implies square summability.
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