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Abstract

We consider the problem of learning the structure of a causal directed acyclic graph (DAG) model
in the presence of latent variables. We define latent factor causal models (LFCMs) as a restriction
on causal DAG models with latent variables, which are composed of clusters of observed variables
that share the same latent parent and connections between these clusters given by edges pointing
from the observed variables to latent variables. LFCMs are motivated by gene regulatory networks,
where regulatory edges, corresponding to transcription factors, connect spatially clustered genes.
We show identifiability results on this model and design a consistent three-stage algorithm that
discovers clusters of observed nodes, a partial ordering over clusters, and finally, the entire structure
over both observed and latent nodes. We evaluate our method in a synthetic setting, demonstrating
its ability to almost perfectly recover the ground truth clustering even at relatively low sample sizes,
as well as the ability to recover a significant number of the edges from observed variables to latent
factors. Finally, we apply our method in a semi-synthetic setting to protein mass spectrometry
data with a known ground truth network, and achieve almost perfect recovery of the ground truth
variable clusters.
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1. Introduction

Structural causal models are valuable tools for reasoning about decision-making, and as a result,
have been widely adopted across fields such as genomics (Friedman et al., 2000), econometrics
(Blalock, 2017), and epidemiology (Robins et al., 2000). To use causal models when the causal
structure is not known a priori, it is necessary to learn the model from observed data, a task known
as causal structure learning (Heinze-Deml et al., 2018). As a field, causal structure learning has
recently experienced major developments and remains an active and widespread area of research.
Recent works aim to address a number of challenges inherent to the problem of learning causal
structure, such as the presence of unobserved confounders (Cai et al., 2019; Frot et al., 2019; Bern-
stein et al., 2020), the large search space over causal models (Chickering, 2002; Solus et al., 2021),
identifiability of the underlying causal model (Shimizu et al., 2006; Peters and Biihlmann, 2014),
and statistical issues stemming from high-dimensional datasets (Nandy et al., 2018). We focus on
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a setting which exhibits all of these challenges, and our proposed method addresses each of these
challenges in a cohesive way. We devote particular attention to the issue of unobserved confounders,

A number of methods have been proposed to address the challenge of learning causal models
in the presence of unobserved confounders. These methods fall into two general categories. First,
some methods account for unobserved confounders by learning a graphical model over only the
observed variables, albeit from a different class of graphical models (Richardson and Spirtes, 2002;
Bernstein et al., 2020). However, in some cases, such as the one explored in this paper, it is possible
to learn a graph over both the observed and latent variables. Existing methods (Silva et al., 2006;
Kummerfeld and Ramsey, 2016; Xie et al., 2020; Agrawal et al., 2021) that seek to recover these
structures often assume that the latent variables are exogenous, i.e., are not caused by any of the
observed variables. However, this assumption is often violated in many applications. For example,
in genomics, gene regulatory networks are often modeled using transcription factories (Stadhouders
et al., 2019) as underlying latent variables with gene expression as the observable variables. These
gene expressions then can have downstream impacts on other transcription factories, requiring a
model that allows non-exogenous latent variables.

Contributions. In Section 2, we introduce the class of latent factor causal models (LFCMs),
which allow for non-exogenous latent variables. Similar to prior work, this class of models prohibits
direct edges between observed variables, i.e., the effect of one observed variable on another must
be mediated by some latent variable. We likewise prohibit direct edges between latent variables,
inducing a bipartite structure over the graph. Furthermore, we require that the latent variables clus-
ter the observed variables, i.e., each observed variable has only a single latent parent, and that each
latent variable has at least three observed children. These constraints on the model are motivated
by how the DNA is organized in the cell nucleus to facilitate cell-type specific gene expression.
The spatial clustering of genes in the cell nucleus facilitates their co-regulation by transcription fac-
tors (Belyaeva et al., 2017; Uhler and Shivashankar, 2017). The expression of each gene represents
the observed variables, the spatial clustering of genes is unobserved, and the latent factors represent
the presence of transcription factors that can e.g. turn on the expression of the co-clustered genes.

In Section 3, we establish identifiability results for LFCMs, based primarily on the tetrad repre-
sentation theorem of Spirtes (2013). Based on our identifiability results, in Section 4 we propose a
constraint-based method for learning the underlying graph over both latent and observed variables.
The proposed method has three stages. In the first stage, our method identifies clusters of observed
variables with the same latent parent, as well as an ordering over these clusters. The second stage
merges clusters from the first stage if necessary. In the third stage, we learn edges from the observed
variables to the latent variables, by testing for conditional independence with all children of each
latent variable. For each stage, the constraints being checked are equivalent to multiple test statis-
tics vanishing simultaneously, requiring the use of multiple hypothesis testing procedures which we
describe in Section4.1. Finally, in Section 5, we demonstrate the performance of our algorithm in
both a completely synthetic and a semi-synthetic setting. In particular, we show that our method is
capable of recovering the ground truth clustering with nearly 100% accuracy even at relatively low
sample sizes. Our method also recovers the ground truth edges between observed nodes and latent
nodes with higher accuracy than a baseline which does not make use of multiple hypothesis testing.
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1.1. Related Work

Learning undirected graphical models with clusters. Since clusters of correlated variables are
common across many disciplines, including biology (Eisen et al., 1998), economics (Bai and Wang,
2016), neuroscience (Arslan et al., 2018; Pircalabelu and Claeskens, 2020), and the behavioral sci-
ences (van der Linden and Hambleton, 2013), several structure learning methods have been devel-
oped which encourage clustering in the estimated graphs, especially in the setting of undirected
graphical models. For example, Tan et al. (2015) introduced the cluster graphical lasso method,
which generalizes the traditional graphical lasso method to allow for the incorporation of known
clustering information, resulting in denser estimated subgraphs over these clusters. Building on this
work, Hosseini and Lee (2016) introduce the GRAB algorithm, which does not require clusters to be
known beforehand, but instead allows the clustering to be learned simultaneously to network struc-
ture. More recently, Pircalabelu and Claeskens (2020) introduced ComGGL, a method which also
learns clusters and graph structure simultaneously, with the additional benefit of high-dimensional
consistency guarantees for both cluster recovery and graph structure in sparse settings.

Latent tree models and factor analysis. Unlike in the undirected settings above, in our setting,
the clusters of observed variables are explicitly assumed to be induced by latent variables. As
has been observed in previous works, especially in latent tree modeling (Choi et al., 2011; Shiers
et al., 2016; Drton et al., 2017; Leung and Drton, 2018) and factor analysis (Drton et al., 2007;
Kummerfeld and Ramsey, 2016), these latent variables produce “signatures” or “invariants” in the
distribution over the observed variables, which can be exploited for structure learning. One invariant
which plays an important role in both settings is the retrad t;; .., a 2 X 2 subdeterminant of the
correlation matrix which must vanish (i.e., equal zero) whenever ¢ and j share a single common
latent parent, but have no children. As we will see in Section 3, despite the differences in our model
assumptions, tetrads also play an important role in our algorithm when identifying causal clusters.

Traditional causal discovery methods. Within the space of discovering causal models on ob-
servational data, there are two categorizations of algorithms. First, there are constraint-based meth-
ods, which rely on conditional independence testing to draw conclusions about the structure. The
well-known PC-algorithm assumes causal sufficiency, which bars unmeasured common cause latent
variables and selection variables (Spirtes et al., 2000). There also exist constraint-based methods
on directed acyclic graphs with latent and selection variables, such as FCI, RFCI and their variants
(Spirtes, 2001; Colombo et al., 2012). These methods all learn Markov equivalence classes of di-
rected acyclic graphs, as represented by completed partially directed acyclic graphs (CPDAGS) in
the PC-algorithm or partial ancestral graphs (PAGs) in the FCI algorithm. The second categorization
of methods is score-based algorithms, such as GES (Chickering, 2002), which identify underlying
structure by optimizing a well-designed score function. These methods, even those that are asymp-
totically correct in the presence of latent confounders, output equivalence classes of DAGs. In our
work, we try to recover more complete causal information.

Learning causal models with latent variables. Existing work for structure recovery in the
presence of latent variables can often by characterized by the model structures that the method per-
forms well or poorly upon. Agrawal et al. (2021) considers the model in which latent variables
are pervasive, influencing many observed nodes. Their method, DeCAM Founder, recovers the true
causal structure over observed variables by applying spectral decomposition in the non-linear ad-
ditive noise and pervasive confounding setting (Agrawal et al., 2021), extending the linear setting
of Frot et al. (2019). A number of methods, similarly to the current work, also rely on algebraic
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Figure 1: (a) G satisfies our model constraints. (b) The latent graph L(G) for G. (¢) G’ falls outside
of the class of models we consider in this paper, with violations shown in red.

constraints in the covariance matrix over observable variables to infer graph structure over latent
variables. The BPC (Silva et al., 2006) and FOFC (Kummerfeld and Ramsey, 2016) algorithms
both leverage rank constraints on the covariance matrix to cluster observed variables, then recover
some structure over the inferred latent nodes corresponding to these clusters. Other algorithms, such
as those proposed by Shimizu et al. (2009), Cai et al. (2019), and Xie et al. (2020), attempt to im-
prove upon previous algorithms by restricting models to the linear non-Gaussian case. In our work,
we do not require non-Gaussianity, instead working in the general linear acyclic model regime. Fur-
thermore, all of the above algorithms rely on the measurement assumption, which requires that no
observed variable is the parent of any latent variable. This assumption, however, is not satisfied in
many real-world applications of graphical models with latent variables, and in our work, we attempt
to recover causal structures without the measurement assumption.

2. Problem Setup

We now formally define the class of models considered in this paper. A structural causal model
(SCM) over the variables {X;}}_, consists of a set of structural assignments of the form X; =
fi(Xpa(i); €i), and a product distribution P. over mean-zero exogenous noise terms {e:}!_,. The
set pa(X;) are called the parents of X;, and the causal graph for the SCM is a graph with nodes
{X;}¥_, and directed edges X,; — X; for X; € pa(X;). We assume that the causal graph for the
SCM is acyclic, in which case the distribution P induces a unique distribution Px over {X;}?_;.

In this paper, we focus on a class of SCMs with restrictions on both the structural assignments
and on the causal graph. First, we assume each f; is a linear function, a common starting point for
new methods, which has been the setting of many works (Chickering, 2002; Hauser and Biihlmann,
2012; Solus et al., 2021). Second, we assume that the causal graph is of the following form.

Definition 1 Let G be a DAG over latent nodes Ly, . .., L and observed nodes X = {X7,..., Xp}.
The clusters of G are the sets Cy, = ch(Ly) for k = 1,..., K. The latent graph for G, denoted L(G),
is the graph over { Ly }&_, with an edge k — k' if and only if Xj, — Ly for some Xy, € ch(Ly). G
is called a latent factor causal model (LFCM) if it satisfies the following conditions:

(a) [Unique cluster assumption] Each observed node has exactly one latent parent.
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(b) [Bipartite assumption] There are no edges between pairs of observed nodes or between pairs
of latent nodes.

(c) [Triple-child assumption] Each latent node has at least 3 observed children.

(c) [Double-parent assumption] If k — k" in L(G), then there exist two nodes X;, X; € ch(Ly,)
such that X; — Ly and X]’ — L.

See Fig. 1a for an example of a graph that satisfies our model definition, and Fig. 1c for a graph
that does not. The importance of each assumption for the purpose of identifying G will become clear
in the proofs of the genericity and identifiability results presented in the next section. For example,
we will see that the edge X3 — X, in Fig. Ic prevents the submatrix X1 9 3 4) of the covariance
matrix ¥ from being low rank, and thus prevents { X1, Xo} and { X3, X4} from being clustered.

3. Trek separation and genericity assumptions

In this section, we review fundamental results essential to the identifiability of LFCMs, which we
constructively prove in Section4 by introducing an algorithm for consistently estimating LFCMs.
We will also introduce genericity assumptions necessary for the consistency of our algorithm.

We denote the covariance matrix of our model as 3, and given two subsets of nodes A, B, we
use X 4 p to denote the submatrix of ¥ with rows in A and columns in B. Our identifiability results
rely on a common generalization of d-separation, known as trek separation, which relates the causal
graph of a SCM to the rank of submatrices of X. A directed path from node i to node j is a sequence
of nodes p; = ¢, ...,px = j, such that p; — p; 1 for all i from 1 to k — 1. In this case, j is called
the sink of the path and ¢ is called the source. A trek in the graph G from ¢ to j is an ordered pair of
directed paths ( Py, P»), such that the sink of P is ¢ and the sink of P, is j, and Py, P share a source
k. Now, we define trek separation. Given four subsets A, B, C'4, Cg of nodes (note these subsets
need not be disjoint), the pair (C'4, Cp) t-separates A and B if, for every trek (Py, P;) between A
and B, P; contains a node in C'4 or P contains a node from C'p. Finally, the following theorem
relates the notion of 7-separation to the rank of submatrices of the covariance matrix.

Theorem 1 (Trek separation, Sullivant et al. (2010)) Let A, B be two subset of nodes in G. Then
rank(¥ 4 p) < min{|Ca| + |Cg| : (Ca,Cp) t-separates A from B in G}
Moreover, equality holds generically' for ¥ consistent with G.

In this paper, we only need to use information about the rank of 2 x 2 submatrices of >. The
determinants of these matrices are commonly known as fetrads. In particular, we denote t;; ,, =
det(E[inuU]) = Yiudju — Miv2ju- Specializing Theorem 1, we obtain the following corollary:

Corollary 1 (Tetrad representation, Spirtes (2013)) Suppose A = {X;, X;} and B = { X, X, }
are t-separated by a single node. Then t;; ., = 0.

We can now see the importance of the first three assumptions in Definition 1. These struc-
tural assumptions control the size of t-separating sets between nodes in the same cluster and in
different clusters, so that we can apply Theorem 2 and Corollary 1 to ensure that certain tetrads are

1. We say a statement holds generically if the set of parameters for which it does not hold has Lebesgue measure zero.
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either zero or generically non-zero. In particular, the unique cluster assumption and the bipartite
assumption guarantees that two nodes X; and X; in the same cluster will be t-separated from their
non-descendants by their latent parent. Thus, clusters of nodes with no descendants can be identi-
fied. Conversely, the triple-child assumption ensures that two nodes X; and X that are not in the
same cluster do not get clustered, since we can find a 2x2 submatrix with 7 indexing one of the rows
and j indexing one of the columns that is generically of rank 2. In Appendix A, we formally state
and prove that the following faithfulness assumptions are indeed generic under the first 3 structural
assumptions from Definition 1:

Assumption 1 (Cluster tetrad faithfulness) Suppose X; and X; are not in the same cluster. Then
there exists some {u, v} such that t;j .., # 0.

Assumption 2 (Parent tetrad faithfulness) Suppose X; and X; are in the same cluster, but X;
has at least one child. Then there exists some {u, v} such that tijuw 7 0.

Assumption 3 (Latent adjacency faithfulness) Suppose X; — L. Let S; = ch(pa(X;)) \ {i}
and S' = Uj<; ch(L;). Then p; 5,5 # 0 for some Xy, € ch(Ly)

Remark 1 Since causal structure learning algorithms are always run in a noisy setting, near vio-
lations of genericity assumptions can degrade the performance of a method, as discussed by Uhler
et al. (2013). In particular, the set of parameters which violate a “strong” faithfulness condition is
generally a positive measure set, extending from the measure zero set where faithfulness is violated.
Fortunately for the current setting, our assumptions require the existence of only a single entry of the
underlying statistic being far from zero. Thus, the set of parameters violating the “strong” version
of our faithfulness assumption is an intersection of the sets of parameters for which each t;; ., is
near zero, resulting in a smaller set. In the present work, we will not attempt to quantify the size of
this set and the resulting statistical benefits, but note these as interesting directions for future work.

4. Methods

Our algorithm, presented in Algorithm 1, consists of
three stages. As is common in causal structure learn-
ing, we present our algorithm with implementation de-
tails of hypothesis testing abstracted away. In particu-
lar, we will assume access to two subroutines, whose
implementation details will be given in Section4.1.
The first subroutine tests H;(X;, X4 | Xp), which
denotes the null hypothesis that X; and X 4 are conditionally independent given X 5. The second
subroutine tests H,;(X 4, X ), which denotes the null hypothesis that all tetrads of X 4 p vanish.
In the first stage (Algorithm 2, see also Fig. 2), we identify clusters of observed variables with
the same latent parent. However, note that since this stage only identifies leaves with the same
latent parent, it is not guaranteed to identify all nodes with the same latent parent. This stage
simultaneously recovers an ordering over these clusters. Thus, in the second stage (Algorithm 3,
see also Fig. 3a), we iterate over pairs of clusters output from the first stage, identify pairs of clusters

Algorithm 1 EstimateLFCM

Input: Data X € R™"*P,

Let r=FindOrderedClusters(X)
Let 7 =MergeClusters(X, )

Let G = LearnDAG(X, )

Output: §
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Figure 2: Phase 1: Let the true LFCM be the graph in Fig.3(c). In our algorithm’s first phase
(see Algorithm 2) we perform the following steps: (a) Compute tetrad scores between all pairs of
nodes. (b) For each pair of nodes, test the null hypothesis that all tetrads are zero. Construct a graph
with the edge 7 — j for any pair of nodes where we do not reject the null hypothesis. (¢) Extract a
clique from this graph to be a cluster (e.g., by picking the largest clique with arbitrary tie breaking),
remove these nodes and repeat with remaining nodes.

with the same latent parent, and merge them, while leaving the ordering of the clusters intact. In
the third stage (Algorithm4, see also Fig.3bc), we use the clustering and ordering information
discovered in the previous two stages to learn a DAG over both latent and observed variables. In
particular, given a node X; in cluster C'; which comes before the cluster C; in our ordering, we wish
to determine whether X; has an edge to the associated latent variable L;. By Assumption 2, this
can be accomplished by checking partial correlations between X ; and the nodes in C;. These stages
compose a consistent algorithm, as established in the following theorem and proven in Appendix B.
In Section 3, we have already discussed the importance of the first three structural assumptions from
Definition 1. In Appendix ??, we show how our algorithm fails under a violation of the double-
parent assumption.

Theorem 2 Let G be a linear LFCM and let X € R™*P be a matrix of samples of the observed
variables X1, ..., X,. Then Algorithm I is consistent under Assumptions 1, 2, and 3, i.e., as n —
oo, we have P(G = G) — 1.

Next, we outline the complexity of our algorithm, using placeholders for the complexities of
hypothesis tests in order to keep our results general. Let f(d, n) denote the cost of performing the
hypothesis test H,; on d statistics from n samples, when all sufficient statistics are pre-computed.
Let g(p) denote the complexity of an algorithm used to find a clique in a graph on p nodes. While
finding the largest clique in a graph is in general NP-hard, we can avoid this complexity, since the
consistency of our algorithm does not rely on picking the largest clique at each step, only a clique
of 3 or more nodes (picking larger cliques is simply a tool for improving statistical accuracy).

In the following, let M be the maximum size of any returned cluster, and let X be the number of
clusters discovered by the algorithm. By definition, M < pand K < p, so replacing these quantities
by p gives complexities that are only in terms of the known problem parameters. However, such
upper bounds can be highly pessimistic. If the true graph has few nodes per cluster, or a small
number of latent nodes, then with enough samples, M and K will also be small, respectively.
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Algorithm 2 FindOrderedClusters Algorithm 3 MergeClusters
Input: Data X. Input: Data X, ordered clustering m
Initialize R = [p] Repeat the following until convergence:
Initialize 7 as an empty list for Clusters c1 and co such that ¢ < co do
while |R| > 3 do if Hyt(c1 U cg,c1 Ucg) then

Initialize G as an empty graph | Add nodes in ¢ to ¢1 and delete co

for each pair of nodes i, j in R do end

if Hye({4,7}, [p]\{é,j}), thenaddi— end
q jwog QOutput: An ordered clustering 7
en
Let C be the largest clique in G, breaking Algorithm 4 LearnDAG
ties arbitrarily Input: Data X, ordered clustering m

R=R\C Initialize G as an empty graph

Remove C from the columns of X Add L; to for each Ciinm

Append C to 7 Add L; — X to G for each C; in 7, X; € C;
end for X; < L; do
if |R| > 0 then Let §'= Uz, <z, ch(Ly)

‘ Append Rto 7 Adde — L; togifHC,»(Xj,ch(Li) ‘ S)

end end
Output: An ordered clustering 7 Output: DAG G

Theorem 3 The complexity of each algorithm is:
(a) Algorithm 2 takes O(p* + p3 f(p?,n) + pg(p)).
(b) Algorithm 3 takes O(p>M*).
(c) Algorithm4 takes O(pK M).

Proof (a) Computing all tetrads and their associated p-values is O(p*). In each round, we per-
form O(p?) hypothesis tests, each on O(p?) statistics, so that the complexity at each round is
O(p%f(p%,n)). After performing these tests, we identify the largest clique in a graph of O(p)
nodes, so that the total run time per round is O(p? f (p?,n) + g(p)). At most p rounds are required,
resulting in the stated complexity.

(b) We must check O(p?) pairs of clusters for whether or not they should be merged, and
the maximum size of the union of any such pair is O(M). To check whether O(M ) nodes be-
long to the same cluster, we require a hypothesis test on O(M?) statistics, so that this step takes
O F (M, ).

(c) We perform O(pK) hypothesis tests, each based on O(M ) partial correlations. [ |

Assume that we use the Sidak adjustment procedure explained in the next section (so that
f(d,n) = O(d)), and a greedy algorithm for picking cliques (so that g(p) = p>). Then, replacing K
and M by p, we have that Algorithm 2 takes O(p®), Algorithm 3 takes O(p®), and Algorithm 4 takes
O(p?), so that the overall complexity of our algorithm is at most O(p%). Even in this pessimistic
analysis, this complexity is relatively low for causal structure learning, which is known to be NP-
hard in general (Chickering et al., 2004), and for which variants of the best-known algorithms, such



LEARNING LATENT FACTOR CAUSAL MODELS

as PC (Spirtes et al., 2000) and GES (Chickering, 2002), typically have complexity O(p®*?2), where
d is the maximum in-degree of the graph (Chickering, 2020).

4.1. Implementation Details

The null hypothesis H,; and H.; used in Algorithms 2, 3, and 4 imply that some vector-valued
statistic of the covariance matrix is equal to zero. Procedures for simultaneous hypothesis testing
are designed to (asymptotically) control the false discovery rate (FDR) of such a form of hypothesis
test. In practice, we found that computing marginal p-values and performing Sidak adjustment
Drton and Perlman (2007) yields good performance. In particular, given p-values {wm}%zl, the
Sidak-adjusted p-values are

7r31dak -1

)M

(1 —7m
Remark 2 The Sidak adjustment uses only the marginal distributions of each tetrad, neglecting
potentially important information about the correlations between tetrads. In contrast, the max-T
adjustment accounts for correlations between the tested statistics by estimating their correlation
matrix, and has been shown to outperform the Sidak adjustment both theoretically and in practice
(Drton and Perlman, 2007; Chernozhukov et al., 2013). However, the max-T adjustment requires
sampling from a potentially high-dimensional multivariate normal distribution, an operation which
is O(d®) for dimension d. We have found that in practice, max-T adjustment performs similarly
to Sidak adjustment while taking substantially longer. Therefore, we use Sidak adjustment for our
experimental results, but provide capability for max-T adjustment in our codebase.

Given a set adjusted p-values and a significance level o, we reject the null hypothesis if any of
the adjusted p-values are smaller than c. To test conditional independence, recall that H.;(X;, X4 |
Xp) holds in a multivariate normal if and only if the vector of partial correlations {pm Blica is
zero. To compute p-values, we use a widely used procedure which we call the Fisher correlation
test. First, given the sample partial correlations { Pij| B tiea, we apply the Fisher z-transformation
Zijip = /n — |B| — 3arctanh(p;; g). Then, we compute the two-tailed p-value of Z;;p with
respect to N'(0, 1), i.e., w51 = 2Q(|2;p]), where @ is the tail distribution function of /(0, 1).

Next, to test H,.(X 4, Xp), we adopt the widely-used Wishart test to compute the p-values
(Wishart, 1928; Kummerfeld and Ramsey, 2016), which we now briefly describe. First, we compute
the sample tetrads fij7uv = ﬁwijv — f}wiju for {i,j} C Aand {u,v} C B such thati, j,u and v
are distinct. Then, we normalize each sample tetrad, dividing by an estimate of its standard deviation
to obtain the z-score Z;; .. Drton et al. (2008) give the following formula for the variance of sample
tetrads in terms of the true covariance matrix X:

Var (tAi]}UU) =n- (n - 1)73 : ((n + 2)|Z[’L]],[z]}| : |E[uv],[uv]‘ - n|2[ijuv],[iju’u]‘ + 3”’Z[zﬂ,[uv]|) ,

where |A| = det(A). To estimate the variance, we use the above formula with the sample covariance
¥ replacing X. Finally, we compute the two-tailed p-value of Z;; ,,,, with respect to (0, 1).

5. Empirical Results

We evaluate our algorithm in two settings. First, we evaluate in a purely synthetic setting, which
allows us to generate SCMs which exactly match our proposed model. Then, we evaluate in a semi-
synthetic setting, modifying real data to more closely match our proposed model while demonstrat-
ing that our approach has promise in real-world biological settings.
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Figure 3: Phases 2 and 3. (a) Merge pairs of clusters based on vanishing tetrad tests. (b) Introduce
latent nodes, and add edges from latent nodes to children. (¢) Add parents of latent nodes based on
conditional independence testing.

5.1. Synthetic data experiments

We begin by briefly describing the simulation settings used for our experiments, before describing
the baselines and metrics which we use for evaluation. We generate a graph with 10 latent nodes, we
first sample a “latent” skeleton L(G) over {1,2,...,10} from a directed Erdos-Rényi model with
edge probability 0.5. Then, for each latent node Ly, we generate ¢, ~ Unif(3,6) children. Finally,
for each edge L, — Ly in L(G), we sample dj, 5y ~ Unif(2, | ch(Ly)|), then sample d, ;s children
of L. For each selected child ¢, we add the edge ¢, — L, giving us a DAG G over both latent
and observed nodes which has latent skeleton L(G) and satisfies Definition 1.

Given this DAG, we generate a linear SCM as follows, proceeding in topological order. For
each node X, if the node has no parents, its equation is X; = ¢; for €; ~ N(0, 1). If the node has
parents, then for each parent X;, we sample an “initial” weight @;; ~ Unif([—1, —.25] U [.25, 1]).
Next, we describe how to normalize these weights in order to avoid the varsortability issue described
by Reisach et al. (2021), where simulated DAGs are easy to learn because the variance of each node
tends to increase according to the topological order. Given these initial weights, we simulate B

“parental contributions” Mg.b) =Y epag(4) Wi X ®) for x® sampled from the linear SEM defined

over ¢ < j. The sample variance ¢; of M; ) serves as an estimate for the variance that the parents
of j will contribute to X ;. Finally, we ensure that X; has variance 1 and that half of its variance is
contributed by its parents by setting the final weights as w;; = (26j)_1/ 2i;; and €; ~ N(0,1/2).
Accuracy of learning clusters. In our first set of experiments, we evaluate the accuracy of the
learned clusters. To measure the accuracy over the learned clustering compared to the underlying
clustering, we use the following criteria: the pair (X;, X;) is a true positive if X; and X are in the
same underlying cluster and are in the same learned cluster, the pair is a false positive if X; and X
are not in the same underlying cluster but are in the same learned cluster, and so on. We generate 50
different SEMs via the process described above, and from each SEM we generate n = 200 samples.
We run our algorithm using significance levels ranging from .05 and .5. The results are shown in
Fig. 4a. Due to interactions between the hypothesis tests used by our algorithm (denoted “LFCM”,
shown in blue), the ROC curve is highly non-monotonic over larger ranges of values, so that the
curve occupies only a small range of the plot, though it clearly drastically outperforms the compet-
ing methods, achieving almost perfect performance. In particular, we consider two baselines. First,
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Figure 4. Performance on synthetic data. The first two phases of our algorithm almost perfectly
recover the ground truth clusters, while the third phase of our algorithm demonstrates the utility of
multiple hypothesis testing for recovering edges between observed nodes and latent nodes.

we compare to spectral clustering (denoted “SC”, shown in green), as implemented in sklearn
in Python, a widely used clustering technique in genomics (Higham et al., 2007), with a varying
number of estimated clusters from 2 to 30. Second, we compare to the FindOneFactorCluster algo-
rithm of Kummerfeld and Ramsey (2016) (denoted “FOFC”, shown in red). We found that spectral
clustering performs slightly better than random guessing, while FOFC performs about the same as
random guessing, reflecting the drastic deviation from the measurement assumption on which it re-
lies. Finally, we verified that randomly picking K clusters of equal size (denoted “Random”, shown
in orange), for K varying from 2 to 30, matched the diagonal random guessing line.

Accuracy of learning edges from observed nodes to latent nodes. In our second set of ex-
periments, we evaluate the accuracy of learning the edges from observed nodes to latent nodes,
when the true clusters and their ordering is known. In particular, for L; < L; in the ordering,
and X; € ch(L;), the pair (X;, L;) is considered a true positive if X; — L; in the true LFCM
as well as in the estimated LFCM, a false positive if it is not in the true LFCM but does appear in
the estimated LFCM, and so on. In Fig. 4b, we compare the third phase of our algorithm (denoted
“LFCM”, shown in blue) to a baseline which simply uses a single child of each latent node for
the conditional independence test (denoted “Baseline”, shown in green), as well as an oracle which
is able to observe the values of the latent nodes and is thus infeasible (denoted “Oracle”, shown
in orange). As expected, our algorithm does not perform as well as this unrealizable case, but still
performs significantly better than random (the diagonal line) and noticeably better than the baseline.

5.2. Semi-synthetic experiments on protein signaling data

In this section, we demonstrate the applicability of our method to a real-world dataset in a semi-
synthetic setting. The Sachs protein mass spectroscopy dataset (Sachs et al., 2005) is a widely used
benchmark for causal discovery, in part due to the existence of a commonly accepted ground truth
network over the 11 measured protein expression values, shown in Fig. 5a. We use the 1,755 “ob-
servational” samples, where the experimental conditions involve only perturbing receptor enzymes,

11



SQUIRES* YUN* NICHANI AGRAWAL UHLER

00® g@ (=)

A

(a) Ground truth protein (b) Ground truth processed

. . o . (c) Learned latent factor causal model
signaling network protein signaling network

Figure 5: Learning a latent factor causal model for protein signaling. Our recovered model in
(c) nearly captures the ground truth network in (b).

and not any signaling molecules, as described in Wang et al. (2017). To make the ground truth
network more similar to a latent factor causal model, we perform three data-processing steps: (1)
we “condition” on PKA, by regressing it out of the dataset, (2) we “remove” the direct effect of Raf
on Mek, and (3) we “marginalize” out PIP3 and PKC by removing the corresponding columns from
the dataset. We “remove” the direct effect of Raf on Mek as follows. First, we regress Mek on its
two remaining parents, Raf and PKC. Call the resulting regression coefficient for Raf 3r,;. For
each sample, we subtract the value of Raf times the S,y from the value of Mek. Note that we do
not remove the direct effect of PLCy on PIP2, since then our algorithm collapses all nodes into a
single cluster. The processed graph is show in Fig. 5b.

Running our method with significance level a = 0.01 for H,; and o = 0.1 for H.;, we obtain
the network shown in Fig. 5Sc. The clustering by our algorithm closely matches the clustering (Akt,
PLC~, PIP2), (p38, JNK, Raf, Mek, Erk) induced by the true network, with the exception that Akt
from the first cluster and Erk from the second cluster are pulled out into a cluster with one another,
which may indicate that the effect of PKA on Akt and Erk cannot be completely removed using a
purely linear approach. The ordering between the clusters (PLC~y, PIP2) and (p38, JNK, Raf, Mek)
is preserved, but the edge P/ P2 — L3 is missing.

6. Discussion

In this paper, we introduce a method (Algorithm 1) for learning latent factor causal models (LFCMs),
a novel, biologically-motivated class of causal models with latent variables. We showed that these
models are identifiable in the linear setting using rank constraints on submatrices of the covariance
matrix, and that our method provides a consistent estimator for these models. We also showed that
our method outperforms existing clustering algorithms on synthetic data, and almost perfectly re-
covers a widely-accepted ground truth network in a semi-synthetic biological setting. These results
serve as a proof-of-concept, suggesting that our algorithm may be able to shed biological insight
on the problem of identifying the spatial clustering of genes in the cell nucleus given data on the
expression of the genes. Interestingly, since it is possible (although expensive) to measure the 3D
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organization of the genome in the cell nucleus (Lieberman-Aiden et al., 2009), there is a meaning-
ful avenue to validate our method on the important biological application of connecting 3D genome
organization with gene expression (Uhler and Shivashankar, 2017). We conclude with a discussion
of the limitations of our model, which suggests a number of other directions for future work.

Limitations. The latent factor causal model (LFCM) class considered in this paper has two
obvious limitations. First, we make the strong parametric assumption of a linear Gaussian SEM.
While many nonparametric conditional independence tests have been proposed (Gretton et al., 2007;
Zhang et al., 2011), we are not aware of nonparametric tests for shared latent factors that would gen-
eralize H,;. Thus, extending our algorithm to a nonparametric setting would require development
of such tests. In particular, generalizing tetrad constraints to the nonlinear setting is an interesting
direction for future research. Second, we make two strong structural assumptions. The “unique
cluster” assumption is well-motivated by our biological setting of interest, and is likely the easiest
assumption to remove since Theorem 1 already provides a generalization of the rank constraint we
leverage. Indeed, generalized rank constraints have already been explored in prior work on factor
analysis (Drton et al., 2007; Kummerfeld et al., 2014). The “bipartite assumption” has two com-
ponents which may be separately examined. First, the assumption that there are no edges between
observed variables is most reasonable for systems such as gene regulatory networks where a differ-
ent, unobserved entity class (in this case, proteins) mediates all interactions between the observed
variables (i.e., genes). This assumption may also be expendable, for instance by allowing for a small
number of edges between observed variables, akin to the low-rank plus sparse literature in previous
work on learning with exogenous latent variables (Frot et al., 2019; Agrawal et al., 2021). Simi-
larly, existing techniques (Cai et al., 2019; Xie et al., 2020) may help to eliminate the assumption
that there are no edges between latent variables. In addition to relaxing these assumptions, it would
be of interest to develop procedures for testing these assumptions in data, e.g., by extending recent
work (Agarwal et al., 2020) which develops a spectral-energy-based hypothesis test for structural
assumptions in latent variable models.
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Appendix A. Faithfulness assumptions are generic

We first recall the assumptions from Section 3.

Assumption 1 (Cluster tetrad faithfulness) Suppose X; and X; are not in the same cluster. Then
there exists some {u, v} such that t;j .., # 0.

Assumption 2 (Parent tetrad faithfulness) Suppose X; and X; are in the same cluster, but X;
has at least one child. Then there exists some {u, v} such that t;; ., # 0.

Assumption 3 (Latent adjacency faithfulness) Suppose X; — Ljy. Let S; = ch(pa(X;)) \ {i}
and ' = Uj<; ch(L;). Then p; s, s # 0 for some Xy, € ch(Ly,)

Proposition 1 Assumption 1 holds generically.

Proof Let L; = pa(X;) and L; = pa(Xj). By the triple child assumption, there exists some X,
in the same cluster as X;, and some X, in the same cluster as X;. Then any set which t-separates
{i,7} and {u, v} must contain L; and L;, since ¢ must be separated from u and j must be separated
from v, respectively. Therefore, by Theorem 1, rank(X(;;) (u0)) = 2 generically, i.e., tijuy # 0
generically. |

Proposition 2 Assumption 2 holds generically.

Proof Let L; = pa(X;) = pa(Xj). L; must have some other child X,, by the triple child assump-
tion. Let L,, be some child of X;, and X, be some child of L,.. Then any set which t-separates {i, j }
and {u, v} must contain L; and L,,, since ¢ must be separated from j and 7 must be separated from v,
respectively. Therefore, by Theorem 1, rank(E[ij]y[w]) = 2 generically, i.e., t;j.4, # 0 generically,
which completes the proof. |

Proposition 3 Assumption 3 holds generically.

Proof If X; — Ly, then X; and X}, are d-connected given S;, S for any X, € ch(Ly). Spirtes et al.
(2000) establish that if two nodes are d-connected, then their partial correlation in a linear SEM is
generically nonzero, proving the desired result. |

Appendix B. Proof of Theorem 2

Theorem 2 Let G be a linear LEFCM and let X € R"™*P be a matrix of samples of the observed
variables X1, ..., X,. Then Algorithm I is consistent under Assumptions 1, 2, and 3, i.e., as n —
oo, we have P(G = G) — 1.

Proof By Assumption 1 and Assumption 2, as long as at least two nodes are present from each
cluster, if ¢;;,, = 0 for all pairs u,v € {7,j} iff. X; and X; have the same latent parent, and
neither node has any children. Thus, if ¢ — j in G in Algorithm 2, then ¢ and j are in the same
cluster. Next, if ¢ and j are both left in R after the while loop, then they must be in the same cluster.
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For sake of contradiction, suppose not, and let L; = pa(X;), L; = pa(Xj). Since X; remains,
then by the double-parent assumption, there must also remain some other node X/ that is a child
of L;. Similarly, there must remain some other node X/ that is a child of L;. However, then
|R| = 4, a contradiction. Therefore, the clustering output by Algorithm 2 is a refinement of the true
clustering. Furthermore, if a node ¢ is upstream of the cluster C'1, then ¢ necessarily has a child,
and thus ;5 ., # 0 for some j, u,v. Therefore, 7 cannot be placed in any clique before the cluster
() is completely removed, and thus the ordering of cluster returned by Algorithm 2 is topologically
consistent. By the double parent assumption, each cluster in 7 from Algorithm 2 has size at least
2. Assumption 1 ensures that two clusters are merged by Algorithm 3 iff. they have the same latent
parent. Finally, Assumption 2 ensures that X; — Lj in G if and only if X; — L in G. |
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