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ABSTRACT
While reinforcement learning (RL) has made great advances in scal-

ability, exploration and partial observability are still active research

topics. In contrast, Bayesian RL (BRL) provides a principled answer

to both state estimation and the exploration-exploitation trade-off,

but struggles to scale. To tackle this challenge, BRL frameworks

with various prior assumptions have been proposed, with varied

success. This work presents a representation-agnostic formulation

of BRL under partially observability, unifying the previous mod-

els under one theoretical umbrella. To demonstrate its practical

significance we also propose a novel derivation, Bayes-Adaptive

Deep Dropout rl (BADDr), based on dropout networks. Under this

parameterization, in contrast to previous work, the belief over the

state and dynamics is a more scalable inference problem. We choose

actions through Monte-Carlo tree search and empirically show that

our method is competitive with state-of-the-art BRL methods on

small domains while being able to solve much larger ones.
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1 INTRODUCTION: BAYESIAN RL
Reinforcement learning [46] with observable states has seen im-

pressive advances with the breakthrough of deep RL [19, 36, 42].

These methods have been extended to partially observable environ-

ments [27] with recurrent layers [20, 48] and much attention has

been paid to encode history into these models [22, 26, 28, 34].

Although successful for some domains, this progress has largely

been driven by function approximation and fundamental questions

are still left unanswered. The trade-off between between exploiting

current knowledge and exploring for new information, is one such

example [2, 3, 37]. Another is how to encode domain knowledge,

often abundantly available and crucial for most real world problems

(simulators, experts etc.). Although research is actively trying to

solve these issues, applications of RL to a broad range of applications

is limited without reliable solutions.

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
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Interestingly, Bayesian RL (BRL) suffers from opposite challenges.

BRL methods explicitly assume priors over, and maintain uncer-

tainty estimates of, variables of interest. As a result, BRL is well-

equipped to exploit expert knowledge and can intelligently explore

to reduce uncertainty over (only the) important unknowns. Unfor-

tunately these properties come at a price, and BRL is traditionally

known to struggle scaling to larger problems. For example, the

BA-POMDP [29, 41] is a state-of-the-art Bayesian solution for RL in

partially observable environments, but is limited to tabular domains.

While factored models can help [30], such representations are not

appropriate or may still suffer from scalability issues.

This work combines the principled Bayesian perspective with

the scalability of neural networks. We first generalize previous

work [15, 30, 41] with a Bayesian partial observable RL formula-

tion without prior assumptions on parametrization. In particular, we

define the general BA-POMDP (GBA-POMDP) which, given a (pa-

rameterized) prior and update function, converts the BRL problem

into a POMDP with known dynamics. We show that, when the

update function satisfies an intuitive criterion, this conversion is

lossless and a planning solution to the GBA-POMDP results in opti-

mal behavior for the original learning problem with respect to the

prior. To show its practical significance we derive Bayes-adaptive

deep dropout RL (BADDr) from the GBA-POMDP. BADDr utilizes

dropout networks as approximate Bayesian estimates [13], allowing

for an expressive and scalable approach. Additionally, the prior is

straightforward to generate and requires fewer assumptions than

previous BRL methods. The resulting planning problem is solved

with new MCTS [4, 43] and particle filtering [47] algorithms.

We demonstrate BADDr is not only competitive with state-of-

the-art BRLmethods in traditional domains, but solves domains that

are infeasible for said baselines.We also demonstrate the sample effi-

ciency of BRL in a comparison with the (non-Bayesian) DPFRL [34]

and provide ablation studies and belief analysis.

2 PRELIMINARIES
Partially observable MDPs. Sequential decision making with hid-

den state is typically modeled as a partially observable Markov

decision process (POMDP) [27], which is described by the tuple

(S,A,O,D,R, 𝛾, 𝐾, 𝑝𝑠0 ). Here S,A and O are respectively the dis-

crete state, action and observation space. 𝐾 ∈ N is the horizon

(length) of the problem, while 𝛾 ∈ [0, 1] is the discount factor. The
dynamics are described by D: (S ×A) → Δ(S ×O), which in prac-

tice separates into a transition and observation model. The reward

function R: (S × A × S) → R maps transitions to a reward. Lastly,

the prior 𝑝𝑠0 ∈ ΔS dictates the distribution over the initial state.

At every time step 𝑡 the agent takes an action 𝑎 and causes a

transition to a new hidden state 𝑠 ′, which results in some observa-

tion 𝑜 and reward 𝑟 . We assume the objective is to maximize the
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discounted accumulated reward

∑
𝑡 𝛾
𝑡𝑟𝑡 . To do so, the agent consid-

ers the observable history ℎ𝑡 = ( ®𝑎𝑡−1, ®𝑜𝑡 ) = (𝑎0, 𝑜1, 𝑎1, . . . 𝑎𝑡−1, 𝑜𝑡 ).
Because this grows indefinitely, it is instead common to use the be-

lief 𝑏 ∈ B: ΔS, a distribution over the current state and a sufficient

statistic [27]. The belief update, 𝜏 : (B ×A ×O) → B, gives the new
belief after an action and observation, and follows the Bayes’ rule:

𝑏 ′(𝑠 ′) = 𝜏 (𝑏, 𝑎, 𝑜) (𝑠 ′) ∝
∑︁
𝑠

D(𝑠 ′, 𝑜 |𝑠, 𝑎)𝑏 (𝑠) (1)

A policy then maps beliefs to action probabilities 𝜋 : B→ ΔA.
In this work we will be concerned with solving large POMDPs in

which exact belief updates and planning are no longer feasible. For

efficient belief tracking we use particle filters [47], which approxi-

mate the belief with a collection of ‘particles’ (in this case states).

For action selection we turn to online planners, since they can

spend resources on only the beliefs that are relevant. In particular,

this work builds on POMCP [43], an extension of Monte-Carlo tree

search (MCTS) [4, 31] to POMDPs, that is compatible with particle

filtering. More details follow in the method section (section 4.2).

Dropout neural networks. Dropout [13, 21, 32, 45] is a stochas-
tic regularization technique that samples networks by randomly

dropping nodes (setting their output to zero). A nice property is

that it can be interpreted as performing approximate Bayesian in-

ference. Specifically Gal and Ghahramani [13] show that applying

dropout to a (fully connected) layer 𝑖 means that its 𝐾𝑖 inputs 𝑗 are

active (or dropped) according to Bernoulli variables 𝑧𝑖, 𝑗 . This means

that a (random) effective weight matrix for that layer randomly

drops columns: it can be written as W̃𝑖 = W𝑖 · diag( [𝑧𝑖, 𝑗 ]𝐾𝑖

𝑗=1
). We

define 𝑤 as the stacking of all such (effective) layer weights, and

𝑤̃ ∼ 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 (·|𝑤) as the distribution induced by dropout. Gal and

Ghahramani show that the training objective of a dropout network

minimizes the Kullback-Leibler divergence between 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 (𝑤)
and the posterior over weights of a deep Gaussian process (GP [7]),

a very general powerful model for maintaining distributions over

functions. A result of this is a relatively cheap method to compute

posterior predictions using Monte-Carlo estimates:

𝑝 (𝑦 |𝑥) ≈ 1

𝑁

𝑁∑︁
𝑛=0

𝑝 (𝑦 |𝑥 ; 𝑤̃𝑛) (2)

3 BAYESIAN PARTIALLY OBSERVABLE RL
The strength of Bayesian RL is that it can exploit prior (expert)

knowledge in the form of a probabilistic prior to better direct ex-

ploration and thus reduce sample complexity. However, to opera-

tionalize this idea, previous approaches make limiting assumptions

on the form of the prior (such as assuming it is given as a collection

of Dirichlet distributions), which limits their scalability.

Here we present the Bayesian perspective of the partially ob-

servable RL (PORL) problem without such assumptions. We first

formalize precisely what we mean with PORL in section 3.1. Sec-

tion 3.2 then describes the process of Bayesian belief tracking for

PORL in terms of general densities over dynamics. This makes

explicit how the belief can be interpreted as a weighted mixture

of posteriors given the full history (something which we will ex-

ploit in section 4). Subsequently, in section 3.3 we state a parameter

𝑠0 𝑠1 𝑠2 𝑠𝑇 𝑠0

D𝑝D

𝑝𝑠0

𝑜1 𝑜2 𝑜𝑇

𝑎0 𝑎1 𝑎𝑇−1

Figure 1: Model of the BRL inference problem. The actions 𝑎
and observations 𝑜 in gray are observable, which means the
policy is dependent on them, while the states 𝑠 and dynamics
D are hidden. The priors 𝑝D and 𝑝𝑠0 represent the a-priori
knowledge. Time is indicated with subscripts and progresses
to the right.

update criterion that provides sufficient conditions for a parameter-

ized representation to give an exact solution to the original PORL

problem. Finally, section 3.4 then describes how we can cast the

PORL problem as a planning problem using arbitrary parameterized

distributions in the proposed general BA-POMDP (GBA-POMDP).

The GBA-POMDP naturally generalizes over previous realiza-

tions (e.g. [30]), but also support low-dimensional or hierarchical

representations of beliefs. We note that in some cases, such more

compact belief representation have been used in experiments [41]

even though they were not captured by the theory presented in the

paper. Our paper in that way provides the, thus far still missing,

theoretical underpinning for these experiment. Later in section 4

we will show its practical significance, where we derive a neural net-

work based realization that is capable of modeling larger problems

than current state-of-the-art Bayesian methods can.

3.1 Bayesian PORL Definitions
Here we formalize the problem of partially observable RL (PORL)

and the Bayesian perspective on it. In PORL the goal is to maximize

some metric while being uncertain about which POMDP we act in:

Definition 1 (Family of POMDPs). Given a set of dynamics
functions𝔇, we say that F =

{
(S,A,O,D,R, 𝛾, 𝐾, 𝑝𝑠0 ) | D ∈ 𝔇

}
is

a family of POMDPs.

Note that we assume that only the dynamics function is un-

known. In our formulation, the reward function is assumed to be

known (even though that can be generalized, e.g., by absorbing

the reward in the state), as well as the representation of hidden

states. We assume that the goal is to maximize the expected cumula-

tive (discounted) reward over a finite horizon, but other optimality

criteria can be considered.

We now consider Bayesian learning in such families when a

prior 𝑝D over the (otherwise unknown) dynamics is available:

Definition 2 (BPORL: Bayesian partial observable RL). A
BPORL modelMBPORL = (F , 𝑝D ) is a family of POMDPs F together
with a prior over dynamics functions 𝑝D ∈ Δ𝔇.
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3.2 Belief Tracking in Bayesian PORL
Here we first derive the equations that describe belief tracking in a

BPORL, not making any assumption on parametrization of these

beliefs, but instead assuming arbitrary densities. The data available

to the agent is the observable history ℎ𝑡 , the previous actions and

observations, as well as the priors 𝑝D and 𝑝𝑠0 (fig. 1), which are

implicitly assumed throughout and omitted in the equations. The

quantity of interest is the belief over the current POMDP state and

dynamics 𝑝 (D, 𝑠𝑡 |ℎ𝑡 ). We consider how to compute the next belief

𝑝 (D, 𝑠𝑡+1 |ℎ𝑡+1) from a current 𝑝 (D, 𝑠𝑡 |ℎ𝑡 ) given a new action 𝑎𝑡
and observation 𝑜𝑡+1. Note the similarities to the POMDP belief

update eq. (1) and how it unrolls over time steps.

𝑝 (D, 𝑠𝑡+1 |ℎ𝑡+1) ∝
∑︁
𝑠𝑡

D(𝑠𝑡+1, 𝑜𝑡+1 |𝑠𝑡 , 𝑎𝑡 )𝑝 (D, 𝑠𝑡 |ℎ𝑡 ) (3)

(unroll t) ∝ 𝑝D (D)
∑︁
®𝑠𝑡
𝑝𝑠0 (𝑠0)

𝑡∏
𝑖=0

D(𝑠𝑖+1, 𝑜𝑖+1 |𝑠𝑖 , 𝑎𝑖 ) (4)

This assigns more weights to models that are more probable under

the evidence and is fine in general from the Bayesian perspective.

Unfortunately, the joint space of models and states is too large

to do exact inference on and, in practice, we need to resort to

approximations and consider only a limited number of models. The

“true” modelD will typically not be part of the tracked models, and

merely updating their weights as in eq. (4) is inadequate: it will lead

to degenerate beliefs where most weights approach zero. To address

this, we rewrite eq. (3) such that it gives a different perspective, one

which updates the models considered by the belief, and this opens

the possibility for combinations with machine learning methods.

We denote the history including a state sequence ®𝑠𝑡 with 𝐻𝑡 =

(®𝑠𝑡 , ℎ𝑡 ) = (𝑠0, 𝑎0, 𝑠1, 𝑜1 . . . 𝑎𝑡−1, 𝑠𝑡 , 𝑜𝑡 ) and apply the chain rule to

formulate the belief as a weighted mixture of model posteriors (one

for each state sequence ®𝑠𝑡 ):

𝑝 (D, 𝑠𝑡+1 |ℎ𝑡+1) =
∑︁
®𝑠𝑡
𝑝 (®𝑠𝑡+1 |ℎ𝑡+1)︸         ︷︷         ︸

weight

𝑝 (D|𝐻𝑡+1)︸       ︷︷       ︸
component

(5)

The advantage is that it includes the term 𝑝 (D|𝐻𝑡 ) that can be

interpreted as a posterior over the model given all the data𝐻𝑡 . In the

supplements we show that this belief can be computed recursively:

(5) ∝
∑︁
®𝑠𝑡

𝑝 (®𝑠𝑡 |ℎ𝑡 )︸   ︷︷   ︸
prior weight

𝑝 (𝑠𝑡+1, 𝑜𝑡+1 |𝐻𝑡 , 𝑎𝑡 )︸                  ︷︷                  ︸
transition likelihood

𝑝 (D|𝐻𝑡+1)︸       ︷︷       ︸
component

(6)

Here the prior weight 𝑝 (®𝑠𝑡 |ℎ𝑡 ) is the weight of one of the compo-

nents in the belief at the previous time step (eq. (5)). The transition
likelihood is not trivial and is an expectation over the dynamics:

𝑝 (𝑠𝑡+1, 𝑜𝑡+1 |𝐻𝑡 , 𝑎𝑡 ) =
∫
D
𝑝 (D|𝐻𝑡 )D(𝑠𝑡+1, 𝑜𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) (7)

Lastly, the component 𝑝 (D|𝐻𝑡+1) is the posterior over the model

given all observable data plus a hypothetical state sequence. This

term, and its computation, is explained in the next section.

3.3 Parameterized Representations
The last section described the belief in BPORL as a mixture where

each component itself is a distribution over the dynamics (eq. (5)). It

also provided the corresponding belief update (eq. (6)), but omitted

the computation of the components. Here we show how a posterior

𝑝 (D|𝐻𝑡+1) can be derived from a prior component 𝑝 (D|𝐻𝑡 ).
In order to make the bridge to practical implementations, we

consider the setting where these distributions are parameterized

by 𝜃 ∈ Θ, and denote the induced distribution as 𝑝 (D;𝜃𝐻𝑡
). Thus

we are now interested in a parameter update function that updates

parameters given new transitions:U: (Θ × S × A × S × O) → Θ.
This of course raises the question of how such updates can cap-

ture the true evaluation of the posterior 𝑝 (D|𝐻𝑡 ). To address this,

we formalize a parameter update criterion, which can be used to

demonstrate that these dynamics are sufficiently captured.

Definition 3 (Parameter update criterion). We say that the
parameter update criterion holds if it is true that, whenever for
some 𝑡 we have that all 𝐻𝑡 = (𝑠0, 𝑎0, 𝑠1, 𝑜1, 𝑎1, . . . , 𝑎𝑡−1, 𝑠𝑡 , 𝑜𝑡 ), 𝑎𝑡 in-
duce the same dynamics as their summary (𝜃𝐻𝑡

, 𝑠𝑡 ), for all 𝑠𝑡+1, 𝑜𝑡+1
𝑝 (𝑠𝑡+1, 𝑜𝑡+1 |𝐻𝑡 , 𝑎𝑡 ) = 𝑝 (𝑠𝑡+1, 𝑜𝑡+1 |𝜃𝐻𝑡

, 𝑠𝑡 , 𝑎𝑡 ) (8)

then, for the corresponding transitions, and their induced 𝐻𝑡+1 =

(𝐻𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑜𝑡+1) and 𝜃𝐻𝑡+1 = U(𝜃𝐻𝑡
, 𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑜𝑡+1), the next

stage dynamics are also equal, for all 𝑠𝑡+2, 𝑜𝑡+2:

𝑝 (𝑠𝑡+2, 𝑜𝑡+2 |𝐻𝑡+1, 𝑠𝑡+1, 𝑎𝑡+1) = 𝑝 (𝑠𝑡+2, 𝑜𝑡+2 |𝜃𝐻𝑡+1 , 𝑠𝑡+1, 𝑎𝑡+1) .

From this, we derive:

Lemma 1. If the parameter update criterion holds, and the initial
parameter matches the prior over models:∫

D
𝑝D (D)D(𝑠1, 𝑜1 |𝑠0, 𝑎0) = 𝑝 (𝑠1, 𝑜1 |𝜃0, 𝑠0, 𝑎0) (9)

then we have that for all 𝑡, 𝐻𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑜𝑡+1

𝑝 (𝑠𝑡+1, 𝑜𝑡+1 |𝐻𝑡 , 𝑎𝑡 ) = 𝑝 (𝑠𝑡+1, 𝑜𝑡+1 |𝜃𝐻𝑡
, 𝑠𝑡 , 𝑎𝑡 )

Thus, if the parameterization 𝜃 can represent the prior over the

dynamics 𝑝D and the parameter update criterion holds, then we

can correctly represent and update the true posterior distribution.

Proof. The proof follows directly from induction. Base case for

𝑡 = 0, in which case for 𝐻0 = (𝑠0), holds due to the condition eq. (9)

𝑝 (𝑠1, 𝑜1 |𝜃0, 𝑠0, 𝑎0)
(𝑒𝑞. (9))

=

∫
D
𝑝 (D|𝐻0)D(𝑠1, 𝑜1 |𝑠0, 𝑎0)

(𝑒𝑞. (7))
= 𝑝 (𝑠𝑡+1, 𝑜𝑡+1 |𝐻0, 𝑎𝑡 )

At this point we apply the update criterion as our induction hypoth-

esis and conclude that the posteriors are identical for all 𝐻𝑡 . □

Hence, an updateU that satisfies the criterion computes (param-

eterized) posteriors 𝑝 (D|𝐻𝑡+1) from a prior component 𝑝 (D|𝐻𝑡 ).
The parameter update criterion captures for instance the up-

dating of statistics for conjugate distributions, such as Dirichlet-

multinomial distributions, but also situations where the uncertainty

about the dynamics functions is captured by a low-dimensional

statistic or where amore general a hierarchical representation of the

dynamics function is appropriate. Approximate inference methods

can also be used to construct parametrizations (of which BADDr

will be one example) and Monte-Carlo simulation can be used if

sufficient compute power is available.
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3.4 General BA-POMDP
The previous sections showed how the belief in the BPORL is a

mixture of components, parameterized posteriors over the dynam-

ics, and how to compute them. We use this machinery to rewrite

the belief update. Specifically, the belief as a mixture of compo-

nents (one for each state sequence, eq. (5)) will be represented with

weighted state-parameter tuples (𝑠, 𝜃 ), and the update (eq. (6)) will

be reformulated as transitions between said tuples:

𝑝 (𝜃𝑡+1, 𝑠𝑡+1 |ℎ𝑡+1) ∝
∑︁
𝑠𝑡 ,𝜃𝑡

𝑝 (𝜃𝑡+1, 𝑠𝑡+1, 𝑜𝑡+1 |𝜃𝑡 , 𝑠𝑡 , 𝑎𝑡 )︸                            ︷︷                            ︸
tuple transition probability

𝑝 (𝜃𝑡 , 𝑠𝑡 |ℎ𝑡 )︸       ︷︷       ︸
prior tuple

where the transition 𝑝 (𝜃𝑡+1, 𝑠𝑡+1, 𝑜𝑡+1 |𝜃𝑡 , 𝑠𝑡 , 𝑎𝑡 ) factorizes into
𝑝 (𝜃𝑡+1 |𝜃𝑡 , 𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑜𝑡+1)︸                            ︷︷                            ︸

parameter update

𝑝 (𝑠𝑡+1, 𝑜𝑡+1 |𝜃𝑡 , 𝑠𝑡 , 𝑎𝑡 )︸                     ︷︷                     ︸
transition likelihood of eq. (6)

where the parameter update is deterministic and reduces to the

indicator function that returns 1 iff 𝜃𝑡+1 equals the result ofU:

𝑝 (𝜃𝑡+1 |𝜃𝑡 , 𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑜𝑡+1) = I(𝜃𝑡+1,U(𝜃𝑡 , 𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑜𝑡+1))
The last mental step interprets the tuples as belief/augmented

POMDP states, and the equations above as POMDP dynamics,

which finally leads to the formulation of the General BA-POMDP:

Definition 4 (General BA-POMDP). Given a prior 𝜃0, and
a parameter update function U, then the general BA-POMDP is a
POMDP:MGBA-POMDP (𝜃0,U) = ( ¯S,A,O, ¯D, ¯R, 𝛾, 𝐾, 𝑝𝑠0 ) with aug-
mented state space 𝑆 = (𝑆 × Θ) and prior 𝑝𝑠0 = (𝑝𝑠0 , 𝜃0). ¯R applies
the POMDP reward model 𝑅(𝑠, 𝑎, ¯𝑠 ′) = 𝑅(𝑠, 𝑎, 𝑠). Lastly, the update
functionU determines the augmented dynamics model ¯D:

¯D(𝜃 ′, 𝑠 ′, 𝑜 |𝑠, 𝜃, 𝑎) ≜ 𝑝 (𝜃 ′ |𝜃, 𝑠, 𝑎, 𝑠 ′, 𝑜)𝑝 (𝑠 ′, 𝑜 |𝜃, 𝑠, 𝑎) (10)

= I(𝜃 ′,U(𝜃, 𝑠, 𝑎, 𝑠 ′, 𝑜))𝑝 (𝑠 ′, 𝑜 |𝜃, 𝑠, 𝑎) (11)

As long as the conditions of lemma 1 hold, the GBA-POMDPs

is a representation of a Bayesian PORL problem. Specifically, any

BPORL and its GBA-POMDP can be losslessly converted to identical

‘history MDPs’ — we will call themMHist-MDP

BPORL
andMHist-MDP

GBA-POMDP

— in which the states correspond to action-observation histories ℎ𝑡 .

Theorem 1. Given the POMDP MGBA-POMDP = (𝜃0,U) of a
Bayesian PORL problemMBPORL = (F , 𝑝D ) and that the parameter
update criterion (definition 3, specifically eqs. (8) and (9)) hold, then
M𝐻𝑖𝑠𝑡−𝑀𝐷𝑃

GBA-POMDP =M𝐻𝑖𝑠𝑡−𝑀𝐷𝑃
BPORL .

Proof. The basic idea is that we can simply show that due to

the matching dynamics of eq. (8), both the rewards 𝑅(ℎ, 𝑎), as well
as transition probabilities𝑇 (ℎ′ |ℎ, 𝑎) are identical in the two models.

Full proof is given in the supplement. □

The upshot of this is that the GBA-POMDP represents the BPORL

problem exactly, meaning that optimal solutions are preserved. In

this way, it facilitates different, potentiallymore compact, parametriza-

tions of BPORL problems without necessarily compromising the so-

lution quality. Additionally, like its predecessors, it casts the learning
problem as a planning problem, opening up the door of the vast body

of POMDP solution methods. This also means that a solution to the

GBA-POMDP is a principled answer to the exploration-exploitation

trade-off which leads to optimal behavior (which respect to the

prior). Lastly, because, unlike its predecessors, it places no assump-

tions on the prior, it opens the door to a variety of different machine

learning methods, as we will see in section 4.

Example realization: tabular-Dirichlet. The BA-POMDP [41] is

the realization of the GBA-POMDP when choosing the prior pa-

rameterization 𝜃0 to be the set of Dirichlets. The Dirichlet is the

conjugate prior to the categorical distribution and comes with a nat-

ural closed-form parameter update:U in BA-POMDP increments

the parameter (‘count’) associated with the transition (𝑠, 𝑎, 𝑠 ′, 𝑜).

4 BAYES-ADAPTIVE DEEP DROPOUT RL
The GBA-POMDP is a template for deriving effective BPORL al-

gorithms, but it requires specifying the prior representation and

parameter update function. Here we demonstrate how this per-

spective can lead to tangible benefits by deriving BADDr (Bayes-

Adaptive Deep Dropout Reinforcement learning), a GBA-POMDP

instantiation based on neural networks. BADDr combines the prin-

cipled nature of the GBA-POMDP with the scalability of neural

networks and Bayesian interpretation of dropout. While BADDr

introduces some approximations, our empirical evaluation demon-

strates scalability compared to existing BA-POMDP variants and

sample efficiency relative to non-Bayes scalable methods.

Here we present BADDr as a (GBA-) POMDP, then section 4.2

describes the resulting solution method.

4.1 BADDr: GBA-POMDP using Dropout
Any GBA-POMDP is defined by its prior and update function. This

section defines BADDr’s parameterization, dropout networks𝑤0,

and the parameter update functionU, which further trains these

dropout networks, and conclude with the formal definition.

BADDr (prior) parameterization. We represent the dynamics

prior with a transition and observation model. The transition model

is a neural network parameterized by𝑤T that maps states and ac-

tions into a distribution over next states 𝑓𝑤T : (S × A) → ΔS, and
similarly another network𝑤O maps actions and next states into a

distribution over observations 𝑓𝑤O : (S × A × S) → ΔO. For each
state (observation) feature 𝑛 we predict the probability of its val-

ues using softmax. In other words, we have an output (logit) 𝑦𝑛𝑚
for each value𝑚 that feature 𝑛 can take. Both networks together

𝑤 = (𝑤T ,𝑤O) describe the dynamics. As discussed in section 2, we

interpret dropout as an approximation of a posterior (recall eq. (2)):

𝑝 (𝑠 ′, 𝑜 |𝑤, 𝑠, 𝑎) ≈ 1

𝑁

𝑁∑︁
𝑛=0

𝑝 (𝑠 ′, 𝑜 |𝑤̃𝑛, 𝑠, 𝑎); 𝑤̃𝑛 ∼ 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 (·|𝑤) (12)

BADDr parameter update. We adopt the perspective of training

with dropout as approximate Bayesian inference (section 2):

𝑝 (𝑠𝑡+1, 𝑜𝑡+1 |𝐻𝑡 , 𝑎𝑡 ) ≈ 𝑝 (𝑠𝑡+1, 𝑜𝑡+1 |𝑤𝐻𝑡
, 𝑠𝑡 , 𝑎𝑡 ) . (13)

This raises the question of what the parameter update function

should look like: assuming 𝑤𝐻𝑡
captures the posterior over the

dynamics given data 𝐻𝑡 , what operation produces the appropriate

next weights given a new transition. A natural choice is to train the

dropout network until convergence on all the data available (𝐻𝑡
plus the new transition), however this is computationally infeasible
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and unpractical. Instead we argue a reasonable approximation is to

perform a single-step gradient descent step on the new data point.

We denote a gradient step on parameters 𝑤 given data point

(𝑠, 𝑎, 𝑠 ′, 𝑜) as ∇L(𝑤 ; (𝑠, 𝑎), (𝑠 ′, 𝑜)). The loss is defined as the cross-

entropy between the predicted and true next state and observation.

L(𝑤 ; (𝑠, 𝑎), (𝑠 ′, 𝑜)) = − log𝑝 (𝑠 ′, 𝑜 |𝑠, 𝑎;𝑤)
U(𝑤, 𝑠, 𝑎, 𝑠 ′, 𝑜) = 𝑤 + ∇L(𝑤 ; (𝑠, 𝑎), (𝑠 ′, 𝑜)) (14)

Given the prior and update function, we can now define:

Definition 5 (BADDr). BADDr is a realization of GBA-POMDP
MBADDr =MGBA-POMDP (𝑤0,U) with dropout neural networks𝑤0

as prior parameterization and a single gradient descent step (eq. (14))
as parameter updateU. The state space of the resulting POMDP is
¯S : (S ×𝑊 ), and its dynamics are described as:

¯D(𝜃 ′, 𝑠 ′, 𝑜 |𝑠, 𝜃, 𝑎) ≜ I(𝜃 ′,U(𝜃, 𝑠, 𝑎, 𝑠 ′, 𝑜))𝑝 (𝑠 ′, 𝑜 |𝑤, 𝑠, 𝑎) (15)

where 𝑝 (𝑠 ′, 𝑜 |𝑤, 𝑠, 𝑎) is computed according to eq. (12)

In this way, BADDR is a specific instantiation of the GBA-POMDP

framework. In BADDr, the parameter update criterion (eq. (8)) does

not hold exactly, since dropout networks only approximate Bayesian

inference. This means that we have to rely on empirical evaluation

to assess the overall performance, which is shown in section 5.

4.2 Online Planning for BADDr
Here we detail howwe use an online planning approach to solve the

BADDr model. We start with the construction of our initial belief,

then describe how the belief is tracked using particle filtering [47],

and finish with how MCTS is used to select actions.

Constructing the initial prior. The prior 𝑏 (𝑠0) = 𝑝0 (𝑠,𝑤) is the
product of the prior over the model and POMDP state, (𝑝𝑤0

, 𝑝𝑠0 ),
where 𝑝𝑠0 is given by the original learning problem (of the POMDP).

Weakening the standard assumption in BRL, we do not require a full

prior specification, but assume we can sample domain simulatorsM.

We believe it is more common to be able to generate approximate

and/or simplified simulators for real world problems than it is to

describe (typically assumed) exhaustive priors.

The prior specification hidden inM is translated into a network

ensemble [10] {𝑤0} by training each member on a model sampled

𝑀̃ ∼ M. The training entails supervised learning on (𝑠, 𝑎, 𝑠 ′, 𝑜) sam-

ples with loss eq. (14), generated by sampling state-action pairs

uniformly and simulating next-state-observation results (from 𝑀̃).

While this leads to an approximation due to the parametric rep-

resentation, there is no a problem of data scarcity thanks to the

possibility of sampling infinite data from the prior. Hence when

using infinitely large neural networks, which are universal function

approximators, we theoretically could capture the prior exactly.

Finally the initial particles (belief) is constructed by randomly

pairing states 𝑠0 ∼ 𝑝𝑠0 with networks from the ensemble: {(𝑤0, 𝑠0)}𝑛 .
The prior belief for subsequent episodes is generated by substituting

the POMDP states in the particle filter with initial states sampled

from the prior (and hence maintaining the belief over the dynamics).

Belief tracking. Given the initial particle filter and BADDr’s dy-

namics eq. (15), we use rejection sampling [47] to track the belief.

In rejection sampling (algorithm 1) the agent samples a particle

(𝑠,𝑤) from particle filter and simulates the execution of a given

Algorithm 1 Rejection sampling

1: in: 𝑏, particle filter (𝑠,𝑤)
2: in: 𝑎, taken action

3: in: 𝑜 , new observation

4: in: 𝑛, desired number of particles in next belief

5:
¯𝑏 ′ ← ∅ // next belief, start empty

6: while 𝑠𝑖𝑧𝑒 ( ¯𝑏 ′) < 𝑛 do
7: (𝑠,𝑤) ∼ ¯𝑏

8: // propose sample: BADDr dynamics

9: 𝑤̃ ∼ 𝑤 // dropout sample

10: (𝑠 ′, 𝑜) ∼ 𝑝 (·|𝑠, 𝑎; 𝑤̃)
11: 𝑤 ′ = 𝑤 + ∇L(𝑤, (𝑠𝑡 , 𝑎𝑡 ), (𝑠𝑡+1, 𝑜𝑡+1))
12: if 𝑜 = 𝑜 then
13: Add (𝑠 ′,𝑤 ′) to ¯𝑏 ′ // correct sampled observation

14: end if // otherwise reject

15: end while
16: return ¯𝑏 ′

Algorithm 2 Simulate

1: in: 𝑠 , POMDP state

2: in: 𝑤̃ (root-sampled) dynamics; 𝑤̃ ∼ 𝑤
3: in: 𝑑 , tree depth
4: in: ℎ, action-observation history

5: if 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 (ℎ) or 𝑑 is max depth then
6: return 0

7: end if
8: 𝑎 ← 𝑢𝑐𝑏 (ℎ) // UCB [1] using statistics in node ℎ
9: 𝑠 ′, 𝑜 ∼ 𝑝 (·|𝑠, 𝑎; 𝑤̃) // use root sampled model as simulator
10: 𝑅 ← R(𝑠, 𝑎, 𝑠 ′) // reward function is given
11: ℎ′ ← (ℎ, 𝑎, 𝑜)
12: if ℎ′ ∈ 𝑡𝑟𝑒𝑒 then
13: 𝑟 ← 𝑅 + 𝛾 × 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒 ((𝑠 ′,𝑤), 𝑑 + 1, ℎ′)
14: else
15: 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑒_𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠_𝑓 𝑜𝑟_𝑛𝑜𝑑𝑒 (ℎ′)
16: 𝑟 ← 𝑅 + 𝛾 × 𝑟𝑜𝑙𝑙𝑜𝑢𝑡 ((𝑠 ′,𝑤), 𝑑 + 1, ℎ′)
17: end if
18: 𝑁 (ℎ, 𝑎) ← 𝑁 (ℎ, 𝑎) + 1 // update statistics
19: 𝑄 (ℎ, 𝑎) ← 𝑁 (ℎ,𝑎)−1

𝑁 (ℎ,𝑎) 𝑄 (ℎ, 𝑎) +
1

𝑁 (ℎ,𝑎) 𝑟
20: return 𝑟

action 𝑎. The resulting (simulated) new state (𝑠 ′,𝑤 ′) is added to

the new belief only if the (simulated) observation equals the true

observation. Otherwise the sample is rejected. This process repeats

until the new belief contains some predefined number of particles.

Planning. Ultimately we are interested in taking intelligent ac-

tions with respect to the belief — both over the state and the dynam-

ics. As done in previous Bayes-adaptive frameworks [29, 30], we

also utilize a POMCP [43] inspired algorithm. POMCP builds a look-

ahead tree of action-observation futures to evaluate the expected

return of each action. This tree is built incrementally through simu-

lations (algorithm 2), which each start by sampling a state from the

belief. Our approach is different from regular POMCP in the dynam-

ics being used during the simulations and is inspired by model root
sampling in BA-POMCP [29]: When POMCP samples a state (𝑠,𝑤)
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from the belief at the start of a simulation, we subsequently sample

a model 𝑤̃ ∼ 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 (·|𝑤). This model is then used throughout

the simulation as the dynamics. The computational advantage is

two-fold: one, it avoids computingU eq. (14) (which requires back-

propagation) at each simulated step. Two, the models in the belief

need not be copied during root sampling because they are never

modified (e.g. if simulations were to update𝑤 , the pair of networks

must be copied to leave the belief untouched).

5 EXPERIMENTS
In our experiments we compare BADDr to both a state-of-the-art

non-Bayesian approach and the (factored) BA-POMDP methods.

We experiment on smaller well-known PORL domains, as well as

scale up to larger problems. Overall our evaluation shows that, one,

BADDr is competitive on smaller problems on which current state-

of-the-art BRL methods perform well; and two, BADDr scales to

problems that previous methods cannot. Furthermore, qualitative

analysis show that the agent’s belief converges around the correct

model in tiger and that our method outperforms plain re-weighting

of models. Lastly, the strength of Bayesian methods is demonstrated

in an comparison with a non-Bayes model-based representative.

5.1 Experimental Setup
Baselines. We compare with (F)BA-POMCP [30] as the state-of-

the-art BRL baseline. To ensure a fair comparison we use their

prior as the generative processM to sample POMDPs from when

constructing our prior. Additionally, for all domains, the parameters

shared among FBA-POMCP and BADDr (number of simulations

& particles, the UCB constant, etc.) are the same. We also plot

“POMCP”’ on the true models as an upper bound as dotted lines.

We also include discriminative particle filter reinforcement learn-

ing (DPFRL [34]) as a baseline in our experiments. DPFRL is a novel

end-to-end deep RL architecture designed specifically for partial

observable environments. We used the official implementation and

fine-tuned by picking the best performing combination of the num-

ber of particles, learning rate and network sizes.

Small domains & their priors. The experiments on the tiger prob-

lem [27] function as a baseline comparison. This problem is well

known for being tiny but otherwise highly stochastic and partial

observable. The prior here is a single dropout network trained on

the expected model of the prior used in (F)BA-POMCP.

In collision avoidance [33], the largest problem solved with FBA-

POMCP [30], the agent is a plane flying from the right column of a

grid to the left. The last column is occupied by a moving single-cell

obstacle that is partially observable and must be avoided. This task

is challenging in that both the observation and transition model are

highly stochastic. Again we employ their prior — uncertainty over

the behavior of the obstacle — to train our ensemble.

We designed the road racing problem, a variable-sized POMDP

grid model of highway traffic, in which the agent moves between

three lanes in an attempt to overtake other cars (one in each lane).

The state is described by the distance of each of those cars in their

respective lanes and the current occupied lane. During a step the

distance of the other cars decrements with some probability. The

speed, and thus the probability of a car coming closer, depends on

the lane. The initial distance of all cars is 6, and when their position

drops to -1, as the agent overtakes them, it resets. The observation is

the distance of the car in the agent’s current lane, which also serves

as the reward, penalizing the agent for closing in on cars. The prior

over the observation model and the agent’s location transitions is

correct. The speed that is associated with each lane, however, is

unknown. A reasonable prior is to assume no difference, so we set

the expected probability of advancing to 0.5 for all lanes.

Large domains & their priors. We run an additional larger experi-

ment of the road racing problem with nine lanes. This significantly

increases the size of the problem and, as will be mentioned in the

results, makes previous frameworks intractable.

The last and largest domain is gridverse. Here the agent must

navigate from one corner of a grid to the goal in the other, while

observing only the cells in front (a beam of width 3 leading to up

to 96 observation features). We run this on a grid of up to 32 by

32 cells. In this environment we assume the observation model is

given and learn the transition model of the agent’s position and

orientation. For our prior we learn on data generated by a simulator

with the correct dynamics for “rotations”, but a noisy “forward”

action. The challenge for the agent is to correctly infer the distance

of this action (and thus its own location) online.

5.2 Bayesian RL Comparison
Small domains. The smaller domains are generally compactly

modeled by the (F) BA-POMDP. As a result the baseline BRL meth-

ods are near optimal andwe cannot expect to domuch better. Rather

these experiments test whether BADDr is sample efficient even

when compared to optimal representations.

Figure 2a compares our method with (factored) BA-POMCP on

tiger. Unsurprisingly, the tabular representation has a slight ad-

vantage initially thanks to the sample efficiency. After twice the

amount of data, our method catches up and reaches the same per-

formance. Although Tiger is widely considered a toy problem due

to its size, the inference and resulting planning problem are hard: a

slight difference in the belief over the model significantly alters the

optimal policy. BADDr’s performance here showcases the ability

to tackle highly stochastic and partially observable tasks.

We also investigate how well BADDr captures the posterior

over the model. Figure 2i shows the belief over the probability of

hearing the tiger behind the correct door in a particular run. Initially

the prior is uncertain and its expectation is incorrect, but over 20

episodes the belief converges to the true value of 0.85.

Figure 2c shows BADDr performs nearly as well as FBA-POMCP

on the collision avoidance problem. We hypothesize that the repre-

sentational power of the Dirichlets, in contrast with an ensemble

of dropout networks, explains the discrepancy. Specifically, the

Dirichlet allow more control over the certainty of the prior: the

agent prior over the observation model is confident (high number

of counts), and is uncertain over the transition of the obstacle. Ad-

mittedly, such a prior is difficult to capture in an ensemble (and thus

in BADDr). We test this hypothesis by running FBA-POMCP with

an equally uncertain prior, called ‘FBA-POMCP: uncertain prior’.

Results show that BADDr performs somewhat in the middle of

both. Hence in some occasions the prior representation of BADDr

results in diminished performance, but BADDr shows higher po-

tential when both methods are provided similar prior knowledge
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(a) Bayes comparison on tiger. (b) Bayes comparison on road race (3 lanes). (c) Bayes comparison on collision avoidance.

(d) Our work on road race (9 lanes). (e) Non-Bayes comparison on tiger. (f) Non-Bayes comparison on road race (3 & 9).

(g) Our work on gridverse.
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Filtering 4 nets
BADDr 16 nets
BADDr 8 nets
BADDr 4 nets

(h) Ablation (no model updates) on tiger. (i) Belief of tiger observation model.

Figure 2: Our work (blue) is competitive with FBA-POMCP in small problems (a & b), and can scale to larger instances (d & g).
Fig. (c) shows that BADDr struggles when prior certainty is crucial. Fig (e & f) compares with DPFRL, where BADDr shows both
a better initial performance due to exploiting the prior and better sample efficiency. Dotted lines represent upper bound by
running POMCP on the true POMDP. Fig. (h) demonstrates BADDr (solid) requires far fewer models than an ablation method
that only re-weights models in its beliefs (dotted). Fig. (i) shows the belief in BADDr on tiger converges to the true value (0.85).

(as BADDr outperforms ‘FBA-POMCP: uncertain prior’). Note that

FBA-POMCP is given the correct (sparse) graphical model, which

is a strong assumption in practice that simplifies the learning task.

On the 3-lanes road racing domain (fig. 2b) the difference be-

tween our work and BA-POMCP is nonexistent. This again confirms

that BADDr is competitive with state-of-the-art BRL methods on

small problems which these methods are designed for and per-

form near optimal in. Unlike real applications, these problems are

compactly represented by tables and improvements are unlikely.

Larger domains. The advantage of our method becomes obvious

in larger problems. In the 9 lanes problem (fig. 2d), for instance, even

FBA-POMCP has 10
13

entries, is unable represent this compactly,

and runs out of memory. But a dropout network of 512 nodes can

model the dynamics well enough: despite the increasing size of

the problem, the learning curve is similar to the smaller problem

(fig. 2b) and a similar amount of data is needed to nearly reach the

performance of POMCP in the POMDP. This suggests that there is

some pattern or generalization that BADDr is exploiting.
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Figure 2g shows the performance on gridverse on a grid of size

8, 16 and 32. The agent learns to perform nearly as well as if given

the true model, indicated by the dotted line (for all 3 sizes), with

only a small visible effect of significantly increasing the size of the

problem. Note again that for this domain tabular representations

are infeasible: a single particle would need to specify up to 10
7

parameters (roughly 40GB of memory for a 64bit system). Bayes

networks (FBA-POMDP) is unable to exploit the structure of this

domain, which does not show itself through independence between

features. However, the dropout networks in the belief of BADDr

can generalize to problems otherwise too large to represent.

Ablation study: re-weighting. Section 3.2 claimed that, while tech-

nically correct, solely re-weighting models in the belief (eq. (3))

leads to belief degeneracy as it relies on a correct (or good) model to

be present in the initial belief. This experiments verifies that claim

by assessing the performance of plain re-weighting, denoted with

‘filtering’. This is implemented by omitting the parameter update

functionU (e.g. SGD step). Figure 2h shows that the performance of

both filtering (dotted) and BADDr (solid) increases as a function of

the number of models in the prior. However, BADDr is significantly

more efficient: ‘filtering’ 128 models in the tiger problem performs

similarly to BADDr with just 8. Hence, while theoretically possible,

it requires too many models to be useful.

Run-time. BADDr is a little slower than FBA-POMCP, since call-

ing (i.e. planning) and training neural networks (i.e belief update)

is computationally more expensive than tables. In practice, how-

ever, we found this insignificant. In environments where tabular

approaches are applicable and fit in memory the difference was at

most a small factor. As a result, a single seed/run of any experiment

finished within a day on a typical CPU-based Architecture.

5.3 Non-Bayesian RL Comparison
We also ran DPFRL on all domains to investigate the differences

between Bayesian and non-Bayesian approaches. Results on tiger

(fig. 2e) and both road race instances (fig. 2f) have been picked out

as representative, but other results looked similar and have been

included in the appendix. Note the performance of the Bayesian

methods are identical to previous plots; only the x-axis is different.

While the eventual performance is similar, the difference in

learning speed is immediately obvious. Where the BRL methods

learn within tens to hundreds of episodes, DPFRL requires up to

tens of thousands — a direct consequence of the sample-efficiency

and exploration provided by the Bayesian perspective. In general

we found when measuring the number of episodes necessary to

reach similar performance, that BADDr was at least 40x (and up to

1200x) more sample efficient than DPFRL.

Another advantage of BRL is the exploitation of a prior, which is

visualized by the discrepancy in the initial performance. In the tiger

domain DPFRL starts from scratch with a return of−40 by randomly

opening doors. In real applications with real consequences, this can

be a huge problem and the ability to encode domain knowledge

is crucial. Random behavior is less problematic in the road race

domain, yet also there it takes DPFRL thousands of episodes (of

many time steps) to reach the performance BADDr has at the start.

6 RELATED WORK
Bayesian RL for discrete POMDPs typically adopts the Dirichlet

prior approach taken in the BA-POMDP [15, 41]. For instance, be-

fore generalized to unknown structures with the FBA-POMDP [30],

prior work represented the model posterior as Dirichlets over Bayes

network parameters [38]. Other work circumvents the need for mix-

tures to represent the posterior by assuming access to an oracle to

provide access to the underlying state [24, 25]. By exploiting this in-

formation, they approximate the belief with a MAP estimate of the

counts. A notable exception to this line of work is the iPOMDP [11].

This work is more general in that knowledge of the state space is
not assumed a-priori. Dropping this assumption means that it is

impossible to sum over state sequences, and hence our formula-

tion is not compatible. Bayesian methods for continuous POMDPs

generally assume Gaussian dynamics and model the belief with a

GP. The methods in the literature vary in their assumptions, such

as restricting to a MAP estimate [6], simplifying the observation

model to Gaussian noise around the state [35], full access to the

state during learning [9]. More similar in spirit to our method is the

BA-Continuous-POMDP [40], as it maintains a mixture of model

posteriors, Normal-inverse-Wishart parameters, and presents a sim-

ilar derivation to ours (specific to said parameterization).

In contrast, Bayesian model-free approaches maintain a distribu-

tion over the policywith, for example, ensembles [37] or BayesianQ-

networks [2].While proven successful in their exploration-dependent

domains, they have not been tested under partial observability.

Model-based RL for fully observable MDPs [5] is better under-

stood and include “world models” [17, 18] and Dyna-Q based meth-

ods [23, 50]. Bayesian counterparts include ensemble methods [39],

variational Bayes (variBad [51]), and GP-based models [8] (similar

to us extended with a dropout network approximation of the dy-

namics [14]. Most relevant here is the work on the Bayes-adaptive

MDP [12, 16, 44, 49]. MDPs, however, are strictly easier and these

methods do not trivially extend to partial observability.

7 CONCLUSION
Bayesian RL for POMDPs provide an elegant and principled solution

to key challenges of exploration, hidden state and unknown dynam-

ics. While powerful, their scalability and thus applicability is often

lacking. This paper presents a rigorous formulation of the General

Bayes-adaptive POMDP, as well as a novel instantiation, BADDr,

which improves scalability while maintaining sample efficient with

dropout networks as a Bayesian estimate of the dynamics. The em-

pirical evaluation shows our method performs competitively with

state-of-the-art BRL on small problems, and solves problems that

were previously out of reach. It also demonstrates the strengths of

Bayesian methods, the ability to encode prior and guide exploration,

through a comparison with the non-Bayesian DPFRL.
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