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1 Introduction

The Discontinuous Petrov—Galerkin (DPG) method has been proposed as a novel approach to designing finite
element methods [4, 8, 9], and it offers many attractive features: guaranteed stability provided the problem
is well posed, built-in a posteriori error estimator, as well as the ability to control the norm in which the
convergence occurs. The DPG method admits the interpretation of a minimum residual method, where the
residual is measured in a dual space to the space of test functions. Consider the following abstract problem:

finduelU:
Bu=1 inV,

where U, V are trial and test spaces (Banach spaces in general), B: U — V' is a bounded linear operator
dictated by the problem and the variational formulation we choose. For a well-posed variational problem, B
is bounded below as well.

Given a discrete trial space Uy c U, the ideal DPG method (by ideal, we mean the test space is not yet
discretized) solves the following minimum residual problem:

{ﬁnd up € Uy :

(1.1)
[[Bup — U]y is minimized.

Originally, the DPG method has dealt with Hilbert test and trial spaces only. Following the pioneering work
by van der Zee et al. [15, 16, 19], we have investigated the DPG method in Banach spaces [18], focusing
on Sobolev spaces WP (Q) and WP (div, Q) (p > 2) as test spaces, in particular. The trial spaces are chosen
accordingly so as to ensure that the bilinear form (Bu, v) is bounded. In Banach spaces, the minimum resid-
ual problem (1.1) is shown to be equivalent to a convex minimization problem with linear constraints [19].
We solve the latter minimization problem using Newton’s method, which will be detailed later. Our expe-
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rience indicates that, when the residual is small, we may have trouble with Newton’s method because the
Hessian can become ill-conditioned. We propose an effective solution to the ill-conditioning problem based
on a formulation with a variable exponent p.

This article first summarizes the results of our previous work [18]; for convenience, the details of dis-
cretization and Newton’s method are described in a separate section. Then we proceed by solving various 2D
convection-diffusion problems and present the numerical results. Finally, we conclude with a section on the
LP-DPG method with variable p.

2 Theory: LP-DPG Method for the Convection-Diffusion Problem

We summarize the main theoretical result of [18] in this section. Consider problem (1.1), and assume that B
is both bounded and bounded-below. Moreover, Uy, is finite dimensional.

Theorem 1 (Existence and Uniqueness of the Solution). When V' is strictly convex, there exists a unique solu-
tion uy, to problem (1.1). In particular, the dual space to V = WYP(Q) is strictly convex for p > 2.

From now on, we shall concern ourselves with test spaces like W?(Q). Under such circumstances, it is
proven in [18, 19] that the residual minimization problem (1.1) is equivalent to the convex optimization
problem

1
Y = argmin — |}, - l(g), (2.1)
pe(BUy)- P

where
(BUp)t :={v eV : (Bbuy,v) =0 forall Suy € Up}.
Through the classical optimization theory, one can show that problem (2.1) admits a unique solution, which
is characterized by the following mixed system:
findyp eV, up e Uy :
(Ry(¥), v) + (Bup, vy =1l(v) forallveV, (2.2)
(Béup, ) =0 for all Sup € Uy,
where Ry : V — V' is the Gateaux derivative of the functional J(¢) := %Il(pllﬁ’,. Note that Ry is nonlinear for
p > 2. When p = 2, Ry reduces to the familiar Riesz operator. We refer the readers to [18, 19] for details
involving properties and formulae for Ry.

The meaning of “equivalence” between the residual minimization problem (1.1) and convex optimization
problem (2.1) is clarified by the following theorem.

Theorem 2 (Characterization of the Solution). The unique solution uy, of problem (1.1) and the unique solution
Y of problem (2.1) satisfy the mixed system (2.2). Conversely, any solution (1, up) to the mixed system (2.2)
consists of the minimizers of problem (1.1) and (2.1).

In summary, our L?-DPG method is motivated by the minimum residual problem (1.1). However, in prac-
tice, we solve the constrained convex optimization problem (2.1) instead, for which the techniques from the
convex optimization can be applied.

Convection-Diffusion Problem. To stay focused, we will consider a model convection-diffusion problem.
Given a domain Q ¢ RV, we want to solve

-V-(eVu-Bu)=f inQ,

where € is the diffusion coefficient, 8 denotes an incompressible advection field, and f is a source term. We
assume a non-homogeneous Dirichlet boundary condition

u=ug onl =0Q.



DE GRUYTER J. Li and L. Demkowicz, LP-DPG Method with Application to 2D Convection-Diffusion Problems =— 651

Classical Variational Formulation. The standard variational formulation [7] is as follows:
findu € tig+U:
jeVu-Vv—uﬁ-Vv: va forallv eV,
Q Q
where i is a finite energy lift of ug into Wh?'(Q), i.e. iip € WHP'(Q), tiolaq = Uo, and
U =WaP'(Q) :={ue W' (Q) : u=00n0Q},
Vv =W,"(Q),

where p > 2, % + 1% = 1. The well-posedness of the convection-diffusion-reaction equation in the Wé’p ’(Q)-
W(l)’p (Q) setting is proven in [15], provided that Q is bounded Lipschitz, p < 4 in 2D (or p < 3 in 3D), and
Friedrich’s positivity condition is satisfied. Although here we are not considering a reaction term, numerical
stability is still observed.

Ultraweak Variational Formulation. To derive the ultraweak formulation, we introduce the total flux
o=€eVu-Pu

and rewrite the convection-diffusion problem as a first-order system. Then we multiply the system by test
functions and integrate by parts. The final result is as follows:

find o e (LP (Q)N, u e LV (Q) :
(0, 1)+ (u,divt + €18 17) = (ug, 7-ny forall € WP(div, Q), (2.3)
(0,Vv) = (f, v) forallv e W, (Q),
1, 1 _
wherep22,5+l7 =1,and
WP(div, Q) := {1 € (Lp(Q))N cdivt € LP(Q)}.
As usual, we use the notation
(u,v) = (u,v)q = Juv, (U, v) = (U, v)sq := j uv.
Q 20

For details on the derivation and the definition of involved Sobolev spaces, we refer readers to [18].

3 Discretization and Linearization

3.1 Discretizing 'V with Broken Test Spaces

The test space V is discretized using the broken space technology [4]. Given a mesh Qp, we consider broken
test spaces WP(div, Qp), WP (Qp), defined as
WP (div, Qy) := {0 € (LP(Q)N : olx € WP(div, K), K € Qp} = H WP (div, K),
KeQy

WP (Qp) := {w € LP(Q) : wlx € W'P(K), K € Qp} = [ | WHP(K).
KeQy,

As new test functions are no longer conforming, we must introduce interface fluxes as additional unknowns.
The ultraweak formulation with broken test spaces is given as follows:
find o € (L” (Q)Y, u € LP'(Q), Gn € WP (Ty), & € W5 (Ty) :
u=up onT,
(o,e'1) + (u,divp T+ €' B-1) - (4, T-n)r, =0 for all T € WP (div, Qp),
(0, Vav) = {Gn, V)1, = (f,v) forallv e WHP(Qp),
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where
(On, V)T, = z (On,vK)ok, (U, T-mr, := Z (U, T - Yok
KeQy KeQy
are the duality pairings on the mesh skeleton. For details on the trace spaces and well-posedness of the “bro-
ken” formulation, the readers are referred to [18, Appendix B]. We emphasize that broken spaces are easier
to discretize than globally conforming ones; moreover, they lead to block diagonal Gram matrix, which can
be inverted element-wise.

The last step of discretization is to replace WP (div, Qn), WP (Qy) by piecewise polynomial spaces. If the
trial space U is discretized with polynomials of degree r,* then we discretize the test space V with piecewise
polynomials of degree r + Ar on the same mesh with Ar > 1. As shown in [5, 16], Ar = 1 should suffice for the
convection-diffusion problems, and this is the value we adopt in the reported numerical experiments.

3.2 Newton’s Method for the Minimization Problem

Remark. In the following discussion, the solution u represents a group variable. For the ultraweak formula-
tion with broken test spaces, u = (g, u, 0y, ti). Thus, in particular, the orthogonality condition b(6up, @) = 0
stands for four orthogonal conditions obtained by testing with the four components of duj. Similarly,
¢@n = (1, v) represents also a group variable. In what follows, we drop the special font for u.

Let V, denote the fully discrete test space. We seek to solve the discretized version of (2.1), a convex mini-
mization problem with linear constraints,

mig f(on) subjectto b(Sup, @r) =0 forall duy € Uy,
PreV,

where f(¢n) = £lnl, - Upn).

Following standard practice in numerical optimization, we use Newton’s method to solve this problem
(cf. [1, Section 10.2]). Define the stiffness matrix Bj; := b(ej, g;), where e; is the j-th basis function for Up,
and g; is the i-th basis function for V,. Then the linear constraint can be written as BT ¢, = 0, where ¢,, is the
coefficient vector of ¢, under the basis {g1, g2, . . . , gn}, n = dim V,. For the Newton iteration, we can always
start with a feasible ¢, (by feasible, we mean it satisfies the constraint). In practice, we start with ¢ = 0. The
Newton step A, at feasible ¢y, is characterized by

[sz(lph) B] [Atpm] _ [—Vf(lph)]
BT o up |~ 0 ’

Note that f: R” — R is the discretized version of f: V — R. It is defined as
n -
flep) == f(z <p§1’)gi>.
i=1

With broken test spaces, the Newton step A¢,; can be condensed out element-wise. We assemble and solve
the linear system for uy; then we compute Ag,, locally. After obtaining A¢,;, we do a backtracking line search
to ensure the Armijo sufficient decrease condition (see [1, Section 9.2]),

F(on + tAny) < f(@n) + at VF(@n) Apye,

where a is some constant in (0, 1). In our computations, we choose a = 107,
The Newton decrement is defined as

AMn) = D@LV (@ )A@,)*

1 In the exact sequence logic. This amounts to order r for a Wl’p'-conforming element and order r — 1 for an Lp’-conforming
element.
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and serves as an error indicator for Newton’s method. We stop the Newton iteration when A is small enough.
The tolerance is set to 107 in our numerical experiments.

For p > 2, say p = 4, we combine the Newton iteration with a continuation strategy. We start with p = 2
and solve for the minimizer 1. Then we use this 1 as the initial point for p = 3. Next the minimizer is again
used to initialize Newton’s method for p = 4.

Computing the Hessian. Note that we need to invert V2f(¢p,,) in each Newton step. We provide the formula
for the Hessian because of its great importance and influence on the numerical behavior of the algorithm. As
an example, consider the ultraweak formulation (2.3) and mathematician’s test norm,

Iz, VIR, == ITlP + Idiv T]]? + [vIP + [Vv]]P,

where | - || denotes standard LP (Q)-norm. The Hessian of f in the functional form is

N
(V2 (1, v); (6T, 8v), (AT, AV)) = (p - 1)[ Y [ri-2arisr+ [idive? divar diver
i=1g o
+ ) ID“vlpzD“AvD"‘&v] .
lal<1 )
This looks like a weighted “inner product”, with |t;|P~2, |div T|[P~2, [D*v|P~2 being the weight. It is evident
that, when the error representation function is small (7;, v and their derivatives have small absolute values),

the Hessian is nearly singular. In particular, when the solution is exact, i = (1, v) = 0, the Hessian is singular.
A new method using variable p is proposed to circumvent this issue, which is the topic of Section 5.

4 Numerical Results

4.1 Eriksson—Johnson Problem
We consider the Eriksson—Johnson model problem [13]

2 2
ou (a“ a“):o in (0, 1) x (0, 1),

— — + —
ox ox2  9y?
u=0 ifx=1,y=0,1,
u =sin(my) ifx =0.
This is a 2D convection-diffusion problem with advection field § = (1, 0) and a zero source term. The solution
is driven by the inflow boundary condition. We can derive the exact solution using separation of variables,
1+ V1 +4me? s - 1- V1 +4m2e?
2¢ ’ 2¢ )

exp(s1(x — 1)) —exp(s2(x - 1))
exp(-s1) — exp(-sz)

ux,y) = sin(rty), where sy = 5=

In our numerical experiments, we set € = 0.01, and we use the ultraweak formulation (which defines the
operator B).

Choice of Test Norm. In our residual-minimization framework (2.1), the test norm enters the algorithm
directly through the expression of a cost function. In DPG, the choices of a test norm can sometimes pose
a challenge (see [10]). However, in this paper, we do not concern ourselves with small €, and it suffices to
work with mathematician’s test norm and adjoint graph norm, which will be introduced now.

Mathematician’s Test Norm. The mathematician’s test norm is defined as
I(T, VI == ITlIP + Idiv )P + [vIP + Vv,

where | - || denotes standard L? (Q)-norm.
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(a) Exact solution b)yp=2 ©@p=4

Figure 1: Solution of Eriksson—Johnson problem using mathematician’s test norm. The field u is plotted using the same
color scheme across three subfigures.

— T T .

(a) Exact solution b)yp=2 ©@©p=4

Figure 2: Solution of Eriksson—Johnson problem using adjoint graph norm. The field u is plotted using the same color scheme
across three subfigures.

Adjoint Graph Norm. The definition of adjoint graph norm makes use of the adjoint operator A*. In the
convection-diffusion problem we consider, the primal operator A corresponding to the first-order system is
defined as A(o, u) := (6710 - Vu + €' Bu, —div 0), and A* is its formal adjoint,

A*(t,v) = (et + Vv, divt + €18 1).
The adjoint graph norm is defined to be
Iz, I = T, VIP + I1A* (T, V)IF,

where [[(7, VIP := [I7|IP + [[vIP.

We divide the domain into 4 x 4 square elements. The polynomial order (in the exact sequence logic) is
set to be (3, 3). Figure 1 presents the numerical solution obtained with p = 2 and p = 4 alongside the exact
solution. As the red color means greater values of u, we can see that the Banach solution (p = 4) is closer to
the exact solution (redder) than the Hilbert one (p = 2). We plot the same figure for adjoint graph norm in
Figure 2, and the same trend can be observed.

In order to better compare the solutions, we draw a profile of u along the line y = 0.5. We also plot the
solution for p = 3 to make the trend more visible. In Figure 3, we can see that both the Hilbert and Banach
solutions underestimate u; however, as we increase p from two to four, the solution is closer and closer to the
exact one. At the same time, we also observe that use of adjoint graph norm produces a better solution than
mathematician’s test norm.

Adaptivity. The DPG method has one key advantage when it comes to adaptivity: ||| as a built-in a pos-
teriori error estimator [3]. In practice, we use 1 = P%III/)II% as the error estimator. We use the greedy strat-
egy, marking for h-refinement those elements where 1 > factor = nmax. In our numerical experiments, we
choose factor = 0.25. The initial mesh is chosen to be the same 4 x 4 mesh as before. Moreover, we work with
the adjoint graph norm only as it has already been demonstrated to perform better than mathematician’s
test norm.
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Figure 3: Profile of u along y = 0.5. Dashed black line represents exact solution; solid blue line denotes Hilbert solution;
solid green and red line stands for Banach solution with p = 3 and p = 4, respectively.
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Figure 4: Solution of Eriksson—Johnson problem using adjoint graph norm. (a) numerical solution of u after 2 refinements
obtained for p = 4. (b) the profile of u along y = 0.5, for both p = 2 and p = 4. Black line represents exact solution, blue line
denotes Hilbert solution, and red line stands for Banach solution.

Figure 4 (a) shows the solution u alongside the mesh after two refinements, where the same color scheme
as in Figures 1 and 2 is used. As expected, mesh refinement occurs where the boundary layer resides. Fig-
ure 4 (b) displays the profile of u along y = 0.5. It can be seen that numerical solution obtained with p = 4

almost coincides with the exact solution. As the refinements proceed, the difference between the Hilbert and
Banach versions becomes less significant.

4.2 Egger-Schoberl Problem

We also study the Egger—Schéberl problem [12]
—eAu+fB-Vu=f inQ:=(0,1)x(0,1),
{ u=0 onoQ,
where f is chosen such that the exact solution is given by

e/%—l e’%—l
u(x,y) =[x+ y+ |-
1-e 1

o
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L L L

(a) Exact solution b)yp=2 ©@p=4

Figure 5: Solution of Egger-Schoberl problem using mathematician’s test norm. The field u is plotted using the same color
scheme across three subfigures.

ﬁ I . I |
‘L ‘L

(a) Exact solution b)yp=2 ©@p=4

—~ S T .

Figure 6: Solution of Egger-Schaoberl problem using adjoint graph norm. The field u is plotted using the same color scheme
across three subfigures.

In our numerical experiments, we set § to be (1, 1) and € to be 0.01. The same 4 x 4 mesh and polynomial
order of (3, 3) as for the Eriksson—Johnson are used.

Figure 5 and Figure 6 show the exact solution and numerical solution obtained with mathematician’s
test norm and adjoint graph norm, respectively. Figure 7 displays the profile of u along the line y = 0.5. We
have the same findings as for the Eriksson—Johnson problem: increasing p improves the solution; the solution
obtained with adjoint graph norm is overall better than that obtained with mathematician’s test norm.

Adaptivity. Figure 8 (a) depicts the solution after three refinements, for p = 4 and adjoint graph norm, and
Figure 8 (b) draws the profile of u along y = 0.5. The refinement occurs both near the top and the right side,
in accordance with the location of the boundary layer. After three refinements, again, we observe that the
numerical solution agrees reasonably well with the exact one.

4.3 A Posteriori Error Analysis

In Which Norm Should We Measure the Error? As proposed in [22], we can introduce the optimal test norm
when V is reflexive and B is bijective. For our unbroken ultraweak formulation (2.3), [[Vllopt = [A*Vl|z», where
v denotes the group test variable. From (1.1), the minimum residual formulation of DPG, we know that DPG
is a projection in the energy norm, i.e.

lu - uplg := 1B(u - up)lly: = min u - wp|g.
wpelUp

When we work with the optimal test norm, the energy norm reduces to the trial norm

(Bw, v) (w, A*v)
Iwlg = sup ~—"— = sup ————
vev IVllopt  vev IA*VILe

= Wi,

where p' is the conjugate exponent to p. Thus the solution u, would be the best approximation of u in Uy
measured in L?’ norm, provided we use optimal test norm and ideal DPG. In practice, we use the adjoint
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Figure 7: Profile of u along y = 0.5. Dashed black line represents exact solution; solid blue line denotes Hilbert solution; solid
green and red line stands for Banach solution with p = 3 and p = 4, respectively.
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(@) Solution after three refinements, p = 4 (b) Profile along y = 0.5

Figure 8: Solution of Egger-Schoberl problem using adjoint graph norm. Black line represents exact solution, and red line
stands for Banach solution.

graph norm, also known as “quasi-optimal test norm”, which is equivalent to the optimal test norm. Let y4
be the boundedness below constant for A and A*, i.e., |v|| < y;ll |[A*v|. We have

IA*VIP < [VIP + 1A*VIP < (v,F + DIA*VIP,
or equivalently,

- FEN
A VI < IVlag < (v, + D)7 A"V

In this case, the energy norm satisfies

s (w, A*v)
v+ 1P Iwly < Iwle = sup

——— < Wl
vev  IVlac LP

Hence the equivalence between energy norm and LP' norm. Moreover, we adopt broken test spaces and have
to discretize the test space to solve the problem (practical DPG instead of ideal). Still we expect to see near
best approximation in L?’ norm. Therefore, we measure the error in our solution with L?' norm.

How Do We Compute the Residual? Inour program, the error representation function i is calculated element-
wise after the solution of uy. For simplicity, we use uy to denote both the field and trace variables. Further,
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(@) Eriksson—Johnson problem (b) Egger-Schéberl problem

Figure 9: Error and residual in adaptive solution, where p = 4 and adjoint graph norm is used. Red line indicates error, and blue
line stands for residual. This is a log-log plot, where x-axis represents number of dofs.

Y € 'V, satisfies the equation
(Rv, (), vr) = l(vy) = (Bup, vy) forallv, € Vp,

where V, is the (discretized) enriched test space. As proven in [18, Theorem 3],
) p-1
IRy, @)y = 19I5, " = (;nwu%(,o) 7,

where K is the element index and V(K) is Sobolev space over the element. Specifically,
V(K) = WP(div, K) x WP (K)

for the convection-diffusion problem with ultraweak formulation. This provides a formula for the residual
I = Bunlly: = IRv,@)lly-

What Is the Relation between Error and Residual? This question in Hilbert space is answered in [3]. In general
Banach space setting, Muga and van der Zee have proven the following a posteriori error estimate (for details,
see [19, Theorem 4.7]):

1 C
lu = uplly < — osc(l) + — |l - Bupllyr,
V4:} VB r

where yp is the boundedness-below constant for B, Cy is the continuity constant for a Fortin operator
Im: v—-7Vv,,and

osc(l) := sup M
veV Iviv

is the data oscillation term. In essence, this theorem tells us that the residual ||l - Bup, ly:isa good estimator
of the error ||u — up|y.

In Figure 9, we plot [[u — up|l;,» and ||l - Bun|ly: against number of degrees of freedom, for an h-adaptive
solution of our model problems using adjoint graph norm and p = 4. It can be seen that, as we refine the
mesh, both error and residual decrease monotonically, and they follow approximately the same trend.

Figure 10 illustrates the behavior of relative error as we refine the mesh, for both Hilbert and Banach solu-
tions. Although we are not presenting the refined meshes here, we observe that Banach and Hilbert adaptive
approaches lead to very similar meshes. It is evident that, for the same number of dofs, the Banach solution
comes with a significantly smaller relative error. For the Egger—Schoberl problem, it is even impossible to
reach the 1% tolerance in relative error when p = 2, for the number of dofs we have calculated with (which
can be finished on a laptop in several minutes). The improvement in accuracy has its price, naturally, in that
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Figure 10: Relative error versus number of dofs. Blue line represents Hilbert solution (p = 2), while red line stands for Banach
solution (p = 4); dashed line corresponds to 1 % relative error.

we have to deal with a nonlinear problem in the Banach setting (p = 4). In our problem setting, solution of the
nonlinear system requires less than ten steps of Newton iteration, i.e. ten times the cost of the Hilbert version.
However, the number of dofs necessary for the relative error to reach a particular tolerance is much less in
the Banach setting. As the time required to solve the linear system scales quadratically or even cubically as
the number of dofs grows, we contend that the additional effort involved with the Banach version pays off.
Another advantage of the Banach version is the elimination of Gibbs phenomena, which is detailed in the
paper by Houston, Roggendorf and van der Zee [16].

Fortin Operators. Our a posteriori error analysis is based on the existence of a Fortin operator. Construction

of Fortin operators in [11, 14] generalizes immediately to the L? spaces for p > 2. Recall the overall strategy.

Step 1: Establish L2-continuity of the operators on the master element K.

Step 2: Use (standard) scaling arguments to obtain the continuity of the operators on a physical element K
(with h-independent continuity constant).

Step 3: Use the commutativity of operators to conclude continuity in the energy norms.

It is now sufficient simply to notice that the L?-continuity on the master element implies immediately the

continuity in the L?-norm. Consider, e.g., the H(div) Fortin operator IT4V, First, the L? spaces on a bounded

domain form a scale (see, e.g., [20, Proposition 3.9.3]). In other words, for p > 2,

”0"H(div,13) < Cilal wediv,k)> O € WP (div, K),
with C; > 0. Additionally, by the finite-dimensionality argument, there exists a constant C, > 0 such that
Mol 2y < C2ANTW 0l o g,

Consequently,
Mol ) < C2ATM 0l a4y < C2Cl0N vy < C2CC1IO o iy, s

where C is the L?-continuity constant. Steps 2 and 3 remain unchanged.

5 LP-DPG Method with Variable p

As discussed in Section 3.2, when we try to solve problems for simple manufactured exact solutions like
linear or quadratic function, we encounter trouble with a singular Hessian. This motivates us to propose the
LP-DPG method with a variable exponent p, in the spirit of the p( - )-Laplacian problem [2]. We assume that the
exponent p can vary element-wise. It is unnecessary to compute with p > 2 when the solution is simple and
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can be captured by a Hilbert method. We use p > 2 where the residual is large and stay with p = 2 elsewhere.
This section describes our modification of the LP-DPG method with variable p.

In the convex optimization formulation of L?-DPG (2.1), we can multiply the cost function by constant p,

¥ = argmin|lo|f, - pl(p).
Pe(BU)*

This has no effect on the minimizer ¥, but the Lagrange multiplier uy as the solution to the mixed system (2.2)
will be affected. If we further multiply the constraint by p, then the solution i, uj of the modified problem
will coincide with the original one. The constrained optimization problem now reads

mingpmize ||go||’\’7 - pl(p) subjectto pb(éup,p)=0 forall dup € Up,

where b is the bilinear form dictated by the problem we consider and the formulation we choose. The relation
between b and B is (Bu, v) = b(u, v).

Such reformulation of the constrained optimization problem allows for an easy generalization of the L?-
DPG method to the L?-DPG with a variable exponent. The latter approach, in particular, has the advantage
of reduced condition number and better robustness. After discretization of the test space using broken space
technology [4], the L?-DPG method with variable p is defined by

miniwmize Z”‘PK"%IEK) - plk(@k) subjectto Y prbg(8un, px) =0 forall Sup € Up,
I3 K

where py is the constant exponent for element K, and I, bk are restrictions of the linear and bilinear form
on element K. Problems of this type are known as p(-)-Laplacian [2]. Rather than venturing into theoretical
analysis of the newly proposed method, which can be a future endeavor, we report results of some numerical
experiments with the variable exponent.

How Do We Determine px? This is the foremost question when we are concerned with the variable exponent.
With the mesh given, we first set px = 2 in all elements; in this way, we recover the Hilbert solution. Next
we evaluate the residual in each element, and wherever the residual is small (less than 1 % of the maximum
value, for results to be reported), we retain the exponent; elsewhere we raise pg. As a remark, this strategy
for determining the variable p matches naturally the continuation in p used by the nonlinear solver — we
proceed with local steps of Ap instead of a global step of Ap = 1.

Figure 11 displays numerical solution of both Eriksson-Johnson problem and Egger—Schdéberl problem,
using adjoint graph norm and variable exponent. The local exponent, as determined by our rule, is px = 2 in
the four central elements, and px = 4 elsewhere. Figure 12 shows the profile of u along y = 0.5. We observe
that the solution obtained with variable p lies approximately between the solutions for p = 2 and p = 4, as

one would expect.
A |
b b

(@) Eriksson—Johnson problem (b) Egger-Schoberl problem
Figure 11: Solution obtained with adjoint graph norm and variable exponent. px = 4 for all elements adjacent to the boundary;
pk = 2 in the four central elements.
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Figure 12: Profile of u along y = 0.5. Solid cyan line represents variable exponent solution. Dotted blue line denotes Hilbert
solution; dotted green and red line stands for Banach solution (p = 3, 4). Exact solution is denoted by dashed black line.

6 Conclusion

In this paper, we apply the LP-DPG method to 2D convection-diffusion problems. More specifically, Eriksson—
Johnson problem and Egger—Schoberl problem are studied, with either mathematician’s test norm or adjoint
graph norm employed. The Banach solution (p = 4) is compared with the Hilbert one (p = 2), and the former
is demonstrated to be generally better. We present an h-adaptivity result with LP-DPG method, where the
refinement occurs at the right place, i.e., near the boundary layer.

We comment shortly on connections between the reported results and the work of Sarah Roggendorf
etal.[15-17, 21]. It has been shown in [16] that, for general unstructured meshes, convergence in LP' norm
does not eliminate the Gibbs oscillations? as p’ — 1. However, this does not seem to be the case for stan-
dard structured rectangular meshes designed to capture the boundary layers. This is also in agreement with
the practice of the computational fluid dynamics community, where hybrid (prismatic-tetrahedral) grids are
employed to solve Navier—Stokes equation. In [6], Chen and Kallinderis suggest that the structured prisms per-
mit the use of sufficient grid clustering near the body in the normal direction, while unstructured tetrahedra
can cover remaining complicated topologies. Our numerical experience corroborates these observations. If
we start with a uniform mesh and proceed with h-refinements driven by the method, the LP version of the
DPG method delivers significantly better results than the Hilbert version. The oscillations are smaller and
more localized to the elements near the boundary. The overall global stability seems also to be better for the
higher p; the global shift between the exact and the underresolved numerical solutions on coarse meshes is
consistently smaller.

To solve the ill-conditioning problem associated with small residuals, we propose an L?-DPG method
with a variable exponent p. The numerical solution looks reasonable and approximately lies between the
solutions for p = 2 and p = 4. This method has the potential of reducing condition number and speeding up
the algorithm, while retaining the benefits of Banach solution.

Funding: J. Li and L. Demkowicz were partially supported with NSF grant No. 1819101.

2 The oscillations do not disappear even for certain (crisscross) structured meshes!
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