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Abstract
Consider the problem of determining the effect of a compound on a specific cell type. To answer
this question, researchers traditionally need to run an experiment applying the drug of interest to
that cell type. This approach is not scalable: given a large number of different actions (compounds)
and a large number of different contexts (cell types), it is infeasible to run an experiment for every
action-context pair. In such cases, one would ideally like to predict the outcome for every pair
while only needing outcome data for a small subset of pairs. This task, which we label causal
imputation, is a generalization of the causal transportability problem. To address this challenge,
we extend the recently introduced synthetic interventions (SI) estimator to handle more general
data sparsity patterns. We prove that, under a latent factor model, our estimator provides valid
estimates for the causal imputation task. We motivate this model by establishing a connection to
the linear structural causal model literature. Finally, we consider the prominent CMAP dataset in
predicting the effects of compounds on gene expression across cell types. We find that our estimator
outperforms standard baselines, thus confirming its utility in biological applications.
Keywords: Latent factor model, imputation, causal inference

1. Introduction

A central goal in science is to determine the outcome of an action (i.e., intervention). Traditionally,
researchers rely on experimentation to answer such questions. However, this approach is rarely scal-
able and/or can be unethical in many critical applications, e.g., clinical trials and policy evaluation.
As a result, there is a growing interest in utilizing already-existing data to help predict the effect of
every candidate action, prior to deciding which action to execute. The key challenge underpinning
this approach is that the available data regarding the effect of an action almost always comes from a
different context than the one in which we are interested in making a prediction. To further motivate
our problem setting, we provide an example from healthcare below.

A Motivating Example. Consider a prevalent medical scenario in which physicians aim to re-
purpose existing drugs to treat novel diseases such as COVID-19. Although there are over 20,000
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small molecule compounds (actions) with known therapeutic capabilities, exposing COVID-19 in-
fected cells (new contexts) to each compound would be far too time-consuming and costly. Fortu-
nately, the publicly available CMAP dataset (Subramanian et al., 2017) has already catalogued the
effects of these compounds on a variety of other cell types (different contexts). In such a setting,
the primary intellectual challenge is to develop a methodology which uses the CMAP dataset to
predict the outcome of applying each compound on COVID-19 infected cells. Such a method leads
to efficient hypothesis generation for finding compounds with therapeutic potential for this disease.

Key Question. The focus of this work is to tackle problems such as the one described above.
More generally, we aim to answer the following question:

“Given a dataset of outcomes from various action-context pairs, can we predict the outcome of a
given action on a context in which it has not been applied?”

Our Contributions. The main contributions of this work are three-fold: algorithmic, theoreti-
cal, and empirical. We summarize them below.

(i) Algorithmic. We extend the recently proposed synthetic interventions (SI) estimator (Agar-
wal et al., 2020) to handle more general sparsity patterns. At its core, the SI estimator produces a
counterfactual prediction for any “target” (novel) context-action pair by first constructing a “syn-
thetic” version of the target context as a weighted combination of “donor” (different) contexts via
(regularized) regression. Then, it uses the learnt model to re-scale the outcomes of those donor
contexts under the target action to estimate the outcomes of the target context-action pair. Taking
inspiration from biological applications, we adapt the SI estimator to instead construct a synthetic
version of the target action as a weighted combination of donor actions. Given the more general
observation patterns, we also equip the SI estimator to use all available data when learning the re-
gression model. As a result, the SI estimator of Agarwal et al. (2020) becomes a special case of
our formulation. Moving forward, we refer to our estimator as SI-A. For details, please refer to
Section 4.

(ii) Theoretical. We justify our algorithmic approach by presenting an “identification” result in
Theorem 1. More formally, we establish that our estimator yields the correct causal estimates for the
causal imputation task, under a factor model across contexts and actions. Further, we re-interpret
the SI causal framework by connecting it to linear structural causal models (see Proposition 1).

(iii) Empirical. Using the prominent CMAP dataset, we extensively benchmark our approach
against well-established baselines. The CMAP dataset contains gene expression signatures for over
20,000 different small molecule compounds (actions) across 70 different cell types (contexts). Using
a small fraction of the observed signatures as a training set, we consider the task of imputing the
signatures associated with a held-out test set that emulates an un-experimented collection of novel
cell type-compound pairs. Empirically, we find that our estimator outperforms the baselines. In
particular, the median normalized root mean-square error (NRMSE) of SI-A is 0.34, compared
to 0.41 for the closest baseline. Similarly, SI-A improves the alignment of the predicted effect
of the action with the true effect of the action, measured in terms of cosine similarity, improving
from 0.44 in the best baseline to 0.68. Moreover, our experiments show that our variant of the SI
estimator (which regresses along compounds) significantly outperforms the original SI estimator
(which regresses along cell types), a result that may be of independent biological interest.

Organization of the paper. In Section 2, we review related work on causal imputation. Then, in
Section 3, we formally state our problem setting. In Section 4, we describe our estimation strategy,
which extends the original SI estimator. We state our formal results in Section 5, establishing an
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Fast Heterogeneous Effects Guarantees Needs selection diagram

Fixed Effects (FE) X 7 X 7
Autoencoding + FE X X 7 7
Causal Transportability X X X X
MICE/MissForest 7 X 7 7
Synthetic Interventions X X X 7

Table 1: Summary of Causal Imputation Methods

identification result under a factor model assumption, as well as providing an interpretation of this
assumption in terms of a linear structural causal model. Finally, Section 6 showcases our empirical
findings on the CMAP dataset.

2. Related Work

Predicting the (vector-valued) outcome of an action in a novel context, a task we call causal im-
putation, is a ubiquitous problem, and there are numerous lines of study tackling this challenge.
We highlight some of the most relevant below. In practice, we require a method that (i) is fast, (ii)
can model heterogenous effects across different cell types, (iii) comes with theoretical guarantees,
and (iv) does not need a detailed model of the causal system as input. Existing methods, which we
describe below, all lack one of these 4 desiderata, as summarized in Table 1.

Fixed effects. The simplest model for the effect of actions across different contexts is the
fixed effects model, which associates each action with a vector representing the additive effect of
that action, assumed to be invariant across contexts. We note that the fixed effects estimator is a
special case of the regularized linear model proposed in Dixit et al. (2016). Their method makes
predictions of the form x̂ca = βa + wcβc, where x̂ca denotes the outcome vector associated with
cell type c under action a and wc is a set of covariates for the cell type c. When no covariates
are available except a one-hot encoding of the cell type, their estimator reduces to the fixed-effects
model x̂ca = βa + βc. Under a fixed effects model, the effect of an action in any new context can
be predicted based solely on the effect of that action in a single other context, greatly reducing the
number of required experiments. However, the fixed effects model is not realistic in our application
of interest, as it does not allow for heterogeneity, even though the effect of a drug on the expression
of a given gene can vary drastically between cell types (Kidd et al., 2016), e.g., increasing the
expression of a gene in one cell type while decreasing it in a different cell type.

To overcome this limitation of the fixed effects model, Lotfollahi et al. (2019) introduced the
scGen method. This method first trains a variational autoencoder (VAE) in order to find a low-
dimensional representation (latent embedding) of gene expression data, then uses a fixed effects
model in the latent space of the VAE. Similarly, one could instead apply our method, SI-A, in the
latent space. The theoretical study of combining autoencoders, or other nonlinear embeddings, with
“direct” causal imputation methods such as the one considered here, is an interesting direction for
future work. To the best of our knowledge, no theoretical guarantees yet exist for such combinations,
but promisingly, recent work using autoencoders to predict perturbation effects on SARS-CoV2
infected cells empirically demonstrated that autoencoders align representations in a way that induces
linearity amongst the perturbations and cell types in the learned space (Belyaeva et al., 2020).
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Causal transport. The goal in causal transport is to find a transport formula (Bareinboim and
Pearl, 2014, 2016), i.e., a map from the outcomes of actions in a set of “source” contexts to the
outcome in a “target” context under some action. Whereas causal transport focuses on prediction
from data generated in different contexts than the target context, causal imputation generalizes this
problem to also use data about different actions, including from the target context itself. Previous
methods algorithmically derive transport formulas from a selection diagram, i.e., a causal model of
the system that introduces additional nodes corresponding to contexts, allowing one to model how
causal mechanisms might change between contexts. See Lee et al. (2020b) for a recent exposition
on selection diagrams and algorithms for deriving transport formulas. A major contrast between the
present work on causal imputation and prior work on causal transport is that SI-A does not rely on
specifying (or learning) a selection diagram. Indeed, as we show in Proposition 1 and Theorem 1,
SI-A is consistent for any linear causal structural model within a large class. A further advantage
of the factor model framework considered in this work is that the key assumption (Assumption 2)
that enables SI-A to generalize from a small collection of experiments to predicting on untested
context-action pairs can be tested via a simple data-driven hypothesis test (see Section 4).

Traditional imputation methods. As missing values are a common issue in many applications
(Bell and Koren, 2007; Troyanskaya et al., 2001), a number of imputation methods have been de-
veloped to fill in missing entries, see e.g. Bertsimas et al. (2017) for a recent review. Two prominent
methods which are widely used in imputing genomic and other biological data (Tan et al., 2017;
Waljee et al., 2013) are MICE (Van Buuren and Oudshoorn, 1999) and MissForest (Stekhoven
and Bühlmann, 2012). To the best of our knowledge, these methods have no formal identification
guarantees. Moreover, they are several orders of magnitude slower than our SI-A estimator - see
Appendix F.1 for a comparison to MICE - making them impractical for the problem considered here.

The linear factor model assumption (Definition 1) used by our model is similar to factor model
assumptions made by methods for low-rank tensor decomposition, such as PARAFAC Harshman
et al. (1970); Bro (1997). As in the matrix case (Chatterjee, 2015; Agarwal et al., 2018; Sportisse
et al., 2020), such decompositions can be useful tools for tensor estimation (Jain and Oh, 2014), es-
pecially in the missing-at-random (MAR) or missing-completely-at-random (MCAR) settings (Ru-
bin, 1976). However, PARAFAC assumes a low-rank CP decomposition, which is more restrictive
than the low-rank mode-2 decomposition in Definition 1. Furthermore, PARAFAC requires a costly
alternating minimization scheme to optimize, so that it is again several orders of magnitude slower
than our SI-A estimator.

Methods using other data modalities. The imputation methods we have thus far discussed all
begin with genomic data from various compounds and cell types, and impute genomic data for novel
pairs of compounds and cell types. Orthogonally, there is a vast literature on predicting perturbation
response using different data modalities, e.g. images (Hofmarcher et al., 2019; Yang et al., 2018)
or molecular structure (Stokes et al., 2020). There are many possible avenues for combining these
approaches with our method, e.g., using coupled autoencoders (Yang et al., 2021) to represent each
compound in terms of a combination of other compounds and an encoding of its molecular structure.

3. Problem Statement

We consider a collection of contexts (e.g., cell types), denoted by C, and actions (e.g., compounds),
denoted by A. The outcomes of interest (e.g., gene expression signatures) associated with a given
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context c ∈ C under action a ∈ A are denoted by xca ∈ Rp. Collectively, this forms an order-three
tensor X = [xca : c ∈ C, a ∈ A] ∈ R|C|×|A|×p.

Observations. To model real-world scenarios, we consider the setup where we not only have
access to a sparse subset of the entries in X (e.g., corresponding to a limited number of historical
experiments), but also noisy instantiations of those observations. More formally, let x̃ca ∈ Rp
denote a corrupted version of xca, e.g., x̃ca = xca + eca or x̃ca = xca ◦ eca, where eca denotes
measurement noise and ◦ is the entry-wise product. Further, let Ω ⊂ C × A denote the context-
action pairs for which we observe their associated outcomes, i.e., for each (c, a) ∈ Ω, we observe
x̃ca. We denote our observation set as O = {x̃ca : (c, a) ∈ Ω}.

Goal. Our primary interest is in recovering X from O.
Notations. For any a ∈ A and c ∈ C, let A(c) = {a ∈ A : (c, a) ∈ Ω} and C(a) = {c ∈

C : (c, a) ∈ Ω} denote the set of actions which are measured for context c, and the set of contexts
which are measured for action a, respectively. These notations are extended to sets of contexts and
actions, i.e., A(C) = ∩c∈CA(c) and C(A) = ∩a∈AC(a).

4. Algorithm

We propose SI-A, which is an extension of the SI estimator introduced in Agarwal et al. (2020),
to handle more general sparsity patterns. Though our estimation strategy is applicable for any
context-action pair of interest, we consider (without loss of generality) some (c, a) /∈ Ω. Below, we
introduce additional notations to describe our estimator.

Additional Notations. We callA(c) the “donor actions” for context c. Let Ctrain = C(A(c)∪{a})
denote the set of contexts for which all donor actions and the target action are observed, we call these
the “training contexts”. Let C = |Ctrain| and A = A(c), and define x̃train,target ∈ Rp·C , X̃train,donor ∈
RpC×A and X̃test,donor ∈ Rp×A as

x̃train,target = [x̃ia]i∈Ctrain X̃train,donor = [x̃ij ]i∈Ctrain,j∈A(c) X̃test,donor = [x̃cj ]j∈A(c)

Finally, let ME : Rn×p → Rn×p denote any matrix estimation method, used to recover a matrix
from noisy observations, such as nuclear norm regularization or singular value thresholding.

Causal imputation for a novel context-action pair. We define the our estimation method as
follows, where † denotes the pseudoinverse. The method is also presented visually in Fig. 1.

1. Model learning via regression

(a) Define X̂train,donor = ME(X̃train,donor).

(b) Define β̂ca = X̂†train,donorx̃train,target ∈ R|A(c)|

2. Causal imputation

(a) Define X̂test,donor = ME(X̃test,donor).

(b) Define x̂ca = X̂test,donorβ̂
ca.

In Appendix A, we discuss how our estimator relates to the original SI estimator.
Extensions. We now discuss two natural modifications to the proposed method.
Reversing the axis of regression. The method we described learns weights β̂ca which express the

action a as a linear combination of other actions A(c). The same method can be applied to instead
express the context c as a linear combination of other contexts, by making the obvious replacements.
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Figure 1: The SI-Action Method. To form an estimate x̂ca of the outcome of target action a in
target context c, we find a set of donor actions A(c) which are available in context c. Then, we find
training contexts Ctrain for which both the donor actions and the target action are available, and learn
weights β̂ca via linear regression. Finally, we use these weights to form x̂ca.

Using both estimators in tandem. The two estimation strategies described above—weighting
actions and weighting contexts—can be used in a complementary fashion. For instance, say we
apply the weighting actions estimator first. The imputed values increase the set of donor actions,
which should lead to better outcomes when applying the weighting contexts estimator. An analo-
gous argument can be made when the weighting contexts estimator is applied first. This suggests
an algorithm that iteratively applies each approach until the imputed tensor converges to a desired
threshold. However, one drawback of this approach is that it is computationally more demanding.
Formally motivating and analyzing such an algorithm remains to be interesting future work.

Arbitrary sets of donor actions. For simplicity, we have written our estimator using all actions
A(c) that are available for context c as “donor” actions. The corresponding set of training contexts
are those for which each of these actions, along with the target action, is measured, i.e., Ctrain =
C(A(c) ∪ {a}). Expressing β̂ as a linear combination of all actions A(c) may be suboptimal if
it leads to a significantly smaller set Ctrain. For example, say |A(c)| = 11, and there is only one
training context containing all of these actions, i.e., |C(A(c) ∪ {a})| = 1. Suppose there is a subset
A′ ⊂ A(c), with |A′| = 10 with |C(A′ ∪ {a})| = 100, i.e., by excluding a single action from
the linear combination, we can train on 100 times more contexts. Thus, we may consider the SI
estimator induced by a specific donor set Adonor ⊆ A(c), with the corresponding set of training
contexts being Ctrain = C(Adonor ∪ {a}). The choice of donor set introduces a tradeoff: as the
number of donor actions increases, the number of training contexts might decrease. This raises
the question of how to pick an optimal set of donor actions for a given prediction. We provide a
principled approach to this problem in Section 5.

5. Theoretical Results

In this section, we justify our algorithmic approach under a factor model and provide a justification
for the factor model through the lens of causal structural models. We focus on the noiseless setting,
i.e., for all (c, a) ∈ Ω, we observe x̃ca = xca, and thus, we may write Xtrain,donor = X̂train,donor =
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X̃train,donor and Xtest,donor = X̂test,donor = X̃test,donor. Hence, our results should be viewed as one of
“identification” as we prove thatX can be identified from noiseless data via our proposed algorithm.
Indeed, identification arguments are considered a critical first step in causal inference (Shpitser and
Pearl, 2008; Lee et al., 2020a), as they are necessary for any analysis of consistency in the noisy
setting. Two noisy settings are of special interest. First, if only a single observation for each
(c, a) pair is available, then there is a rich body of literature that establishes formal guarantees for
recovering xca for all (c, a) ∈ Ω using a suite of matrix estimation methods (see Chatterjee (2015)
and references therein). Second, if multiple observations are available for each (c, a) pair, then we
may average these observations, as we do in Section 6. Under appropriate conditions on the noise
ec,a, such as bounded variance in the additive case, this averaging yields a consistent estimator of
xca. Formally building upon these results to provide rigorous sensitivity analyses remains future
work.

5.1. Identification via SI-A

In what follows, we state our key modeling assumptions that will enable our estimator to impute X .
To reduce redundancy, the following discussion will be restricted to SI-A, i.e., where we learn a
regression model across actions. Analogous statements apply to the case of learning across contexts.

First, we recall the definition of a linear factor model, also known as the interactive fixed effects
model, which is prevalent within the causal inference literature (Agarwal et al., 2020; Abadie et al.,
2010; Bai, 2009; Athey et al., 2021) and critical to the SI framework of Agarwal et al. (2020).

Definition 1 We say thatX satisfies a linear factor model if, for any a ∈ A and c ∈ C, xca = U cva,
where U c ∈ Rp×r and va are latent factors associated with the context c and action a, respectively.

Interpretation. Definition 1 posits that X satisfies a low-rank assumption (Kolda and Bader,
2009)1. While exact adherence to a linear factor model can be a strong assumption, it has been
widely observed in practice that many big-data matrices are approximately low-rank. This phe-
nomenon that has recently been motivated by generic latent-variable models (Udell and Townsend,
2019) and theoretically established in several works (Chatterjee, 2015; Agarwal et al., 2019). Since
big data matrices with underlying structure are common in biological applications (due, for exam-
ple, to similarities between cell types and drugs, and interdependence of gene expression values),
these works suggest linear factor models as a natural starting point for developing principled causal
imputation methods. Further, low-rank approximation can often be empirically verified by inspect-
ing the spectrum of the observations, as we do in Section 6 (see Figure 5a).

Assumption 1 Given a target context c and target action a, there exists β ∈ R|A(c)| such that
va =

∑
j∈A(c) βjv

j .

Interpretation. Under the linear factor model, this is a mild assumption, particularly in appli-
cations such as genomics, where outcomes are measured for many different actions and contexts.
By definition, such a β exists if va and [vj ]j∈A(c) are linearly dependent. Recall va and vj are
in Rr. If r � |A(c)|, then by the definition of rank, it is easy to see that the ‘pathological’ case
where va is linearly independent of {vj : j ∈ A(c)} is unlikely to hold; that is, in the worst case,
this undesirable event occurs for at most r actions out of all possible A, which is a small fraction if
r � |A(c)| ≤ |A|.

1Formally, X = U ×2 V for some U ∈ R|C|×r×p, V ∈ R|A|×r , where ×2 denotes the mode-2 product.
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Figure 2: The assumed linear factor model and a linear structural equation model giving rise to it.

Assumption 2 Given a target context c and target action a, let rowspan(Xtest,donor) be a subset of
rowspan(Xtrain,donor),2 where Xtest,donor and Xtrain,donor are defined in Section 4.

Interpretation. This assumption states that the target context is no more “complex” than the training
context in a linear algebraic sense. This is the key assumption that enables SI-A (and thus the
original SI estimator) to generalize from a small set of experiments to novel context-actions pairs.

Theorem 1 Suppose X satisfies a linear factor model. Further, for (c, a) /∈ Ω, suppose Assump-
tions 1 and 2 hold. Then x̂ca = xca.

Checking identifiability. Assumption 2 enables SI to recover X from a sparse set of observa-
tions Ω (Theorem 1). As such, Agarwal et al. (2020) proposed a data-driven hypothesis test to check
when this condition is satisfied in practice. Their test statistic τ̂ = ‖vtest − vtrainv

T
trainvtest‖2F mea-

sures the gap between the rowspaces of Xtrain,donor and Xtest,donor, where vtrain and vtest are the right
singular vectors of Xtrain,donor and Xtest,donor, respectively. Agarwal et al. (2020) derived a critical
value τα, such that under the null hypothesis H0 where Assumption 2 holds, P(τ̂ ≥ τα | H0) ≤ α.
However, their critical value depends on the underlying parameters of an underlying noise distribu-
tion. Instead of estimating these parameters, we follow a heuristic based on the interpretation of τ̂
as the spectral energy of vtest that does not belong within span(vtrain). Specifically, we fix ρ ∈ [0, 1]
and reject H0 if τ̂ ≥ ρ · rank(vtest), i.e., if more than ρ fraction of the spectral energy in vtest lies
outside of span(vtrain).

Rejection of the test implies that SI-A may not perform well on our prediction task, since
Assumption 2 is unlikely to hold. In practice, this allows us to switch to a simpler baseline estimator,
as we show in Section 6. This hypothesis test also suggests an elegant method for picking a set of
donor actions, as discussed in Section 4. For a fixed significance level, we may aim to find a set
passing the hypothesis test which maximizes the number of training contexts. Unfortunately, this
induces a combinatorial optimization problem which may be difficult to solve when there are many
actions. We consider two computationally efficient alternatives. First, we may greedily pick actions,
according to whichever action least reduces the number of training contexts, until the set passes the
hypothesis test. Second, we may always use A(c) as the donor set, then use the hypothesis test to
decide on whether to use the SI-A estimate or a simpler baseline.

2The row span of a matrix M ∈ Rm×n is the linear subspace of Rn spanned by the row vectors of M .
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5.2. Connecting SI to Structural Causal Models

Here, we provide motivation for a linear factor model in terms of linear structural causal models,
which have been frequently used as models of genomic networks (Friedman et al., 2000; Badsha
et al., 2019). In particular, we consider the following set of models:

Definition 2 A (noiseless) linear structural equation model (SEM) over the vector z ∈ Rp is defined
by the set of equations

zi =
∑

j∈paG(i)

Aijzj ,

where paG(i) denotes the parents of node i in the directed acyclic graph G.

A particular subclass of linear structural equation models implies a factor model. In particular,
we consider the following assumption on the SEM, illustrated in Fig. 2.

Assumption 3 Let zca = (xca,va), where va depends only on a and not on c. Assume that, for
all contexts c, there exists Ac ∈ Rp×p and Bc ∈ Rp×r such that, for all actions a, zca satisfies the
following linear structural equation model:

xca = Acxca +Bcva (1)

Further assume that and vi is unobserved for all i ∈ [p].

Proposition 1 Under Assumption 3, X satisfies a linear factor model.

Proof Under acyclicity of G, Ac is lower-triangular up to a permutation, so that (I −Ac) is invert-
ible, and we may re-write xca as

xca = (I −Ac)−1Bc︸ ︷︷ ︸
Uc

va

Defining U c as (I −Ac)−1Bc completes the proof.

Interpretation. Although Proposition 1 is a simple observation, to the best of our knowledge,
this connection has not been previously established. The SI framework of Agarwal et al. (2020),
and panel data literature more broadly (Abadie et al., 2010; Arkhangelsky et al., 2019; Athey et al.,
2021; Bai, 2009), often imposes a linear factor model structure on xca. Proposition 1 provides a
novel motivation for these models through the lens of structural causal models. In our application,
va might represent biological factors, e.g., molecule concentrations or enzyme activity levels, while
U c represents the “gene expression program” (Pope and Medzhitov, 2018) run by cell type c.

6. Empirical Results

In this section, we perform extensive experimentation on causal imputation for the CMAP dataset.
CMAP dataset. Subramanian et al. (2017) developed the L1000 assay, which allows for cost-

effective measurement of the gene expression signatures. This assay measures the transcription
levels of 978 “landmark” genes, picked via a data-driven approach based on their ability to recover
information about the rest of the transcriptome. L1000 signatures have been measured from over
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Figure 3: UMAP embedding of gene expression data, colored by cell type.

1,000,000 different samples, covering 71 different cell types and over 20,000 different chemical
compounds. We randomly sample 100 of these compounds, along with the “control” compound,
DMSO, to create a smaller, unbiased version of the dataset. For each cell-type, compound pair,
we average all corresponding signatures. This gives a dataset of 519 gene expression signatures.
A detailed evaluation of the dataset and a description of our preprocessing pipeline is described
in Appendix C. The dataset can be accessed at https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE92742.

Baseline algorithms. Figure 3 shows an embedding of 11,185 gene expression vectors via
UMAP (McInnes et al., 2018), colored by cell type. Clearly, most of the variation in the data is due
to cell type rather than the compound applied to the cell. This is supported by Fig. 8 in Appendix D,
where we see that most compound-induced expressions falls within the normal variation of the cell
type; the additional variation due to compounds is minor. This suggests a natural mean-over-actions
baseline

x̂caavg-a =
1

|A(c)|
∑

a′∈A(c)

xca
′
. (2)

Indeed, it is well-known that the effect of chemical compounds is much smaller than the effect of cell
type, so that the simple mean-over-actions estimator already performs well, as we examine shortly.
We consider three other natural baselines (see equations in Appendix E). The mean-over-contexts is
analogous to the mean-over-actions estimator, with the average taken over different contexts from
the same action. We may combine these estimators into the parametric two-way mean estimator with
parameter λc ∈ [0, 1], by taking a convex combination of the mean-over-actions and mean-over-
contexts estimators. We use λc = 0.5. The fixed action effect estimator, discussed in Section 2, is
defined by computing the average shift induced by action a compared to the control, and adding that
shift to the control for c. Finally, we compare against a variant of SI-A that re-scales contexts rather
than actions, as discussed in Section 4, which we refer to as SI-C. Note that standard imputation
methods are not scalable to the CMAP dataset: the MissForest implementation in missingpy
takes 2.5 hours per prediction, and would take 2.5 × 519/24 ≈ 54 days to run on the subsampled
data. IterativeImputer, a version of MICE in sklearn, is somewhat more scalable, but still
prohibitively slow on our subsampled data—see Appendix F.1 for a comparison on 120 signatures.
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Figure 4: SI-A outperforms baselines on causal imputation in the CMAP dataset in terms of NRMSE (left)
and cosine similarity (right) between the true and predicted effects of drugs in each cell type.

6.1. Prediction Error

For each algorithm, we measure performance using a leave-one-out (LOO) procedure. In particular,
for each cell type and compound pair (c, a) ∈ Ω that is measured, we remove the true gene expres-
sion signature xca from the dataset, and use the remainder of the dataset to estimate x̂ca. We mea-
sure the accuracy of each estimate x̂ca in two ways. Normalized root-mean-square error (NRMSE),
‖(x̂ca−xca)/p‖2/IQR(xca), reported in Fig. 4, measures the absolute accuracy to predict the miss-
ing gene expression vector3. We show NRMSE since it is insensitive to scaling and shifting, but the
relative ordering between methods is insensitive to the metric, as seen in Appendix F.2. Meanwhile,
cosine similarity between the predicted shift x̂ca − xca0 and the true shift xca − xca0 (where a0 is
the control action), reported in Fig. 4, measures the degree of alignment between the true effect of
drug a in cell type c and the predicted effect. Appendix F.3 shows that SI-A and the baselines are
roughly similar in terms of computation time.

The results of each estimator provide insight into the relationship between cell types and com-
pounds. As expected from Figure 3, the mean-over-actions estimator is a strong baseline, with a
median NRMSE of 0.41. In contrast, the mean-over-contexts estimator performs quite poorly. See-
ing Figure 3, this is expected: the substantial variation between different cell types suggests that each
cell type is not representable as a linear combination of the others. The fixed effect estimator, using
a′ = DMSO, performs similarly to the mean-over-actions estimator, indicating its prediction quality
is dominated by the cell-type-specific baseline xca

′
, i.e., the shift vector for the compound is small.

Finally, SI-A performs best, with a median NRMSE of 0.34, a 17% reduction compared to the best
baseline. The findings on cosine similarity corroborate these results: the drug effects predicted by
SI-A are significantly more aligned with the true drug effects compared to the baselines.

SI-A takes a weighted linear combination of signatures for a given cell type (across different
compounds), in contrast to mean-over-actions baseline which simply takes equal weights across
these signatures. It is noteworthy that such weights are learnt from signatures across compounds
for different cell types, and yet it is still effective to transfer the learnt model to other cell types.
This gives credence to the factor model laid out in Section 5.2 holding in our setting. In contrast,
SI-C performs almost as poorly as the mean-over-contexts baseline, indicating again that the dif-
ference between cell types is too great to express one cell type as a linear combination of others.

3IQR(xca) denotes the interquartile range for the vector xca.
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(a) Spectrum of subsampled
dataset. 95% of spectral energy
is captured in the top 53 singular
values.

(b) Distribution of τ̂ when regress-
ing along cell type (context) and
compound (action) dimensions.

(c) NRMSE as a function of donor
size and training contexts. Error
bars show 0.1 standard deviations.

Figure 5: Explaining efficacy of SI-A for CMAP dataset.

Notably, we highlight that we do not de-noise the data in SI-A or SI-C to achieve their optimal
empirical results, i.e., the results in Figure 4 do not use any ME algorithm to remove high amounts
of noise that might be present. De-noising is not needed in our setting as the data is implicitly
de-noised, since each measurement is an average of multiple observations for a given measured cell
type and compound pair (c, a) ∈ Ω in the data. Indeed, as shown in Appendix G, applying ME does
improve prediction if we restrict ourselves to use only a single sample per observed (c, a) ∈ Ω.

SI-A is effective in biological settings. As discussed in Section 5, a visual inspection of the
spectrum of our observations helps verify the validity of the linear factor model and (by extension)
Assumption 1. Fig. 5a shows the singular values of the 519× 978 matrix of gene expression signa-
tures, where over 95% of the spectrum is captured by the top 53 singular values, i.e., r ≈ 53; hence,
the CMAP dataset exhibits the desired low-rank factor structure. To verify Assumption 2, we plot
frequencies of the test statistic τ̂ (detailed in Section 4) in Figure 5b. A higher value of τ̂ indicates
that Assumption 2 is less likely to hold, and hence the results of our method are less meaningful.
We see that the test statistic tends to be lower when regressing in the action dimension, explaining
the superior performance of SI-A as compared to SI-C. This suggests that SI-A may be a useful
tool in other biological settings, where similar invariance patterns and data availability are common.

SI-A takes advantage of data structure. Finally, to understand how the performance of
SI-A depends on the number of donor actions (i.e., |A(c)|) and training contexts (i.e., |Ctrain|), we
restrict our attention to context-action pairs with at least 10 donor actions and at least 5 training
contexts, resulting in 75 pairs. For each context-action pair (c, a), and each (i, j) ∈ {1, . . . , 10} ×
{1, . . . , 5}, we perform SI-A with i random donor actions and j random training contexts. In
Fig. 5c, we show the average NRMSE of the predictions over all 75 pairs, for each tuple (i, j).
As expected, increasing the number of donor actions leads to a large increase in performance, and
increasing the number of training contexts also leads to a large increase in performance, especially
when there are few donor actions. The original SI estimator always has |Ctrain| = 1, but our results
highlight the value of using all available data to learn the regression model, as is done by SI-A.

7. Discussion

In this paper, we introduced the SI-A estimator, an extension of the SI estimator of Agarwal et al.
(2020), for use on a task we call causal imputation: predicting the effect of an action across different
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contexts. We showed that the SI-A estimator provides valid estimates of unseen outcomes under
a linear factor model, which we motivate via a connection to structural causal models. We demon-
strated the superior performance of SI-A to other baselines on the task of causal imputation in the
CMAP dataset, an important source of information for predicting the effect of various compounds
on gene expression.

Several important directions are left open for future work, of which we cover only a few. First,
the tradeoff between the number of donor actions and the number of training contexts raises the
need for a principled method for picking “optimal” donor sets. One promising approach may be
to frame this choice as a combinatorial optimization problem, where the objective function may be
submodular under some assumptions on the problem structure. A related question is whether we
can apply SI in a sequential manner to infer which samples are most informative to reduce sample
complexity in an experimental design and/or active learning framework.

Another important direction for future work is on nonlinear methods to the causal imputation
problem. Genomic data is known to exhibit highly nonlinear relationships, so that our model in Sec-
tion 5.2 is only a coarse approximation. A straightforward nonlinear extension of our method would
be to perform SI-A in a latent space learned by an autoencoder. Two concepts from this paper are
likely to be useful in the development and analysis of nonlinear methods. First, we demonstrated
that it is beneficial to develop representations for each action which are invariant to the context in
which they occur, allowing for the effect of the action to be transported between contexts. Second,
our mechanistic explanation in Section 5.2 for the success of SI-A may serve as a starting point for
explaining the success of nonlinear methods.
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Supplementary Material

Appendix A. Comparison with Agarwal et al. (2020)

Agarwal et al. (2020) consider the setting where one observes data associated with a collection
of units or contexts (e.g., cell types). Here, there is a pre-intervention period where all units are
observed under control (e.g., absence of any actions), followed by a post-intervention period where
each unit experiences one intervention or action (e.g., compound). Under this particular sparsity
pattern, the goal is to impute what would have occurred to each unit under every intervention in
the post-intervention period. In contrast, our work considers a more general observation pattern
that allows each unit to potentially experience multiple interventions, which is typically present
in biological applications. Motivated by the typical data structures found in these domains, we
extend the algorithm to regress along interventions (compared to units as is originally proposed),
and provide suitable conditions under which the desired counterfactual outcomes are accurately
recovered.

Appendix B. Proof of Theorem 1

Proof Consider any (c, a) /∈ Ω. Then by the linear factor model assumption and Assumption 1, for
all i ∈ C

xia = U iva (S.3)

= U i
( ∑
j∈A(c)

βjv
j
)

(S.4)

=
∑
j∈A(c)

βj(U
ivj) (S.5)

=
∑
j∈A(c)

βjx
ij . (S.6)

Since (S.6) holds for all i ∈ C, it necessarily holds for the target context c and those contexts
i ∈ Ctrain = C(A(c) ∪ {a}).

Now, let vtrain ∈ R|A(c)|×r1 and vtest ∈ R|A(c)|×r2 denote the right singular vectors of Xtrain,donor
and Xtest,donor, respectively, with r1 = rank(Xtrain,donor) and r2 = rank(Xtest,donor). Recall that
β̂ = X†train,donorytrain. Since β̂ ∈ rowspan(Xtrain,donor) = span(vtrain) by design, it follows from

(S.6) that β̂ = vtrainv
T
trainβ. Also, Assumption 2 implies that vtrainv

T
trainvtest = vtest. Combining

these arguments yields

x̂ca = Xtest,donorβ̂ = Xtest,donorvtrainv
T
trainβ = Xtest,donorβ (S.7)

=
∑
j∈A(c)

βjx
cj = xca. (S.8)

This completes the proof.
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Appendix C. L1000 Dataset

In Figure 6a, we display the availability of gene expression signatures for each cell type/chemical
compound pair. The cell types are sorted from left to right by the number of compounds for which
gene expression signatures are available. Similarly, the compounds are sorted from bottom to top
by the number of cell types for which gene expression signatures are available.

(a) Original dataset. (b) Subsampled dataset.

Figure 6: Availability matrix for cell-type compound pairs. A black rectangle indicates that the gene
expression profile is available, a white rectangle indicates that it is not.

In Figure 7a, we display the total number of compounds for which gene expression signatures
are available, for each cell type. The cell type with the most compounds available is VCAP, with
15,805 compounds available out of 20,369.

In Figure 7b, we display the total number of cell types for which gene expression signatures are
available, for each compound. The compound with the most cell types available is DMSO (control),
which is available for 70 of 71 cell types, followed by BRD-A19037878, which is available for 64
out of 71 cell types.

Data Selection. We use the Level 2 data from L1000 dataset, which contains unnormalized
gene expression values. The data is loaded using cmapPy (Enache et al., 2019), available under
a 3-clause BSD license. The Level 2 data is split into two sets, “delta” and “epsilon”, containing
49,216 and 1,278,882 samples, respectively. They differ in which landmark genes are used; we only
use the larger “epsilon” dataset for consistency of our results.

We select 100 compounds at random to run all of our analyses over, in order to create a smaller
but unbiased dataset. We show the plots corresponding to those that we showed for the whole dataset
in Figures 6b, 7c, and 7d; they qualitatively verify that the subsampled dataset is similar in character
to the original.
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(a) Compounds per cell type in the original
dataset.

(b) Cell types per compound in the original
dataset.

(c) Compounds per cell type in the subsampled
dataset.

(d) Cell types per compound in the subsampled
dataset.

Figure 7: Cross-sectional counts in the original and subsampled datasets.
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Appendix D. UMAP on VCAP data

In Figure 8, we show the UMAP embedding of gene expression data from 70 different compounds
in the VCAP cell line, which we picked since it has the greatest number of samples for any cell
type in the dataset. Comparing to Figure 3, which included 70 different cell types, we see that gene
expression vectors (even within a single cell type) cluster far less by compound than they do by
cell type. Moreover, most compounds do not substantially differ from the control (DMSO). This
suggests that we should expect estimating the cell-type specific compound effect will be a difficult
task.

Figure 8: UMAP embedding of gene expression data from the cell type VCAP.
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Appendix E. Baseline Estimators

The mean-over-contexts estimator is defined as

x̂caavg-c =
1

|C(a)|
∑

c′∈C(a)

xc
′a. (S.9)

That is, we average all contexts which receive the target action.
The two-way mean estimator with parameter λc ∈ [0, 1],

x̂catwo-way = λcx̂
ca
avg-c + (1− λc)x̂caavg-a, (S.10)

is a convex combination of the mean-over-actions and mean-over-contexts estimators.
Finally, the fixed action effect estimator, relative to action a′, is defined as

x̂cafae = xca
′
+ ŝ(a′ → a), (S.11)

where

ŝ(a′ → a) =
1

|C(a)|
∑
c∈C(a)

(xca − xca
′
). (S.12)

In particular, a natural choice for a′ is “control”, i.e., no action.
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Appendix F. Additional Empirical Results

F.1. Results with MICE

In Fig. 9, we reduce the number of randomly picked interventions from 100 to 20, so that MICE can
be run in a reasonable amount of time (3 hours). MICE is run with the default parameters for the
IterativeImputer class in sklearn as of May 28th, 2021, including max iter=10 and
tol=0.001. See the IterativeImputer documentation for more details.

Figure 9: MICE is roughly 4 orders of magnitude slower than SI-A and delivers has poor estimation
performance compared to SI-A and the other baselines.

F.2. R2

Fig. 10 demonstrates the performance on the leave-one-out (LOO) prediction task in Section 6 on
various metrics. The relative ordering of method performance remains the same.

F.3. Computation Time

Fig. 11 demonstrates the time (on log scale) required for each leave-one-out (LOO) prediction task
from Section 6. All methods are highly efficient, taking less than 0.1 seconds on almost all instances
and roughly 0.01 seconds on most instances. The baselines are, on typical instances, roughly 2x
faster than the methods based on synthetic interventions. The time required by synthetic interven-
tions varies more due to the varying number of donor actions and training contexts.

Appendix G. Results on Single Samples

Figure 12 shows the results of using SI-A on unaveraged data. In particular, for each cell type and
compound, we select a single corresponding sample at random.

As described in Figure 4, we can apply some ME to de-noise our observations prior to re-
gression. To this end, we consider the hard singular value thresholding (HSVT) estimator at en-
ergy level ρ = 0.95, that is, given the singular value decomposition X = UΣV >, with sin-
gular values in decreasing order, we find that first k such that

∑k
i=1 Σ2

ii ≥ ρ‖X‖2F , and use
HSVT(X, k) =

∑k
i=1 ΣiiUiV

>
i .

We see that, as predicted by theory, matrix estimation improves the predictions on unaveraged
data (SI-A vs. SI-A-HSVT). However, the results still do not match the performance of the simple
mean-over-actions baseline.
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(a) R2. (b) Root-mean-square error.

(c) Mean absolute error. (d) Relative mean absolute error.

Figure 10: The relative rankings of SI-A and baselines in terms of R2 are similar across different
metrics, with SI-A performing best, followed by mean-over-actions and the fixed effect estimators.

Figure 11: Computation Times of SI-A and baselines. All methods are highly scalable, and
SI-A is only about 2x slower than the simple baselines.

Thus, prior to prediction, we perform the subspace inclusion hypothesis test described in Sec-
tion 4. In particular, if τ̂ ≥ 0.1 · rank(Xtest), then we reject the hypothesis test, concluding that the
SI method is unlikely to work. If the test passes, we use the SI-A-HSVT predictor; if it fails, we
instead use the mean-across-actions predictor as a strong “fallback” option.

We see that adding this hypothesis test (SI-A-HSVT, +test) returns us to the performance level
of the mean-across-actions baseline.
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Figure 12: Performance of causal imputation algorithms on recovering the effects of compounds in
the CMAP dataset, using unaveraged data.
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