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Abstract—We provide a general framework for designing Gen-
erative Adversarial Networks (GANs) to solve high-dimensional
robust statistics problems, which aim at estimating unknown
parameter of the true distribution given adversarially corrupted
samples. Prior work [1], [2] focus on the problem of robust
mean and covariance estimation when the true distribution lies
in the family of Gaussian distributions or elliptical distributions,
and analyze depth or scoring rule based GAN losses for the
problem. Our work extend these to robust mean estimation,
second-moment estimation, and robust linear regression when
the true distribution only has bounded Orlicz norms, which
includes the broad family of sub-Gaussian, sub-exponential and
bounded moment distributions. We also provide a different set of
sufficient conditions for the GAN loss to work: we only require
its induced distance function to be a cumulative density function
of some light-tailed distribution, which is easily satisfied by
neural networks with sigmoid activation. In terms of techniques,
our proposed GAN losses can be viewed as a smoothed and
generalized Kolmogorov-Smirnov distance, which overcomes the
computational intractability of the original Kolmogorov-Smirnov
distance used in the weaken the distance approach in [3].

I. INTRODUCTION

High-dimensional robust statistics focuses on estimating
unknown parameters of high-dimensional distributions given
corrupted samples. Formally, assume that the true distribution
p? with dimension d is altered to some corrupted distribution
p such that TV(p?, p) ≤ ε, where TV is the total variation
distance. One takes n samples from p to form the empirical
distribution p̂n. Given the empirical distribution and a loss
function L, we aim to output a parameter θ̂(p̂n) such that
L(p?, θ̂(p̂n)) is small. As a concrete example in the setting of
robust mean estimation, one might take the loss function to be
L(p?, θ̂(p̂n)) = ‖Ep? [X]− θ̂(p̂n)‖2, which is the `2 distance
between the true mean and an algorithm’s output.

To achieve robustness, it is necessary to impose nontrivial
assumptions on the true distribution p?. Classical asymptotic
statistical theory focused on minimum-distance functionals
for Gaussian or elliptical distributions [2], [4]–[10]. Recent
work has instead focused on computationally efficient al-
gorithms based on weaker assumptions regarding the tail
behavior of distributions [3], [11]–[20]. Another recent line
of work focuses on generative adversarial networks (GANs)
as a promising framework for developing robust estimators.
Theoretical work has shown that when the true distribution lies
in the family of Gaussian or elliptical distributions, one can

design specific GAN losses to achieve theoretical guarantee on
robust mean estimation and robust covariance estimation [1],
[2].

In this work, we take the theoretical study of GANs for
robust estimation further by connecting it to the minimum-
distance functionals, moving beyond strong Gaussian as-
sumptions and providing concrete sufficient conditions for
robustness. Specifically, our main contributions are as follows:

• We extend the design of GANs for robust estimation
from Gaussian and elliptical distribution in [1], [2] to
a rich family of nonparametric classes of distributions,
including the family of sub-Gaussian, sub-exponential
and bounded moment distributions.

• We identify sufficient conditions for robust estimation
which pinpoint a broad family of GANs that provably
succeed in robust mean estimation, robust covariance
estimation and robust linear regression.

• We provide computable methods for the “weaken the
distance” approach in [3] by smoothing the Kolmogorov-
Smirnov distance, which appears to be difficult to opti-
mize.

II. PRELIMINARIES

We begin by introducing basic notation. A function
ψ : [0,+∞) 7→ [0,+∞) is called an Orlicz function
if ψ is convex, non-decreasing, and satisfies ψ(0) = 0,
ψ(x) → ∞ as x → ∞. For a given Orlicz function
ψ, the Orlicz norm of a random variable X is defined as
‖X‖ψ , inf {t > 0 : Ep [ψ (|X|/t)] ≤ 1} . We use ‖A‖2 =
supv 6=0 ‖Av‖2/‖v‖2 to denote the spectral norm of the matrix
A. For univariate random variables X and Y , we say that Y
stochastically dominates X (to first order) if P(X ≤ t) ≥
P(Y ≤ t) for all t ∈ R [21]. We define the generalized
inverse of a non-decreasing function ψ as ψ−1(y) = inf{x |
ψ(x) > y}. We say a distribution r is an ε-deletion of another
distribution p if r ≤ p

1−ε . The inequality can be formally
understood as dr

dp ≤
1

1−ε , where dr
dp is the Radon-Nikodym

derivative, which can also be understood as r(A) ≤ p(A)
1−ε

for any set A; an equivalent characterization is that r can be
obtained from p by conditioning on an event E of probability
at least 1− ε.



A. Tasks considered in Robust Estimation
We focus on three tasks in robust estimation—robust mean

estimation, robust second-moment estimation, and robust lin-
ear regression—throughout this paper. For robust mean es-
timation, we take the loss function to be L(p?, θ̂(p̂n)) =
‖Ep? [X]−θ̂(p̂n)‖2; for second-moment estimation, we use the
loss function L(p?, θ̂(p̂n)) = ‖Ep? [XX>] − θ̂(p̂n)‖2, where
the algorithm output θ̂(p̂n) is a matrix; and for linear regres-
sion, we take the loss function to be the excess predictive loss,
L(p?, θ̂(p̂n)) = Ep? [(Y − X>θ̂(p̂n))2 − (Y − X>θ?(p?))2],
where θ?(p?) = arg minθ Ep? [(Y −X>θ)2].

When the output θ̂ is a parameter of a distribution, the losses
can alternatively be written as distances between distributions.
For mean estimation, the loss can be written as L(p?, q) =
‖Ep? [X] − Eq[X]‖2; for second-moment estimation, the loss
can be written as L(p?, q) = ‖Ep? [XX>] − Eq[XX>]‖2;
and for linear regression, the loss function can be written as
L(p?, q) = Ep? [(Y −X>θ?(q))2 − (Y −X>θ?(p?))2].

Note that the losses for mean and second-moment es-
timation admit a pseudonorm representation, WF (p, q) =
supf∈F (Ep[f(X)]− Eq[f(X)]). In the case of mean estima-
tion, we have Fmean = {f(x) = v>x | v ∈ Rd, ‖v‖2 ≤ 1},
and for second-moment estimation, we have Fsec = {f(x) =
ξ(v>x)2 | v ∈ Rd, ‖v‖2 ≤ 1, ξ ∈ {±1}}. When we state
our main theorem we will assume that the loss admits this
pseudonorm representation, and showcase how to deal with
linear regression as an exception.

B. Generalized Resilience and Minimum Distance Functional
It is shown in [3, Section 3.2] that when the true distribution

lies in a “generalized resilience” family, it is possible to design
algorithms with robustness guarantees. In particular, when the
loss function takes the form of a pseudonorm WF (p, q), the
generalized resilience set can be expressed simply as:

GF (ρ) ={p | Er[f(X)]− Ep[f(X)] ≤ ρ(ε), ∀ε ∈ [0, 1),

∀r ≤ p

1− ε
, f ∈ F}. (1)

For convenience of notation, we use Gmean to denote GFmean ,
and Gsec to denote GFsec . It is shown in [3] that Gmean(εψ−1(ε))
is a superset of the set of bounded Orlicz norm distributions,
{X ∼ p | sup‖v‖2≤1 ‖v

>(X − E[X])‖ψ ≤ 1}, which
implies a bounded k-th moment when ψ(x) = xk, sub-
exponentiality when ψ(x) = exp(x), and sub-Gaussianity
when ψ = exp(x2). Similarly, Gsec(εψ−1(ε)) is a superset
of {X ∼ p | sup‖v‖2≤1 ‖(v

>X)2‖ψ ≤ 1}.
The generalized resilience set takes a slightly more compli-

cated form for linear regression. However, it is also a superset
of some bounded Orlicz norm family. We use Greg(ψ) to
denote the following family:

Greg(ψ) =

{
p |Ep

[
ψ

(
(v>X)2

σ2
1Ep[(v>X)2]

)]
≤ 1, ∀v ∈ Rd,

and Ep

[
ψ

(
(Y −X>θ∗(p))2

σ2
2

)]
≤ 1

}
.

(2)

Working under the restrictive assumption that the true
distribution lies in G, [3] study a projection algorithm and
show that it achieves polynomial sample complexity for robust
estimation. The algorithm projects the corrupted empirical
distribution p̂n onto G under the generalized Kolmogorov-
Smirnov distance TVH, defined as

TVH(p, q) , sup
f∈H,t∈R

|Pp(f(X) ≥ t)− Pq(f(X) ≥ t)|. (3)

The distance TVH is smaller than the total variation dis-
tance TV because it takes a supremum over only the events
defined by threshold functions in H, while TV takes the
same supremum over all measurable events. The projection
algorithm is analyzed for Guassian mean estimation in [22],
with H = {v>x | v ∈ Rd}, and extended to bounded Orlicz
norm family for robust second-moment estimation, robust
linear regression in [3]. Unfortunately, however, it is difficult
to compute the TVH projection in practice due to the lack of
differentiability of commonly used losses. We show how to
circumvent this issue in the following section.

III. A UNIFIED FRAMEWORK FOR DESIGN OF GANS

In this section we show that a large family of smoothed loss
function can be used as projection functionals and achieve
favorable finite sample bounds. We define the smoothed gen-
eralized Kolmogorov-Smirnov distance as

T̃VF (p, q) = sup
f∈F ,t∈R

|Ep[T (f(X) + t)]− Eq[T (f(X) + t)]|,

(4)

where we assume that T (x), after an affine transformation
aT (x) + b, can be written as the cumulative distribution
function (CDF) of some random variable Z; i.e., aT (−∞) +
b = 0, aT (+∞) + b = 1 and T is right-continuous (and thus
aT (x + b) = P(Z ≤ x) for some random variable Z). An
example is the sigmoid function T (x) = 1/(1 + e−x). When
Z = 0 almost surely, the smoothed distance T̃VF reduces
to the case of generalized KS distance. The key observa-
tion is there is a generalization of the mean cross lemma
in [3, Lemma 3.3] that works for the smoothed generalized
Kolmogorov-Smirnov distance.

Lemma 1 (Closeness in smoothed KS distance implies mean
cross). Assume for two distribution p, q,

sup
t∈R
|Ep[T (X + t)]− Eq[T (X + t)]| ≤ ε, (5)

where we assume that there exist a, b ∈ R such that aT (x) +
b can be written as the CDF of some random variable Z.
Assume the distribution of Z is inside the resilience family of
Gmean(ρZ). Then there exist rp ≤ p

1−|a|ε and rq ≤ q
1−|a|ε such

that

Erq [X]− Erp [X] ≤ 2ρZ(|a|ε). (6)

For the generalized KS distance TVF , Z ≡ 0 almost surely,
and ρZ = 0, which corresponds to Lemma [3, Lemma 3.3].



Proof of Lemma 1. For a fixed x, aT (x + t) + b = P(Z ≤
x+ t) = P(x− Z ≥ −t). Thus we know

sup
t∈R
|Pq×PZ

(X − Z ≥ −t)− Pp×PZ
(X − Z ≥ −t)| ≤ |a|ε,

(7)

where X and Z are independent. Denote p̃ as the distribution
of X−Z when X ∼ p, and q̃ as the distribution of X−Z when
X ∼ q. Starting from p̃, q̃, we delete probability mass of size
ε corresponding to the largest points in p̃ to get r̃p, and delete
probability mass of size |a|ε corresponding to the smallest
points q̃ to get r̃q . Equation (7) implies that PY∼r̃p(Y ≥ t) ≤
PY∼r̃q (Y ≥ t) holds for all t ∈ R. Hence, r̃q stochastically
dominates rp and Er̃p [Y ] ≤ Er̃q [Y ]. Thus we know that there
exist r̃p ≤ p̃

1−|a|ε and r̃q ≤ q̃
1−|a|ε such that

Er̃q [X − Z] ≤ Er̃p [X − Z].

Denote the original distribution of Z as pZ . Note that the
deletion process that yields r̃p and r̃q can be viewed as
operating on the joint distribution of X,Z, such that the
marginal distributions of r̃p and r̃q are obtained as deletions
of pZ . Rearranging, we obtain

Er̃q [X]− Er̃p [X] ≤ Er̃q [Z]− Er̃p [Z]

≤ |Er̃q [Z]− EpZ [Z]|+ |Er̃p [Z]− EpZ [Z]|.
≤ 2ρZ(|a|ε).

We now show that given the mean cross lemma for
smoothed KS distance, the smoothed distance can be used
to deliver a small statistical error for robust estimation under
a pseudonorm-based loss function WF . We will show later
how the analysis extends beyond pseudonorm loss functions
by considering the special case of linear regression.

Theorem 1. For any p∗ ∈ GF (ρ) in Equation (1), denote by
p a corrupted distribution such that TV(p∗, p) ≤ ε. Let the
observed empirical distribution of p be p̂n. Define

A(p, q) = sup
(d1,d2)∈D

Ep[d1(X)] + Eq[d2(X)]. (8)

Here D is some family of discriminator function pairs (d1, d2).
For some function T (x), let aT (x) + b be the CDF of some
random variable Z. Assume the following conditions:

1) For all (d1, d2) ∈ D, x ∈ R, we have |d2(x)| ≤ 1/2.
2) For any distribution pair p, q ∈ GF (ρ), we have

A(q, p)−A(p, p) ≤ ε⇒ (9)
sup

f∈F ,t∈R
|Eq
[
T (f(X) + t)

]
− Ep

[
T (f(X) + t)

]
| ≤ Cε

for some constant C > 0 and any ε < 1/C|a|.
3) The distribution of Z is inside the resilient set Gmean(ρZ),

Then the projection algorithm q = arg minq∈GF (ρ)A(q, p̂n)
guarantees

WF (p∗, q) ≤ 2ρ(Cε̃) + 2ρZ(Cε̃), (10)

where ε̃ = 2ε+ 2Ā(p, p̂n), and

Ā(p, q) = sup
(d1,d2)∈D

|Ep[d2(X)]− Eq[d2(X)]|. (11)

Remark 1. The three conditions are weak enough to be
satisfied for a large family of neural networks. The first
condition on the magnitude of d2 can be easily satisfied by
setting the output of the neural network designed for d2 to pass
through a bounded activation function. The second condition
is satisfied when the set D1 = {T (f(·) + t)|f ∈ F , t ∈ R}.
The third condition requires a careful design of T , and thus
d1, which can also be easily satisfied when the network has a
bounded activation function. For example, a simple sigmoid or
tanh function gives a CDF whose induced distribution is sub-
exponential, and a ramp function gives a CDF whose induced
distribution is sub-Gaussian. In [2], it was shown that under
mild conditions, one can produce valid (d1, d2) using proper
scoring rules and appropriate neural network architectures to
ensure the three conditions. Our result, combined with [2],
extends the results for mean and second-moment estimation
in [2] to general resilient sets including sub-Gaussian and
bounded k-th moments, while [2] gives guarantee for elliptical
distributions as semi-parametric classes.

Proof of Theorem 1. The proof mainly focuses on verifying
two important properties in [3].

1) Robustness to perturbation: For any distribution
p1, p2, p3, we have

|A(p1, p2)−A(p1, p3)|
= | sup

(d1,d2)∈D
(Ep1 [d1(X)] + Ep2 [d2(X)])

− sup
(d1,d2)∈D

(Ep1 [d1(X)] + Ep3 [d2(X)])|

≤ sup
(d1,d2)∈D

|Ep1 [d1(X)] + Ep2 [d2(X)]

− (Ep1 [d1(X)] + Ep3 [d2(X)])|
≤ sup

(d1,d2)∈D
|Ep2 [d2(X)]− Ep3 [d2(X)]|

= Ā(p2, p3)

≤ sup
supx |d2(x)|≤ 1

2

|Ep2 [d2(X)]− Ep3 [d2(X)]|

= TV(p2, p3). (12)

Combining Equation (12), the fact q =
arg minq∈GF A(q, p̂n) and p? ∈ GF , one has

A(q, p?)−A(p?, p?)

≤ A(q, p) + ε−A(p?, p?)

≤ A(q, p̂n) + ε+ Ā(p, p̂n)−A(p?, p?)

≤ A(p?, pn) + ε+ Ā(p, p̂n)−A(p?, p?)

≤ A(p?, p) + ε+ 2Ā(p, p̂n)−A(p?, p?)

≤ 2ε+ 2Ā(p, p̂n) = ε̃.

2) Generalized modulus of continuity: For any p, q ∈ GF ,
from A(q, p) − A(p, p) ≤ ε̃ and condition 2) in Equa-



tion (9), we have

sup
f∈F ,t∈R

|Eq
[
T (f(X) + t)

]
− Ep?

[
T (f(X) + t)

]
| ≤ Cε̃.

From Lemma 1, we know that for any fixed f∗ ∈
arg maxf∈F Ep? [f(X)] − Eq[f(X)], there exist rp? ≤

p?

1−C|a|ε̃ , rq ≤
q

1−C|a|ε̃ , such that

Er̃p? f
∗(X) ≤ Er̃qf

∗(X) + 2ρZ(C|a|ε̃).

From q ∈ GF (ρ), we have

∀r ≤ q

1− C|a|ε̃
,WF (r, q) ≤ ρ(C|a|ε̃). (13)

Therefore

WF (p?, q) = Ep? [f∗(X)]− Eq[f
∗(X)]

≤ Ep? [f∗(X)]− Er̃q [f∗(X)] + ρ(C|a|ε̃)
≤ Ep? [f∗(X)]− Er̃p? [f∗(X)] + 2ρZ(C|a|ε̃)

+ ρ(C|a|ε̃)
≤ 2ρ(C|a|ε̃) + 2ρZ(C|a|ε̃), (14)

which finishes the proof.

IV. APPLICATION OF THEOREM 1 FOR ROBUST
ESTIMATION

Now we demonstrate how Theorem 1 leads to concrete
designs of GANs for robust mean estimation, second-moment
estimation and robust linear regression.

A. Mean estimation

We start with the problem of mean estimation. Recall
the choice of function set Fmean = {f(x) = v>X|v ∈
Rd, ‖v‖2 ≤ 1}.We show that different choices of A(p, q) give
similar performance guarantees in terms of robustness. For the
convenience of notation, let

g1(v, t,X) = sigmoid(v>X + t),

g2(w, {vj}, {tj}, X) = sigmoid

∑
j≤l

wjg1(vj , tj , X)


which represent one- and two-layer neural networks, respec-
tively, with sigmoid activation functions. Here vj , v are d-
dimensional vectors, t, tj ∈ R, and w is a l-dimensional vector.
We consider the following design of distances A(p, q):

A1(p, q) = sup
‖v‖2≤1,t∈R

|Ep[g1(v, t,X)]− Eq[g1(v, t,X)]|,

(15)
A2(p, q) = sup

‖w‖1≤1,‖vj‖2≤1,tj∈R
|Ep [g2(w, {vj}, {tj}, X)]

− Eq [g2(w, {vj}, {tj}, X)] |, (16)
A3(p, q) = sup

‖w‖1≤1,‖vj‖2≤1,
tj∈R

Ep [log (g2(w, {vj}, {tj}, X))]

+ Eq [log (1− g2(w, {vj}, {tj}, X))] , (17)

where A1 can be viewed as a simple one-layer discriminator,
A2 is a two-layer discriminator, and A3 is a two-layer dis-
criminator with loss chosen as log score, which is analyzed
for Gaussian and elliptical distributions in [2].

Corollary 1. Assume the true distribution p? ∈ Gmean(ρ). Let
the projection algorithm q1 = arg minq∈Gmean

A1(q, p̂n), and
q2, q3 be the projection algorithm that projects under distance
A2, A3. For any i ∈ {1, 2, 3}, with probability at least 1− δ,

‖Ep? [X]− Eqi [X]‖2 ≤ C1 · (ρ(ε̃) + ε̃ log(1/ε̃)),

where ε̃ = C2(ε+
√
d/n+

√
log(1/δ)/n).

Remark 2. Corollary 1 recovers [3, Theorem 3.2] up to an
additive term ε̃ log(1/ε̃). As a direct result of Corollary 1,
one can see that if p? is inside the sub-Gaussian family, the
projection algorithm guarantees a rate of C · ε̃ log(1/ε̃), which
is nearly optimal up to logarithmic factors compared to the
result for Gaussian [2]. When p? has bounded covariance,
the rate becomes (ε +

√
d/n +

√
log(1/δ)/n)1/2, which is

optimal in terms of the dependence on ε, but sub-optimal in
dependence with respect to d, n [2], [3], [23]–[27].

Compared to the interpretation of proper scoring rules and
appropriate network structures in [2], our analysis provides a
different view in which robustness is achieved by controlling
the tail of the induced distribution of T (x). The results in
Corollary 1 also generalize to deeper neural networks where
multiple layers with sigmoid activation enables better bound
due to the concentration of Z considered in Theorem 1.

Although projection to G is not exactly computable for
general G, in practice one may use a subset of Orlicz-
norm bounded distributions which can be parameterized using
neural networks, or turn the constrained optimization problem
into a regularized optimization problem by adding the Orlicz
norm as a regularizer in the loss function [28].

Proof of Corollary 1. Since scaling the distance does not
change the final projection qi, it suffices to verify the
three assumptions in Theorem 1 for scaled distances
A1/2, A2/2, A3/2. For the first assumption, one can see that
the three distances all satisfy |d2(x)| ≤ 1/2 due to the fact
that |g1| ≤ 1, g2 ∈ [1/2, e/(e+1)], log(1−g2) ∈ [−0.7,−0.3]
when ‖w‖1 ≤ 1, ‖vj‖2 ≤ 1.

Now we verify the second assumption. Taking w1 =
1, wj = 0, ∀j > 1 in g2 and applying triangle inequality,
we have

A1(q, p)−A1(p, p) ≤ ε⇒
sup

‖v‖2≤1,t∈R
|Ep[g1(v, t,X)]− Eq[g1(v, t,X)]| ≤ ε,

A2(q, p)−A2(p, p) ≤ ε⇒
sup

‖v‖2≤1,t∈R
|Ep[sigmoid(g1(v, t,X))]−

Eq[sigmoid(g1(v, t,X))]| ≤ ε,
A3(q, p)−A3(p, p) ≤ ε⇒

sup
‖v‖2≤1,t∈R

|Ep[log(sigmoid(g1(v, t,X)))]−

Eq[log(sigmoid(g1(v, t,X)))]| ≤ ε.



These imply that A1, A2, A3 satisfy assumption 2) in Theo-
rem 1 with particular choices of T : T1(x) = sigmoid(x), T2 =
sigmoid(T1(x)), T3 = log(T2(x)).

We now verify the third assumption. For CDF T1(x) =
1

1+exp(−x) , the corresponding random variable Z is sub-
exponential since max(P(X ≤ −t),P(X ≥ t)) ≤ exp(−t)/2
for any t ≥ 0. For T2, T3, we can verify that after scaling the
CDF, E[exp(|Z|/10)] ≤ 1. This shows the induced random
variables from T2, T3 are also sub-exponential. From [3] we
know the distribution of Z lies in the set of Gmean(ε log(1/ε)).

Furthermore, from [2, Lemma 7.3] and [1, Lemma 8.1], we
know that Ā1(p̂n, p), Ā2(p̂n, p), Ā3(p̂n, p) are all bounded by
C(
√
d/n+

√
log(1/δ)/n) with probability at least 1−δ.

B. Second-moment estimation
Using the same technique as mean estimation, we can show

similar results for second-moment estimation by changing
Fmean to Fsec in T̃VF . Let A1, A2, A3 be the same as mean
estimation in Equation (15), (16), (17) except that we set

g1(v, t,X) = sigmoid((v>X)2 + t),

g2(w, {vj}, {tj}, X) = sigmoid

∑
j≤l

wjg1(vj , tj , X)

 .

= sigmoid

∑
j≤l

wjsigmoid((v>j X)2 + t)

 .

Following the same proof as Corollary 1, we have1

Corollary 2. Assume the true distribution p? ∈ Gsec(ρ). Let
the projection algorithm q1 = arg minq∈Gsec A1(q, p̂n), and
q2, q3 be the projection algorithm that projects under distance
A2, A3. For any i ∈ {1, 2, 3}, with probability at least 1− δ,

‖Ep? [XX>]− Eqi [XX
>]‖2 ≤ C1 · (ρ(ε̃) + ε̃ log(1/ε̃)),

where ε̃ = C2(ε+
√
d/n+

√
log(1/δ)/n).

Remark 3. When the true distribution lies in the set of sub-
Gaussian distributions, the projection algorithm guarantees a
rate of C · ε̃ log(1/ε̃), which is near optimal up to logarithmic
factors compared to the result for Gaussian [2].

C. Linear Regression
For linear regression, we adopt a difference family of F in

T̃VF , which takes the form of {(Y −v>1 X)2− (Y −v>2 X)2 |
v1, v2 ∈ Rd}. Let A1, A2, A3 be the same as mean estimation
in Equation (15), (16), (17) except that we set

g1(v1, v2, t,X) = sigmoid((Y − v>1 X)2

− (Y − v>2 X)2 + t),

g2(w, {v(1)j }, {v
(2)
j }, {tj}, X)

= sigmoid

∑
j≤l

wjg1(v
(1)
j , v

(2)
j , tj , X)

 .

1Besides a different choice of g1, g2,F , the only difference in the proof
is the concentration of Ā(p̂n, p). One can follow a similar analysis in [2,
Lemma 7.3] and [1, Lemma 8.1] to derive the concentration.

Although the loss for linear regression is not pseudonorm,
and thus Theorem 1 is not directly applicable, we show below
that under slight modification of the analysis in Theorem 1 that
invokes the general property of generalized resilience in [3],
the projection algorithm under the distances A1, A2, A3 still
guarantees robust regression.

Corollary 3. Assume the true distribution p? ∈ Greg(ψ)
in Equation (2). Let the projection algorithm q1 =
arg minq∈Greg A1(q, p̂n), and q2, q3 be the projection algo-
rithm that projects under distance A2, A3. For any i ∈
{1, 2, 3}, with probability at least 1− δ,

Ep? [(θ?(qi)
>X − Y )2 − (θ?(p)>X − Y )2]

≤C1 · (ε̃ψ−1(1/ε̃) + ε̃ log(1/ε̃)),

where ε̃ = C2(ε+
√
d/n+

√
log(1/δ)/n).

Remark 4. Corollary 3 recovers [3, Theorem 3.3] up to
an additive term ε̃ log(1/ε̃). When X and Y − X>θ?(p?)
are both sub-Gaussian, our dependence on ε is the same
as the optimal rate in Gaussian example in [9] up to a
log factor while the sample complexity matches [9] exactly.
[29] guarantee an optimal parameter error ‖θ̂ − θ∗‖2 .
(ε log(1/ε))2 given O(d/ε2) samples when X is isotropic
Gaussian and Y − X>θ?(p?) is Gaussian, while we can
improve the results to (ε

√
log(1/ε))2, as is achieved in [30],

by taking ψ(x) = exp(x2) and using it as the generalized
resilience set.

Proof of Corollary 3. We slightly modify the last part of
the proof in Theorem 1 for linear regression. Following
the same proof as Theorem 1, we know for fixed f =
(Y −X>θ?(qi))2− (Y −X>θ?(p?))2, one can find deletions
rp? , rqi which delete at most ε̃-fraction of the distributions
p?, qi, such that

Erp? [(Y −X>θ?(qi))2 − (Y −X>θ?(p?))2]

≤ Erq [(Y −X>θ?(qi))2 − (Y −X>θ?(p?))2] + 2ρZ(Cε̃)

≤ Erq [(Y −X>θ?(qi))2 − (Y −X>θ?(rqi))2] + 2ρZ(Cε̃)

≤ Cε̃ψ−1(1/ε̃) + 2ρZ(Cε̃). (18)

Here the last inequality comes from [3, Lemma F.3]. Invoking
[3, Lemma F.3] again, we know that Equation (18) implies that

Ep? [(Y −X>θ?(qi))2 − (Y −X>θ?(p?))2]

≤ C1(ε̃ψ−1(1/ε̃) + ρZ(C2ε̃)).

The rest of the proof follows directly from that of Corollary 1
by verifying the three assumptions in Theorem 1.
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