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Abstract: This article summarizes the Lp-DPGmethod presented in [18], where only 1D convection-diffusion
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1 Introduction
The Discontinuous Petrov–Galerkin (DPG)method has been proposed as a novel approach to designing finite

element methods [4, 8, 9], and it offers many attractive features: guaranteed stability provided the problem

is well posed, built-in a posteriori error estimator, as well as the ability to control the norm in which the

convergence occurs. The DPG method admits the interpretation of a minimum residual method, where the

residual is measured in a dual space to the space of test functions. Consider the following abstract problem:

{
find u ∈ U :

Bu = l in V󸀠,
where U,V are trial and test spaces (Banach spaces in general), B : U→ V󸀠 is a bounded linear operator

dictated by the problem and the variational formulation we choose. For a well-posed variational problem, B
is bounded below as well.

Given a discrete trial space Uh ⊂ U, the ideal DPG method (by ideal, we mean the test space is not yet

discretized) solves the following minimum residual problem:

{
find uh ∈ Uh :
‖Buh − l‖V󸀠 is minimized.

(1.1)

Originally, the DPG method has dealt with Hilbert test and trial spaces only. Following the pioneering work

by van der Zee et al. [15, 16, 19], we have investigated the DPG method in Banach spaces [18], focusing

on Sobolev spaces W1,p(Ω) and Wp(div, Ω) (p ≥ 2) as test spaces, in particular. The trial spaces are chosen

accordingly so as to ensure that the bilinear form ⟨Bu, v⟩ is bounded. In Banach spaces, the minimum resid-

ual problem (1.1) is shown to be equivalent to a convex minimization problem with linear constraints [19].

We solve the latter minimization problem using Newton’s method, which will be detailed later. Our expe-
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rience indicates that, when the residual is small, we may have trouble with Newton’s method because the

Hessian can become ill-conditioned. We propose an effective solution to the ill-conditioning problem based

on a formulation with a variable exponent p.
This article first summarizes the results of our previous work [18]; for convenience, the details of dis-

cretization and Newton’s method are described in a separate section. Then we proceed by solving various 2D

convection-diffusion problems and present the numerical results. Finally, we conclude with a section on the

Lp-DPG method with variable p.

2 Theory: Lp-DPG Method for the Convection-Diffusion Problem
We summarize the main theoretical result of [18] in this section. Consider problem (1.1), and assume that B
is both bounded and bounded-below. Moreover, Uh is finite dimensional.

Theorem 1 (Existence and Uniqueness of the Solution). When V󸀠 is strictly convex, there exists a unique solu-
tion uh to problem (1.1). In particular, the dual space to V = W1,p(Ω) is strictly convex for p ≥ 2.

From now on, we shall concern ourselves with test spaces like W1,p(Ω). Under such circumstances, it is

proven in [18, 19] that the residual minimization problem (1.1) is equivalent to the convex optimization

problem

ψ = argmin

φ∈(BUh)⊥ 1p ‖φ‖pV − l(φ), (2.1)

where

(BUh)⊥ := {v ∈ V : ⟨Bδuh , v⟩ = 0 for all δuh ∈ Uh}.

Through the classical optimization theory, one can show that problem (2.1) admits a unique solution, which

is characterized by the following mixed system:

{{{
{{{
{

find ψ ∈ V, uh ∈ Uh :

⟨RV(ψ), v⟩ + ⟨Buh , v⟩ = l(v) for all v ∈ V,
⟨Bδuh , ψ⟩ = 0 for all δuh ∈ Uh ,

(2.2)

where RV : V→ V󸀠 is the Gâteaux derivative of the functional J(φ) := 1

p ‖φ‖
p
V. Note that RV is nonlinear for

p > 2. When p = 2, RV reduces to the familiar Riesz operator. We refer the readers to [18, 19] for details

involving properties and formulae for RV.

Themeaning of “equivalence” between the residualminimizationproblem (1.1) and convex optimization

problem (2.1) is clarified by the following theorem.

Theorem 2 (Characterization of the Solution). The unique solution uh of problem (1.1) and the unique solution
ψ of problem (2.1) satisfy the mixed system (2.2). Conversely, any solution (ψ, uh) to the mixed system (2.2)

consists of the minimizers of problem (1.1) and (2.1).

In summary, our Lp-DPG method is motivated by the minimum residual problem (1.1). However, in prac-

tice, we solve the constrained convex optimization problem (2.1) instead, for which the techniques from the

convex optimization can be applied.

Convection-Diffusion Problem. To stay focused, we will consider a model convection-diffusion problem.

Given a domain Ω ⊂ ℝN , we want to solve

−∇ ⋅ (ϵ∇u − βu) = f in Ω,

where ϵ is the diffusion coefficient, β denotes an incompressible advection field, and f is a source term. We

assume a non-homogeneous Dirichlet boundary condition

u = u
0

on Γ = ∂Ω.
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Classical Variational Formulation. The standard variational formulation [7] is as follows:

{{{
{{{
{

find u ∈ ̃u
0
+ U :

∫
Ω

ϵ ∇u ⋅ ∇v − uβ ⋅ ∇v = ∫
Ω

fv for all v ∈ V,

where ̃u
0
is a finite energy lift of u

0
intoW1,p󸀠 (Ω), i.e. ̃u

0
∈ W1,p󸀠 (Ω), ̃u

0
|∂Ω = u0, and

U = W1,p󸀠
0

(Ω) := {u ∈ W1,p󸀠 (Ω) : u = 0 on ∂Ω},
V = W1,p

0

(Ω),

where p ≥ 2, 1

p +
1

p󸀠 = 1. The well-posedness of the convection-diffusion-reaction equation in the W1,p󸀠
0

(Ω)-
W1,p

0

(Ω) setting is proven in [15], provided that Ω is bounded Lipschitz, p ≤ 4 in 2D (or p ≤ 3 in 3D), and

Friedrich’s positivity condition is satisfied. Although here we are not considering a reaction term, numerical

stability is still observed.

Ultraweak Variational Formulation. To derive the ultraweak formulation, we introduce the total flux

σ = ϵ∇u − βu

and rewrite the convection-diffusion problem as a first-order system. Then we multiply the system by test

functions and integrate by parts. The final result is as follows:

{{{
{{{
{

find σ ∈ (Lp󸀠 (Ω))N , u ∈ Lp󸀠 (Ω) :
(σ, ϵ−1τ) + (u, div τ + ϵ−1β ⋅ τ) = ⟨u

0
, τ ⋅ n⟩ for all τ ∈ Wp(div, Ω),

(σ, ∇v) = (f, v) for all v ∈ W1,p
0

(Ω),

(2.3)

where p ≥ 2, 1

p +
1

p󸀠 = 1, and
Wp(div, Ω) := {τ ∈ (Lp(Ω))N : div τ ∈ Lp(Ω)}.

As usual, we use the notation

(u, v) = (u, v)
Ω
:= ∫

Ω

uv, ⟨u, v⟩ = ⟨u, v⟩∂Ω := ∫
∂Ω

uv.

For details on the derivation and the definition of involved Sobolev spaces, we refer readers to [18].

3 Discretization and Linearization

3.1 DiscretizingV with Broken Test Spaces

The test space V is discretized using the broken space technology [4]. Given a mesh Ωh, we consider broken

test spacesWp(div, Ωh),W1,p(Ωh), defined as

Wp(div, Ωh) := {σ ∈ (Lp(Ω))N : σ|K ∈ Wp(div, K), K ∈ Ωh} = ∏
K∈ΩhWp(div, K),

W1,p(Ωh) := {w ∈ Lp(Ω) : w|K ∈ W1,p(K), K ∈ Ωh} = ∏
K∈ΩhW1,p(K).

As new test functions are no longer conforming, we must introduce interface fluxes as additional unknowns.

The ultraweak formulation with broken test spaces is given as follows:

{{{{{{
{{{{{{
{

find σ ∈ (Lp󸀠 (Ω))N , u ∈ Lp󸀠 (Ω), ̂σn ∈ W− 1

p󸀠 ,p󸀠 (Γh), ̂u ∈ W1− 1

p󸀠 ,p󸀠 (Γh) :
̂u = u

0
on Γ,

(σ, ϵ−1τ) + (u, divh τ + ϵ−1β ⋅ τ) − ⟨ ̂u, τ ⋅ n⟩Γh = 0 for all τ ∈ Wp(div, Ωh),

(σ, ∇hv) − ⟨ ̂σn , v⟩Γh = (f, v) for all v ∈ W1,p(Ωh),
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where

⟨ ̂σn , v⟩Γh := ∑
K∈Ωh⟨ ̂σn , vK⟩∂K , ⟨ ̂u, τ ⋅ n⟩Γh := ∑K∈Ωh⟨ ̂u, τK ⋅ n⟩∂K

are the duality pairings on the mesh skeleton. For details on the trace spaces and well-posedness of the “bro-

ken” formulation, the readers are referred to [18, Appendix B]. We emphasize that broken spaces are easier

to discretize than globally conforming ones; moreover, they lead to block diagonal Gram matrix, which can

be inverted element-wise.

The last step of discretization is to replaceWp(div, Ωh),W1,p(Ωh) by piecewise polynomial spaces. If the

trial space U is discretized with polynomials of degree r,¹ then we discretize the test space V with piecewise

polynomials of degree r + ∆r on the samemesh with ∆r ≥ 1. As shown in [5, 16], ∆r = 1 should suffice for the

convection-diffusion problems, and this is the value we adopt in the reported numerical experiments.

3.2 Newton’s Method for the Minimization Problem

Remark. In the following discussion, the solution u represents a group variable. For the ultraweak formula-

tionwith broken test spaces, u = (σ, u, ̂σn , ̂u). Thus, in particular, the orthogonality condition b(δuh , φh) = 0
stands for four orthogonal conditions obtained by testing with the four components of δuh. Similarly,

φh = (τ, v) represents also a group variable. In what follows, we drop the special font for u.

Let Vr denote the fully discrete test space. We seek to solve the discretized version of (2.1), a convex mini-

mization problem with linear constraints,

min

φh∈Vr
f (φh) subject to b(δuh , φh) = 0 for all δuh ∈ Uh ,

where f (φh) = 1

p ‖φh‖
p
V − l(φh).

Following standard practice in numerical optimization, we use Newton’s method to solve this problem

(cf. [1, Section 10.2]). Define the stiffness matrix Bij := b(ej , gi), where ej is the j-th basis function for Uh,

and gi is the i-th basis function forVr. Then the linear constraint can be written asBTφh = 0, whereφh is the

coefficient vector of φh under the basis {g1, g2, . . . , gn}, n = dimVr. For the Newton iteration, we can always

start with a feasible φh (by feasible, wemean it satisfies the constraint). In practice, we start with φh = 0. The
Newton step ∆φ

nt

at feasible φh is characterized by

[
∇2 ̃f (φh) B

BT 0
][

∆φ
nt

uh
] = [
−∇ ̃f (φh)

0
] .

Note that
̃f : ℝn → ℝ is the discretized version of f : V→ ℝ. It is defined as

̃f (φh) := f(
n
∑
i=1φ(i)h gi).

With broken test spaces, the Newton step ∆φ
nt

can be condensed out element-wise. We assemble and solve

the linear system for uh; thenwe compute ∆φ
nt

locally. After obtaining ∆φ
nt

,wedoabacktracking line search

to ensure the Armijo sufficient decrease condition (see [1, Section 9.2]),

f (φh + t∆φnt
) ≤ f (φh) + αt ∇f (φh)T∆φnt

,

where α is some constant in (0, 1). In our computations, we choose α = 10−4.
The Newton decrement is defined as

λ(φh) = (∆φT
nt

∇2 ̃f (φh)∆φnt

)
1

2

1 In the exact sequence logic. This amounts to order r for a W1,p󸀠
-conforming element and order r − 1 for an Lp󸀠 -conforming

element.
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and serves as an error indicator for Newton’s method. We stop the Newton iteration when λ is small enough.

The tolerance is set to 10

−5
in our numerical experiments.

For p > 2, say p = 4, we combine the Newton iteration with a continuation strategy. We start with p = 2
and solve for the minimizer ψh. Then we use this ψh as the initial point for p = 3. Next the minimizer is again

used to initialize Newton’s method for p = 4.

Computing the Hessian. Note that we need to invert ∇2 ̃f (φh) in each Newton step. We provide the formula

for the Hessian because of its great importance and influence on the numerical behavior of the algorithm. As

an example, consider the ultraweak formulation (2.3) and mathematician’s test norm,

‖(τ, v)‖pV := ‖τ‖p + ‖div τ‖p + ‖v‖p + ‖∇v‖p ,

where ‖ ⋅ ‖ denotes standard Lp(Ω)-norm. The Hessian of f in the functional form is

⟨∇2f (τ, v); (δτ, δv), (∆τ, ∆v)⟩ = (p − 1)[
N
∑
i=1∫

Ω

|τi|p−2∆τiδτi + ∫
Ω

|div τ|p−2 div ∆τ div δτ
+ ∑|α|≤1∫

Ω

|Dαv|p−2Dα∆vDαδv].
This looks like a weighted “inner product”, with |τi|p−2, |div τ|p−2, |Dαv|p−2 being the weight. It is evident
that, when the error representation function is small (τi , v and their derivatives have small absolute values),

theHessian is nearly singular. In particular, when the solution is exact,ψ = (τ, v) ≡ 0, theHessian is singular.
A new method using variable p is proposed to circumvent this issue, which is the topic of Section 5.

4 Numerical Results

4.1 Eriksson–Johnson Problem

We consider the Eriksson–Johnson model problem [13]

{{{{{
{{{{{
{

∂u
∂x
− ϵ(∂

2u
∂x2
+
∂2u
∂y2
) = 0 in (0, 1) × (0, 1),

u = 0 if x = 1, y = 0, 1,

u = sin(πy) if x = 0.

This is a 2D convection-diffusion problemwith advection field β = (1, 0) and a zero source term. The solution

is driven by the inflow boundary condition. We can derive the exact solution using separation of variables,

u(x, y) = exp(s1(x − 1)) − exp(s2(x − 1))
exp(−s

1
) − exp(−s

2
)

sin(πy), where s
1
=
1 + √1 + 4π2ϵ2

2ϵ
, s

2
=
1 − √1 + 4π2ϵ2

2ϵ
.

In our numerical experiments, we set ϵ = 0.01, and we use the ultraweak formulation (which defines the

operator B).

Choice of Test Norm. In our residual-minimization framework (2.1), the test norm enters the algorithm

directly through the expression of a cost function. In DPG, the choices of a test norm can sometimes pose

a challenge (see [10]). However, in this paper, we do not concern ourselves with small ϵ, and it suffices to

work with mathematician’s test norm and adjoint graph norm, which will be introduced now.

Mathematician’s Test Norm. The mathematician’s test norm is defined as

‖(τ, v)‖pM := ‖τ‖p + ‖div τ‖p + ‖v‖p + ‖∇v‖p ,

where ‖ ⋅ ‖ denotes standard Lp(Ω)-norm.
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(a) Exact solution (b) p = 2 (c) p = 4
Figure 1: Solution of Eriksson–Johnson problem using mathematician’s test norm. The field u is plotted using the same
color scheme across three subfigures.

(a) Exact solution (b) p = 2 (c) p = 4
Figure 2: Solution of Eriksson–Johnson problem using adjoint graph norm. The field u is plotted using the same color scheme
across three subfigures.

Adjoint Graph Norm. The definition of adjoint graph norm makes use of the adjoint operator A∗. In the

convection-diffusion problem we consider, the primal operator A corresponding to the first-order system is

defined as A(σ, u) := (ϵ−1σ − ∇u + ϵ−1βu, −div σ), and A∗ is its formal adjoint,

A∗(τ, v) = (ϵ−1τ + ∇v, div τ + ϵ−1β ⋅ τ).
The adjoint graph norm is defined to be

‖(τ, v)‖pAG := ‖(τ, v)‖p + ‖A∗(τ, v)‖p ,
where ‖(τ, v)‖p := ‖τ‖p + ‖v‖p.

We divide the domain into 4 × 4 square elements. The polynomial order (in the exact sequence logic) is

set to be (3, 3). Figure 1 presents the numerical solution obtained with p = 2 and p = 4 alongside the exact
solution. As the red color means greater values of u, we can see that the Banach solution (p = 4) is closer to
the exact solution (redder) than the Hilbert one (p = 2). We plot the same figure for adjoint graph norm in

Figure 2, and the same trend can be observed.

In order to better compare the solutions, we draw a profile of u along the line y = 0.5. We also plot the

solution for p = 3 to make the trend more visible. In Figure 3, we can see that both the Hilbert and Banach

solutions underestimate u; however, as we increase p from two to four, the solution is closer and closer to the

exact one. At the same time, we also observe that use of adjoint graph norm produces a better solution than

mathematician’s test norm.

Adaptivity. The DPG method has one key advantage when it comes to adaptivity: ‖ψ‖ as a built-in a pos-

teriori error estimator [3]. In practice, we use η = 1

p ‖ψ‖
p
V as the error estimator. We use the greedy strat-

egy, marking for h-refinement those elements where η > factor ∗ η
max

. In our numerical experiments, we

choose factor = 0.25. The initial mesh is chosen to be the same 4 × 4mesh as before. Moreover, wework with

the adjoint graph norm only as it has already been demonstrated to perform better than mathematician’s

test norm.
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(a) Mathematician’s test norm (b) Adjoint graph norm

Figure 3: Profile of u along y = 0.5. Dashed black line represents exact solution; solid blue line denotes Hilbert solution;
solid green and red line stands for Banach solution with p = 3 and p = 4, respectively.

(a) Solution after 2 refinements, p = 4 (b) Profile along y = 0.5
Figure 4: Solution of Eriksson–Johnson problem using adjoint graph norm. (a) numerical solution of u after 2 refinements
obtained for p = 4. (b) the profile of u along y = 0.5, for both p = 2 and p = 4. Black line represents exact solution, blue line
denotes Hilbert solution, and red line stands for Banach solution.

Figure 4 (a) shows the solution u alongside themesh after two refinements, where the same color scheme

as in Figures 1 and 2 is used. As expected, mesh refinement occurs where the boundary layer resides. Fig-

ure 4 (b) displays the profile of u along y = 0.5. It can be seen that numerical solution obtained with p = 4
almost coincides with the exact solution. As the refinements proceed, the difference between the Hilbert and

Banach versions becomes less significant.

4.2 Egger–Schöberl Problem

We also study the Egger–Schöberl problem [12]

{
− ϵ∆u + β ⋅ ∇u = f in Ω := (0, 1) × (0, 1),

u = 0 on ∂Ω,

where f is chosen such that the exact solution is given by

u(x, y) = [x + e
β
1
x
ϵ − 1

1 − e β
1

ϵ

][y + e
β
2
y
ϵ − 1

1 − e β
2

ϵ

].
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(a) Exact solution (b) p = 2 (c) p = 4
Figure 5: Solution of Egger–Schöberl problem using mathematician’s test norm. The field u is plotted using the same color
scheme across three subfigures.

(a) Exact solution (b) p = 2 (c) p = 4
Figure 6: Solution of Egger–Schöberl problem using adjoint graph norm. The field u is plotted using the same color scheme
across three subfigures.

In our numerical experiments, we set β to be (1, 1) and ϵ to be 0.01. The same 4 × 4 mesh and polynomial

order of (3, 3) as for the Eriksson–Johnson are used.
Figure 5 and Figure 6 show the exact solution and numerical solution obtained with mathematician’s

test norm and adjoint graph norm, respectively. Figure 7 displays the profile of u along the line y = 0.5. We

have the samefindings as for the Eriksson–Johnsonproblem: increasing p improves the solution; the solution

obtained with adjoint graph norm is overall better than that obtained with mathematician’s test norm.

Adaptivity. Figure 8 (a) depicts the solution after three refinements, for p = 4 and adjoint graph norm, and

Figure 8 (b) draws the profile of u along y = 0.5. The refinement occurs both near the top and the right side,

in accordance with the location of the boundary layer. After three refinements, again, we observe that the

numerical solution agrees reasonably well with the exact one.

4.3 A Posteriori Error Analysis

In Which Norm Should We Measure the Error? As proposed in [22], we can introduce the optimal test norm

when V is reflexive and B is bijective. For our unbroken ultraweak formulation (2.3), ‖v‖
opt
= ‖A∗v‖Lp , where

v denotes the group test variable. From (1.1), the minimum residual formulation of DPG, we know that DPG

is a projection in the energy norm, i.e.

‖u − uh‖E := ‖B(u − uh)‖V󸀠 = min

wh∈Uh
‖u − wh‖E .

When we work with the optimal test norm, the energy norm reduces to the trial norm

‖w‖E = sup
v∈V ⟨Bw, v⟩‖v‖

opt

= sup
v∈V (w, A∗v)‖A∗v‖Lp = ‖w‖Lp󸀠 ,

where p󸀠 is the conjugate exponent to p. Thus the solution uh would be the best approximation of u in Uh
measured in Lp󸀠 norm, provided we use optimal test norm and ideal DPG. In practice, we use the adjoint
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(a) Mathematician’s test norm (b) Adjoint graph norm

Figure 7: Profile of u along y = 0.5. Dashed black line represents exact solution; solid blue line denotes Hilbert solution; solid
green and red line stands for Banach solution with p = 3 and p = 4, respectively.

(a) Solution after three refinements, p = 4 (b) Profile along y = 0.5
Figure 8: Solution of Egger–Schöberl problem using adjoint graph norm. Black line represents exact solution, and red line
stands for Banach solution.

graph norm, also known as “quasi-optimal test norm”, which is equivalent to the optimal test norm. Let γA
be the boundedness below constant for A and A∗, i.e., ‖v‖ ≤ γ−1A ‖A∗v‖. We have

‖A∗v‖p ≤ ‖v‖p + ‖A∗v‖p ≤ (γ−pA + 1)‖A∗v‖p ,
or equivalently,

‖A∗v‖ ≤ ‖v‖AG ≤ (γ−pA + 1) 1p ‖A∗v‖.
In this case, the energy norm satisfies

(γ−pA + 1)− 1p ‖w‖Lp󸀠 ≤ ‖w‖E = sup
v∈V (w, A∗v)‖v‖AG

≤ ‖w‖Lp󸀠 .
Hence the equivalence between energy norm and Lp󸀠 norm. Moreover, we adopt broken test spaces and have

to discretize the test space to solve the problem (practical DPG instead of ideal). Still we expect to see near
best approximation in Lp󸀠 norm. Therefore, we measure the error in our solution with Lp󸀠 norm.

HowDoWeCompute theResidual? In our program, the error representation functionψ is calculated element-

wise after the solution of uh. For simplicity, we use uh to denote both the field and trace variables. Further,
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(a) Eriksson–Johnson problem (b) Egger–Schöberl problem

Figure 9: Error and residual in adaptive solution, where p = 4 and adjoint graph norm is used. Red line indicates error, and blue
line stands for residual. This is a log-log plot, where x-axis represents number of dofs.

ψ ∈ Vr satisfies the equation

⟨RVr (ψ), vr⟩ = l(vr) − ⟨Buh , vr⟩ for all vr ∈ Vr ,

where Vr is the (discretized) enriched test space. As proven in [18, Theorem 3],

‖RVr (ψ)‖V󸀠
r
= ‖ψ‖p−1Vr

= (∑
K
‖ψK‖

p
V(K)) p−1p ,

where K is the element index and V(K) is Sobolev space over the element. Specifically,

V(K) = Wp(div, K) ×W1,p(K)

for the convection-diffusion problem with ultraweak formulation. This provides a formula for the residual

‖l − Buh‖V󸀠
r
= ‖RVr (ψ)‖V󸀠

r
.

What Is theRelation between Error andResidual? This question inHilbert space is answered in [3]. In general

Banach space setting, Muga and van der Zee have proven the following a posteriori error estimate (for details,

see [19, Theorem 4.7]):

‖u − uh‖U ≤
1

γB
osc(l) + CΠ

γB
‖l − Buh‖V󸀠

r
,

where γB is the boundedness-below constant for B, C
Π
is the continuity constant for a Fortin operator

Π : V→ Vr, and

osc(l) := sup
v∈V ⟨l, v − Πv⟩‖v‖V

is the data oscillation term. In essence, this theorem tells us that the residual ‖l − Buh‖V󸀠
r
is a good estimator

of the error ‖u − uh‖U.
In Figure 9, we plot ‖u − uh‖Lp󸀠 and ‖l − Buh‖V󸀠

r
against number of degrees of freedom, for an h-adaptive

solution of our model problems using adjoint graph norm and p = 4. It can be seen that, as we refine the

mesh, both error and residual decrease monotonically, and they follow approximately the same trend.

Figure 10 illustrates the behavior of relative error aswe refine themesh, for bothHilbert andBanach solu-

tions. Although we are not presenting the refined meshes here, we observe that Banach and Hilbert adaptive

approaches lead to very similar meshes. It is evident that, for the same number of dofs, the Banach solution

comes with a significantly smaller relative error. For the Egger–Schöberl problem, it is even impossible to

reach the 1% tolerance in relative error when p = 2, for the number of dofs we have calculated with (which

can be finished on a laptop in several minutes). The improvement in accuracy has its price, naturally, in that
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(a) Eriksson–Johnson problem (b) Egger–Schöberl problem

Figure 10: Relative error versus number of dofs. Blue line represents Hilbert solution (p = 2), while red line stands for Banach
solution (p = 4); dashed line corresponds to 1% relative error.

wehave to deal with a nonlinear problem in the Banach setting (p = 4). In our problem setting, solution of the

nonlinear system requires less than ten steps of Newton iteration, i.e. ten times the cost of the Hilbert version.

However, the number of dofs necessary for the relative error to reach a particular tolerance is much less in

the Banach setting. As the time required to solve the linear system scales quadratically or even cubically as

the number of dofs grows, we contend that the additional effort involved with the Banach version pays off.

Another advantage of the Banach version is the elimination of Gibbs phenomena, which is detailed in the

paper by Houston, Roggendorf and van der Zee [16].

Fortin Operators. Our a posteriori error analysis is based on the existence of a Fortin operator. Construction
of Fortin operators in [11, 14] generalizes immediately to the Lp spaces for p ≥ 2. Recall the overall strategy.
Step 1: Establish L2-continuity of the operators on the master element K̂.
Step 2: Use (standard) scaling arguments to obtain the continuity of the operators on a physical element K

(with h-independent continuity constant).
Step 3: Use the commutativity of operators to conclude continuity in the energy norms.

It is now sufficient simply to notice that the L2-continuity on the master element implies immediately the

continuity in the Lp-norm. Consider, e.g., the H(div) Fortin operator Πdiv

. First, the Lp spaces on a bounded
domain form a scale (see, e.g., [20, Proposition 3.9.3]). In other words, for p ≥ 2,

‖σ‖H(div,K̂) ≤ C1‖σ‖Wp(div,K̂), σ ∈ Wp(div, K̂),

with C
1
> 0. Additionally, by the finite-dimensionality argument, there exists a constant C

2
> 0 such that

‖Πdivσ‖Lp(K̂) ≤ C2‖Πdivσ‖L2(K̂).
Consequently,

‖Πdivσ‖Lp(K̂) ≤ C2‖Πdivσ‖L2(K̂) ≤ C2C‖σ‖H(div,K̂) ≤ C2CC1‖σ‖Wp(div,K̂),
where C is the L2-continuity constant. Steps 2 and 3 remain unchanged.

5 Lp-DPG Method with Variable p
As discussed in Section 3.2, when we try to solve problems for simple manufactured exact solutions like

linear or quadratic function, we encounter trouble with a singular Hessian. This motivates us to propose the

Lp-DPGmethodwith a variable exponent p, in the spirit of the p( ⋅ )-Laplacianproblem [2].Weassume that the

exponent p can vary element-wise. It is unnecessary to compute with p > 2 when the solution is simple and
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can be captured by a Hilbert method. We use p > 2 where the residual is large and stay with p = 2 elsewhere.
This section describes our modification of the Lp-DPG method with variable p.

In the convex optimization formulation of Lp-DPG (2.1), we canmultiply the cost function by constant p,

ψ = argmin

φ∈(BUh)⊥‖φ‖pV − pl(φ).
This has no effect on theminimizerψ, but the Lagrangemultiplier uh as the solution to themixed system (2.2)

will be affected. If we further multiply the constraint by p, then the solution ψ, uh of the modified problem

will coincide with the original one. The constrained optimization problem now reads

minimize

φ
‖φ‖pV − pl(φ) subject to pb(δuh , φ) = 0 for all δuh ∈ Uh ,

where b is the bilinear form dictated by the problemwe consider and the formulationwe choose. The relation

between b and B is ⟨Bu, v⟩ = b(u, v).
Such reformulation of the constrained optimization problem allows for an easy generalization of the Lp-

DPG method to the Lp-DPG with a variable exponent. The latter approach, in particular, has the advantage

of reduced condition number and better robustness. After discretization of the test space using broken space

technology [4], the Lp-DPG method with variable p is defined by

minimize

φ
∑
K
‖φK‖

pK
V(K) − pK lK(φK) subject to ∑

K
pKbK(δuh , φK) = 0 for all δuh ∈ Uh ,

where pK is the constant exponent for element K, and lK , bK are restrictions of the linear and bilinear form
on element K. Problems of this type are known as p( ⋅ )-Laplacian [2]. Rather than venturing into theoretical
analysis of the newly proposedmethod, which can be a future endeavor, we report results of some numerical

experiments with the variable exponent.

HowDoWe Determine pK? This is the foremost question whenwe are concernedwith the variable exponent.

With the mesh given, we first set pK = 2 in all elements; in this way, we recover the Hilbert solution. Next

we evaluate the residual in each element, and wherever the residual is small (less than 1% of the maximum

value, for results to be reported), we retain the exponent; elsewhere we raise pK . As a remark, this strategy

for determining the variable p matches naturally the continuation in p used by the nonlinear solver – we

proceed with local steps of ∆p instead of a global step of ∆p = 1.
Figure 11 displays numerical solution of both Eriksson–Johnson problem and Egger–Schöberl problem,

using adjoint graph norm and variable exponent. The local exponent, as determined by our rule, is pK = 2 in
the four central elements, and pK = 4 elsewhere. Figure 12 shows the profile of u along y = 0.5. We observe

that the solution obtained with variable p lies approximately between the solutions for p = 2 and p = 4, as
one would expect.

(a) Eriksson–Johnson problem (b) Egger–Schöberl problem

Figure 11: Solution obtained with adjoint graph norm and variable exponent. pK = 4 for all elements adjacent to the boundary;
pK = 2 in the four central elements.
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(a) Eriksson–Johnson problem (b) Egger–Schöberl problem

Figure 12: Profile of u along y = 0.5. Solid cyan line represents variable exponent solution. Dotted blue line denotes Hilbert
solution; dotted green and red line stands for Banach solution (p = 3, 4). Exact solution is denoted by dashed black line.
6 Conclusion
In this paper, we apply the Lp-DPGmethod to 2D convection-diffusion problems. More specifically, Eriksson–

Johnson problem and Egger–Schöberl problem are studied, with either mathematician’s test norm or adjoint

graph norm employed. The Banach solution (p = 4) is compared with the Hilbert one (p = 2), and the former

is demonstrated to be generally better. We present an h-adaptivity result with Lp-DPG method, where the

refinement occurs at the right place, i.e., near the boundary layer.

We comment shortly on connections between the reported results and the work of Sarah Roggendorf

et al. [15–17, 21]. It has been shown in [16] that, for general unstructured meshes, convergence in Lp󸀠 norm
does not eliminate the Gibbs oscillations² as p󸀠 → 1. However, this does not seem to be the case for stan-

dard structured rectangular meshes designed to capture the boundary layers. This is also in agreement with

the practice of the computational fluid dynamics community, where hybrid (prismatic-tetrahedral) grids are

employed to solveNavier–Stokes equation. In [6], ChenandKallinderis suggest that the structuredprismsper-

mit the use of sufficient grid clustering near the body in the normal direction, while unstructured tetrahedra

can cover remaining complicated topologies. Our numerical experience corroborates these observations. If

we start with a uniform mesh and proceed with h-refinements driven by the method, the Lp version of the

DPG method delivers significantly better results than the Hilbert version. The oscillations are smaller and

more localized to the elements near the boundary. The overall global stability seems also to be better for the

higher p; the global shift between the exact and the underresolved numerical solutions on coarse meshes is

consistently smaller.

To solve the ill-conditioning problem associated with small residuals, we propose an Lp-DPG method

with a variable exponent p. The numerical solution looks reasonable and approximately lies between the

solutions for p = 2 and p = 4. This method has the potential of reducing condition number and speeding up

the algorithm, while retaining the benefits of Banach solution.

Funding: J. Li and L. Demkowicz were partially supported with NSF grant No. 1819101.

2 The oscillations do not disappear even for certain (crisscross) structured meshes!
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