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ABSTRACT

While reinforcement learning (RL) has made great advances in scal-
ability, exploration and partial observability are still active research
topics. In contrast, Bayesian RL (BRL) provides a principled answer
to both state estimation and the exploration-exploitation trade-off,
but struggles to scale. To tackle this challenge, BRL frameworks
with various prior assumptions have been proposed, with varied
success. This work presents a representation-agnostic formulation
of BRL under partially observability, unifying the previous mod-
els under one theoretical umbrella. To demonstrate its practical
significance we also propose a novel derivation, Bayes-Adaptive
Deep Dropout rl (BADDr), based on dropout networks. Under this
parameterization, in contrast to previous work, the belief over the
state and dynamics is a more scalable inference problem. We choose
actions through Monte-Carlo tree search and empirically show that
our method is competitive with state-of-the-art BRL methods on
small domains while being able to solve much larger ones.
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1 INTRODUCTION: BAYESIAN RL

Reinforcement learning [46] with observable states has seen im-
pressive advances with the breakthrough of deep RL [19, 36, 42].
These methods have been extended to partially observable environ-
ments [27] with recurrent layers [20, 48] and much attention has
been paid to encode history into these models [22, 26, 28, 34].

Although successful for some domains, this progress has largely
been driven by function approximation and fundamental questions
are still left unanswered. The trade-off between between exploiting
current knowledge and exploring for new information, is one such
example [2, 3, 37]. Another is how to encode domain knowledge,
often abundantly available and crucial for most real world problems
(simulators, experts etc.). Although research is actively trying to
solve these issues, applications of RL to a broad range of applications
is limited without reliable solutions.

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9-13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

723

Interestingly, Bayesian RL (BRL) suffers from opposite challenges.
BRL methods explicitly assume priors over, and maintain uncer-
tainty estimates of, variables of interest. As a result, BRL is well-
equipped to exploit expert knowledge and can intelligently explore
to reduce uncertainty over (only the) important unknowns. Unfor-
tunately these properties come at a price, and BRL is traditionally
known to struggle scaling to larger problems. For example, the
BA-POMDP [29, 41] is a state-of-the-art Bayesian solution for RL in
partially observable environments, but is limited to tabular domains.
While factored models can help [30], such representations are not
appropriate or may still suffer from scalability issues.

This work combines the principled Bayesian perspective with
the scalability of neural networks. We first generalize previous
work [15, 30, 41] with a Bayesian partial observable RL formula-
tion without prior assumptions on parametrization. In particular, we
define the general BA-POMDP (GBA-POMDP) which, given a (pa-
rameterized) prior and update function, converts the BRL problem
into a POMDP with known dynamics. We show that, when the
update function satisfies an intuitive criterion, this conversion is
lossless and a planning solution to the GBA-POMDP results in opti-
mal behavior for the original learning problem with respect to the
prior. To show its practical significance we derive Bayes-adaptive
deep dropout RL (BADDr) from the GBA-POMDP. BADDr utilizes
dropout networks as approximate Bayesian estimates [13], allowing
for an expressive and scalable approach. Additionally, the prior is
straightforward to generate and requires fewer assumptions than
previous BRL methods. The resulting planning problem is solved
with new MCTS [4, 43] and particle filtering [47] algorithms.

We demonstrate BADDr is not only competitive with state-of-
the-art BRL methods in traditional domains, but solves domains that
are infeasible for said baselines. We also demonstrate the sample effi-
ciency of BRL in a comparison with the (non-Bayesian) DPFRL [34]
and provide ablation studies and belief analysis.

2 PRELIMINARIES

Partially observable MDPs. Sequential decision making with hid-
den state is typically modeled as a partially observable Markov
decision process (POMDP) [27], which is described by the tuple
(S,A,0,D,R,v.K, ps,). Here S, A and O are respectively the dis-
crete state, action and observation space. K € N is the horizon
(length) of the problem, while y € [0, 1] is the discount factor. The
dynamics are described by D: (S x A) — A(S x O), which in prac-
tice separates into a transition and observation model. The reward
function R: (S X A X S) — R maps transitions to a reward. Lastly,
the prior ps, € AS dictates the distribution over the initial state.

At every time step ¢ the agent takes an action a and causes a
transition to a new hidden state s’, which results in some observa-
tion o and reward r. We assume the objective is to maximize the
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discounted accumulated reward Y, y’r;. To do so, the agent consid-
ers the observable history h; = (d¢—1,0;) = (ag, 01, a1, - . - az—1,0¢).
Because this grows indefinitely, it is instead common to use the be-
lief b € B: AS, a distribution over the current state and a sufficient
statistic [27]. The belief update, r: (B x A x O) — B, gives the new
belief after an action and observation, and follows the Bayes’ rule:

b’ (s") = 1(b,a,0)(s") Z D(s’,0ls,a)b(s) 1)

A policy then maps beliefs to action probabilities 7: B — AA.

In this work we will be concerned with solving large POMDPs in
which exact belief updates and planning are no longer feasible. For
efficient belief tracking we use particle filters [47], which approxi-
mate the belief with a collection of ‘particles’ (in this case states).
For action selection we turn to online planners, since they can
spend resources on only the beliefs that are relevant. In particular,
this work builds on POMCP [43], an extension of Monte-Carlo tree
search (MCTS) [4, 31] to POMDPs, that is compatible with particle
filtering. More details follow in the method section (section 4.2).

Dropout neural networks. Dropout [13, 21, 32, 45] is a stochas-
tic regularization technique that samples networks by randomly
dropping nodes (setting their output to zero). A nice property is
that it can be interpreted as performing approximate Bayesian in-
ference. Specifically Gal and Ghahramani [13] show that applying
dropout to a (fully connected) layer i means that its K; inputs j are
active (or dropped) according to Bernoulli variables z; ;. This means
that a (random) effective weight matrix for that layer randomly
drops columns: it can be written as W;=W; - diag( [zi,j]j.i"l). We
define w as the stacking of all such (effective) layer weights, and
w ~ dropout(-|w) as the distribution induced by dropout. Gal and
Ghahramani show that the training objective of a dropout network
minimizes the Kullback-Leibler divergence between dropout(w)
and the posterior over weights of a deep Gaussian process (GP [7]),
a very general powerful model for maintaining distributions over
functions. A result of this is a relatively cheap method to compute
posterior predictions using Monte-Carlo estimates:

1 N
Pyl = 5 > Pyl n) @
n=0

3 BAYESIAN PARTIALLY OBSERVABLE RL

The strength of Bayesian RL is that it can exploit prior (expert)
knowledge in the form of a probabilistic prior to better direct ex-
ploration and thus reduce sample complexity. However, to opera-
tionalize this idea, previous approaches make limiting assumptions
on the form of the prior (such as assuming it is given as a collection
of Dirichlet distributions), which limits their scalability.

Here we present the Bayesian perspective of the partially ob-
servable RL (PORL) problem without such assumptions. We first
formalize precisely what we mean with PORL in section 3.1. Sec-
tion 3.2 then describes the process of Bayesian belief tracking for
PORL in terms of general densities over dynamics. This makes
explicit how the belief can be interpreted as a weighted mixture
of posteriors given the full history (something which we will ex-
ploit in section 4). Subsequently, in section 3.3 we state a parameter
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Figure 1: Model of the BRL inference problem. The actions a
and observations o in gray are observable, which means the
policy is dependent on them, while the states s and dynamics
D are hidden. The priors py and ps, represent the a-priori
knowledge. Time is indicated with subscripts and progresses
to the right.
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update criterion that provides sufficient conditions for a parameter-
ized representation to give an exact solution to the original PORL
problem. Finally, section 3.4 then describes how we can cast the
PORL problem as a planning problem using arbitrary parameterized
distributions in the proposed general BA-POMDP (GBA-POMDP).

The GBA-POMDP naturally generalizes over previous realiza-
tions (e.g. [30]), but also support low-dimensional or hierarchical
representations of beliefs. We note that in some cases, such more
compact belief representation have been used in experiments [41]
even though they were not captured by the theory presented in the
paper. Our paper in that way provides the, thus far still missing,
theoretical underpinning for these experiment. Later in section 4
we will show its practical significance, where we derive a neural net-
work based realization that is capable of modeling larger problems
than current state-of-the-art Bayesian methods can.

3.1 Bayesian PORL Definitions

Here we formalize the problem of partially observable RL (PORL)
and the Bayesian perspective on it. In PORL the goal is to maximize
some metric while being uncertain about which POMDP we act in:

DEFINITION 1 (FAMILY OF POMDPs). Given a set of dynamics
functions D, we say that F = {(S, AODRYV.K ps) | De ZD} is
a family of POMDPs.

Note that we assume that only the dynamics function is un-
known. In our formulation, the reward function is assumed to be
known (even though that can be generalized, e.g., by absorbing
the reward in the state), as well as the representation of hidden
states. We assume that the goal is to maximize the expected cumula-
tive (discounted) reward over a finite horizon, but other optimality
criteria can be considered.

We now consider Bayesian learning in such families when a
prior pgp over the (otherwise unknown) dynamics is available:

DEFINITION 2 (BPORL: BAYESIAN PARTIAL OBSERVABLE RL). A
BPORL model Mpporr = (F, pp) is a family of POMDPs F together
with a prior over dynamics functions pgy € AD.
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3.2 Belief Tracking in Bayesian PORL

Here we first derive the equations that describe belief tracking in a
BPORL, not making any assumption on parametrization of these
beliefs, but instead assuming arbitrary densities. The data available
to the agent is the observable history h;, the previous actions and
observations, as well as the priors pp and ps, (fig. 1), which are
implicitly assumed throughout and omitted in the equations. The
quantity of interest is the belief over the current POMDP state and
dynamics p(D, s¢|h;). We consider how to compute the next belief
P(D, st+1|he+1) from a current p(D, s¢|hs) given a new action ay
and observation o;41. Note the similarities to the POMDP belief
update eq. (1) and how it unrolls over time steps.

P(D,staalhesr) & ) D(sear, 0psalst, an)p(D, selh) 3)
St

t
(unroll ) o« py (D) ) ps, (s0) [ | Dsiv, 0isalsiva) (@)
3 i=0
This assigns more weights to models that are more probable under
the evidence and is fine in general from the Bayesian perspective.
Unfortunately, the joint space of models and states is too large
to do exact inference on and, in practice, we need to resort to
approximations and consider only a limited number of models. The
“true” model D will typically not be part of the tracked models, and
merely updating their weights as in eq. (4) is inadequate: it will lead
to degenerate beliefs where most weights approach zero. To address
this, we rewrite eq. (3) such that it gives a different perspective, one
which updates the models considered by the belief, and this opens
the possibility for combinations with machine learning methods.
We denote the history including a state sequence sy with H; =
(St. ht) = (s0,a0,51,01 - .. ar—1,5¢,0¢) and apply the chain rule to
formulate the belief as a weighted mixture of model posteriors (one
for each state sequence 5;):

P(D,seaalhess) = ) pGrsalhers) p(DIHrs)
component

®)

weight

The advantage is that it includes the term p(D|H;) that can be
interpreted as a posterior over the model given all the data H;. In the
supplements we show that this belief can be computed recursively:

(5) < > pGelhe) plsesr,ors1lHr ar) p(DIHrs1)  (6)

St
prior weight transition likelihood —component

Here the prior weight p(s¢|h;) is the weight of one of the compo-
nents in the belief at the previous time step (eq. (5)). The transition
likelihood is not trivial and is an expectation over the dynamics:

P(St+1,0t+1|Ht,at)=/Z)P(D|Ht)1)(st+1,0t+1|5t,at) (7)

Lastly, the component p(D|H;41) is the posterior over the model
given all observable data plus a hypothetical state sequence. This
term, and its computation, is explained in the next section.

3.3 Parameterized Representations

The last section described the belief in BPORL as a mixture where
each component itself is a distribution over the dynamics (eq. (5)). It
also provided the corresponding belief update (eq. (6)), but omitted
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the computation of the components. Here we show how a posterior
p(D|Ht41) can be derived from a prior component p(D|H;).

In order to make the bridge to practical implementations, we
consider the setting where these distributions are parameterized
by 6 € ©, and denote the induced distribution as p(D; 0g,). Thus
we are now interested in a parameter update function that updates
parameters given new transitions: U: (@ X SX AXx S x 0) — ©.
This of course raises the question of how such updates can cap-
ture the true evaluation of the posterior p(D|H;). To address this,
we formalize a parameter update criterion, which can be used to
demonstrate that these dynamics are sufficiently captured.

DEFINITION 3 (PARAMETER UPDATE CRITERION). We say that the
parameter update criterion holds if it is true that, whenever for
some t we have that all Hy = (s, ag, $1,01, a1, . . ., G¢—1, St, 0t ), Gz in-
duce the same dynamics as their summary (0g,, st), for all sp41, 0¢41

(®)

then, for the corresponding transitions, and their induced Hy41 =
(Ht, ar, st41,0041) and 0g,,, = U(Om,, 51, ar, St+1,01+1), the next
stage dynamics are also equal, for all s42, 0¢42:

P(st+1,0¢+11Hy, ar) = p(se+1, 0¢+110H,, 5. ar)

P(St42, 042 Hea1, St+1, Are1) = P(Se42, 0t42|0H, ;5 St+1, Are1).

From this, we derive:

LEMMA 1. If the parameter update criterion holds, and the initial
parameter matches the prior over models:

/DPZ)(D)D(SI,Olls(), ao) = p(s1, 01160, 50, a0) )

then we have that for all t, Hy, ay, Sg+1, 0r+1

P(se1, 0¢411Ht, ar) = p(Se1, 0r41 |0H,, st, at)

Thus, if the parameterization 6 can represent the prior over the
dynamics pg and the parameter update criterion holds, then we
can correctly represent and update the true posterior distribution.

Proor. The proof follows directly from induction. Base case for
t = 0, in which case for Hy = (so), holds due to the condition eq. (9)

(eq- (9)
p(s1,01160,50,a0) = ‘/DP(@|H0)D(51,01|80,00)

(eq- (7))
=" p(st+1,0041|Ho, ar)

At this point we apply the update criterion as our induction hypoth-

esis and conclude that the posteriors are identical for all H;. O

Hence, an update U that satisfies the criterion computes (param-
eterized) posteriors p(D|H41) from a prior component p(D|H;).

The parameter update criterion captures for instance the up-
dating of statistics for conjugate distributions, such as Dirichlet-
multinomial distributions, but also situations where the uncertainty
about the dynamics functions is captured by a low-dimensional
statistic or where a more general a hierarchical representation of the
dynamics function is appropriate. Approximate inference methods
can also be used to construct parametrizations (of which BADDr
will be one example) and Monte-Carlo simulation can be used if
sufficient compute power is available.
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3.4 General BA-POMDP

The previous sections showed how the belief in the BPORL is a
mixture of components, parameterized posteriors over the dynam-
ics, and how to compute them. We use this machinery to rewrite
the belief update. Specifically, the belief as a mixture of compo-
nents (one for each state sequence, eq. (5)) will be represented with
weighted state-parameter tuples (s, 6), and the update (eq. (6)) will
be reformulated as transitions between said tuples:

P(Or+1, st+1lhis1) o« Z P(Or+1, St+1, 014110z, 51, ar) p(Or, selht)

[ ——
prior tuple

st,0:
tuple transition probability

where the transition p(0¢+1, St+1, 0¢+1164, St, ar) factorizes into

P (014110, 5¢, ar, se+1, 0¢41)  p(St+1, 0141101, 5¢, ar)

parameter update transition likelihood of eq. (6)

where the parameter update is deterministic and reduces to the
indicator function that returns 1 iff ;41 equals the result of U:

(014110, 5, ar, se+1,0041) = W Ope1, U(Oy, ¢, ar, St4150141))

The last mental step interprets the tuples as belief/augmented
POMDP states, and the equations above as POMDP dynamics,
which finally leads to the formulation of the General BA-POMDP:

DEFINITION 4 (GENERAL BA-POMDP). Given a prior 8y, and
a parameter update function U, then the general BA-POMDP is a
POMDP: Mgga-pompp(00, U) = (S,A,0,D, R, v, K, ps,) with aug-
mented state space S = (S X ©) and prior ps, = (psy» 00). R applies
the POMDP reward model R(3,a,s’) = R(s, a, s). Lastly, the update
function U determines the augmented dynamics model D:

D(0',s,0ls,0,a) = p(0'16,s,a,5",0)p(s’, 0]0, s, a) (10)
=1(0",U(0,s,a,5",0)p(s,0l0,5,a)  (11)

As long as the conditions of lemma 1 hold, the GBA-POMDPs
is a representation of a Bayesian PORL problem. Specifically, any
BPORL and its GBA-POMDP can be losslessly converted to identical
‘history MDPs’ — we will call them MEESEMDP 5 A (Hist-MDP

: ) BPORL " /Y'GBA-POMDP
— in which the states correspond to action-observation histories h;.

THEOREM 1. Given the POMDP Mgpa-pompp = (6o, U) of a
Bayesian PORL problem Mppogrr, = (¥, pp) and that the parameter
update criterion (definition 3, specifically eqgs. (8) and (9)) hold, then
MHist—MDP — MHist—MDP‘

GBA-POMDP BPORL

Proor. The basic idea is that we can simply show that due to
the matching dynamics of eq. (8), both the rewards R(h, a), as well
as transition probabilities T(h’|h, a) are identical in the two models.
Full proof is given in the supplement. O

The upshot of this is that the GBA-POMDP represents the BPORL
problem exactly, meaning that optimal solutions are preserved. In

this way, it facilitates different, potentially more compact, parametriza-

tions of BPORL problems without necessarily compromising the so-
lution quality. Additionally, like its predecessors, it casts the learning
problem as a planning problem, opening up the door of the vast body
of POMDP solution methods. This also means that a solution to the
GBA-POMDP is a principled answer to the exploration-exploitation
trade-off which leads to optimal behavior (which respect to the
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prior). Lastly, because, unlike its predecessors, it places no assump-
tions on the prior, it opens the door to a variety of different machine
learning methods, as we will see in section 4.

Example realization: tabular-Dirichlet. The BA-POMDP [41] is
the realization of the GBA-POMDP when choosing the prior pa-
rameterization 0 to be the set of Dirichlets. The Dirichlet is the
conjugate prior to the categorical distribution and comes with a nat-
ural closed-form parameter update: U in BA-POMDP increments
the parameter (‘count’) associated with the transition (s, a, s, 0).

4 BAYES-ADAPTIVE DEEP DROPOUT RL

The GBA-POMDP is a template for deriving effective BPORL al-
gorithms, but it requires specifying the prior representation and
parameter update function. Here we demonstrate how this per-
spective can lead to tangible benefits by deriving BADDr (Bayes-
Adaptive Deep Dropout Reinforcement learning), a GBA-POMDP
instantiation based on neural networks. BADDr combines the prin-
cipled nature of the GBA-POMDP with the scalability of neural
networks and Bayesian interpretation of dropout. While BADDr
introduces some approximations, our empirical evaluation demon-
strates scalability compared to existing BA-POMDP variants and
sample efficiency relative to non-Bayes scalable methods.

Here we present BADDr as a (GBA-) POMDP, then section 4.2
describes the resulting solution method.

4.1 BADDr: GBA-POMDP using Dropout

Any GBA-POMDP is defined by its prior and update function. This
section defines BADDr’s parameterization, dropout networks wy,
and the parameter update function U, which further trains these
dropout networks, and conclude with the formal definition.

BADDr (prior) parameterization. We represent the dynamics
prior with a transition and observation model. The transition model
is a neural network parameterized by wq- that maps states and ac-
tions into a distribution over next states f,: (S x A) — AS, and
similarly another network wg maps actions and next states into a
distribution over observations fi,,: (S X A X S) — AQ. For each
state (observation) feature n we predict the probability of its val-
ues using softmax. In other words, we have an output (logit) ynm
for each value m that feature n can take. Both networks together
w = (wq, wg) describe the dynamics. As discussed in section 2, we
interpret dropout as an approximation of a posterior (recall eq. (2)):

N
p(s’,olw,s, a) = %]ZP(S,,OWn,S, a); wp ~ dropout(-|w) (12)
n=0

BADDr parameter update. We adopt the perspective of training
with dropout as approximate Bayesian inference (section 2):

(13)

This raises the question of what the parameter update function
should look like: assuming wy, captures the posterior over the
dynamics given data H;, what operation produces the appropriate
next weights given a new transition. A natural choice is to train the
dropout network until convergence on all the data available (H;
plus the new transition), however this is computationally infeasible

P(st+1,0t4+1|Hy, ar) = p(St+1, 0r+1|WH,, St, at).
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and unpractical. Instead we argue a reasonable approximation is to
perform a single-step gradient descent step on the new data point.
We denote a gradient step on parameters w given data point
(s,a,5",0) as V.L(w; (s, a), (s’,0)). The loss is defined as the cross-
entropy between the predicted and true next state and observation.
L(w;(s.a),(s",0)) = —logp(s’, ols, a; w)
U(w,s,a,5",0) =w+VL(w; (s, a),(s",0))

Given the prior and update function, we can now define:

(14)

DEFINITION 5 (BADDR). BADDr is a realization of GBA-POMDP
Mpappr = Maaa-pompp(wo, U) with dropout neural networks wo
as prior parameterization and a single gradient descent step (eq. (14))
as parameter update U. The state space of the resulting POMDP is
S : (S x W), and its dynamics are described as:

DG, s",0ls,0,a) 2 1(6",U(0,s,a,5",0)p(s",0lw,s, a)

where p(s’, o|w, s, a) is computed according to eq. (12)

(15)

In this way, BADDR is a specific instantiation of the GBA-POMDP
framework. In BADDr, the parameter update criterion (eq. (8)) does
not hold exactly, since dropout networks only approximate Bayesian
inference. This means that we have to rely on empirical evaluation
to assess the overall performance, which is shown in section 5.

4.2 Online Planning for BADDr

Here we detail how we use an online planning approach to solve the
BADDr model. We start with the construction of our initial belief,
then describe how the belief is tracked using particle filtering [47],
and finish with how MCTS is used to select actions.

Constructing the initial prior. The prior b(3p) = po(s, w) is the
product of the prior over the model and POMDP state, (pw, Ps, )
where py, is given by the original learning problem (of the POMDP).
Weakening the standard assumption in BRL, we do not require a full
prior specification, but assume we can sample domain simulators M.
We believe it is more common to be able to generate approximate
and/or simplified simulators for real world problems than it is to
describe (typically assumed) exhaustive priors.

The prior specification hidden in M is translated into a network
ensemble [10] {wo} by training each member on a model sampled
M ~ M. The training entails supervised learning on (s, g, s’, 0) sam-
ples with loss eq. (14), generated by sampling state-action pairs
uniformly and simulating next-state-observation results (from M).
While this leads to an approximation due to the parametric rep-
resentation, there is no a problem of data scarcity thanks to the
possibility of sampling infinite data from the prior. Hence when
using infinitely large neural networks, which are universal function
approximators, we theoretically could capture the prior exactly.

Finally the initial particles (belief) is constructed by randomly

pairing states so ~ ps, with networks from the ensemble: { (wy, o) }".

The prior belief for subsequent episodes is generated by substituting
the POMDP states in the particle filter with initial states sampled
from the prior (and hence maintaining the belief over the dynamics).

Belief tracking. Given the initial particle filter and BADDr’s dy-
namics eq. (15), we use rejection sampling [47] to track the belief.
In rejection sampling (algorithm 1) the agent samples a particle
(s, w) from particle filter and simulates the execution of a given
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Algorithm 1 Rejection sampling

in: b, particle filter (s, w)

in: a, taken action

in: 0, new observation

in: n, desired number of particles in next belief

[N N

50— 0 // next belief, start empty
6: while size(b’) < n do

7. (ssw)~b

8:  // propose sample: BADDr dynamics
9 wW~w

(s7,0) ~ p(-ls,a; w)

11w =w+VL(w, (st,ar), (St+1,04+1))
122 if 0 = o0 then

13: Add (s",w’) to b’
14:  endif

15: end while

16: return b’

// dropout sample

// correct sampled observation
// otherwise reject

Algorithm 2 Simulate

1: in: s, POMDP state

2: in: w (root-sampled) dynamics; w ~ w

3: in: d, tree depth

4: in: h, action-observation history

5. if terminal(h) or d is max depth then

6 return 0

7. end if

8: a «— ucb(h) // UCB [1] using statistics in node h
9: s",0 ~ p(-|s, a; w) // use root sampled model as simulator
10: R — R(s,a,s") // reward function is given

11: B’ « (h,a,0)

. if b’ € tree then

132 r « R+y xsimulate((s’,w),d +1,h")
. else

initiate_statistics_for_node(h")

r < R+y xrollout((s’,w),d+1,h’)
17: end if

: N(h,a) &« N(h,a) +1

h’ —
. O(hya) —NA(,(,ZL)IQ(h, Q)+ "
: returnr

// update statistics

action a. The resulting (simulated) new state (s’, w’) is added to
the new belief only if the (simulated) observation equals the true
observation. Otherwise the sample is rejected. This process repeats
until the new belief contains some predefined number of particles.

Planning. Ultimately we are interested in taking intelligent ac-
tions with respect to the belief — both over the state and the dynam-
ics. As done in previous Bayes-adaptive frameworks [29, 30], we
also utilize a POMCP [43] inspired algorithm. POMCP builds a look-
ahead tree of action-observation futures to evaluate the expected
return of each action. This tree is built incrementally through simu-
lations (algorithm 2), which each start by sampling a state from the
belief. Our approach is different from regular POMCP in the dynam-
ics being used during the simulations and is inspired by model root
sampling in BA-POMCP [29]: When POMCP samples a state (s, w)
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from the belief at the start of a simulation, we subsequently sample
a model w ~ dropout(-|w). This model is then used throughout
the simulation as the dynamics. The computational advantage is
two-fold: one, it avoids computing U eq. (14) (which requires back-
propagation) at each simulated step. Two, the models in the belief
need not be copied during root sampling because they are never
modified (e.g. if simulations were to update w, the pair of networks
must be copied to leave the belief untouched).

5 EXPERIMENTS

In our experiments we compare BADDr to both a state-of-the-art
non-Bayesian approach and the (factored) BA-POMDP methods.
We experiment on smaller well-known PORL domains, as well as
scale up to larger problems. Overall our evaluation shows that, one,
BADDr is competitive on smaller problems on which current state-
of-the-art BRL methods perform well; and two, BADDr scales to
problems that previous methods cannot. Furthermore, qualitative
analysis show that the agent’s belief converges around the correct
model in tiger and that our method outperforms plain re-weighting
of models. Lastly, the strength of Bayesian methods is demonstrated
in an comparison with a non-Bayes model-based representative.

5.1 Experimental Setup

Baselines. We compare with (F)BA-POMCP [30] as the state-of-
the-art BRL baseline. To ensure a fair comparison we use their
prior as the generative process M to sample POMDPs from when
constructing our prior. Additionally, for all domains, the parameters
shared among FBA-POMCP and BADDr (number of simulations
& particles, the UCB constant, etc.) are the same. We also plot
“POMCP” on the true models as an upper bound as dotted lines.

We also include discriminative particle filter reinforcement learn-
ing (DPFRL [34]) as a baseline in our experiments. DPFRL is a novel
end-to-end deep RL architecture designed specifically for partial
observable environments. We used the official implementation and
fine-tuned by picking the best performing combination of the num-
ber of particles, learning rate and network sizes.

Small domains & their priors. The experiments on the tiger prob-
lem [27] function as a baseline comparison. This problem is well
known for being tiny but otherwise highly stochastic and partial
observable. The prior here is a single dropout network trained on
the expected model of the prior used in (F)BA-POMCP.

In collision avoidance [33], the largest problem solved with FBA-
POMCP [30], the agent is a plane flying from the right column of a
grid to the left. The last column is occupied by a moving single-cell
obstacle that is partially observable and must be avoided. This task
is challenging in that both the observation and transition model are
highly stochastic. Again we employ their prior — uncertainty over
the behavior of the obstacle — to train our ensemble.

We designed the road racing problem, a variable-sized POMDP
grid model of highway traffic, in which the agent moves between
three lanes in an attempt to overtake other cars (one in each lane).
The state is described by the distance of each of those cars in their
respective lanes and the current occupied lane. During a step the
distance of the other cars decrements with some probability. The
speed, and thus the probability of a car coming closer, depends on
the lane. The initial distance of all cars is 6, and when their position
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drops to -1, as the agent overtakes them, it resets. The observation is
the distance of the car in the agent’s current lane, which also serves
as the reward, penalizing the agent for closing in on cars. The prior
over the observation model and the agent’s location transitions is
correct. The speed that is associated with each lane, however, is
unknown. A reasonable prior is to assume no difference, so we set
the expected probability of advancing to 0.5 for all lanes.

Large domains & their priors. We run an additional larger experi-
ment of the road racing problem with nine lanes. This significantly
increases the size of the problem and, as will be mentioned in the
results, makes previous frameworks intractable.

The last and largest domain is gridverse. Here the agent must
navigate from one corner of a grid to the goal in the other, while
observing only the cells in front (a beam of width 3 leading to up
to 96 observation features). We run this on a grid of up to 32 by
32 cells. In this environment we assume the observation model is
given and learn the transition model of the agent’s position and
orientation. For our prior we learn on data generated by a simulator
with the correct dynamics for “rotations”, but a noisy “forward”
action. The challenge for the agent is to correctly infer the distance
of this action (and thus its own location) online.

5.2 Bayesian RL Comparison

Small domains. The smaller domains are generally compactly
modeled by the (F) BA-POMDP. As a result the baseline BRL meth-
ods are near optimal and we cannot expect to do much better. Rather
these experiments test whether BADDr is sample efficient even
when compared to optimal representations.

Figure 2a compares our method with (factored) BA-POMCP on
tiger. Unsurprisingly, the tabular representation has a slight ad-
vantage initially thanks to the sample efficiency. After twice the
amount of data, our method catches up and reaches the same per-
formance. Although Tiger is widely considered a toy problem due
to its size, the inference and resulting planning problem are hard: a
slight difference in the belief over the model significantly alters the
optimal policy. BADDr’s performance here showcases the ability
to tackle highly stochastic and partially observable tasks.

We also investigate how well BADDr captures the posterior
over the model. Figure 2i shows the belief over the probability of
hearing the tiger behind the correct door in a particular run. Initially
the prior is uncertain and its expectation is incorrect, but over 20
episodes the belief converges to the true value of 0.85.

Figure 2c shows BADDr performs nearly as well as FBA-POMCP
on the collision avoidance problem. We hypothesize that the repre-
sentational power of the Dirichlets, in contrast with an ensemble
of dropout networks, explains the discrepancy. Specifically, the
Dirichlet allow more control over the certainty of the prior: the
agent prior over the observation model is confident (high number
of counts), and is uncertain over the transition of the obstacle. Ad-
mittedly, such a prior is difficult to capture in an ensemble (and thus
in BADDr). We test this hypothesis by running FBA-POMCP with
an equally uncertain prior, called ‘FBA-POMCP: uncertain prior’.
Results show that BADDr performs somewhat in the middle of
both. Hence in some occasions the prior representation of BADDr
results in diminished performance, but BADDr shows higher po-
tential when both methods are provided similar prior knowledge
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Figure 2: Our work (blue) is competitive with FBA-POMCP in small problems (a & b), and can scale to larger instances (d & g).
Fig. (c) shows that BADDr struggles when prior certainty is crucial. Fig (e & f) compares with DPFRL, where BADDr shows both
a better initial performance due to exploiting the prior and better sample efficiency. Dotted lines represent upper bound by
running POMCP on the true POMDP. Fig. (h) demonstrates BADDr (solid) requires far fewer models than an ablation method
that only re-weights models in its beliefs (dotted). Fig. (i) shows the belief in BADDr on tiger converges to the true value (0.85).

(as BADDr outperforms ‘FBA-POMCP: uncertain prior’). Note that Larger domains. The advantage of our method becomes obvious
FBA-POMCTP is given the correct (sparse) graphical model, which in larger problems. In the 9 lanes problem (fig. 2d), for instance, even
is a strong assumption in practice that simplifies the learning task. FBA-POMCP has 10'3 entries, is unable represent this compactly,
On the 3-lanes road racing domain (fig. 2b) the difference be- and runs out of memory. But a dropout network of 512 nodes can
tween our work and BA-POMCP is nonexistent. This again confirms model the dynamics well enough: despite the increasing size of
that BADDr is competitive with state-of-the-art BRL methods on the problem, the learning curve is similar to the smaller problem
small problems which these methods are designed for and per- (fig. 2b) and a similar amount of data is needed to nearly reach the
form near optimal in. Unlike real applications, these problems are performance of POMCP in the POMDP. This suggests that there is
compactly represented by tables and improvements are unlikely. some pattern or generalization that BADDr is exploiting.
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Figure 2g shows the performance on gridverse on a grid of size
8, 16 and 32. The agent learns to perform nearly as well as if given
the true model, indicated by the dotted line (for all 3 sizes), with
only a small visible effect of significantly increasing the size of the
problem. Note again that for this domain tabular representations
are infeasible: a single particle would need to specify up to 107
parameters (roughly 40GB of memory for a 64bit system). Bayes
networks (FBA-POMDP) is unable to exploit the structure of this
domain, which does not show itself through independence between
features. However, the dropout networks in the belief of BADDr
can generalize to problems otherwise too large to represent.

Ablation study: re-weighting. Section 3.2 claimed that, while tech-
nically correct, solely re-weighting models in the belief (eq. (3))
leads to belief degeneracy as it relies on a correct (or good) model to
be present in the initial belief. This experiments verifies that claim
by assessing the performance of plain re-weighting, denoted with
‘filtering’. This is implemented by omitting the parameter update
function U (e.g. SGD step). Figure 2h shows that the performance of
both filtering (dotted) and BADDr (solid) increases as a function of
the number of models in the prior. However, BADDr is significantly
more efficient: ‘filtering’ 128 models in the tiger problem performs
similarly to BADDr with just 8. Hence, while theoretically possible,
it requires too many models to be useful.

Run-time. BADDr is a little slower than FBA-POMCP, since call-
ing (i.e. planning) and training neural networks (i.e belief update)
is computationally more expensive than tables. In practice, how-
ever, we found this insignificant. In environments where tabular
approaches are applicable and fit in memory the difference was at
most a small factor. As a result, a single seed/run of any experiment
finished within a day on a typical CPU-based Architecture.

5.3 Non-Bayesian RL Comparison

We also ran DPFRL on all domains to investigate the differences
between Bayesian and non-Bayesian approaches. Results on tiger
(fig. 2e) and both road race instances (fig. 2f) have been picked out
as representative, but other results looked similar and have been
included in the appendix. Note the performance of the Bayesian
methods are identical to previous plots; only the x-axis is different.

While the eventual performance is similar, the difference in
learning speed is immediately obvious. Where the BRL methods
learn within tens to hundreds of episodes, DPFRL requires up to
tens of thousands — a direct consequence of the sample-efficiency
and exploration provided by the Bayesian perspective. In general
we found when measuring the number of episodes necessary to
reach similar performance, that BADDr was at least 40x (and up to
1200x) more sample efficient than DPFRL.

Another advantage of BRL is the exploitation of a prior, which is
visualized by the discrepancy in the initial performance. In the tiger
domain DPFRL starts from scratch with a return of —40 by randomly
opening doors. In real applications with real consequences, this can
be a huge problem and the ability to encode domain knowledge
is crucial. Random behavior is less problematic in the road race
domain, yet also there it takes DPFRL thousands of episodes (of
many time steps) to reach the performance BADDr has at the start.
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6 RELATED WORK

Bayesian RL for discrete POMDPs typically adopts the Dirichlet
prior approach taken in the BA-POMDP [15, 41]. For instance, be-
fore generalized to unknown structures with the FBA-POMDP [30],
prior work represented the model posterior as Dirichlets over Bayes
network parameters [38]. Other work circumvents the need for mix-
tures to represent the posterior by assuming access to an oracle to
provide access to the underlying state [24, 25]. By exploiting this in-
formation, they approximate the belief with a MAP estimate of the
counts. A notable exception to this line of work is the iPOMDP [11].
This work is more general in that knowledge of the state space is
not assumed a-priori. Dropping this assumption means that it is
impossible to sum over state sequences, and hence our formula-
tion is not compatible. Bayesian methods for continuous POMDPs
generally assume Gaussian dynamics and model the belief with a
GP. The methods in the literature vary in their assumptions, such
as restricting to a MAP estimate [6], simplifying the observation
model to Gaussian noise around the state [35], full access to the
state during learning [9]. More similar in spirit to our method is the
BA-Continuous-POMDP [40], as it maintains a mixture of model
posteriors, Normal-inverse-Wishart parameters, and presents a sim-
ilar derivation to ours (specific to said parameterization).

In contrast, Bayesian model-free approaches maintain a distribu-
tion over the policy with, for example, ensembles [37] or Bayesian Q-
networks [2]. While proven successful in their exploration-dependent
domains, they have not been tested under partial observability.

Model-based RL for fully observable MDPs [5] is better under-
stood and include “world models” [17, 18] and Dyna-Q based meth-
ods [23, 50]. Bayesian counterparts include ensemble methods [39],
variational Bayes (variBad [51]), and GP-based models [8] (similar
to us extended with a dropout network approximation of the dy-
namics [14]. Most relevant here is the work on the Bayes-adaptive
MDP [12, 16, 44, 49]. MDPs, however, are strictly easier and these
methods do not trivially extend to partial observability.

7 CONCLUSION

Bayesian RL for POMDPs provide an elegant and principled solution
to key challenges of exploration, hidden state and unknown dynam-
ics. While powerful, their scalability and thus applicability is often
lacking. This paper presents a rigorous formulation of the General
Bayes-adaptive POMDP, as well as a novel instantiation, BADDr,
which improves scalability while maintaining sample efficient with
dropout networks as a Bayesian estimate of the dynamics. The em-
pirical evaluation shows our method performs competitively with
state-of-the-art BRL on small problems, and solves problems that
were previously out of reach. It also demonstrates the strengths of
Bayesian methods, the ability to encode prior and guide exploration,
through a comparison with the non-Bayesian DPFRL.
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