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Abstract

In online reinforcement learning (RL), efficient exploration remains particularly
challenging in high-dimensional environments with sparse rewards. In low-
dimensional environments, where tabular parameterization is possible, count-based
upper confidence bound (UCB) exploration methods achieve minimax near-optimal
rates. However, it remains unclear how to efficiently implement UCB in realistic RL
tasks that involve nonlinear function approximation. To address this, we propose a
new exploration approach via maximizing the deviation of the occupancy of the
next policy from the explored regions. We add this term as an adaptive regularizer
to the standard RL objective to trade off between exploration and exploitation.
We pair the new objective with a provably convergent algorithm, giving rise to a
new intrinsic reward that adjusts existing bonuses. The proposed intrinsic reward
is easy to implement and combine with other existing RL algorithms to conduct
exploration. As a proof of concept, we evaluate the new intrinsic reward on tabular
examples across a variety of model-based and model-free algorithms, showing
improvements over count-only exploration strategies. When tested on navigation
and locomotion tasks from MiniGrid and DeepMind Control Suite benchmarks, our
approach significantly improves sample efficiency over state-of-the-art methods

1 Introduction

Online RL is a useful tool for an agent to learn how to perform tasks, particularly when expert demon-
strations are unavailable and reward information needs to be used instead [92]. To learn a satisfactory
policy, an RL agent needs to effectively balance between exploration and exploitation, which remains
a central question in RL [23}[15]]. Exploration is particularly challenging in environments with sparse
rewards. One popular approach to exploration is based on intrinsic motivation, often applied by
adding an intrinsic reward (or bonus) to the extrinsic reward provided by the environment. In provable
exploration methods, bonus often captures the value estimate uncertainty and the agent takes an
action that maximizes the upper confidence bound (UCB) [3, 18} 411 148} 144]). In tabular setting, UCB
bonuses are often constructed based on either Hoeffding’s inequality, which only uses visitation
counts, or Bernstein’s inequality, which uses value function variance in addition to visitation counts.
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Figure 1: Normalized samples use of different methods with respect to MADE (smaller values are
better). MADE consistency achieves a better sample efficiency compared to all other baselines.
Infinity means the method fails to achieve maximum reward in given steps.

The latter is proved to be minimax near-optimal in environments with bounded rewards [44},165] as
well as bounded total reward [[112] and reward-free settings [64} 49| 45| |113]]. It remains an open
question how one can efficiently compute confidence bounds to construct UCB bonus in non-linear
function approximation. Furthermore, Bernstein-style bonuses are often hard to compute in practice
beyond tabular setting, due to difficulties in computing value function variance.

In practice, various approaches are proposed to design intrinsic rewards: visitation pseudo-count
bonuses estimate count-based UCB bonuses using function approximation [10, [15], curiosity-based
bonuses seek states where model prediction error is high, uncertainty-based bonuses [[77} 187]] adopt
ensembles of networks for estimating variance of the Q-function, empowerment-based approaches [52|
34,1841168]) lead the agent to states over which the agent has control, and information gain bonuses [51]]
reward the agent based on the information gain between state-action pairs and next states.

Although the performance of practical intrinsic rewards is good in certain domains, empirically they
are observed to suffer from issues such as detachment, derailment, and catastrophic forgetting [3, 23]
Moreover, these methods usually lack a clear objective and can get stuck in local optimum [3]. Indeed,
the impressive performance currently achieved by some deep RL algorithms often revolves around
manually designing dense rewards [13]], complicated exploration strategies utilizing a significant
amount of domain knowledge [23]], or operating in the known environment regime [88} |69]].

Motivated by current practical challenges and the gap between theory and practice, we propose a new
algorithm for exploration by maximizing deviation from explored regions. This yields a practical
algorithm with strong empirical performance. To be specific, we make the following contributions:

1. Exploration via maximizing deviation Our approach is based on modifying the standard RL
objective (i.e. the cumulative reward) by adding a regularizer that adaptively changes across iterations.
The regularizer can be a general function depending on the state-action visitation density and previous
state-action coverage. We show that the regularized objective naturally admits several common
existing exploration methods. We then choose a particular regularizer that MAximizes the DEviation
(MADE) of the next policy visitation d™ from the regions covered by prior policies pf:

Li(d™) = J(d™) + 7 Y/ G2 (1)

pky(s,a)

Here, k is the iteration number, J(d™) is the standard RL objective, and the regularizer encourages
d™(s,a) to be large when p% (s,a) is small. We give an algorithm for solving the regularized
objective and prove that with access to an approximate planning oracle, it converges to the global
optimum. We show that objective (1)) results in an intrinsic reward that can be easily added to any RL
algorithm to improve performance, as suggested by our empirical studies. Furthermore, the intrinsic
reward applies a simple modification to the UCB-style bonus that considers prior visitation counts.
This simple modification can also be added to existing bonuses in practice.

2. Tabular studies In the special case of tabular parameterization, we show that MADE only applies
some simple adjustments to the Hoeffding-style count-based bonus. We compare the performance
of MADE to Hoeffding and Bernstein bonuses in three different RL algorithms, for the exploration
task in the stochastic diabolical bidirectional lock [366], which has sparse rewards and local optima.
Our results show that MADE robustly improves over the Hoeffding bonus and is competitive to the
Bernstein bonus, across all three RL algorithms. Interestingly, MADE bonus and exploration strategy



appear to be very close to the Bernstein bonus, without computing or estimating variance, suggesting
that MADE potentially captures some environmental structures. Additionally, we empirically show
that MADE regularizer can improve the optimization rate in policy gradient methods.

3. Experiments on MiniGrid and DeepMind Control Suite We empirically show that MADE
works well when combined with model-free (IMAPLA [25], RAD [55]) and model-based
(Dreamer [35]]) RL algorithms, greatly improving the sample efficiency over existing baselines.
When tested in the procedurally-generated MiniGrid environments, MADE manages to converge with
two to five times fewer samples compared to state-of-the-art method BeBold [[111]]. In DeepMind
Control Suite [95]], we build upon the model-free method RAD [55] and the model-based method
Dreamer [35]], improving the return up to 150 in 500K steps compared to baselines. Figure [I|shows
normalized sample size to achieve maximum reward with respect to our algorithm.

2 Background

Markov decision processes. An infinite-horizon discounted MDP is described by a tuple M =
(S, A, P,r,p,7), where S is the state space, A is the action space, P : S x A — A(S) is the
transition kernel, r : S x A — [0, 1] is the (extrinsic) reward function, p : S — A(S) is the initial
distribution, and v € [0, 1) is the discount factor. A stationary (stochastic) policy = € A(A | S)
specifies a distribution over actions in each state. Each policy 7 induces a visitation density over
state-action pairs d™ : S x A — [0, 1] defined as d7j (s, a) = (1 =) 3.2 V' Pe(sy = 5,01 = a;7),
where P;(s; = s, a; = a;m) denotes (s, a) visitation probability at step ¢, starting at sg ~ p(-) and
following 7. An important quantity is the value a policy 7, which is the discounted sum of rewards
V™ (s) =E[>,2g7're | so =s,a; ~ (- | s¢) forall t > 0] starting at state s € S.

Policy mixture. For a sequence of policies C¥ = (71, ..., m) with corresponding mixture dis-
tribution w® € A,_1, the policy mixture mmix r = (C k, w"“‘) is obtained by first sampling a policy
from w" and then following that policy over subsequent steps [36]. The mixture policy induces a
state-action visitation density according to d™ix(s,a) = Zle w¥d™i(s,a). While the 7, may

not be stationary in general, there exists a stationary policy 7’ such that d™" = d™=ix Puterman [0].

Online reinforcement learning. Online RL is the problem of finding a policy with a maximum
value from an unknown MDP, using samples collected during exploration. Oftentimes, the following
objective is considered, which is a scalar summary of the performance of policy 7:

Tar () = B[V (5)] = (1= 1) 7" B aymaz (0 [r(s,@)] = T (d7). 2)

We drop index M when it is clear from context. We denote an optimal policy by 7* € arg max,. J(m)
and use the shorthand V* := V™" to denote the optimal value function. It is straightforward to check
that J () can equivalently be represented by the expectation of the reward over the visitation measure
of . We slightly abuse the notation and sometimes write J(d™) to denote the RL objective.

3 Adaptive regularization of the RL objective

3.1 Regularization to guide exploration

In online RL, the agent faces a dilemma in each step: whether it should select a seemingly optimal
policy (exploit) or it should explore different regions of the MDP. To allow flexibility in this choice
and trade off between exploration and exploitation, we propose to add a regularizer to the standard
RL objective that changes throughout iterations of an online RL algorithm:

Li(d™) = J(d™) +7 R(d™;{d™}F_,). 3)
—— —_——
exploitation exploration

Here, R(d™; {d™}¥_,) is a function of state-action visitation of 7 as well as the visitation of prior
policies 71, . .., . The temperature parameter 75, determines the strength of regularization. Objec-
tive (3) is a population objective in the sense that it does not involve empirical estimations affected
by the randomness in sample collection. In the following section, we give our particular choice of
regularizer and discuss how this objective can describe some popular exploration bonuses. We then
provide a convergence guarantee for the regularized objective in Section [3.2]



3.2 Exploration via maximizing deviation from policy cover

We develop our exploration strategy MADE based on a simple intuition: maximizing the deviation
from the explored regions, i.e. all states and actions visited by prior policies. We define policy
cover at iteration k to be the density over regions explored by policies 71, . . ., Ty, i.e. p£ (s, a) =

% Zle d™ (s, a). We then design our regularizer to encourage d™ to be different from pf :

Ry (d™; {d™ }; 4
K™ {d™ ) = Z pcovsa 4)
It is easy to check that the maximizer of above function is d” (s, a) m Our motivation behind
this particular deviation is that it results in a simple modification of UCB bonus in tabular case.

‘We now compute the reward yielded by the new objective. First, define a policy mixture mpix,; With
policy sequence (71, . .., m) and weights (1 —n)F=1, (1 —n)*2n, (1—n)*=3n,,...,n) forn > 0.
Let d™ix* be the visitation density of 7 1. We compute the total reward at iteration k by taking
the gradient of the new objective with respect to d™ at d™ix*:

ri(s,0) = (1 = NVaLi(d)| o = 7(s,0) + (1 = N7 VaRi(d; {d™ 1oy | yrmiens )
which gives the following reward
(1 —9)m%/2
V/dmmii (s, @) phoy(5,0)

The intrinsic reward is constructed based on two densities: pk, a uniform combination of past

visitation densities and ™=+ a weighted mixture of the past visitation densities. As we will discuss
shortly, policy cover pk (s, a) is related to the visitation count of (s, a) pair in previous iterations
and resembles count-based bonuses [[10} 44| or their approximates such as RND [15]. Therefore, for
an appropriate choice of 7, MADE intrinsic reward decreases as the number of visitations increases.

MADE intrinsic reward is also proportional to 1/4/d™ix* (s, a), which can be viewed as a correction
applied to the count-based bonus. In effect, due to the decay of weights in 7, the above
construction gives a higher reward to (s, a) pairs visited earlier. Experimental results suggest that
this correction may alleviate major difficulties in sparse reward exploration, namely detachment and
catastrophic forgetting, by encouraging the agent to revisit forgotten states and actions.

ri(s,a) = r(s,a) +

(6)

Empirically, MADE's intrinsic reward is computed based on estimates d™x* and p pk , from data
collected by iteration k. Furthermore, practically we consider a smoothed version of the above
regularizer by adding A > 0 to both numerator and denominator; see Equation (7).

MADE intrinsic reward in tabular case. In tabular empirical setting, the empirical estimation of

policy cover is simply p& (s, a) = Nk(é ) where Ny(s, a) is (s, a) pair’s visitation count and Ny,

is the total count, by iteration k. Settlng 7 = 1/+/ Nk, MADE simply modifies the Hoeffding-type

bonus via the mixture density and is proportional to 1/ \/ d™mixk (s, a)Ni (s, a).

Bernstein bonus is another tabular UCB bonus that modifies Hoeffding bonus via an empirical estimate
of the value function variance. Bernstein bonus is shown to improve over Hoeffding count-only
bonus by exploiting additional environment structure [106] and close the gap between algorithmic
upper bounds and information-theoretic limits up to logarithmic factors [[112, [113]. However, a
practical and efficient implementation of a bonus that exploits variance information in non-linear
function approximation parameterization still remains an open question; see Section[6 for further
discussion. On the other hand, our proposed modification based on the mixture density can be easily
and efficiently incorporated with non-linear parameterization.

Deriving some popular bonuses from regularization. The regularization in can describe
some popular bonuses. Exploration bonuses that only depend on state-action visitation counts can be
expressed in the form (3)) by setting the regularizer a linear function of d™ and the exploration bonus
ri(s,a), i.e., Ri(d™;{d™}¥_ ) =", ,d"(s,a)r;(s,a). One can check that taking the gradient of
the regularizer with respect to d™ recovers (s,a). As another example, one can set the regularizer to
Shannon entropy Ry (d™; {d™}¥_|) = — > 6.0 d"(s,a)logd™ (s, a), which gives the intrinsic reward
—log d™ (s, a) (up to an additive constant) and recovers the result in Zhang et al. [109].



Algorithm 1 Policy computation for adaptively regularized objective

1: Inputs: Iteration count K, planning error €, visitation density error €.

2: Initialize policy mixture iy 1 = with C; = (1) and w! = (1)

3: fork=1,...,Kdo

4: Estimate the visitation density dmmixk of Tmix,k Via a visitation density oracle.

5: Compute reward 7 (s, a) = r(s,a) + (1 — )7 VaRe(d; {m: }r_) |d:gﬂmax,k-

6 Run approximate planning on modified MDP M* = (8 A, Pyri, vy ) and return 7y 1.
7 Update policy mixture Ck! = (O, mp41) and w**! = ((1 — n)w®, ).

8: Return: myiy x = (C*, wk).

3.3 Solving the regularized objective

Recall that our goal is to find a policy that maximizes the regu]arized objective 7 €
argmax, Ly(d™) = J(d™) + 7. R(d™; {d™ }%_,). Despite being nonconcave in 7, this objective is
concave in d”. Therefore, one can solve the followmg constrained concave optimization problem
instead: maxgrcy L (d™), where V is the set of all valid visitation densities.

To solve this constrained optimization problem, we use the conditional gradient method or the Frank-
Wolfe algorithm [31]], which has been used in the context of RL in works such as [36}[1,105]]. The con-
ditional gradient method involves iteratively solving d™+! € argmax;{(d, V gr Ly, (d™)| 4= — gmmis.k )
and obtaining d™™ix*+1 from a weighted combination of d"™* and d™*+!. Note that the first step is
equivalent to planning via a reward function proportional to V g« Ly, (d™)| 4= — g=mix.x » Which justifies
they way we computed the total reward in Equation (3)).

We provide convergence guarantee for Algorithm [I]in the following theorem whose proof is given in
Appendix A.

Theorem 1. Consider the following regularizer for (3) with X > 0 and a valid visitation density d

- d(s,a)+ A
R)\(dv {d Z PU,V(S CL) + )\ (7)

Set 7, = T/k¢, where 0 < 7 < land ¢ > 0. Forany e > 0 andn < 046)\2 there exists

€ps €ds Cy B such that Twix, i returned by Algorithm|l| Iafter K > n~tlog(10Be™1) iterations satisfies
Ly (dﬂ—m”‘ K) > max, Ly, (dﬂ) — €.

Remark 1. One does not need to maintain the functional forms of past policies to estimate dmmixi,
Practically, one may truncate the dataset to a (prioritized) buffer and estimate the density over that.

4 A tabular study

We first study the performance of MADE in tabular toy examples. In the Bidirectional Lock
experiment, we compare MADE to theoretically guaranteed Hoeffding-style and Bernstein-style
bonuses in a sparse reward exploration task. In the Chain MDP, we investigate whether MADE’s
regularizer (4) provides any benefits in improving optimization rate in policy gradient methods.

value iteration PPO Q-learning

bidirectional lock
/\/ @\O O O = S <
x%‘ T—O—O— ) g
)—{ﬁ) 0.0 0.0 0.0

0 2 4 000 025 050 075 100 0 2 4
environment step %107 environment step  x10* environment step  x103

= Hoeffding === Bernstein === MADE (ours)

Figure 2: In a bidirectional lock, the agent starts at so and enters one of the chains based on the selected action.
Each chain has a positive reward at the end, H good states, and H dead states. Both actions available to the
agent lead it to the dead state, one with probability one and the other with probability p < 1. MADE performs
better than Hoeffding-style bonus and comparable to Bernstein-style bonus across all three RL algorithms.
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Figure 3: Hoeffding, Bernstein, and MADE intrinsic rewards over iterations in a bidirectional lock.

4.1 Exploration in bidirectional lock

We consider a stochastic version of the bidirectional combination lock (Figure |Z]), which is considered
a particularly difficult exploration task in tabular setting [66] B]]. This environment is challenging
because: (1) positive rewards are sparse, (2) a small negative reward is given when transiting to a
good state and thus, moving to a dead state is locally optimal, and (3) the agent may forget to explore
one chain and get stuck in local minima upon receiving an end reward in one lock [3]].

RL algorithms and exploration strategies. We compare the performance of Hoeffding and Bern-
stein bonuses [44]] to MADE in three different RL algorithms. To implement MADE in tabular setting,
we simply use two buffers: one that stores all past state-action pairs to estimate p.oy and another
one that only maintains the most recent B pairs to estimate dj;. We use empirical counts to estimate

both densities, which give a bonus < 1/+/ Ny (s, a)B(s, a), where Ny (s, a) is the total count and
By, (s, a) is the recent buffer count of (s, a) pair. We combine three bonuses with three RL algorithms:
(1) value iteration with bonus [37]], (2) proximal policy optimization (PPO) with a model [16]], and
(3) Q-learning with bonus .

Results. Figure 2| summarizes our results showing MADE improves over the Hoeffding bonus and
is competitive to the Bernstein bonus in all three algorithms. Unlike Bernstein bonus that is hard to
compute beyond tabular setting, MADE bonus design is simple and can be effectively combined with
any deep RL algorithm. The experimental results suggest several interesting properties for MADE.
First, MADE applies a simple modification to the Hoeffding bonus which improves the performance.
Second, as illustrated in Figure[3] bonus values and exploration pattern of MADE is somewhat similar
to the Bernstein bonus. This suggests that MADE may capture some structural information of the
environment, similar to Bernstein bonus, which captures certain environmental properties such as the
degree of stochasticity [106].

4.2 Policy gradient in chain MDP
We consider the chain MDP (Figure ) presented in [2]], which suffers from vanishing gradients with

policy gradient approach [93] as a positive reward is only achieved if the agent always takes action a .
This leads to an exponential iteration complexity lower bound on the convergence of vanilla policy

Policy gradient on chain MDP

1
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PG === PG+RE PG+E == = PG+MADE

Figure 4: A deterministic chain MDP that suffers from vanishing gradients [2]. We consider a
constrained tabular policy parameterization with 7(a|s) = s , and ) 0 , = 1. The agent always
starts from sg and the only non-zero reward is r(sg41,a1) = L.
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gradient approach even with access to exact gradients [2]. In this environment the agent always starts
at state so and recent guarantees on the global convergence of exact policy gradients are vacuous
[L1} 221 162]. This is because the rates depend on the ratio between the optimal and learned visitation
densities, known as concentrability coefficient [47, 185, 132, 82]], or the ratio between the optimal
visitation density and initial distribution [2].

RL algorithms. Since our goal in this experiment is to investigate the optimization effects and not
exploration, we assume access to exact gradients. In this setting, we consider MADE regularizer with
the form Zsﬁ \/d™ (s, a). Note that policy gradients take gradient of the objective with respect to
the policy parameters ¢ and not d™. We compare optimizing the policy gradient objective with four
methods: vanilla version PG (e.g. uses policy gradient theorem [99, 93} 53]]), relative policy entropy
regularization PG+RE [2], policy entropy regularization PG+E [67, 62], and MADE regularization.

Results. Figure4 illustrates our results on policy gradient methods. As expected [2]], the vanilla
version has a very slow convergence rate. Both entropy and relative entropy regularization methods are
proved to achieve a linear convergence rate of exp(—t) in the iteration count ¢ [62] 2]]. Interestingly,
MADE seems to outperforms the policy entropy regularizers, quickly converging to a globally optimal
policy.

S Experiments on MiniGrid and DeepMind Control Suite

In addition to the tabular setting, MADE can also be integrated with various model-free and model-
based deep RL algorithms such as IMPALA [25]], RAD [57]], and Dreamer [35]. As we will see
shortly, MADE exploration strategy on MiniGrid [19] and DeepMind Control Suite [93] tasks
achieves state-of-the-art sample efficiency.

For a practical estimation of p%  and d™i=* we adopt the two buffer idea described in the tabular
setting. However, since now the state space is high-dimensional, we use RND [15] to estimate
Ny (s,a) (and thus p% ) and use a variational auto-encoder (VAE) to estimate d™=*, Specifically,
for RND, we minimize the difference between a predictor network ¢’ (s, a) and a randomly initialized
target network ¢(s, a) and train it in an online manner as the agent collects data. We sample data
from the recent buffer B to train a VAE. The length of B is a design choice for which we do an
ablation study. Thus, the intrinsic reward in deep RL setting takes the following form
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Figure 5: Results for various hard exploration tasks from MiniGrid. MADE successfully solves all the
environments while other algorithms (except for BeBold) fail to solve several environments. MADE finds the
optimal solution with 2-5 times fewer samples, yielding a much better sample efficiency.
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Figure 6: Results for several DeepMind control suite locomotion tasks. Comparing to all baselines, the
performance of MADE is consistently better. Sometimes baseline methods even fail to solve the task.

Model-free RL baselines. We consider several baselines in MiniGrid: IMPALA [23] is a variant
of policy gradient algorithms which we use as the training baseline; ICM [76] learns a forward
and reverse model for predicting state transition and uses the forward model prediction error as
intrinsic reward; RND [15] trains a predictor network to mimic a randomly initialized target network
as discussed above; RIDE [81]] learns a representation similar to ICM and uses the difference of
learned representations along a trajectory as intrinsic reward; AMIGo [17] learns a teacher agent to
assign intrinsic reward; BeBold [[111] adopts a regulated difference of novelty measure using RND.
In DeepMind Control Suite, we consider RE3 [86] as a baseline which uses a random encoder for
state embedding followed by a k-nearest neighbour bonus for a maximum state coverage objective.

Model-based RL baselines. MADE can be combined with model-based RL algorithms to improve
sample efficiency. For baselines, we consider Dreamer, which is a well-known model-based RL
algorithm for DeepMind Control Suite, as well as Dreamer+RE3, which includes RE3 bonus on top
of Dreamer.

MADE achieves state-of-the-art results on both navigation and locomotion tasks by a substantial
margin, greatly improving the sample efficiency of the RL exploration in both model-free and
model-based methods. Details on experiments and hyperparameters are provided in Appendix B.

5.1 Model-free RL on MiniGrid

MiniGrid [19]] is a widely used benchmark for exploration in RL. Despite having symbolic states and
a discrete action space, MiniGrid tasks are quite challenging. The easiest task is MultiRoom (MR)
in which the agent needs to navigate to the goal by going to different rooms connected by the doors.
In KeyCorridor (KC), the agent needs to search around different rooms to find the key and then use
it to open the door. ObstructedMaze (OM) is a harder version of KC where the key is hidden in a
box and sometimes the door is blocked by an obstruct. In addition to that, the entire environment is
procedurally-generated. This adds another layer of difficulty to the problem.

From Figure[5 we can see that MADE manages to solve all the challenging tasks within 90M steps
while all other baselines (except BeBold) only solve up to 50% of them. Compared to BeBold,
MADE uses significantly (2-5 times) fewer samples.

5.2 Model-free RL on DeepMind Control

We also test MADE on image-based continuous control tasks of DeepMind Control Suite [93],
which is a collection of diverse control tasks such as Pendulum, Hopper, and Acrobot with realistic
simulations. Compared to MiniGrid, these tasks are more realistic and complex as they involve
stochastic transitions, high-dimensional states, and continuous actions. For baselines, we build our
algorithm on top of RAD [57], a strong model-free RL algorithm with a competitive sample efficiency.
We compare our approach with ICM, RND, as well as RE3, which is the SOTA algorithm Note
that we compare MADE to very strong baselines. Other algorithms such as DrQ [54], CURL [89],
ProtoRL [[104], SAC+AE [103]]) perform worse based on the results reported in the original papers.

3 As we were not provided with the source code, we implemented ICM and RND ourselves. The performance
for ICM is slightly worse than what the author reported, but the performance of RND and RES3 is similar.
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Figure 7: Ablation study on buffer size in MADE. The optimal buffer size varies in different tasks. We found
that a buffer size of 10000 empirically works consistently reasonable.
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Figure 8: Results for DeepMind control suite locomotion tasks in model-based RL setting. Comparing to all
baselines, the performance of MADE is consistently better. Some baseline methods even fail to solve the task.

MADE show consistent improvement in sample efficiency: 2.6 times over RAD+RE3, 3.3 times over
RAD+RND, 19.7 times over CURL, 15.0 times over DrQ and 3.8 times over RAD.

From Figure[6] we can see that MADE consistently improves sample efficiency compared to all base-
lines. For these tasks, RND and ICM do not perform well and even fail on Cartpole-Swingup. RE3
achieves a comparable performance in two tasks, however, its performance on Pendulum-Swingup,
Quadruped-Run, Hopper-Hop and Walker-Run is significantly worse than MADE. For example, in
Pendulum-Swingup, MADE achieves a reward of around 800 in only 30K steps while RE3 requires
300k samples. In Quadruped-Run, there is a 150 reward gap between MADE and RE3, which seems
to be still enlarging. These tasks show the strong performance of MADE in model-free RL.

Ablation study. We study how the buffer length affects the performance of our algorithm in some
DeepMind Control tasks. Results show that for different tasks the optimal length is slightly different.
We empirically found that using a buffer length of 1000 consistently works well across different tasks.

5.3 Model-based RL on DeepMind Control

We also empirically verify the performance of MADE combined with the SOTA model-based RL
algorithm Dreamer [35]. We compare MADE with Dreamer and Dreamer combined with RE3 in
Figure[§] Results show that MADE has great sample efficiency in maps like Cheetah-Run-Sparse,
Hopper-Hop and Pendulum-Swingup. For example, in Hopper-Hop, MADE achieves more than
100 higher return than RE3 and 250 higher than Dreamer, achieving a new SOTA result.

6 Related work

Provable optimistic exploration. Most provable exploration strategies are based on optimism in
the face of uncertainty (OFU) principle. In tabular setting, model-based exploration algorithms
include variants of UCB [50} [12], UCRL [56} 41} 106} 49, |64]], and Thompson sampling [[101} |5} [83]]
and value-based methods include optimistic Q-learning [44} 9890, 160, |65]] and value-iteration with
UCB [18,1112}[113,/45]]. These methods are recently extended to linear MDP setting leading to a variety
of model-based [114, [7} 142} [115]], value-based [97, 146, and policy-based algorithms [16} [108] 3]
Going beyond linear function approximation, systematic exploration strategies are developed based
on structural assumptions on MDP such as low Bellman rank [43] and block MDP [22]. These
methods are either computationally intractable [43L91} 7,107,102} 21,196] or are only oracle efficient



[26, 14]. The recent work [27] provides a sample efficient approach with non-linear policies, however,
the algorithm requires maintaining the functional form of all prior policies.

Practical exploration via intrinsic reward. Apart from previously-discussed methods, other
works give intrinsic reward based on the difference in (abstraction of) consecutive states [110, 161} 81].
However, this approach is inconsistent: the intrinsic reward does not converge to zero and thus,
even with infinite samples, the final policy does not maximize the RL objective. Other intrinsic
rewards try to estimate pseudo-counts [[10, (94, [15| [14, [75| 9], inspired by provable count-based
methods. Though favoring novel states, practically these methods might suffer from detachment and
derailment 23| 24]], and forgetting [3]. More recent works propose a combination of different criteria.
RIDE [81] learns a representation using curiosity criterion and uses the difference of consecutive
states along the trajectory as the bonus. AMIGo [17] learns a teacher agent for assigning rewards for
exploration. Go-Explore [23]] explicitly decouples the exploration and exploitation stage, yields a
more sophisticated algorithm with many hand-tuned hyperparameters. Prior work also tries to add a
bonus on maximizing the KL-divergence between the current policy and the previous policies [39].
However, we emphasize that this is indeed an entirely different principle compared with ours, simply
because difference of visitation density of the policies is not equivalent to the KL-divergence between
policies. In another word, two significantly different policies do not necessarily induce significantly
different visitation densities and vice versa.

Maximum entropy exploration. Another line of work encourages exploration via maximizing
some type of entropy. One category maximizes policy entropy [67] or relative entropy [2] in addition
to the RL objective. The work [28]] modifies the RL objective by introducing an adversarial policy
which results in the next policy to move away from prior policies while staying close to the current
policy. In contrast, our approach focuses on the regions explored by prior policies as opposed to
the prior policies themselves. Recently, effects of policy entropy regularization have been studied
theoretically [72} 33]]. In policy gradient methods with access to exact gradients, policy entropy
regularization results in faster convergence by improving the optimization landscape [62, 163} 16} [18]].
Another category considers maximizing the entropy of state or state-action visitation densities such as
Shannon entropy [36, 40l 58, [86]] or Rényi entropy [109]. Empirically, our approach achieves better
performance over entropy-based methods.

Other exploration strategies. Besides intrinsic motivation, other strategies are also fruitful in
encouraging the RL agent to visit a wide range of states. One example is exploration by injecting
noise to the action action space [59} 73138, [74] or parameter space [30,[78]]. Another example is the
reward-shaping category, in which diverse goals are set to guide exploration [20} 29|71, 179].

7 Discussion

We introduce a new exploration strategy MADE based on maximizing deviation from explored
regions. We show that by simply adding a regularizer to the original RL objective, we get an easy-to-
implement intrinsic reward which can be incorporated with any RL algorithm. We provide a policy
computation algorithm for this objective and prove that it converges to a global optimum, provided
that we have access to an approximate planner. In tabular setting, MADE consistently improves over
the Hoeffding bonus and shows competitive performance to the Bernstein bonus, while the latter is
impractical to compute beyond tabular. We conduct extensive experiments on MiniGrid, showing
a significant (over 5 times) reduction of the required sample size. MADE also performs well in
DeepMind Control Suite when combined with both model-free and model-based RL algorithms,
achieving SOTA sample efficiency results. One limitation of the current work is that it only uses the
naive representations of states (e.g., one-hot representation in tabular case). In fact, exploration could
be conducted much more efficiently if MADE is implemented with a more compact representation of
states. We leave this direction to future work.
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1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] We claim to propose efficient exploration criterion that
achieves strong results. The experiments are conducted in MiniGrid, and DeepMind
Control.

(b) Did you describe the limitations of your work? [Yes] We discuss limitations in the
Discussion section.

(c) Did you discuss any potential negative societal impacts of your work? We do
not foresee any obvious negative societal impacts from our work, which contributes a
general-purpose exploration algorithm.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] We state the
full set of assumptions
(b) Did you include complete proofs of all theoretical results? [Yes] The complete proof is
in Appendix.
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] We upload the
code in supplemental material.
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(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We include the training detail in supplemental material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We include the error bars for experiments.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)?
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets?
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? We use publicly available datasets/tasks.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? We don’t use data of this sort.
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A ]
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