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Despite the wide empirical success of modern machine learning
algorithms and models in a multitude of applications, they are known
to be highly susceptible to seemingly small indiscernible perturbations
to the input data known as adversarial attacks. A variety of recent
adversarial training procedures have been proposed to remedy this
issue. Despite the success of such procedures at increasing accuracy
on adversarially perturbed inputs or robust accuracy, these techniques
often reduce accuracy on natural unperturbed inputs or standard accu-
racy. Complicating matters further, the effect and trend of adversarial
training procedures on standard and robust accuracy is rather counter
intuitive and radically dependent on a variety of factors including
the perceived form of the perturbation during training, size/quality
of data, model overparameterization, etc. In this paper we focus on
binary classification problems where the data is generated according
to the mixture of two Gaussians with general anisotropic covariance
matrices and derive a precise characterization of the standard and ro-
bust accuracy for a class of minimax adversarially trained models. We
consider a general norm-based adversarial model, where the adversary
can add perturbations of bounded `p norm to each input data, for an
arbitrary p ≥ 1. Our comprehensive analysis allows us to theoretically
explain several intriguing empirical phenomena and provide a precise
understanding of the role of different problem parameters on standard
and robust accuracies.

1. Introduction Over the past decade there has been a tremendous
increase in the use of machine learning models, and deep learning in particular,
in a myriad of domains spanning computer vision and speech recognition,
to robotics, healthcare and e-commerce. Despite wide empirical success in
these and related domains, these modern learning models are known to be
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highly fragile and susceptible to adversarial attacks; even seemingly small
imperceptible perturbations to the input data can significantly compromise
their performance. As machine learning systems are increasingly being used in
applications involving human subjects including healthcare and autonomous
driving, such vulnerability can have catastrophic consequences. As a result
there has been significant research over the past few years focused on propos-
ing various adversarial training methods aimed at mitigating the effect of
adversarial perturbations [20, 35, 42, 53, 68].

While adversarial training procedures have been successful in making
machine learning models robust to adversarial attacks, their full effect on
machine learning systems is not understood. Indeed, adversarial training
procedures often behave in mysterious and somewhat counter intuitive ways.
For instance, while they improve performance on adversarially perturbed
inputs, this benefit often comes at the cost of decreasing accuracy on natural
unperturbed inputs. This suggests that the two performance measures, robust
accuracy –the accuracy on adversarially perturbed inputs– and the standard
accuracy –accuracy on benign unperturbed inputs– may be fundamentally
at conflict. Even more surprising, the performance of adversarial training
procedure varies significantly in different settings. For instance, while ad-
versarial trained models yield lower standard accuracy in comparison with
non-adversarially trained counterparts, this behavior is completely reversed
when there are very few training data with the standard accuracy of adver-
sarially trained models outperforming that of non-adversarial models [65].
We refer the reader to Section 1.2 for a through discussion of recent empirical
results that demonstrate how a variety of factors such as the adversary’s
power, the size of training data, and model over-parameterization affect the
performance of adversarially trained models.

To clearly demonstrate the surprising and counterintuitive behavior of
adversarially trained models, we plot the behavior of such an approach in
Figure 1. We consider a simple binary classification problem with the data
generated according to a mixture of two isotropic Gaussians and depict the
performance of a commonly used adversarial training procedure. In particular,
in this figure, we plot the standard and robust accuracy of an adversarially
trained linear classifier for different values of the adversary’s perceived power
(measured in `∞ perturbations) and different sampling ratios (size of the
training data divided by the number of parameters denoted by δ). We would
like to highlight the highly non-trivial behavior of the standard and robust
accuracy curves with respect to the adversary’s power and the sampling
ratio. For instance, the standard accuracy first decreases, then increases and
again decreases as a function of the adversary’s power. Furthermore, the
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(b) Robust accuracy

Fig 1: Depiction of standard and robust accuracies as a func-
tion of the adversary’s power with `∞ (p = ∞) perturbation
for different values of δ (ratio of the size of the training data
to the number of parameters in the model). Solid curves are
theoretical predictions and dots are the empirical results. We
refer to Figure 5 and Section 5.2 for further details.

exact nature of this curve is highly reliant on the sampling ratio δ. Similarly,
for robust accuracy, we first observe a decreasing trend for all δ, but after
some threshold depending on δ, robust accuracy increases and then decreases
or stays constant. Even more surprising, as we will see in the forth-coming
sections the behavior of these curves vary drastically for different forms of `p
perturbations. This simple experiment clearly demonstrates the importance
of having a precise theory for characterizing the rather nuanced performance
of adversarial training procedures and demystify their behavior. Developing
such a precise theoretical analysis is exactly the goal of this paper. Indeed,
the solid curves in Figure 1 are based on our theoretical predictions!

1.1. Contributions In this paper we focus on binary classification problems
where the data is generated according to the mixture of two Gaussians with
general anisotropic covariance matrices and derive a precise characterization
of the standard and robust accuracy for a class of minimax adversarially
trained models. We consider a general norm-based adversarial model, where
the adversary can add perturbations of bounded `p norm to each input data,
for an arbitrary p ≥ 1. We would like to emphasize that our theory provides
a precise characterization of the performance of this class of adversarially
trained models, rather than just upper bounds on the standard and robust
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accuracies. Our analysis for such a broad setting allows us to capture several
intriguing phenomena that we discuss next.

We show and theoretically prove an interesting phase transition phenomena
holds for adversarial classification applied to the Gaussian mixture model.
Specifically, we characterize a threshold δ∗ for the ratio of size of training
data to feature dimension, δ so that when δ < δ∗, the data is robustly separable
with high probability, and for δ > δ∗ it is non-separable, with high probability.
Here, robust separability is a generalization of the classical linear separability
condition for data and roughly speaking means that there is a linear separator
that correctly separates the two label classes with a positive margin that
depends on the adversary’s power. We precisely characterize the threshold δ∗
in terms of various problem parameters including the mean and covariance
of the mixture components, the adversary’s power, and the `p perturbation
norm. Interestingly, δ∗ is related to the spherical width of a set defined in
terms of the dual `q norm (1/p+ 1/q = 1) conforming with classical notions of
prior knowledge and complexity used in the compressive sensing literature.

Our precise theoretical characterization of standard and robust accuracies
provides a precise understanding of the role that different problem parameters
such as size/quality of the training data, feature covariates and means, model
overparameterization (1/δ), and the adversary’s perceived power have during
training on these performance measures. Surprisingly, our analysis reveals that
the effects of these factors very much depend on the choice of perturbations
norm `p. For example, in the robustly separable regime, we observe that for
p = 2 adversarial training has no effect on standard accuracy, while for p = 1
and p = ∞ it hurts the standard accuracy. In the non-separable regime, we
observe that for p = 2 adversarial training helps with improving the standard
accuracy. However, for p = ∞ the adversarial training first improves the
standard accuracy but as the training procedure hedges against stronger
adversary, after some threshold on the adversary’s power, we start to see a
decrease in the standard accuracy of the resulting model. Interestingly, this
threshold on the adversary’s power varies with model overparameterization.

Lastly, a key ingredient of our analysis is a powerful extension of Gordon’s
Gaussian process inequality [21] known as the Convex Gaussian Minimax
Theorem (CGMT) developed in [64] and further extended in [63, 12] for
various learning settings. Using this technique we provide a precise prediction
of the performance of adversarial training in terms of the optimal solutions
to a convex-concave problem with a small number of scalar variables that can
be easily solved by a low-dimensional gradient descent/ascent rather fast and
accurately. In addition, this low-dimensional optimization problem can be
significantly simplified for special cases of p (see Section 5 for details). While
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CGMT has been used to study the behavior of regularized M-estimators, using
this framework for the broad class of minimax adversarially trained models
studied in this paper (including general anisotropic covariance matrices and
general choice of `p norm for adversarial perturbations) poses significant tech-
nical challenges. Specifically, the intrinsic differences between `p geometries
and the interaction between the class means the feature covariance matrix in
the model requires a rather intricate and technical analysis.

1.2. Related work We briefly discuss the related literature along two lines.

Other models of adversarial perturbations. Another popular model
for adversarial attacks on the models is the so-called distribution shifts,
wherein the adversary can shift the test data distribution, making it different
from the training distribution. The adversary is assumed to have limited
manipulative power in terms of the Wasserstein distance between the test and
the training distributions [58, 52, 44]. The articles [2, 44] study the robust loss
L(θ; ε) = supν∈Bε(µ) Eν[`(z,θ)], where Bε(µ) is the ε ball around µ in the
Wasserstein (Wp) distance for some p ∈ [1,∞), and the data z = (x, y) ∼ µ.
A first order approximation of the robust loss L(θ; ε) is given for small ε,
in terms of a variation measure of the original loss `. Such characterization
is used in [44] to investigate the tradeoff between the standard and robust
accuracies for various learning problems. Note that these work are focused
on the population loss (n→∞, with d fixed). In comparison, in this paper
we study norm bounded adversarial perturbations and work with empirical
loss in asymptotic regime (n, d→∞, with n/d = δ fixed).

In adversarial training it is assumed that the modeler has access to clean
(unperturbed) data and strives to construct a model that is resilient to
potential adversarial perturbations of the test data. The article [36] considers
a different adversarial setup in which an attacker can observe and modify
all training data samples in an adversarial manner so as to maximize the
estimation error caused by his attack. This work introduces the notion of
adversarial influence function (AIF) to quantify the sensitivity of estimators
to such adversarial attacks, and further derive the optimal estimator, among
a certain class of estimator, that minimizes AIF.

Standard accuracy and robust accuracy tradeoffs. Several recent pa-
pers contain empirical results suggesting a potential trade-off between stan-
dard accuracy and robust accuracy. A few papers have started to shed light
on the theoretical foundations of such tradeoffs [42, 57, 65, 54, 69, 30, 47, 14]
often focusing on very specific models or settings. However, a comprehensive
quantitative understanding of such tradeoffs is largely underdeveloped.
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A central question we wish to address in this paper is whether there
exists a fundamental conflict between robust accuracy and standard accuracy.
We briefly mention a few papers that take a step towards addressing this
question. In [65, 69], the authors provide examples of learning problems where
no predictor can achieve both optimal standard accuracy and robust accuracy
in the infinite data limit, pointing to such fundamental tradeoff. By contrast,
[54] provides examples where there is no such tradeoff in the infinite data
limit, in the sense that the optimal predictor performs well on both objectives,
however a tradeoff is still observed with finite data. Despite this interesting
progress a quantitive understanding of fundamental and algorithmic tradeoffs
between standard and robust accuracies and how they are affected by various
factors, such as overparameterization, adversary’s power and the data model
is still missing. Such a result requires novel perspectives and analytical tools
to precisely characterize the behavior of robust and standard accuracies,
which is one of the motivating factors behind our current paper.

More closely related to this paper, in [30] the current authors used the
convex Gaussian minimax framework to provide a precise characterization of
standard and robust accuracies for linear regression, studying the fundamental
conflict between these objectives along with algorithmic tradeoffs for specific
minimax estimators. For classification problems, a recent paper [14] focuses on
characterizing the optimal `2 and `∞ robust linear classifiers assuming access
to the class means. This paper also studies some tradeoffs between standard
and robust accuracies by contrasting this optimal robust classifier with the
Bayes optimal classifier in a non-adversarial setting. This paper however does
not directly study the tradeoffs of adversarial training procedures except for
linear losses. A related publication [47] studies the generalization property
of an adversarially trained model for classification on a Gaussian mixture
model with a diagonal covariance matrix and a linear loss. In this setting,
this work discusses the different effects that more training data can have on
generalization based on the strength of the adversary. Using a linear loss in the
above two classification papers is convenient as in this case the adversarially
trained model admits a simple closed form representation. We also note that
these two papers do not seem to focus on the high-dimensional regime where
the number of training data grow in proportion to the number of parameters.
In contrast, in this paper we focus on developing a comprehensive theory
that provides a precise characterization of standard and robust accuracies
and their tradeoffs in the high dimensional regime for a broad class of loss
functions and covariance matrices. Such a comprehensive analysis allows us
to better understand the role of the loss function in adversarial training.
Indeed, as we demonstrate, the behavior of standard and robust accuracy for
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nonlinear loss functions can be very different from linear losses. We also note
that such a theoretical result requires much more intricate techniques as the
adversarially trained model does not admit a simple closed form. Finally, we
would like to note while in this paper we provide a precise understanding
of the tradeoffs between standard and robust accuracies for commonly used
adversarial training algorithms our work still does not address two tantalizing
open questions: What is the optimal standard-robust accuracy tradeoff for
a fixed ratio of sample size to dimension? Are there adversarial training
approaches that achieve the optimal tradeoff between standard and robust
accuracies universally over the range of adversary’s power.

2. Problem formulation In this section we discuss the problem setting
and formulation of this paper in greater detail. After adopting some notations,
we describe the adversarial training for binary classification in Section 2.1.
Next, we discuss the data model and asymptotic setting studied in this paper
in Section 2.2. Finally, in Section 2.3 we formally define the standard and
robust classification accuracies in this model.

Notations. For a vector v ∈ Rd, we write ∥v∥`p for the standard `p norm of
v, i.e., ∥v∥`p = (∑i ∣vi∣p)1/p. For a matrix Σ, ∥Σ∥ indicates the spectrum norm
of Σ. Throughout, we say a probabilistic event holds ‘with high probability’,
when its probability converges to one as n→∞. In addition, for a sequence
of random variables {Xn}n∈N and a constant c (independent of n) we write
limn→∞Xn = c, ‘in probability’ if ∀ε > 0 we have limn→∞P(∣Xn − c∣ > ε) = 0.

2.1. Adversarial training for binary classification In binary classification
we have access to a training data set of n input-output pairs {(xi, yi)}ni=1
with xi ∈ Rd representing the input features and yi ∈ {−1,+1} representing
the binary class label associated to each data point. Throughout we assume
the data points (xi, yi) are generated i.i.d. according to a distribution P.
To find a classifier that predicts the labels, one typically fits a function fθ,
parameterized by θ ∈ Rd to the training data via empirical risk minimization.
In this paper we focus on linear classifiers of the form fθ(x) = ⟨x,θ⟩ in which
case the training problem takes the form

θ̂ ∶= arg min
θ∈Rd

1

n

n∑
i=1
`(yifθ(xi)) = arg min

θ∈Rd

1

n

n∑
i=1
`(yi⟨xi,θ⟩) .(2.1)

Here, ` is a loss and `(yi⟨xi,θ⟩) approximately measuring the missclassifica-
tion between the labels yi and the output of the model ⟨xi,θ⟩. Some common
choices include logistic loss `(t) = log(1+e−t), exponential loss `(t) = e−t, and
hinge loss `(t) = max (0,1 − t). Once the parameter θ̂ is estimated one can
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find the predicted label by simply calculating the sign of the model output
ŷ = sgn(fθ̂(x)) = sgn(⟨x, θ̂⟩).

Despite the widespread of empirical risk minimizers in supervised learning,
these estimators are known to be highly vulnerable to even minute pertur-
bations in the input features xi. In particular, it is known that even small,
norm-bounded perturbations to the features that are imperceptible to the hu-
man eye, can lead to surprising miss-classification errors. These observations
have spurred a surge of interest in adversarial training where the goal is to
learn models that are robust against such adversarial perturbation. In this
paper we focus on an adversarial training approach that is based on using a
robust minimax loss [65, 42]. In our linear binary classification setting the
robust minimax estimator takes the form

θ̂ε ∶= arg min
θ∈Rd

1

n

n∑
i=1

max
∥δi∥`p≤ε

` (yi⟨xi + δi,θ⟩) .(2.2)

The main intuition behind such an estimator is that although the learner
has access to unperturbed training data, instead of fitting to that data
she imitates potential adversarial perturbations to test data in the training
data and aims to learn a model that performs well in the presence of such
perturbations. One can also view this adversarial training approach as an
implicit smoothing that tries to fit the same label yi to all the features in the
ε-neighborhood of xi simultaneously.

In this paper we focus on convex and decreasing losses such as the aforemen-
tioned logistic, exponential, and hinge losses. In such cases the inner maximiza-
tion in (2.2) can be solved in closed form. In particular, the worst perturbation
δi in terms of loss value is given by δ∗i = arg min{yi⟨δi,θ⟩ ∶ ∥δi∥`p ≤ ε}, which
by using Holder’s inequality results in yi⟨δ∗i ,θ⟩ = −ε ∥θ∥`q . Therefore the
adversarially trained model θ̂ε can be equivalently written as

θ̂ε ∶= arg min
θ∈Rd

1

n

n∑
i=1
`(yi⟨xi,θ⟩ − ε ∥θ∥`q) .(2.3)

2.2. Data model and asymptotic setting We consider supervised binary
classification under a Gaussian Mixture data Model (GMM). Concretely, each
data point belongs to one of two classes {±1} with corresponding probabilities
π+, π−, so that π+ + π− = 1. Given the label yi ∈ {−1,+1} for data point i,
the associated input/feature vectors xi ∈ Rd are generated independently
according to the distribution xi ∼ N(yiµ,Σ), conditioned on yi, where µ ∈ Rd

and Σ ∈ Rd×d. In other words the mean of feature vectors are ±µ depending
on its class, and Σ is the covariance of features. We depict this mixture
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Fig 2: Depiction of the Mixture of Gaussian data model.

model in Figure 2. We next describe the asymptotic regime of interest and
our assumptions in this paper.

Assumption 1 (Asymptotic Setting) We focus on the following asymp-
totic regime:

(a) (Scaling of dimensions) n→∞ and n
d → δ ∈ (0,∞).

(b) (Scaling of signal to noise ratio) We have Cmin ≤ ∥µ∥`2∥Σ∥ ≤ Cmax for some
positive constants Cmin and Cmax, which are independent of n and d.

(c) (Scaling of adversary’s power) We have ε = ε0 ∥µ∥`p for a constant
ε0 ≥ 0 which we refer to as adversary’s normalized power.

Assumption 1 (a) details our high-dimensional regime where the size of the
training data n and the dimension of the features d grow proportionally
with their ratio fixed at δ. We would like to note that while we focus on
this asymptotic regime our theoretical technique can also demonstrate very
accurate concentration around this asymptotic behavior. Assumption 1 (b)
demonstrates the scaling of the signal to noise ratio and ensures that the
distance between the centers of the two components 2 ∥µ∥`2 (‘signal’) is com-
parable to the projection of noise in any direction (noise). Finally, Assumption
1 details our scaling of the adversary’s power. This scaling is justified as if
the adversary could perturb data points xi by 2µ, she can flip the label of
every data point, so that the leaner cannot do better than random guessing.
Since the perturbations can be chosen arbitrary from an `p ball of radius ε,
we require ε to be comparable to ∥µ∥`p .

2.3. Standard and robust accuracies Our goal is this paper is to precisely
characterize performance of the estimator θ̂ε in terms of two accuracies and
understand the interplay between them. The two accuracies are standard
accuracy which is the accuracy on unperturbed test data, and robust accuracy
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which is the accuracy on adversarially perturbed test data. More formally
standard accuracy quantifies the accuracy of an estimator on an unperturbed
test data that is generated from the same distribution as the training data:

SA(θ̂) ∶= P{ŷ = y} , where (x, y) ∼ P(2.4)

Our second accuracy, called robust accuracy quantifies robustness of an
estimator to adversarial perturbations in the test data. Specifically,

RA(θ̂) ∶= E [ min
∥δ∥`p≤ε

1{y⟨x+δ,θ̂⟩≥0}] , where (x, y) ∼ P.(2.5)

We end this section by stating a lemma that characterizes SA(θ̂) and RA(θ̂)
under the Gaussian mixture model. We defer the proof to Appendix E.1.

Lemma 2.1 Consider mixtures of Gaussian data model where yi ∈ {−1,+1}
with corresponding probabilities π−, π+ and the feature vector distributed as
x ∼ N(yµ,Σ), conditioned on y, where µ ∈ Rd and Σ ∈ Rd×d. Then,

SA(θ̂) ∶= Φ
⎛⎝ ⟨µ, θ̂⟩∥Σ1/2θ̂∥

`2

⎞⎠ ,(2.6)

RA(θ̂) ∶= Φ
⎛⎜⎝
⟨µ, θ̂⟩ − ε ∥θ̂∥

`q∥Σ1/2θ̂∥
`2

⎞⎟⎠ .(2.7)

Here, Φ(x) = 1√
2π ∫ x−∞ e− t22 dt is the cdf of a standard Gaussian distribution

and q is such that 1
p + 1

q = 1.

By Lemma 2.1, characterizing SA(θ̂ε) and RA(θ̂ε) amounts to characterizing⟨µ, θ̂ε⟩, ∥Σ1/2θ̂∥
`2
, ∥θ̂ε∥

`q
, which constitutes the bulk of our analysis.

3. Prelude: two regimes for adversarial training Similar to normal
classification, an interesting phenomena that arises in adversarial classification
is that depending on the size of the training data there are two different
regimes of operation: Robustly separable and non-separable. In the robustly
separable regime there is a robust classifier that perfectly separates the
training data, with a positive margin that depends on the adversary’s power,
while this is not possible in the non-separable case. We formally define this
notion of robust separability below.

Definition 3.1 (Robust linear separability) Given ε > 0 and q ≥ 1, we
call a training data {(xi, yi)}ni=1, (ε, q)-separable if

∃θ ∈ Rd ∶ ∀i ∈ [n], yi⟨xi,θ⟩ − ε ∥θ∥`q > 0.(3.1)
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We note that our notion of robust separability is closely related to the
standard notion of separability by a linear classifier. In particular, using a
simple rescaling argument1 one can rewrite condition 3.1 as follows

∃θ, ∥θ∥`q ≤ 1

ε
∶ ∀i ∈ [n], yi⟨xi,θ⟩ > 1.(3.2)

Therefore, robust separability is akin to linear separability of the data but
with a budget constraint on the `q norm of the coefficients of the classifier.

When the training data is (ε, q)-separable (with `q the dual norm of `p),
then the minimax estimator θ̂ε becomes unbounded and achieves zero adver-
sarial training loss in (2.3). In other words, one can completely interpolate
the data. This is due to the fact that if θ is an (ε, q)-separator, then cθ with
c→∞ leads to zero adversarial training loss and since the loss is nonnegative
it is optimal. Although the norm of θ̂ε tends to infinity in the separable
regime, what matters for our linear classifier is the direction of θ̂ε. However,
in this separable regime even the direction of the optimal solution ( θ̂ε

∥θ̂ε∥
`2

)

may not be unique. Even though there may be multiple optimal directions it
is possible to show that the direction that gradient descent converges to is a
specific maximum margin classifier. We formally state this result which is
essentially a direct consequence of [41, 31] below.

Proposition 3.2 Consider the adversarial training loss

L(θ) ∶= 1

n

n∑
i=1
`(yi⟨xi,θ⟩ − ε ∥θ∥`q) ,

with the loss `(t) obeying certain technical assumptions2 which are satisfied
for common classification losses such as logistic, exponential, and hinge losses.
Then, the gradient descent iterates

θτ+1 = θτ − µ∇L(θτ)
with a sufficiently small step size µ obey

lim
t→∞

XXXXXXXXXXXX
θt∥θt∥`2 −

θ̃ε∥θ̃ε∥
`2

XXXXXXXXXXXX`2 = 0 ,(3.3)

1(3.1)⇒(3.2): Scaling by 1
ε∥θ∥`q

we see that yi⟨xi, θ̃⟩ > 1 for θ̃ = θ
ε∥θ∥`q

, and ∥θ̃∥
`q
= 1
ε
by

definition. (3.2)⇒(3.1): Letting c = 1
ε∥θ∥`q

≥ 1, we also have yi⟨xi, cθ⟩ > 1. Substituting for

c and rearranging the terms we get (3.1).
2See [41, Assumption S3 in Appendix F]. We list these assumptions in Appendix F for
readers’ convenience.
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where θ̃ε is the solution to the following max-margin problem

θ̃ε =arg min
θ∈Rd

∥θ∥2`2
subject to yi⟨xi,θ⟩ − ε ∥θ∥`q ≥ 1 .(3.4)

In the non-separable regime, as we show in the proof of Theorem 4.5 the
minimizer θ̂ε is bounded. Moreover, the loss (2.3) is convex as it is pointwise
maximum of a set of convex functions (see (2.2) and recall convexity of loss `).
Therefore, a variety of iterative methods (including gradient descent) can be
used to converge to a global minimizer of (2.2). Theorem 4.5 also shows that
all global minimizers of (2.2) have the same standard and robust accuracy.

4. Main results for isotropic features In this section we present our
main results. For the sake of exposition, in this section we state our results
for the case where the features are isotropic (i.e. Σ = I). We discuss our
more general results with anisotropic features in Section 6. In this paper,
we establish a sharp phase-transition characterizing the separability of the
training data generated according to a Gaussian mixture model. Specifically,
in our asymptotic regime (see Section 2.1) we characterize a threshold δ∗
such that for δ < δ∗ the data is (ε, q)-separable, with high probability, and
for δ > δ∗ it is non-separable, with high probability. This phase transition for
robust separability is discussed in Section 4.1. We also precisely characterize
the standard accuracy SA(θ̂ε) and the robust accuracy RA(θ̂ε) of the point
that gradient descent converges to in both the separable and non-separable
data regimes which are the subject of Sections 4.2 and 4.3, respectively. We
then discuss the implications of our main results for the special cases of `p
perturbations with p = 1, p = 2, and p = ∞ in Section 5.

4.1. Phase transition for robust data separability In this section we discuss
our results for characterizing the phase transition for (ε, q)-separability under
the Gaussian mixtures model. As detailed earlier in Section 2.2, in our
asymptotic setting the dimension of the mean vector µ (d) as well as the
size of the training data (n) grow to infinity in proportion with each other
n/d = δ. To state our main result we need a few technical assumptions on the
limiting behavior of the mean vector. We begin with a simple assumption on
the convergence of the Euclidean norm of the mean vector.

Assumption 2 (Convergence of Euclidean norm of µ) We assume the
Euclidean norm of the mean vector converges to a bounded quantity, that is∥µ∥`2 → V < ∞, as n→∞ and n/d→ δ.
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We note that for the isotropic case, the boundedness condition in Assumption 2
is already implied by Assumption 1(b).

Naturally, the separability threshold depends on the mean vector and
the adversary’s power. For instance, intuitively, one expects the separability
threshold to decrease as the adversary’s power or the length of the mean
vector increases. We also expect the direction of the mean vector µ

∥µ∥`2
to

play a role. We capture these effects via the spherical width of a suitable set.
Recall that the spherical width of a set S ⊂ Rd is a measure of its complexity
and is defined as

ωs (S) = E [ sup
z∈S

zTu] ,
where u ∈ Sd−1 is a vector chosen uniformly at random from the unit sphere.
In particular, the appropriate set for characterizing the separability threshold
takes the form

S(α, θ, ε0,µ) ∶= ⎧⎪⎪⎨⎪⎪⎩z ∈ Rd ∶ zTµ = 0, ∥z∥`2 ≤ α, ∥z + θ µ∥µ∥`2 ∥`q ≤
1

ε0 ∥µ∥`p
⎫⎪⎪⎬⎪⎪⎭ ,

(4.1)

where ε0 is the adversary’s scaled power per Assumption 1(c). Next assump-
tion focuses on the spherical width convergence in our asymptotic regime.

Assumption 3 (Convergence of spherical width) We assume the fol-
lowing limit exists

ω (α, θ, ε0) ∶= lim
n→∞

ωs (S(α, θ, ε0,µ)) .(4.2)

As it will become clear later on in this section Assumptions 2 and 3 are
trivially satisfied in various settings. With these assumptions in place we are
ready to state our result precisely characterizing the separability threshold.

Theorem 4.1 Consider a data set generated i.i.d. according to an isotropic
Gaussian mixture data model per Section 2.2 and suppose the mean vector µ
obeys Assumptions 2 and 3. Also define

δ∗ ∶= min
α≥0,θ

ω (α, θ, ε0)2
E [(1 − V θ +√α2 + θ2g)2

+
] ,(4.3)

where the expectation is taken with respect to g ∼ N(0,1). Then, under the
asymptotic setting of Assumption 1, for δ < δ∗ the data are (ε, q)-separable



14 A. JAVANMARD ET AL.

with high probability and for δ > δ∗, the data are non-separable, with high
probability. Namely,

δ < δ∗ ⇒ lim
n→∞

P(data is (ε, q)-separable) = 1 ,

δ > δ∗ ⇒ lim
n→∞

P(data is (ε, q)-separable) = 0 .

Theorem 4.1 above precisely characterizes the separability threshold as a
function of the adversary’s power as well as properties of the mean vector. In
particular since ω decreases with the increase in ε0, this theorem indicates
that the separability threshold decreases as the adversary’s power increases.
This of course conforms with our natural intuition and is consistent with
characterization (3.2). To better understand the implications of Theorem 4.1
we now consider some special cases.

• Example 1 (Non-adversarial setting). Our first example focuses on
the non-adversarial setting where ε0 = 0. In this case the `q constraint in
definition of S, given by (4.1), is void and the set S becomes the intersection
of `2 ball of radius α with the hyperplane of dimension d − 1 that is
orthogonal to µ. Therefore ω(α, θ, ε0) = ωs(S) = α and the separability
threshold reduces to

δ∗ ∶= max
α≥0,θ

α2

E [(1 − V θ +√α2 + θ2g)2
+
] .

By the change of variables (α, θα) → (α, θ), it is straightforward to see that
optimal α is at +∞ and the separability condition reduces to

δ∗ ∶= (min
θ

E [(−V θ +√1 + θ2g)2
+
])−1 .

• Example 2 (`2 perturbation). When p = q = 2, the set S becomes the
intersection of `2 ball of radius

R ∶=min(α,√ 1
ε20∥µ∥

2
`2

− θ2) ,
with the hyperplane of dimension d − 1 that is orthogonal to µ. Therefore

ω(α, θ, ε0) = ωs(S) = min(α,√ 1
ε20V

2 − θ2) and the separability threshold
reduces to

δ∗ = max
α≥0, θ≤ 1

ε0V

min(α2, 1
ε20V

2 − θ2)
E [(1 − V θ +√α2 + θ2g)2

+
] .
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Note that the above ratio is decreasing in α over the range of α ≥√
1

ε20∥µ∥
2
`2

− θ2. Therefore, the maximizer α should satisfy α ≤√ 1
ε20∥µ∥

2
`2

− θ2
and this further simplifies the expression for δ∗ as follows

δ∗ = max
α≥0, α2+θ2≤ 1

ε2
0
V 2

α2

E [(1 − V θ +√α2 + θ2g)2
+
] .

By the change of variable (α, θα) → (α, θ), this can be written as:

δ∗ = ⎛⎜⎝ min
α≥0,θ,α2(1+θ2)≤ 1

ε2
0
V 2

E [( 1

α
− V θ +√1 + θ2g)2

+
]⎞⎟⎠
−1

.

Since the inner function is decreasing in α it is minimized at α∗ = 1

ε0V
√
1+θ2

which simplifies the separability threshold to the following:

δ∗ = (min
θ

E [((ε0√1 + θ2 − θ)V +√1 + θ2g)2
+
])−1 .(4.4)

To the best of our knowledge, our paper is the first work that shows such
a phase transition for robust separability in the adversarial setting. In the
non-adversarial case, similar phase transitions have been shown for data
separability (a.k.a interpolation threshold) [8, 49, 12]. More specifically, [8]
derived separability threshold for a logistic link regression model. Similar
phenomenon extends to other link functions, as characterized by [49], and
also to Gaussian mixtures model [12]. Interestingly, our result specialized
to the case where the adversary has no power (cf. Example 1) recovers the
existing thresholds for Gaussian mixtures model.

We end this section by demonstrating that in addition to the examples
above Assumption 3 holds for a fairly broad family of mean vectors. This is the
subject of the next lemma. We defer the proof of this lemma to Appendix E.2.

Assumption 4 Suppose that the empirical distribution of the entries of
√
dµ

converges weakly to a distribution PM on real line, with bounded 2nd and pth

moment (∫ x2dPM(x) = σ2M,2 < ∞, ∫ ∣x∣pdPM(x) = σpM,p < ∞).

Lemma 4.2 Consider the asymptotic regime of n → ∞ and n/d → δ, for
some δ ∈ (0,∞). Also, consider the function Jq(⋅; ⋅) ∶ R×R≥0 ↦ R≥0 defined by

Jq(x;λ) =min
u

1

2
(x − u)2 + λ∣u∣q .(4.5)
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Then Assumption 4 implies Assumption 3 with

ω (α, θ, ε0) = min
λ0,η≥0,ν

√
δ {ν2

2η
+ 1

2ηδ
+ η

2
α2 + λ0(ε0σM,p)−q}

− η√δ E [Jq( h

η
√
δ
− (ν

η
− θ) M

σM,2
;
λ0
η
)] ,(4.6)

where the expectation in the last line is taken with respect to the independent
random variables h ∼ N(0,1) and M ∼ PM .

4.2. Precise characterization of SA and RA in the separable regime In
this section we precisely characterize the SA and RA of the classifier obtained
as the limiting point of gradient descent on the loss (2.3) in the separable
regime. As discussed in Proposition 3.2, the normalized iterations of gradient
descent for the loss (2.3) converge to the max-margin classifier (F.2). Since
SA(θ) and RA(θ) are only functions of the direction θ

∥θ∥`2
, instead of studying

the classifier obtained via GD iterations directly, we study the classification
performance of the max-margin classifier.

Recall the function Jq is given by (4.5), and define

J (c0, c1;λ0) = E [Jq ( c0√
δ
h − c1 M

σM,2
;λ0σ

q
M,p)] ,(4.7)

where the expectation in the last line is taken with respect to the independent
random variables h ∼ N(0,1) and M ∼ PM , per the setting of Assumption 4.
Our characterization of SA and RA will be in terms of the function J as
formalized in the next theorem.

Theorem 4.3 Consider a data set generated i.i.d. according to an isotropic
Gaussian mixture data model per Section 2.2 and suppose the mean vector µ
obeys Assumptions 1 and 4. Also let θ̃ε be the max margin solution per (F.2).
If δ < δ∗, with δ∗ given by (4.3), then in the asymptotic setting of Assumption
1 we have:

(a) The following convex-concave minimax scalar optimization has a bounded
solution (α∗, γ0∗, θ∗, β∗, λ0∗, η∗, η̃∗) with the minimization components(α∗, γ0∗, θ∗) unique:

min
α,γ0≥0,θ

max
β,λ0,η≥0,η̃

Ds(α, γ0, θ, β, λ0, η, η̃), where
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Ds(α, γ0, θ, β, λ0, η, η̃) = 2(1 + η

2α
)−1J ⎛⎝β2 , η̃2 ;

λ0

qγq−10

(1 + η

2α
)1−q⎞⎠

− (β2
δ
+ η̃2) 1

4(1 + η
2α) −

2λ0
q
γ0 − ηα

2
− η̃θ

+ β
¿ÁÁÁÀE

⎡⎢⎢⎢⎢⎣ ((1 + ε0γ0 − θσM,2) + αg)2+
⎤⎥⎥⎥⎥⎦ ,(4.8)

where the expectation in the last part is taken with respect to g ∼ N(0, 1).
(b) It holds in probability that

lim
n→∞

1∥µ∥`2 ⟨µ, θ̃ε⟩ = θ∗ ,(4.9)

lim
n→∞
∥θ̃ε∥

`2
= α∗ ,(4.10)

lim
n→∞
∥µ∥`p ∥θ̃ε∥`q = γ0∗ .(4.11)

(c) Furthermore, part part (b) combined with Lemma 2.1 imply the following
limits hold in probability:

lim
n→∞

SA(θ̃ε) = Φ(σM,2
θ∗
α∗
) ,(4.12)

lim
n→∞

RA(θ̃ε) = Φ(−ε0γ0∗
α∗

+ σM,2
θ∗
α∗
) .(4.13)

Theorem 4.3 above provides us with a precise characterization of SA and RA
and allows us to rigorously quantify the effect of adversary’s manipulative
power ε0, mean vector µ, and scaling of dimensions δ on SA and RA. In
particular, this theorem precisely characterizes the performance of the max
margin classifier (and in turn the classifier GD converges to) in terms of
the optimal solutions to a low-dimensional optimization problem, namely
(4.8). It is worth noting that by part (b), θ∗ is the asymptotic value of the
projection of the estimator θ̃ε along the direction of the class averages µ, and
α∗ represents the asymptotic value of the `2 norm of the estimator. Therefore,
the θ∗/α∗ term appearing in the SA and RA formulae corresponds to the
correlation coefficient between the estimator θ̃ε and the class averages µ.

While the optimization problem (4.8) may look quite complicated, we note
that it is a convex-concave problem in a handful number of scalar variables
and hence can be easily solved by a low-dimensional gradient descent/ascent
rather fast and accurately. In addition, this low-dimensional optimization
problem significantly simplifies for special cases of p. We discuss some of these
cases, which are also of particular practical interest, in Sections 5.1 and 5.2.
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4.3. Precise characterization of SA and RA in non-separable regime In
this section we precisely characterize the SA and RA of the classifier obtained
by running gradient descent on the loss (2.3) in the non-separable regime.
Before we can state our main result we need the definition of the Moreau
envelop.

Definition 4.4 (Moreau envelope and expected Moreau envelope)
The Moreau envelope or Moreau-Yosida regularization of a function ` is
given by

e`(x;µ) ∶=min
t

1

2µ
(x − t)2 + `(t) .(4.14)

We also define the expected Moreau envelope

L(a, b, µ) = E[e`(ag + b;µ)] ,(4.15)

where the expectation is taken with respect to g ∼ N(0,1).
We this definition in place we are now ready to state our main result in the
non-separable regime.

Theorem 4.5 Consider a data set generated i.i.d. according to an isotropic
Gaussian mixture data model per Section 2.2 and suppose the mean vector
µ obeys Assumption 4. Also let θ̂ε be the solution to optimization (2.3). If
δ > δ∗, with δ∗ given by (4.3), then in the asymptotic setting of Assumption 1
we have:

(a) The following convex-concave minimax scalar optimization has a bounded
solution (θ∗, α∗, γ0∗, τg∗, β∗, τh∗) with the minimization components(α∗, γ0∗, θ∗) unique:

min
θ,0≤α,γ0,τg

max
0≤β,τh

Dns(α, γ0, θ, τg, β, τh)
Dns(α, γ0, θ, τg, β, τh) = βτg

2
+L(√α2 + θ2, σM,2θ − ε0γ0, τg

β
)

− min
λ0≥0,ν

[ α
τh
{β2

2δ
+ λ0 (γ0τh

α
)q + ν2

2
− J (β,(τhθ

α
+ ν) ;λ0)} + ατh

2
] .

(4.16)

(b) It holds in probability that

lim
n→∞

1∥µ∥`2 ⟨µ, θ̂ε⟩ = θ∗ ,(4.17)

lim
n→∞
∥P⊥µθ̂ε∥`2 = α∗ ,(4.18)

lim
n→∞
∥µ∥`p ∥θ̂ε∥`q = γ0∗ .(4.19)
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(c) As a corollary of part (b) and Lemma 2.1, the following limits hold in
probability:

lim
n→∞

SA(θ̂ε) = Φ
⎛⎝ σM,2θ∗√

α2
∗ + θ2∗

⎞⎠ ,(4.20)

lim
n→∞

RA(θ̂ε) = Φ
⎛⎝−ε0γ0∗ + σM,2θ∗√

α2
∗ + θ2∗

⎞⎠ .(4.21)

It is worth noting that by part (b), θ∗ is the asymptotic value of the projection
of the estimator θ̂ε along the direction of the class averages µ. In addition,

lim
n→∞
∥P⊥µθ̂ε∥2`2 + ∥Pµθ̂ε∥2`2 = α2

∗ + θ2∗
represents the asymptotic value of the squared `2 norm of the estimator.
Therefore, the θ∗/√α2

∗ + θ2∗ term appearing in the SA and RA formulae
corresponds to the correlation coefficient between the estimator θ̂ε and the
class averages µ.

Theorem 4.5 complements the result of Theorem 4.3 by providing a precise
characterization of SA and RA measures in the non-separable regime. In the
remaining part of this section and also in the next section, we specialize our
results to several specific choices of p that are of particular practical interest.

Remark 4.4 In stating our results (Theorems 4.3 and 4.5), we are implicitly
assuming the same variable ε0 for both the perturbation level to the test data as
well as the ‘perceived’ perturbation level used in the robust minimax estimator
θ̂ε. In principle, we can use different variable for the test perturbation level,
say ε0,test. The same results applies to this setting with minimal modifications;
only in the RAformalue, cf. equations (4.13), (4.21) the variable ε0 should be
replaced by ε0,test.

5. Results for special cases of p In this section we discuss the impli-
cations of our main results for the special cases of `p perturbations with p = 2
in Section 5.1, p = ∞ in Section 5.2, and p = 1 in Section 5.3. We refer to
Appendix D for the proofs of theorems and corollaries stated in this section.

5.1. Results for `2 perturbation We begin with stating our results for `p
perturbation with p = 2. This result can be viewed as a corollary of Theorem
4.1, Theorem 4.3, and Theorem 4.5 specializing our main result for p = 2.

Corollary 5.1 Consider a data set generated i.i.d. according to an isotropic
Gaussian mixture data model per Section 2.2 and suppose the mean vector
µ obeys Assumptions 4. Then in the asymptotic setting of Assumption 1 we
have:
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(a) The separability threshold δ∗ is given by

δ∗ = (min
θ

E [((ε0√1 + θ2 − θ)V +√1 + θ2g)2
+
])−1 .(5.1)

(b) In the separable regime where δ < δ∗, the followings hold in probability
for the max margin solution θ̃ε (see (F.2)):

lim
n→∞

SA(θ̃ε) = Φ(σM,2
θ∗
α∗
) , lim

n→∞
RA(θ̃ε) = Φ( θ∗

α∗
σM,2 − ε0σM,2) ,

(5.2)

where

α∗ = (α̃−1∗ − ε0σM,2)−1 , θ∗ = u∗α∗ .(5.3)

Here, (α̃∗, u∗) the solution to the following problem:

min
α̃≥0,u

α̃2

subject to 1 ≥ u2 + δ E [( 1

α̃
− uσM,2 + g)2

+
] ,(5.4)

with expectation taken with respect to g ∼ N(0,1).
(c) In the non-separable regime where δ > δ∗, the followings hold in proba-

bility for the optimal solution θ̂ε of (2.3):

lim
n→∞

SA(θ̂ε) = Φ
⎛⎝ σM,2θ∗√

α2
∗ + θ2∗

⎞⎠ ,(5.5)

lim
n→∞

RA(θ̂ε) = Φ
⎛⎝ θ∗√

α2
∗ + θ2∗σM,2 − ε0σM,2

⎞⎠ .(5.6)

where (α∗, θ∗, β∗) is the bounded solution of the following convex-concave
minimax scalar optimization problem with the minimization components(α∗, θ∗) unique:

max
0≤β

min
θ,0≤α

Dns(α, θ, β)
D(α, θ, β) = L(√α2 + θ2, σM,2θ − ε0√α2 + θ2, α

β
√
δ
) − αβ

2
√
δ
.(5.7)

The corollary above precisely characterizes the behavior of the classifier
that gradient descent converges to in terms of low-dimensional optimization
problems ((5.4) in the separable regime and (5.7) in the non-separable regime).
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Recall that the term θ∗/α∗ in the separable regime and the term θ∗/√α2
∗ + θ2∗

in the non-separable regime correspond to the correlation coefficient between
the robust minimax estimator and the classes average µ. As we will see in
Figure 4, the standard accuracy is decreasing in 1/δ, for any fixed ε0, which
equivalently indicates that the correlation between the estimator and µ is
monotone increasing in the sample-to-dimension ratio δ.

As we will see in the coming sections, SA and RA curves have a highly
non-trivial behavior which also strongly depend on the choice of p. This
necessitate a rigorous theory (such as the above) that can precisely predict
these curves. To better understand the implications and consequences of this
result we focus on its various predictions. Specifically, we find the global
optima of the two low-dimensional optimization problems via simple gradient
descent/ascent and use it to calculate the corresponding SA and RA based
on (5.2) and (5.5). We also verify these theoretical predictions with the
performance of gradient descent on the loss (2.3) with a polyak/approximate
polyak step size in the separable/non-separable regimes.3

We plot the theoretically predicted standard and robust accuracy versus
the adversary’s power ε0 together with the corresponding empirical results
in Figure 3 (a) and (b). The solid lines depict theoretical predictions with
the dots representing the empirical performance of gradient descent with the
algorithmic settings discussed above. The data set is generated according
to a Gaussian Mixture Model per Section 2.2 with µ ∈ Rd consisting of
i.i.d. N (0, 1d) entries with dimension d = 400. Each dot represents the average
of 100 trials. These figures demonstrate that even for moderate dimension
sizes our theoretical prediction is a near perfect match with the empirical
performance of gradient descent. We note that when ε0 is sufficiently large then
the adversarially trained model θ̂ε becomes zero due to the large regularization
in the argument of loss function in (2.3) and SA and RA measures are not
defined. The curves are plotted up to that ε0.

An intriguing observation of Corollary 5.1 is that in the separable regime
in the case of p = 2, the standard accuracy does not depend on ε0. In
other words, adversarial training has no effect on the performance on benign
unperturbed data. The robust accuracy, however is decreasing in ε0. Figure
3 (a) and (b) also verify this predicted behavior and capture the effect of
the adversary’s power ε0 on standard and robust accuracy. In the separable
regime, SA is flat which implies that adversarial training has no effect on

3Specifically we run gradient descent iterations of the form θτ+1 = θτ − ατ∇L(θτ) on (2.3)
with a Polyak step size ατ = L(θτ )

∥∇L(θτ )∥
2
`2

in the separable regime and an approximate

Polyak step size ατ =
L(θτ )−min0≤t≤τ L(θt)+

γ
τ

∥∇L(θτ )∥
2
`2

in the non-separable regime.
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Fig 3: Depiction of standard and robust accuracies as a func-
tion of the adversary’s normalized power ε0 with `2 (p = 2)
perturbation for different values of δ. Solid curves are theoreti-
cal predictions and dots are results obtained based on gradient
descent on the robust objective (2.3). The dashed lines depict
the separability threshold for that δ. Each dot represents the
average of 100 trials. The data set is generated according to a
Gaussian Mixture Model per Section 2.2 with µ ∈ Rd consisting
of i.i.d. N (0, 1d) entries with dimension d = 400.

standard accuracy (or the generalization error on unperturbed data). However,
adversarial training does affect RA because now the trained model is used to
classify the adversarially perturbed test data.

In the non-separable regime, we observe that adversarial training helps with
improving the standard accuracy! Further, such positive impact is observed
for all choice of δ with a rather robust trend. Note that this behavior is
significantly different from a regression setting where adversarial training first
improves with the standard accuracy but then there is a turning point beyond
which the standard accuracy will decrease as ε0 grows. We refer to [30, Figure
3] and discussion therein for more details on a regression setting. Moreover,
as depicted in Figure 3(b) we see that RA always declines as adversary gets
more powerful (i.e., ε0 grows) as expected.

Next in Figure 4, we plot SA and RA versus dimension-to-sample ratio
1
δ = d

n , which is a measure of model complexity, for several values of ε0. It
has been shown that the standard risk (which amounts to 1 − SA in our
setting) as a function of model complexity 1

δ undergoes a double-descent
behavior for various learning models [6, 5, 24]. Specifically, the risk depicts a
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Fig 4: Depiction of standard and robust accuracies as a function
of dimension-to-sample ratio 1

δ = d
n , which is a measure of model

complexity, for several values of ε0 with `2 (p = 2) perturbation,
under a similar setting as in Figure 3.

U-shape before the interpolation threshold (separability threshold in binary
classification) and then starts to decline afterwards. Interestingly, for the
current setting of experiments here we do not observe such double descent
behavior and the standard accuracy always decreases as 1

δ grows, albeit at
different rates in the separable and non-separable regimes.4

5.2. Results for `∞ perturbation For the case of `∞ perturbation (p = ∞
and q = 1), Theorem 4.1, Theorem 4.3, and Theorem 4.5 do not substantially
simplify. However, we can calculate the function Jq defined by (4.5) in closed
form. In this case Jq becomes the Huber function given by

J1(x,λ) = ⎧⎪⎪⎨⎪⎪⎩
λ∣x∣ − λ2

2 ∣x∣ ≥ λ
x2

2 ∣x∣ ≤ λ
Using Theorems 4.1, 4.3, and 4.5 with this closed form for Jq, in Figure 5,
we again depict our theoretical predictions for standard and robust accuracy
as well as the empirical performance of gradient descent as a function of the
4It is worth noting that the double descent phenomenon has been observed for binary
classification in a non-adversarial setting with model misspecification. In such a model
the learner observes only a subset S ⊂ [d] of size p of the covariates with d/n→ ζ ≥ 1 and
p/n→ κ ∈ (0, ζ] (see [12] for further details). Our theoretical analysis can in principle be
used to analyze such a setting, however we do not pursue this direction in this paper.



24 A. JAVANMARD ET AL.

0 0.5 1 1.5 2
0.64

0.66

0.68

0.7

0.72

0.74

0.76

ε0

S
ta
n
d
ar
d
ac
cu
ra
cy

δ = 0.5
δ = 0.75
δ = 1
δ = 2

1

(a) Standard accuracy

0 0.5 1 1.5 2

0.3

0.4

0.5

0.6

0.7

ε0

R
ob

u
st

ac
cu
ra
cy

δ = 0.5
δ = 0.75
δ = 1
δ = 2

1

(b) Robust accuracy

Fig 5: Depiction of standard and robust accuracies as a function
of ε0 with `∞ (p = ∞) perturbation for different values of δ, and
under a similar setting as in Figure 3.

adversary’s normalized power for various values of δ. As in the p = 2 case our
theoretical predictions is very accurate even for moderate dimensions d.

More specifically, Figure 5(a) depicts the standard accuracy (SA) versus
the adversary’s normalized power. Similar to our p = 2 results the data
set is generated according to a Gaussian Mixture Model per Section 2.2
with µ ∈ Rd consisting of i.i.d. N (0, 1d) entries with dimension d = 400 and
each data points represents the average of 100 trials. In the case of p = ∞
however, we do not use the scaling ε = ε0 ∥µ∥`∞ as ∥√dµ∥

`∞
grows with√

log d and therefore violates Assumption 4. Instead we shall use a slightly
different scaling of ε = ε0√

d
. In the separable regime, we see that adversarial

training hurts the standard accuracy. However, in the non-separable regime,
the standard accuracy starts increasing indicating that adversarial training
is improving the standard accuracy. Furthermore, after some value of ε0,
which interestingly shifts with δ, the standard accuracy starts to go down
as ε0 grows.5 We note that this behavior is rather counterintuitive and very
different from the p = 2 case, further highlighting the need for a precise
theory that can predict such nuanced behavior. Figure 5(b) shows the robust
accuracy RA versus ε0 for various values of δ. In the separable regime, we
observe a similar trend for all δ, namely RA decreases at an almost linear
rate. In the non-separable regime though we have different trends depending
on the value of δ.

5Note that for δ = 0.5, we are in the separable regime over the entire range [0, ε0].
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Fig 6: Depiction of standard and robust accuracies as a function
of dimension-to-sample ratio 1

δ = d
n , which is a measure of model

complexity, for several values of ε0 with `∞ (p = ∞) perturbation,
under a similar setting as in Figure 3.

Finally, in Figure 6 we depict the effect of overparameterization 1
δ on SA

and RA. We observe a similar pattern as in the case of p = 2. In particular,
we do not observe a double descent behavior and the standard accuracy
always decreases as 1

δ grows, albeit at different rates in the separable and
non-separable regimes.

5.3. Results for `1 perturbation Our characterization of SA and RA given
by Theorem 4.3, for separable regime, and by Theorem 4.5, for non-separable
regime involve the function J defined by (4.7) which in turn depends on
the function Jq given by (4.5). However, Jq is only defined for finite q and
therefore the case of p = 1, q = ∞ is not directly covered by our results in
Section 4. That said, a very similar analysis can be used to characterize
SA and RA in this case. We formalize our results for this case in the next
theorem.

Theorem 5.2 Consider a data set generated i.i.d. according to an isotropic
Gaussian mixture data model per Section 2.2 and suppose the mean vector µ
obeys Assumptions 4. Also define

f(c0, c1; t0) = 1

2
E
⎡⎢⎢⎢⎢⎣ST(

c0√
δ
h − c1 M

σM,2
;
t0
σM,1

)2⎤⎥⎥⎥⎥⎦ ,(5.8)
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where ST(x;a) ∶= sgn(x) (∣x∣ − a)+ is the soft-thresholding function. Then in
the asymptotic setting of Assumption 1 we have:

(a) The separability threshold δ∗ is given by

δ∗ ∶= min
α≥0,θ

ω (α, θ, ε0)2
E [(1 − V θ +√α2 + θ2g)2

+
]

with ω (α, θ, ε0) ∶= min
η≥0,ν

√
δ {ν2

2η
+ 1

2ηδ
+ η

2
α2 − ηf(1

η
,
ν

η
− θ; 1

ε0
)} .

(5.9)

(b) In the separable regime where δ < δ∗, the followings hold in probability
for the max margin solution θ̃ε (see (F.2)):

lim
n→∞

SA(θ̃ε) = Φ(σM,2
θ∗
α∗
) ,(5.10)

lim
n→∞

RA(θ̃ε) = Φ(−ε0γ0∗
α∗

+ σM,2
θ∗
α∗
) .(5.11)

Here, (α∗, γ0∗, θ∗) are the unique minimization component of the follow-
ing convex-concave minimax scalar optimization with bounded solution(α∗, γ0∗, θ∗, β∗, η∗, η̃∗).

min
α,γ0≥0,θ

max
β,η≥0,η̃

Ds(α, γ0, θ, β, η, η̃), where

Ds(α, γ0, θ, β, λ0, η, η̃) = min
α,γ0≥0,θ

max
β,η≥0,η̃

1

2(1 + η
2α)f (β, η̃; 2γ0 (1 + η

2α
))

− (β2
δ
+ η̃2) 1

4(1 + η
2α) −

ηα

2
− η̃θ

+ β
¿ÁÁÁÀE

⎡⎢⎢⎢⎢⎣ ((1 + ε0γ0 − θσM,2) + αg)2+
⎤⎥⎥⎥⎥⎦ ,(5.12)

with expectation taken with respect to g ∼ N(0,1).
(c) In the non-separable regime where δ > δ∗, the followings hold in proba-

bility the optimal solution θ̂ε of (2.3):

lim
n→∞

SA(θ̂ε) = Φ
⎛⎝ σM,2θ∗√

α2
∗ + θ2∗

⎞⎠ ,(5.13)

lim
n→∞

RA(θ̂ε) = Φ
⎛⎝−ε0γ0∗ + σM,2θ∗√

α2
∗ + θ2∗

⎞⎠ .(5.14)
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Fig 7: Depiction of standard and robust accuracies as a function
of ε0 with `1 (p = 1) perturbation for different values of δ, under
a similar setting as in Figure 3.

Here, (α∗, γ0∗, θ∗) are the unique minimization components of the follow-
ing convex-concave minimax scalar optimization with bounded solution(θ∗, α∗, γ0∗, τg∗, β∗, τh∗).

min
θ,0≤α,γ0,τg

max
0≤β,τh

Dns(α, γ0, θ, τg, β, τh)
Dns(α, γ0, θ, τg, β, τh) = βτg

2
+L(√α2 + θ2, σM,2θ − ε0γ0, τg

β
)

−min
ν
[ α
τh
{β2

2δ
+ ν2

2
− f (β, τhθ

α
+ ν;

γ0τh
α
)} + ατh

2
] .(5.15)

In Figure 7, we again depict our theoretical predictions for standard and
robust accuracy as well as the empirical performance of gradient descent
as a function of the adversary’s normalized power for various values of δ.
We note however that in this case we do not actually run gradient descent
in our simulations as p = 1 corresponds to q = +∞ and GD convergence is
extremely slow since the gradient only has one non-zero entry. Therefore, for
our empirical simulations we use CVX, a package for specifying and solving
convex programs [22], in the non-separable regime which given the uniqueness
of the global optima yields the same answer as GD. Similarly, in the separable
regime we use (F.2) which based on Proposition 3.2 is the direction GD
eventually converges to. We observe that as in the p = 2 and p = +∞ cases
our theoretical predictions are very accurate even for moderate dimensions d.
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More specifically, Figure 7(a) depicts the standard accuracy (SA) versus
the adversary’s normalized power. Similar to our p = +∞ results the data set
is generated according to a Gaussian Mixture Model per Section 2.2 with
µ ∈ Rd consisting of i.i.d. N (0, 1d) entries with dimension d = 400 and each
data points represents the average of 100 trials. In the separable regime, we
see that adversarial training hurts the standard accuracy. However, in the
non-separable regime, the standard accuracy starts increasing indicating that
adversarial training is improving the standard accuracy. Furthermore, after
some value of ε0, which interestingly shifts with δ, the standard accuracy starts
to go down as ε0 grows.6 We note that this behavior is rather counterintuitive
and very different from the p = 2 case but somewhat similar to the p = +∞
case. This again highlights the need for a precise theory that can predict such
nuanced behavior. Figure 7(b) shows the robust accuracy RA versus ε0 for
various values of δ. In the separable regime, we observe a similar trend for all
δ, namely RA decreases at an almost linear rate. In the non-separable regime
though we have different trends depending on the value of δ.

6. Extension to anisotropic Gaussians In this section we extend our
results to Gaussian distributions with general covariance matrices that obey
a certain spiked covariance assumption stated below.

Assumption 5 (Spiked covariance) µ is an eigenvector of Σ with eigenvalue
a2, i.e, Σµ = a2µ.
Similar spiked covariance models have been used to model data in a number
of statistical problems, including matrix denoising and structured learning [32,
16], sparse PCA [13], synchronization and clustering [28].

To extend our results in Section 4 to the anisotropic case we also need to
generalize the definition of the set S as follows:

S(α, θ, ε0,µ) ∶= ⎧⎪⎪⎨⎪⎪⎩z ∈ Rd ∶ zT µ̃ = 0, ∥z∥`2 = α, ∥Σ−1/2z + θµ̃∥`q ≤ 1

ε0 ∥µ∥`p
⎫⎪⎪⎬⎪⎪⎭ .

We are now ready to state our main results in the anisotropic case. We start
by the separability threshold which generalizes Theorem 4.1.

Theorem 6.1 Consider a data set generated i.i.d. according to an anisotropic
Gaussian mixture data model per Section 2.2 with a spiked covariance per
Assumption 5. Also suppose the mean vector µ and covariance matrix Σ obey

6Note that for δ = 0.5, we are in the separable regime over the entire range [0, ε0].
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Assumptions 2 and 3. Also define

δ∗ ∶= min
α≥0,θ

ω (α, θ, ε0)2
E [(1 − V θ +√α2 + a2θ2g)2

+
] ,(6.1)

where the expectation is taken with respect to g ∼ N(0,1). Then, under the
asymptotic setting of Assumption 1, for δ < δ∗ the data are (ε, q)- separable
with high probability and for δ > δ∗, the data are non-separable, with high
probability. Namely,

δ < δ∗ ⇒ lim
n→∞

P(data is (ε, q)-separable) = 1 ,

δ > δ∗ ⇒ lim
n→∞

P(data is (ε, q)-separable) = 0 .

Our next theorem precisely characterizes SA and RA in the separable regime
and generalizes Theorem 4.3 to the anisotropic case. Before proceeding to
state the theorem we need to establish some definitions and assumptions.

Definition 6.2 For a given matrix A ⪰ 0 and a function f , we define the
weighted Moreau envelope of f as follows:

ef,A(x;λ) ∶=min
v

1

2
∥x − v∥2A + λf(v)

When A = I, we recover the (scaled) classical Moreau envelope. We denote by
eq,Σ the weighted Moreau envelope corresponding to ∥⋅∥q`q function.

Assumption 6 For the sequence of instances {Σ(n),µ(n), d(n)}n∈N indexed
by n, we assume that:

(a) The following (in probability) limit exists for any scalars c0, c1, λ0, η ∈
R+:

F(c0, c1; b0, b1) ∶= lim
n→∞

eq,I+b0Σ ((I + b0Σ)−1 { c0
2
√
n

Σ1/2P⊥µh − c12 µ̃} ; b1 ∥µ∥q`p) .
(b) The empirical distribution of eigenvalues of Σ converges weakly to a

distribution ρ with Stieltjes transform Sρ(z) ∶= ∫ ρ(t)
z−t dt.

With these definitions and assumptions in place we are ready to state our
result in the separable regime.

Theorem 6.3 Consider a data set generated i.i.d. according to an anisotropic
Gaussian mixture data model per Section 2.2 with a spiked covariance per
Assumption 5. Also suppose the mean vector µ and covariance matrix Σ obey
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Assumptions 2, 3, and 6. Also let θ̃ε be the max margin solution per (F.2). If
δ < δ∗, with δ∗ given by (4.3), then in the asymptotic setting of Assumption 1
we have:

(a) The following convex-concave minimax scalar optimization problem
has bounded solution (α∗, γ0∗, θ∗, β∗, λ0∗, η∗, η̃∗) with the minimization
components (α∗, γ0∗, θ∗) unique:

min
α,γ0≥0,θ

max
β,λ0,η≥0,η̃

Ds(α, γ0, θ, β, λ0, η, η̃), where

Ds(α, γ0, θ, β, λ0, η, η̃) = 2F
⎛⎝β, η̃;

η

2α
,
λ0

qγq−10

⎞⎠ − β
2α

2δη
(1 + 2α

η
Sρ (−2α

η
))

− 2λ0
q
γ0 − ηα

2
− η̃θ

− η̃2

4(1 + η
2αa

2) + β
¿ÁÁÁÀE

⎡⎢⎢⎢⎢⎣ ((1 + ε0γ0 − θV ) + αg)
2
+

⎤⎥⎥⎥⎥⎦ ,(6.2)

with expectation in last part taken with respect to g ∼ N(0,1).
(b) It holds in probability that

lim
n→∞

1∥µ∥`2 ⟨µ, θ̃ε⟩ = θ∗ ,(6.3)

lim
n→∞
∥θ̃ε∥

`2
= α∗ ,(6.4)

lim
n→∞
∥µ∥`p ∥θ̃ε∥`q = γ0∗ .(6.5)

(c) As a corollary of part (b) and Lemma 2.1, the following limits hold in
probability:

lim
n→∞

SA(θ̃ε) = Φ(V θ∗
α∗
) ,(6.6)

lim
n→∞

RA(θ̃ε) = Φ(−ε0γ0∗
α∗

+ V θ∗
α∗
) .(6.7)

Next we turn our attention to characterizing SA and RA on the non-separable
regime. To state result we need an additional assumption

Assumption 7 For the sequence of instances {Σ(n),µ(n), p(n)}n∈N indexed
by n, we assume that the following (in probability) limit exists for any scalars
c0, c1 ∈ R+ and λ0 ∈ R:

E(c0, c1;λ0) ∶= lim
n→∞

eq,Σ ( c0√
n

Σ−1/2h − c1µ̃;λ0 ∥µ∥q`p) ,(6.8)

where we recall µ̃ = µ/ ∥µ∥`2.
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Our next theorem generalizes Theorem 4.5 to anisotropic case.

Theorem 6.4 Consider a data set generated i.i.d. according to an anisotropic
Gaussian mixture data model per Section 2.2 with a spiked covariance per
Assumption 5. Also suppose the mean vector µ and covariance matrix Σ obey
Assumptions 2, 3, and 7. Also let θ̂ε be the solution to optimization (2.3). If
δ > δ∗, with δ∗ given by (4.3), then in the asymptotic setting of Assumption 1
we have:

(a) The following convex-concave minimax scalar optimization problem
has bounded solution (θ∗, α∗, γ0∗, τg∗, β∗, τh∗) with the minimization
components (α∗, γ0∗, θ∗) unique:

min
θ,0≤α,γ0,τg

max
0≤β,τh

Dns(α, γ0, θ, τg, β, τh)
Dns(α, γ0, θ, τg, β, τh) = βτg

2
+L(√α2 + a2θ2, V θ − ε0γ0, τg

β
)

− min
λ0≥0,ν

[ α
τh
{β2

2δ
+ λ0 (γ0τh

α
)q + ν2

2
− E(β,(τhθ

α
+ ν
a
) ;λ0)} + ατh

2
] .

(6.9)

(b) It holds in probability that

lim
n→∞

1∥µ∥`2 ⟨µ, θ̂ε⟩ = θ∗ ,(6.10)

lim
n→∞
∥P⊥µθ̂ε∥`2 = α∗ ,(6.11)

lim
n→∞
∥µ∥`p ∥θ̂ε∥`q = γ0∗ .(6.12)

(c) As a corollary of part (b) and Lemma 2.1, the following limits hold in
probability:

lim
n→∞

SA(θ̂ε) = Φ
⎛⎝ V θ∗√

α2
∗ + a2θ2∗

⎞⎠ ,(6.13)

lim
n→∞

RA(θ̂ε) = Φ
⎛⎝−ε0γ0∗ + V θ∗√

α2
∗ + a2θ2∗

⎞⎠ .(6.14)

The results above generalize out results to the anisotropic case. The reader
may of course be wondering when Assumptions 6 and 7 hold. This is the
subject of the next Remark which we prove in Appendix B.4.

Remark 6.1 For the case of `2 perturbation (p = q = 2), the following two
conditions are sufficient for Assumption 6 and 7 to hold:
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(i) The empirical distribution of the entries of
√
dµ converges weakly

to a distribution PM on real line, with bounded second moment, i.e.∫ x2dPM(x) = σ2M,2 < ∞.(ii) The empirical distribution of eigenvalues of Σ converges weakly to a
distribution ρ with Stieltjes transform Sρ(z) ∶= ∫ ρ(t)

z−t dt.

7. Proof sketch and mathematical challenges Our theoretical re-
sults on adversarial training for binary classification fits in the rapidly growing
recent literature on developing sharp high-dimensional asymptotics of (possi-
bly non-smooth) convex optimization-based estimators [18, 59, 4, 1, 60, 17,
51, 64, 34, 19, 15, 50, 48, 67, 9, 25, 7]. Most of this line of work focus on linear
models and regression problems. It has been only recently that the literature
witnessed a surge of interest in sharp analysis of a variety of methods tailored
to binary classification models [26, 8, 61, 43, 33, 56, 62, 12, 49, 38, 46, 62, 40].
However, none of these papers study adversarial training and its impact on
standard/robust accuracies.

On a technical level, our sharp analysis relies on the Convex Gaussian
Min-max Theorem (CGMT) [64] (see also [60, 51, 50])), which is a powerful
extension of the Gordon’s Gaussian comparison inequality [21]. We refer to
Section 7 for an overview of this framework and the mathematical challenges
we encounter in applying it to our adversarial setting. We next present a
proof sketch for deriving our main results which illustrates the key ideas.

To be able to provide a precise characterization of the various tradeoffs we
need to develop a precise understanding of the adversarial training objective

min
θ∈Rd

L(θ) ∶= 1

n

n∑
i=1
`(yi⟨xi,θ⟩ − ε ∥θ∥`q) ,(7.1)

and its optimal solution θ̂ε ∈ arg minθ∈Rd L(θ). Given the classification nature
of the problem, as discussed earlier, we have to study this loss in the two
different regimes of separable and non-separable as well as characterize the
threshold of separability. In this section we wish to provide a brief overview of
the steps of our proofs and some of the challenges. We focus our exposition on
the non-separable case. While the details of the derivations for the separable
case and the calculation of the separability threshold differ from the non-
separable case the general steps are similar and therefore the steps below also
provides a general road map for the proof of these results as well. Specifically,
our proofs in the non-separable regime consists of the following steps:

Step I: Reformulation of the loss.
The loss (7.1), while significantly simplified due to the removal of the max
function, is still rather complicated and precisely characterizing the behavior
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and the quality of its optimal solution is still challenging. In particular, the
dependence on the random data matrix X is still rather complex hindering
statistical analysis even in an asymptotic setting. To bring the optimization
problem into a form more amenable to precise asymptotic analysis we carry
out a series of reformulations of the optimization problem. Combining these
reformulation steps we arrive at the following equivalent Primal Optimization
(PO) problem

min
θ,v∈Rn

max
u∈Rn

1

n
{uT1µTθ +uTDyZΣ1/2θ −uTv} + 1

n

n∑
i=1
`(vi − ε ∥θ∥`q)(7.2)

Step II: Reduction to an Auxiliary Optimization (AO) problem.
The equivalent form above may be counter-intuitive as we started by sim-
plifying a different mini-max optimization problem and we have now again
introduced a new maximization! The main advantage of this new form is that
it is in fact affine in the data matrix X. This particular form allows us to use
a powerful extension of a classical Gaussian process inequality due to [21]
known as Convex Gaussian Minimax Theorem (CGMT) [64] which focuses on
characterizing the asymptotic behavior of mini-max optimization problems
that are affine in a Gaussian matrix X. This result enables us to characterize
the properties of (7.1) by studying the asymptotic behavior of the following,
arguable simpler, Auxiliary Optimization (AO) problem instead

min
θ,v∈Rn

max
u∈Rn

1

n
{∥P⊥µΣ1/2θ∥

`2
gTDyu + ∥Dyu∥`2 hTP⊥µΣ1/2θ

+ (uTDyz)(µ̃TΣ1/2θ) +uT1µTθ −uTv} + 1

n

n∑
i=1
`(vi − ε ∥θ∥`q) ,(7.3)

where g ∼ N(0,In) and h ∼ N(0,Id), P⊥µ ∶= I − µ̃µ̃T , and Pµ ∶= µ̃µ̃T .
We emphasize that the relationship between the above PO problem (7.2)

and how it is exactly related to the AO problem (7.3) is more intricate and
technical compared with classical CGMT and related work in the context of
classification [56, 62]. In particular, prior work on binary classification such
as [56, 62] via CGMT (which corresponds to the non-robust case i.e. ε = 0)
utilize the fact that (7.2) is rotationally invariant and hence one can assume
µ = e1 without loss of generality. However, in the robust version (unless
p = q = 2) the direction of µ plays a crucial role due to the regularization
term 1

n ∑ni=1 `(vi − ε ∥θ∥`q).
Step III: Scalarization of the Auxiliary Optimization (AO) prob-
lem.
In this step we further simplify the AO problem in (7.3). In particular we
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show the asymptotic behavior of the AO can be characterized rather precisely
via the scalar optimization problem

min
θ,0≤α,γ0,τg

max
0≤β,τh

Dns(α, γ0, θ, τg, β, τh) ∶= βτg
2
+L(√α2 + a2θ2, V θ − ε0γ0, τg

β
)

− min
λ0≥0,ν

[ α
τh
{β2

2δ
+ λ0 (γ0τh

α
)q + ν2

2
− E(β,(τhθ

α
+ ν
a
) ;λ0)} + ατh

2
] .

(7.4)

More specifically, a variety of conclusions can be derived based on the optimal
solutions of the above optimization problem as we discuss in the next step.
We note that while this expression may look complicated we prove that
this optimization problem is in fact convex in the minimization parameters(θ,α, τg) and concave in the maximization parameters (β, τh) so that its
optimal solutions can be easily derived via a simple low-dimensional gradient
descent rather quickly and accurately. We also note that this proof is quite
intricate and involved, so it is not possible to give an intuitive sketch of the
arguments here. We refer to Section B for details. However, we briefly state a
few mathematical challenges that is unique to simplifying (7.3). First, the
AO (7.3) does not have a simple regularization whose scalarization reduces to
a simple mean width calculation as in most simple CGMT uses. Instead the
regularization has a complicated form 1

n ∑ni=1 `(vi − ε ∥θ∥`q) which requires
rather intricate and involved scalarization calculations. Second, this AO
regularization term is not separable in θ which significantly complicates the
scalarization of the AO. Finally, we handle the case of more general covariance
matrices where Σ ≠ I.
Step IV: Completing the proof of the theorems.
Finally, we utilize the above scalar form to derive all of the different theorems
and results. This is done by relating the quantities of interest in each theorem
to the optimal solutions of (7.4). For instance, we show that limn→∞ SA(θ̂ε) =
Φ( V θ∗√

α2
∗+a2θ2∗

) and limn→∞RA(θ̂ε) = Φ(−ε0γ0∗+V θ∗√
α2
∗+a2θ2∗

) where α∗ and θ∗ are the

optimal solutions over α and θ. These calculations/proofs are carried out in
detail in Section B. Since each argument is different we do not provide a
summary here and refer to the corresponding sections.

8. Discussion We conclude the paper by discussing some of the potential
extensions and applications of our theory as well as comparison with more
classical approaches to binary classification.

8.1. Generalization to random features models While our focus in this
paper was on linear classifiers, these models are quite foundational and serve as



PRECISE STATISTICAL ANALYSIS OF ADVERSARIAL TRAINING 35

the basis for more complex models. For instance, one potential generalization
of our results is to the class of random features models given by

FRF ∶= {f(x;θ,W ) = sign(⟨θ, σ(Wx)⟩) ∶ θ ∈ RN} ,
where x ∈ Rd represents the feature vector, W ∈ RN×d is a random matrix
whose rows are chosen uniformly at random from the unit sphere in d-
dimension, and σ ∶ R ↦ R is a nonlinear function (for a vector v, σ(v) =(σ(v1), . . . , σ(vm)) is applied entry-wise). Random features model can also
be described as a two-layer fully connected neural network with random
first-layer weights fixed to W and not optimized, while the second layer
weights are represented by vector θ and are optimized over to minimize the
loss of interest. The random features model was introduced by [55] for scaling
kernel methods to large datasets and there has been a large body of work
drawing connections between random features models, kernel methods and
fully trained neural networks [11, 10, 27, 37].

An intriguing phenomenon, pointed out by [45, 49] from the analysis
of random features model in non-adversarial contexts, is that the random
features model has the same asymptotic behavior as a simpler noisy linear
features model whose second order statistics match the nonlinear random
features model, namely a linear model with noisy features u ∈ RN given by
u = η0 + η1Wx + η2z, where z has i.i.d standard normal entries, independent
of W and x. Also, the constants η0, η1, η2 depend on the activation function
σ(⋅) and are chosen so that the two models have the same first and second
moments. A promising direction is to establish a similar connection for
an adversarial setting and use our theory (relied on CGMT framework) to
analyze the equivalent noisy linear model, from which we obtain an asymptotic
characterization for adversarial training under the random features model.
Very recently and after this paper was posted, [23] has pursued a similar
approach to precisely characterize the role of overparametrization on robust
generalization of random features in a regression setting.

8.2. Optimal ε0 for the robust minimax estimator An interesting applica-
tion of our theory is to derive the optimal value εop0 (perceived perturbation
level) in the robust minimax estimator (2.2), while fixing the adversary’s
(actual) perturbation level on test inputs to ε0,test. (See Remark 4.4 on how
our theory applies to this setting.) The optimality here is with respect to
maximizing the robust accuracy. Somewhat surprisingly εop0 is different than
ε0,test in general and depends on δ and the choice of perturbation norm `p
in a non-trivial way (There is no one-fit-all solution and this highlights the
importance of having a precise theory to understand the effect of adversarial
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Fig 8: Robust accuracy curves versus ε0 for different choices of
δ, and the perturbation norm `1 (p = 1). The optimal choice of
ε0 for the robust minimax estimator decreases with δ.

training which is the primary goal of the current work). For example, in the
particular case of ε0,test = 0, the question reduces to finding the value of ε0
which maximizes standard accuracy. As we already discussed, the answer
very much depends on δ and p. For p = 2, we observe that (cf. Figure 3(a))
adversarial training helps with improving the standard accuracy. However for
p = ∞, εop0 should be large enough so that the problem becomes non-separable
and also its value decreases as δ increases (cf. Figure 5(a)). As another exam-
ple, we consider the case of ε0,test = 0.3 with `∞ perturbations. In Figure 8
we plot the robust accuracy versus ε0, and the dashed vertical lines show the
value of εop0 . As we see its value decreases by increasing δ, however, its exact
value requires a precise analysis.

8.3. Comparison with Linear Discriminant Analysis (LDA) A classical
approach to binary classification under the Gaussian-mixture model is the
Linear Discriminant Analysis. In comparing the robustness property of LDA
and the robust minimax estimator studied in this paper, we cannot say one
estimator always outperforms the others. To further discuss this point, we
consider the Gaussian-mixture model with identity covariance Σ = I and bal-
anced classes. In this case, the LDA estimator reduces to µ̂LDA = 1

n ∑ni=1 yixi
and the corresponding classification rule given by ŷ = sign(⟨x, µ̂LDA⟩). In the
supplementary [29] (Section A), we compare the robust accuracy of LDA
estimator with that of the robust minimax estimator θ̂ε for some choices of
p. As we will discuss, the depending on p and the adversary’s power ε0, one
can outperform the other.
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SUPPLEMENTARY MATERIAL

Supplement to: “Precise Statistical Analysis of Classification Ac-
curacies for Adversarial Training”
(). Due to space constraints, proofs of theorems and some of the technical
details are provided in the Supplementary Material [29].
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APPENDIX A: COMPARISON WITH LINEAR DISCRIMINANT
ANALYSIS (LDA)

A classical approach to binary classification under the Gaussian-mixture
model is the Linear Discriminant Analysis. In comparing the robustness
property of LDA and the robust minimax estimator studied in this paper,
we cannot say one estimator always outperforms the others. To further
discuss this point, we consider the Gaussian-mixture model with identity
covariance Σ = I and balanced classes. In this case, the LDA estimator
reduces to µ̂LDA = 1

n ∑ni=1 yixi and the corresponding classification rule given
by ŷ = sign(⟨x, µ̂LDA⟩). Under the Gaussian-mixture model we have x = yµ+z
with z ∼ N(0,I). Therefore,

µ̂LDA = 1

n

n∑
i=1
yi(yiµ + zi) = µ + 1

n

n∑
i=1
yizi = µ + z̃ , z̃ ∼ N(0, 1

n
I)

For simplicity we assume that the class averages µ is generated as µ ∼ (0, 1dI),
similar to the setting considered in the numerical experiments. In asymptotic
regime of n→∞ and n/d→ δ, we have that in probability:

lim
n→∞
⟨µ, µ̂LDA⟩ = lim

n→∞
∥µ∥2`2 = 1 ,

lim
n→∞

d1/2−1/q ∥µ̂LDA∥
`q
= lim
n→∞

d1/2−1/q ∥µ + z̃∥`q
= lim
n→∞

d1/2−1/q (1

d
+ 1

n
)1/2 d1/qCq = (1 + 1

δ
)1/2Cq ,

where in the first equation we used the fact that ⟨µ, z̃⟩ ∼ N(0, 1n ∥µ∥2`2) has
vanishing variance as n→∞. In the second inequality, Cq is the q-th moment
of standard normal distribution. Recall that ε = ε0 ∥µ∥`p with 1/p + 1/q = 1,
and also ∥µ∥`p → d1/p−1/2Cp = d1/2−1/qCp. Using these identities along with

1
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the characterization of standard and robust accuracies given by Lemma 2.1
of the paper, we arrive at

lim
n→∞

SA(µ̂LDA) = Φ
⎛⎝
√

δ

1 + δ⎞⎠ ,
lim
n→∞

RA(µ̂LDA) = Φ
⎛⎝
√

δ

1 + δ − ε0CqCp⎞⎠ .(A.1)

We next compare the robust accuracy of LDA estimator with that of the
robust minimax estimator θ̂ε for some choices of p. As we will discuss, the
depending on p and the adversary’s power ε0, one can outperform the other.

• (p = q = 2). Figure 9(a) compares RA(µ̂LDA) with RA(θ̂ε) versus ε0 for
several values of δ. Here, the solid lines correspond to the robust minimax
estimator and the dashed lines correspond to the LDA estimator. Figure
9(b) compares RA(µ̂LDA) with RA(θ̂ε) versus 1/δ for various choices of
ε0. As we see for the case of p = 2, the LDA has better robust accuracy
and it is mostly very close to that of the robust estimator.

• (p = ∞, q = 1). Similar to the setting of experiments in Section 5.2,
here we consider the scaling ε = ε0/√d. Figure 10 (a) compares the
robust accuracies versus ε0 for several values of δ. As we see for any
δ, there exists ε∗0(δ) above which the robust minimax outperforms
the LDA. Figure 10(b) compares the robust accuracies versus 1/δ for
several values of ε0. Rewording the above observation, for any ε0 there
exists δ∗(ε0) below which the robust minimax outperforms the LDA
estimator.

• (p = 1, q = ∞). Similar to the setting of experiments in Section 5.3,
we have ε = ε0 ∥µ∥`p = √ 2

π
ε0√
d
. Invoking equations (A.1), we have

limn→∞RA(µ̂LDA) = 0 because Cq = √2 log d → ∞. However, as we
see in Figure 7, the robust minimax estimator θ̂ε achieves non-trivial
positive robust accuracies and hence outperforms LDA.

APPENDIX B: PROOFS FOR ANISOTROPIC GAUSSIAN MODEL
(SECTION 6)

B.1. Proof of Theorem 6.1 As discussed the (ε, q)-separability con-
dition can alternatively be written as (3.2), which we repeat here:

∃θ, ∥θ∥`q ≤ 1

ε
∶ ∀i ∈ [n], yi⟨xi,θ⟩ > 1.(B.1)
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Fig 9: Robust accuracies for the LDA estimator and the robust
minimax estimator versus the adversary’s power with `2 (p = 2)
perturbations for different values of δ. Solid curves correspond to
the robust minimax estimator and the dashed curves correspond
to the LDA estimator.
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Fig 10: Robust accuracies for LDA estimator and the robust
minimax estimator versus the adversary’s power with `∞ (p = ∞)
perturbations for different values of δ. Solid curves correspond to
the robust minimax estimator and the dashed curves correspond
to the LDA estimator.
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To find the separability threshold we consider the following feasibility problem

min
θ∈Rd

0 subject to yi⟨xi,θ⟩ > 1, ∥θ∥`q ≤ 1

ε
.(B.2)

Clearly this is a convex optimization problem since q ≥ 1. Writing the partial
Lagrangian for the above problem with ui/n as dual coefficients, this is
equivalent to

min
θ

max
ui≥0

1

n

n∑
i=1
ui (1 − yi⟨xi,θ⟩) subject to ∥θ∥`q ≤ 1

ε
.(B.3)

Under our Gaussian Mixture data model, we can substitute for X = yµT +
ZΣ1/2, which results in

min
θ

max
ui≥0

1

n
uT (1 (1 −µTθ) −DyZΣ1/2θ) subject to ∥θ∥`q ≤ 1

ε
.

(B.4)

The above dual problem has a finite optimal value if and only if the data
is (ε, q)-separable. So we aim at finding the largest δ such that the above
problem has still a finite optimal value. (Recall that n

d → δ.)

Reduction to an auxiliary optimization problem via CGMT. Note
that yi = ±1 are independent of Z. In addition, the objective function in (B.4)
is affine in the standard Gaussian matrix Z and the rest of the terms form
a convex-concave function in θ, u. Due to this particular form we are able
to apply a powerful extension of a classical Gaussian process inequality due
to Gordon [21] known as Convex Gaussian Minimax Theorem (CGMT) [64],
and is discussed in the proof sketch in Section 7. The CGMT framework
provides a principled machinery to characterize the asymptotic behavior of
certain minimax optimization problems that are affine in a Gaussian matrix
X.

As discussed in the CGMT framework in Section 7, we require minimiza-
tion/maximization to be over compact sets. The vector θ already lies in the `q
ball of radius 1/ε by constraint. In addition, since ui ≥ 0, and we are focused
on the regime that (B.4) has finite optimal value, the optimal values of ui
should all be finite as well.

We are now ready to applying the CGMT framework. The corresponding
Auxiliary Optimization (AO) reads as

min
θ

max
u≥0

1

n
{(uT1) (1 −µTθ) + ∥Σ1/2θ∥

`2
gTu + ∥u∥`2 hTΣ1/2θ} ,

subject to ∥θ∥`q ≤ 1

ε
,(B.5)
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where g ∼ N(0,In) and h ∼ N(0,Id). Fixing β ∶= ∥u∥`2√
n

and optimizing over u
on the non-negative orthant we get

min
θ

max
β≥0

β√
n
hTΣ1/2θ + β√

n
∥((1 −µTθ)1 + ∥Σ1/2θ∥

`2
g)
+
∥
`2

,

subject to ∥θ∥`q ≤ 1

ε
.(B.6)

For data to be separable the above dual optimization should take finite
optimal value and therefore the coefficient of β should be non-positive. As
such the problem is separable if and only if the optimal value of the following
problem is non-positive:

min
θ

1√
n
hTΣ1/2θ + 1√

n
∥((1 −µTθ)1 + ∥Σ1/2θ∥

`2
g)
+
∥
`2

≤ 0 ,

subject to ∥θ∥`q ≤ 1

ε
.(B.7)

Consider the decomposition θ = θ⊥ + θµ̃ with θ⊥ = P⊥µθ. Note that

1√
n
hTΣ1/2θ = 1√

n
hTΣ1/2θ⊥ + 1√

n
θhTΣ1/2µ̃

= 1√
n
hTΣ1/2θ⊥ + 1√

n
aθhT µ̃

Since hT µ̃ ∼ N(0, 1) and θ is bounded the contribution of the second term is
negligible in the large sample limit n→∞. This along with the symmetry of
the distribution of h bring us to

min
α≥0,θ,θ

− 1√
n
hTΣ1/2θ⊥ + 1√

n
∥((1 − ∥µ∥`2 θ)1 +√α2 + a2θ2 g)

+
∥
`2

subject to ∥θ∥`q ≤ 1

ε
, ∥Σ1/2θ⊥∥

`2
= α , µ̃Tθ = θ(B.8)

Scalarization of the auxiliary optimization problem. To continue recall
the definition of set S given by

S(α, θ, ε0,µ) ∶= ⎧⎪⎪⎨⎪⎪⎩z ∈ Rd ∶ zT µ̃ = 0, ∥z∥`2 = α, ∥Σ−1/2z + θµ̃∥`q ≤ 1

ε0 ∥µ∥`p
⎫⎪⎪⎬⎪⎪⎭ .

Recall that ε = ε0 ∥µ∥`p and so the optimization problem (B.8) above can be
rewritten in the form

min
α≥0,θ

min
z∈S(α,θ,ε0,µ)

− 1√
n
hTz + 1√

n
∥((1 − ∥µ∥`2 θ)1 +√α2 + a2θ2 g)

+
∥
`2

(B.9)
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Recall the spherical width of a set S ⊂ Rd defined as

ωs (S) = E [ sup
z∈S

zTu] ,
where u ∈ Sd−1 is a vector chosen at random from the unit sphere. Using this
definition and the fact that min z = −max−z we have

min
z∈S(α,θ,ε0)

− 1√
n
hTz = − 1√

n/d sup
z∈S(α,θ,ε0)

1√
d
hTz → − 1√

δ
ω(α, θ, ε0) ,

in probability, where in the last line we use the fact, for S ∈ Sd−1, the
function f(u) = supz∈S z

Tu is Lipschitz. Therefore, using the concentration
of Lipschitz functions of Gaussian random vectors (see e.g. [66, Theorem
5.2.2]), f(u) concentrates around its mean E f(u) = ωs(S(α, θ, ε0,µ)). More
precisely,

P{∣ sup
z∈S

1√
d
hTz − ωs(S(α, θ, ε0,µ))∣} ≤ 2e−cdt

2

,

for an absolute constant c > 0 and for every t ≥ 0. Therefore, by invoking
the assumption on the convergence of spherical width, cf. Assumption 3, we
arrive at

lim
d→∞

P{∣ sup
z∈S

1√
d
hTz − ω(α, θ, ε0)∣ ≥ η} = 0 , ∀η > 0 .

Therefore, supz∈S(α,θ,ε0)
1√
d
hTz → ω(α, θ, ε0), in probability.

Furthermore, ∥µ∥`2 → V by Assumption 2 and since g ∼ N(0,In) by
applying the Weak Law of Large Numbers we have

1√
n
∥((1 − ∥µ∥`2 θ)1 +√α2 + a2θ2 g)

+
∥
`2
→
√

E [(1 − V θ +√α2 + a2θ2 g)2
+
]

Thus the objective function in the optimization problem (B.9) converges
pointwise to

min
α≥0,θ

− 1√
δ
ω(α, θ, ε0) +

√
E [(1 − V θ +√α2 + a2θ2g)2

+
](B.10)

Also the problem (B.9) is convex as a function of (α, θ,z) and since partial
maximization preserves convexity, the objective of (B.9) (after minimization
over z) is a convex function of (α, θ). We can thus apply the convexity
lemma [63, Lemma B.2] to conclude that the minimum value of (B.9) over
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α ≥ 0, θ also converges to that of (B.10). Therefore, we conclude that data is(ε, q)-separable if and only if the optimal value in (B.10) is finite. Rearranging
the terms gives us that (B.10) has a finite optimal value if and only if

δ < δ∗, with δ∗ ∶= min
α≥0,θ

ω (α, θ, ε0)2
E [(1 − V θ +√α2 + θ2g)2

+
] .(B.11)

This completes the proof of Theorem 6.1.

B.2. Proof of Theorem 6.3 We prove Theorem 6.3 using the Convex
Gaussian Minimax Theorem (CGMT) as outlined in Section 7. The max-
margin problem (F.2) can be equivalently written as

(θ̃ε, γ̂) =arg min
θ,γ≥0

∥θ∥2`2(B.12)

subject to yi⟨xi,θ⟩ − εγ ≥ 1, γ ≥ ∥θ∥`q
Now note that writing the Lagrangian for the max-margin problem with ui/n
and 2λ as dual coefficients, this is equivalent to

min
θ,γ≥0

max
ui,λ≥0

∥θ∥2`2 + 1

n

n∑
i=1
ui (1 + εγ − yi⟨xi,θ⟩) + 2λ(∥θ∥`q − γ) .(B.13)

We next substitute for X = yµT +ZΣ1/2 based on the Gaussian mixtures
model to arrive at

min
θ,γ≥0

max
ui≥0,λ≥0

∥θ∥2`2 + 1

n
(uT1 + εγuT1 −uTDyZΣ1/2θ −uT1µTθ) + 2λ(∥θ∥`q − γ) .

(B.14)

The advantage of the Lagrangian form in (B.14) is that it is a minimax
problem and the objective is an affine function of the standard Gaussian
matrix Z. Therefore, we can deploy the Convex Gaussian Minimax Theorem
(CGMT) [64], described in Section 7, to characterize asymptotic values of
certain functions of this optimization solution, in a high probability sense.

To recall, the CGMT framework shows that a problem of the form

min
θ∈Sθ

max
u∈Su

uTZθ +ψ(θ,u)(B.15)

with Z a matrix with N(0,1) entries can be replaced asymptotically with

min
θ∈Sθ

max
u∈Su

∥θ∥`2 gTu + ∥u∥`2 hTθ +ψ(θ,u)(B.16)
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where g and h are independent Gaussian vectors with i.i.d. N(0,1) entries
and ψ(θ,u) is convex in θ and concave in u. Specifically, the optimal value
and corresponding solution of (B.15) converge in probability to the optimal
value and the corresponding solution of (B.16). In the above Sθ and Su are
compact sets. We refer to [64, Theorem 3] for precise statements. As explained
in the proof sketch in 7, we follow [64] in referring to problems of the form
(B.15) and (B.16) as the Primal Problem (PO) and the Auxiliary Problem
(AO).

Note that in order to apply CGMT, we need the minimization/maximization
to be over compact sets. This technical issue can be avoided by introducing
“artificial” boundedness constraints on the optimization variables that they
do not change the optimal solution. Concretely, we can add constraints of
the form Sθ = {θ ∶ ∥θ∥`q ≤ Kθ} and Su = {u ∶ 0 ≤ ui, 1

n1Tu ≤ Ku} for
sufficiently large constants Kθ, Ku without changing the optimal solution of
(B.14) in a precise asymptotic sense. We refer to Appendix E.3.1 for precise
statements and proofs. This allows us to replace (B.14) with

min
θ∈Sθ ,γ≥0

max
u∈Su,λ≥0

∥θ∥2`2 + 1

n
(uT1 + εγuT1 −uTDyZΣ1/2θ −uT1µTθ) + 2λ(∥θ∥`q − γ) .

(B.17)

Reduction to an auxiliary optimization problem via CGMT. With
these compact constraints in place we can now apply the CGMT result to
obtain the auxiliary optimization (AO) problem.

We proceed by defining the projection matrices

P⊥µ ∶= I − µ̃µ̃T , Pµ ∶= µ̃µ̃T
and rewrite ZΣ1/2 = Z (Pµ + P⊥µ)Σ1/2. Since ZPµ and ZP⊥µ are independent
from each other the latter has the same distribution as

ZΣ1/2 ∼ z (Σ1/2µ̃)T +ZP⊥µΣ1/2

where z ∼ N(0,In) and is independent from the matrix Z. This brings us to
the following representation

min
θ,γ≥0

max
u≥0,λ≥0

∥θ∥2`2 + 2λ(∥θ∥`q − γ)
+ 1

n
{uT1 + εγuT1 −uT1µTθ − (uTDyz)(µ̃TΣ1/2θ) −uTDyZP⊥µΣ1/2θ}
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Since yi = ±1 are independent of Z, by applying CGMT framework, the AO
reads as

min
θ,γ≥0

max
u≥0,λ≥0

∥θ∥2`2 + 2λ(∥θ∥`q − γ) + 1

n
{uT1 + εγuT1 −uT1µTθ

+ (uTz)(µ̃TΣ1/2θ) + ∥P⊥µΣ1/2θ∥
`2
gTu

+ ∥u∥`2 hTP⊥µΣ1/2θ}
Fixing β ∶= ∥u∥`2√

n
and optimizing over u on the non-negative orthant we get

min
θ,γ≥0

max
β≥0,λ≥0

∥θ∥2`2 + 2λ(∥θ∥`q − γ) + β√
n
hTP⊥µΣ1/2θ

+ β√
n
∥((1 + εγ −µTθ)1 + (µ̃TΣ1/2θ)z + ∥P⊥µΣ1/2θ∥

`2
g)
+
∥
`2

(B.18)

Since z,g ∼ N(0,In) are independent, by applying the Weak Law of Large
Numbers we have

1√
n
∥((1 + εγ −µTθ)1 + (µ̃TΣ1/2θ)z + ∥P⊥µΣ1/2θ∥

`2
g)
+
∥
`2

→ ⎛⎝E [((1 + εγ −µTθ) +
√(µ̃TΣ1/2θ)2 + ∥P⊥µΣ1/2θ∥2

`2
g)2
+
]⎞⎠

1
2

= ⎛⎝E
⎡⎢⎢⎢⎢⎣((1 + εγ −µ

Tθ) + ∥Σ 1
2θ∥

`2
g)2
+

⎤⎥⎥⎥⎥⎦
⎞⎠

1
2

Thus we arrive at

min
θ,γ≥0

max
β≥0,λ≥0

∥θ∥2`2 + 2λ(∥θ∥`q − γ) + β√
n
hTP⊥µΣ1/2θ

+ β
¿ÁÁÁÀE

⎡⎢⎢⎢⎢⎣((1 + εγ −µ
Tθ) + ∥Σ 1

2θ∥
`2
g)2
+

⎤⎥⎥⎥⎥⎦ .(B.19)

We note that for a ≥ 0,

E[ag + b]2+ = a2 + b22
(1 + erf ( b√

2a
)) + ab√

2π
e−

b2

2a2 .

and its derivative with respect to a is given by 2a(1 + erf( b√
2a
)) > 0 which

implies that the function is increasing in a > 0. Therefore the optimization
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(B.19) can be equivalently written as

min
θ,γ,α≥0

max
β≥0,λ≥0

∥θ∥2`2 + 2λ(∥θ∥`q − γ) + β√
n
hTP⊥µΣ1/2θ + β

¿ÁÁÁÀE
⎡⎢⎢⎢⎢⎣ ((1 + εγ −µ

Tθ) + αg)2+
⎤⎥⎥⎥⎥⎦

subject to ∥Σ 1
2θ∥

`2
≤ α.

(B.20)

Note that the above is trivially jointly convex in (θ, γ, α) and jointly concave
in (β,λ). We fix the parallel component of θ on µ to θ, namely θ = µ̃Tθ. We
next optimize over θ while fixing θ.

min
θ,θ,γ≥0,α≥0

max
β≥0,λ≥0

∥θ∥2`2 + 2λ(∥θ∥`q − γ) + β√
n
hTP⊥µΣ1/2θ + β

¿ÁÁÁÀE
⎡⎢⎢⎢⎢⎣ ((1 + εγ − θ ∥µ∥`2) + αg)

2

+

⎤⎥⎥⎥⎥⎦
subject to ∥Σ 1

2θ∥
`2
≤ α, µ̃Tθ = θ

(B.21)

Bringing the constraints into the objective via Lagrange multipliers we obtain

min
θ,θ,γ≥0,α≥0

max
β,λ,η≥0,η̃

∥θ∥2`2 + 2λ(∥θ∥`q − γ) + β√
n
hTP⊥µΣ1/2θ + β

¿ÁÁÁÀE
⎡⎢⎢⎢⎢⎣ ((1 + εγ − θ ∥µ∥`2) + αg)

2

+

⎤⎥⎥⎥⎥⎦
+ η (∥Σ 1

2θ∥
`2
− α) + η̃ (µ̃Tθ − θ)

(B.22)

Next note that ∥Σ 1
2θ∥

`2
=minτ≥0

∥Σ
1
2 θ∥

2

`2

2τ + τ
2 and ∥θ∥`q =mint≥0

∥θ∥q
`q

qtq−1
+ q−1

q t

Thus, above reduces to

min
θ,θ,γ≥0,α≥0

max
β,λ,η≥0,η̃

min
τ≥0,t≥0

∥θ∥2`2 + 2λ

qtq−1
∥θ∥q`q + 2λ

q − 1

q
t − 2λγ + β√

n
hTP⊥µΣ1/2θ

+ β
¿ÁÁÁÀE

⎡⎢⎢⎢⎢⎣ ((1 + εγ − θ ∥µ∥`2) + αg)
2

+

⎤⎥⎥⎥⎥⎦
+ η

2τ
∥Σ 1

2θ∥2
`2
+ ητ

2
− ηα + η̃ (µ̃Tθ − θ)

(B.23)

To continue note that
∥θ∥q

`q

tq−1
= t ∥θt ∥q`q and

∥Σ
1
2 θ∥

2

`2

τ = τ ∥Σ 1
2
θ
τ ∥2`2 and thus

using the fact that the perspective of a convex function is convex both are
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jointly convex with respect to (θ, t) and (θ, τ). Thus the objective above
is jointly convex in (θ, θ, γ,α, t, τ) and jointly concave in (β,λ, η, η̃). Due
to this convexity/concavity with respect to the minimization/maximization
parameters we can change the order of min and max. We thus proceed by
optimizing over θ. The optimization over θ takes the form

min
θ

∥θ∥2`2 + 2λ

qtq−1
∥θ∥q`q + η

2τ
∥Σ 1

2θ∥2
`2
+ β√

n
hTP⊥µΣ1/2θ + η̃µ̃Tθ(B.24)

By completing the square the objective can be alternatively written as

θT (I + η

2τ
Σ)θ + 2λ

qtq−1
∥θ∥q`q + β√

n
hTP⊥µΣ1/2θ + η̃µ̃Tθ

= ∥(I + η

2τ
Σ)1/2 θ + β

2
√
n
(I + η

2τ
Σ)−1/2 Σ1/2P⊥µh + (I + η

2τ
Σ)−1/2 η̃

2
µ̃∥2

`2

+ 2λ

qtq−1
∥θ∥q`q − β24n

hTP⊥µΣ1/2 (I + η

2τ
Σ)−1 Σ1/2P⊥µh

− η̃2
4
µ̃T (I + η

2τ
Σ)−1 µ̃ − βη̃

2
√
n
µ̃T (I + η

2τ
Σ)−1 Σ1/2P⊥µh .

(B.25)

Since Σµ̃ = a2µ̃ we have

µ̃T (I + η

2τ
Σ)−1 Σ1/2P⊥µh = 0, µ̃T (I + η

2τ
Σ)−1 µ̃ = 1(1 + η

2τ a
2) .

We consider a singular value decomposition Σ = USUT with S = diag(s1, . . . , sd),
and the first column of U being µ̃ and s1 = a2 (Recall that µ̃ is a singular
value of Σ with eigenvalue a2.) Then,

1

n
hTP⊥µΣ1/2 (I + η

2τ
Σ)−1 Σ1/2P⊥µh = 1

n
hTP⊥µU (I + η

2τ
S)−1SUTP⊥µh

= 1

δd

d∑
i=2

si
1 + η

2τ si
h2i

P⇒ 1

δd

d∑
i=1

si
1 + η

2τ si

= 2τ

δdη

d∑
i=1

⎛⎝1 − 1
η
2τ (si + 2τ

η )
⎞⎠

= 2τ

δη
(1 + 2τ

η
Sρ (−2τ

η
))
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with Sρ(z) ∶= ∫ ρ(t)
z−t dt the Stieltjes transform of the spectrum of Σ.

Using the above identities (B.25) reduces to

∥(I + η

2τ
Σ)1/2 θ + β

2
√
n
(I + η

2τ
Σ)−1/2 Σ1/2P⊥µh + (I + η

2τ
Σ)−1/2 η̃

2
µ̃∥2

`2

+ 2λ

qtq−1
∥θ∥q`q − τβ22δη

(1 + 2τ

η
Sρ (−2τ

η
)) − η̃2

4(1 + η
2τ a

2) .
We then write the minimum value over θ in terms of the weighted Moreau

envelope, given by Definition 6.2.

min
θ
∥(I + η

2τ
Σ)1/2 θ + β

2
√
n
(I + η

2τ
Σ)−1/2 Σ1/2P⊥µh + (I + η

2τ
Σ)−1/2 η̃

2
µ̃∥2

`2

+ 2λ

qtq−1
∥θ∥q`q

= 2e
q,I+ η2τ Σ

((I + η

2τ
Σ)−1 { β

2
√
n

Σ1/2P⊥µh − η̃2 µ̃} ;
λ

qtq−1
) ,

(B.26)

where we used symmetry of the distribution of h.
Putting all pieces together in(B.25) we get

min
θ
∥θ∥2`2 + 2λ

qtq−1
∥θ∥q`q + η

2τ
∥Σ 1

2θ∥2
`2
+ β√

n
hTP⊥µΣ1/2θ + η̃µ̃Tθ

(B.27)

= 2e
q,I+ η2τ Σ

((I + η

2τ
Σ)−1 { β

2
√
n

Σ1/2P⊥µh − η̃2 µ̃} ;
λ

qtq−1
) − β2τ

2δη
(1 + 2τ

η
Sρ (−2τ

η
))

− η̃2

4(1 + η
2τ a

2) .
Using (B.27) in (B.23), the AO problem reduces to

min
γ≥0,θ

max
β,λ,η≥0,η̃

min
τ≥0,t≥0

2e
q,I+ η2τ Σ

((I + η

2τ
Σ)−1 { β

2
√
n

Σ1/2P⊥µh − η̃2 µ̃} ;
λ

qtq−1
)

− β2τ
2δη
(1 + 2τ

η
Sρ (−2τ

η
))

− η̃2

4(1 + η
2τ a

2) + β
¿ÁÁÁÀE

⎡⎢⎢⎢⎢⎣ ((1 + εγ − θ ∥µ∥`2) + αg)
2

+

⎤⎥⎥⎥⎥⎦
+ 2λ

q − 1

q
t − 2λγ + ητ

2
− ηα − η̃θ(B.28)
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Scalarization of the auxiliary optimization problem. We proceed by
defining λ0 ∶= λ

∥µ∥`p
, γ0 ∶= γ ∥µ∥`p and t0 ∶= t ∥µ∥`p . Under Assumptions 2

and 6, the asymptotic auxiliary optimization (AO) problem becomes

min
α,γ0≥0,θ

max
β,λ0,η≥0,η̃

min
τ≥0,t0≥0

2F
⎛⎝β, η̃;

η

2τ
,
λ0

qtq−10

⎞⎠ − β
2τ

2δη
(1 + 2τ

η
Sρ (−2τ

η
))

+ 2λ0
q − 1

q
t0 − 2λ0γ0 + ητ

2
− ηα − η̃θ

− η̃2

4(1 + η
2τ a

2) + β
¿ÁÁÁÀE

⎡⎢⎢⎢⎢⎣ ((1 + ε0γ0 − θV ) + αg)
2
+

⎤⎥⎥⎥⎥⎦(B.29)

Here we used the relation ε = ε0 ∥µ∥`p .
We next solve for some of the variables in the AO problem by writing the

KKT conditions.

1. Define

f (η
τ
) ∶= 2F

⎛⎝β, η̃;
η

2τ
,
λ0

qtq−10

⎞⎠ − β
2τ

2δη
(1 + 2τ

η
Sρ (−2τ

η
)) − η̃2

4(1 + η
2τ a

2) ,
where we only made the dependence on η

τ explicit in the notation f (ητ ).
Setting derivative with respect to η to zero, we obtain

1

τ
f ′ (η

τ
) + τ

2
− α = 0 .(B.30)

Setting derivative with respect to τ to zero, we obtain

− η
τ2
f ′ (η

τ
) + η

2
= 0 .(B.31)

Combining (B.30) and (B.31), we get η(1 − α
τ ) = 0. So either α = τ or

η = 0. If η = 0, then it is clear that the terms involving τ in the AO
problem would vanish and therefore the value of τ does not matter.
So in this case, we can as well assume τ = α. This simplifies the AO
problem by replacing for τ :

min
α,γ0≥0,θ

max
β,λ0,η≥0,η̃

min
t0≥0

2F
⎛⎝β, η̃;

η

2α
,
λ0

qtq−10

⎞⎠ − β
2α

2δη
(1 + 2α

η
Sρ (−2α

η
))

+ 2λ0
q − 1

q
t0 − 2λ0γ0 − ηα

2
− η̃θ

− η̃2

4(1 + η
2αa

2) + β
¿ÁÁÁÀE

⎡⎢⎢⎢⎢⎣ ((1 + ε0γ0 − θV ) + αg)
2
+

⎤⎥⎥⎥⎥⎦ .(B.32)
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2. Setting derivative with respect to λ0 to zero, we get

2F′4
⎛⎝β, η̃;

η

2α
,
λ0

qtq−10

⎞⎠ 1

qtq−10

+ 2
q − 1

q
t0 − 2γ0 = 0 ,(B.33)

where F′4 denotes the derivative of function F with respect to its forth
argument. Also, by setting derivative with respect to t0 to zero we get

2F′4
⎛⎝β, η̃;

η

2α
,
λ0

qtq−10

⎞⎠λ0 1 − q
q

t−q0 + 2λ0
q − 1

q
= 0 .(B.34)

Combining (B.33) and (B.34) implies that

2λ0(q − 1)(γ0
t0
− 1) = 0 .(B.35)

Therefore either γ0 = t0 or λ0 = 0 or q = 1. If λ = 0 or q = 1 then the
terms involving t0 in (B.32) vanish and hence we can assume t0 = γ0 in
this cases as well. Replacing t0 with γ0 in (B.32) we obtain

min
α,γ0≥0,θ

max
β,λ0,η≥0,η̃

2F
⎛⎝β, η̃;

η

2α
,
λ0

qγq−10

⎞⎠ − β
2α

2δη
(1 + 2α

η
Sρ (−2α

η
)) − 2λ0

q
γ0 − ηα

2
− η̃θ

− η̃2

4(1 + η
2αa

2) + β
¿ÁÁÁÀE

⎡⎢⎢⎢⎢⎣ ((1 + ε0γ0 − θV ) + αg)
2
+

⎤⎥⎥⎥⎥⎦ ,
(B.36)

which is the expression for Ds(α, γ0, θ, β, λ0, η, η̃) given by (6.2).

Uniqueness and boundedness of the solution to AO problem. Note
that since δ ≤ δ∗, by using Theorem 6.1, we are in the separable regime and
therefore optimization (F.2) is feasible with high probability and admits a
bounded solution. This implies that the PO problem (B.17) has bounded
solution and since AO and PO problems are asymptotically equivalent this
implies that the AO problem (B.36) has bounded solution.

To show the uniqueness of the solution of (B.36), note that as we argued
throughout the proof, its objective function Ds is jointly strictly convex in(α, γ0, θ) and jointly concave in (β,λ0, η, η̃). Therefor, maxβ,λ0,η,η̃Ds(α, γ0, θ, β, λ0, η, η̃)
is strictly convex in (α, γ0, θ). This follows from the fact that if a function
f(x,y) is strictly convex in x, then maxy f(x,y) is also strictly convex in x
and therefore has a unique minimizer (α∗, γ0∗, θ∗).
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Part (b) of the theorem follows readily from our definition of parameters
α, θ and γ.

Part (c) also follows from combining Lemma 2.1 with part (b) of the
theorem.

B.3. Proof of Theorem 6.4 The goal of this theorem is to derive
precise asymptotic behavior for the adversarially trained model θ̂ε given by

θ̂ε = arg min
θ∈Rd

1

n

n∑
i=1
`(yi⟨xi,θ⟩ − ε ∥θ∥`q) .(B.37)

Letting vi ∶= yi⟨xi,θ⟩, this optimization can be equivalently written as

min
θ,v∈Rn

1

2p

n∑
i=1
`(vi − ε ∥θ∥`q) subject to v =DyXθ ,

with Dy = diag(y1, . . . , yn). Therefore, by writing the Lagrangian by u/n as
the dual variable for the equality constraint, we arrive at

min
θ,v∈Rn

max
u∈Rn

1

n
{uTDyXθ −uTv} + 1

n

n∑
i=1
`(vi − ε ∥θ∥`q)

We next substitute forX = yµT +ZΣ1/2, under the Gaussian mixtures model,
which gives us

min
θ,v∈Rn

max
u∈Rn

1

n
{uT1µTθ +uTDyZΣ1/2θ −uTv} + 1

n

n∑
i=1
`(vi − ε ∥θ∥`q)

(B.38)

Note that by the above Lagrangian is in a minimax problem in the form of
minθ maxu u

TZθ + ψ(θ,u), with Z standard Gaussian matrix and ψ(θ,u)
is convex in the minimization variable θ and concave in the maximization
variable u. This form allows us to apply the CGMT framework as outlined
in Section 7 and similar to the proof of Theorem 6.3. But in order to do that,
we need the minimization/maximization to be over compact sets. Similar to
the proof of Theorem 6.3 we cope with this technical issue by introducing
artificial boundedness constraints on the optimization variables that they
do not change the optimal solution. Specifically, we can add constraints of
the form Sθ = {θ ∶ ∥θ∥`q ≤ Kθ} and Su = {u ∶ ∥u∥∞ ≤ Ku} for sufficiently
large constants Kθ,Ku, without changing the optimal solution of (B.38). We
refer to Appendix E.3.1 for precise statements and proofs. This allows us to
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replace (B.38) with

min
θ∈Sθ ,v∈Rn

max
u∈Su

1

n
{uT1µTθ +uTDyZΣ1/2θ −uTv} + 1

n

n∑
i=1
`(vi − ε ∥θ∥`q) .

(B.39)

B.3.1. Reduction to an auxiliary optimization problem via CGMT Next
we define the projection matrices

P⊥µ ∶= I − µ̃µ̃T , Pµ ∶= µ̃µ̃T
and rewrite ZΣ1/2 = Z (Pµ + P⊥µ)Σ1/2. Since ZPµ and ZP⊥µ are independent
from each other the latter has the same distribution as

ZΣ1/2 ∼ z (Σ1/2µ̃)T +ZP⊥µΣ1/2 .(B.40)

where z ∼ N(0,In) and is independent from the matrix Z. Thus the above
optimization problem is equivalent to

min
θ∈Sθ ,v

max
u∈Su

1

n
{uT1µTθ + (uTDyz)(µ̃TΣ1/2θ) +uTDyZP⊥µΣ1/2θ −uTv} + 1

n

n∑
i=1
`(vi − ε ∥θ∥`q) .

(B.41)

Using CGMT and the corresponding AO takes the form

min
θ∈Sθ ,v

max
u∈Su

1

n
{∥P⊥µΣ1/2θ∥

`2
gTDyu + ∥Dyu∥`2 hTP⊥µΣ1/2θ + (uTDyz)(µ̃TΣ1/2θ)

+uT1µTθ −uTv} + 1

n

n∑
i=1
`(vi − ε ∥θ∥`q) ,

(B.42)

where g ∼ N(0,In) and h ∼ N(0,Id).
Given yi = ±1 are independent of Z and hence g, we have Dyg,Dyz ∼

N(0,In) and ∥Dyu∥`2 = ∥u∥`2 . This results in
min
θ∈Sθ ,v

max
u∈Su

1

n
{∥P⊥µΣ1/2θ∥

`2
gTu + ∥u∥`2 hTP⊥µΣ1/2θ + (uTz)(µ̃TΣ1/2θ) +uT1µTθ −uTv}

+ 1

n

n∑
i=1
`(vi − ε ∥θ∥`q) .

(B.43)
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Letting β ∶= 1√
n
∥u∥`2 and optimizing over direction of u, we get

max
u∈Su

1

n
(∥P⊥µΣ1/2θ∥

`2
gTu + ∥u∥`2 hTP⊥µΣ1/2θ + (uTz)(µ̃TΣ1/2θ) +uT1µTθ −uTv)

= max
0≤β≤K

β√
n
∥∥P⊥µΣ1/2θ∥

`2
g + µ̃TΣ1/2θz + 1µTθ − v∥

`2

+ β√
n
hTP⊥µΣ1/2θ ,

(B.44)

where K ∶=maxu∈Su
1√
n
∥u∥`2 <Ku by definition of Su.

Plugging the latter into AO becomes

min
θ∈Sθ ,v

max
0≤β≤K

β√
n
∥∥P⊥µΣ1/2θ∥

`2
g + µ̃TΣ1/2θz + 1µTθ − v∥

`2

+ β√
n
hTP⊥µΣ1/2θ + 1

n

n∑
i=1
`(vi − ε ∥θ∥`q) .

(B.45)

We hereafter use the shorthand

`(v,θ) = 1

n

n∑
i=1
`(vi − ε ∥θ∥`q) ,

for simplicity of notation. For the minimization, with respect to θ and then
v, to become easier in our later calculation we proceed by writing `(v,θ) in
terms of its conjugate with respect to θ. That is,

`(v,θ) = sup
w
wTθ − ̃̀(v,w)

where ̃̀(v,w) is the conjugate of ` with respect to θ. The logic behind this
is that AO will then simplify to

min
θ∈Sθ ,v

max
0≤β≤K,w

β√
n
∥∥P⊥µΣ1/2θ∥

`2
g + µ̃TΣ1/2θz + 1µTθ − v∥

`2

+ β√
n
hTP⊥µΣ1/2θ+wTθ−̃̀(v,w)

which after flipping (allowed based on the correct form of convexity/concavity
of PO) becomes

max
0≤β≤K,w

min
θ∈Sθ ,v

β√
n
∥∥P⊥µΣ1/2θ∥

`2
g + µ̃TΣ1/2θz + 1µTθ − v∥

`2

+ β√
n
hTP⊥µΣ1/2θ +wTθ − ̃̀(v,w) .

(B.46)

We define the parallel and perpendicular components of θ along vector µ as
follows:

θ⊥ = P⊥µθ, θ ∶= µ̃Tθ, Pµθ = θµ̃ .(B.47)
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Given that µ̃ is an eigenvector of Σ, cf. Assumption 5, we have PµΣ1/2P⊥µ = 0
and therefore

P⊥µΣ1/2θ = P⊥µΣ1/2 (Pµ + P⊥µ)θ = P⊥µΣ1/2P⊥µθ = P⊥µΣ1/2P⊥µθ⊥ .

Similarly, since Σ1/2µ̃ = aµ̃.
µ̃TΣ1/2θ = aµ̃Tθ = aθ.

Rewriting the AO problem, we get

max
0≤β≤K,w

min
θ∈Sθ ,v

β√
n
∥∥P⊥µΣ1/2P⊥µθ⊥∥

`2
g + aθz + 1 ∥µ∥`2 θ − v∥

`2

+ β√
n
hTP⊥µΣ1/2P⊥µθ⊥ +wTP⊥µθ⊥ +wT µ̃θ − ̃̀(v,w).(B.48)

We can rewrite this as

max
0≤β≤K,w

min
θ∈Sθ ,v

β√
n
∥∥P⊥µΣ1/2P⊥µθ⊥∥

`2
g + aθz + 1 ∥µ∥`2 θ − v∥

`2

+ β√
n
(P⊥µh)T P⊥µΣ1/2P⊥µθ⊥ +wTP⊥µΣ−1/2P⊥µ (P⊥µΣ1/2P⊥µ)θ⊥ +wT µ̃θ − ̃̀(v,w).

(B.49)

Here we used the assumption that µ̃ is an eigenvector of Σ which in turn
implies that

P⊥µΣ−1/2P⊥µ (P⊥µΣ1/2P⊥µ) = P⊥µΣ−1/2P⊥µΣ1/2P⊥µ = P⊥µΣ−1/2 (Pµ + P⊥µ)Σ1/2P⊥µ = P⊥µ.
(B.50)

We next optimize over θ using lemma below and its proof is deferred to
Appendix E.4.

Lemma B.1 For a given vector r and α ≥ 0 consider the following optimiza-
tion

minθ∈Rp ⟨P⊥µr,(P⊥µΣ1/2P⊥µ)θ⊥⟩(B.51)

subject to ∥(P⊥µΣ1/2P⊥µ)θ⊥∥
`2
= α(B.52)

Under the assumption that PµΣ1/2P⊥µ = 0, the optimal value of this optimiza-
tion is given by −α ∥P⊥µr∥`2.
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Now note that

∣θ∣ = ∣µ̃Tθ∣ ≤ ∥θ∥`2 ,
α = ∥(P⊥µΣ1/2P⊥µ)θ⊥∥

`2
= ∥P⊥µΣ1/2θ∥

`2
≤ ∥Σ1/2θ∥

`2
≤ C1/2

max ∥θ∥`2
where in the second line we used Assumption 1(b),(d). Since θ ∈ Sθ a bounded
set, we can choose K ′ > 0 large enough so that 0 ≤ ∣θ∣, α ≤ K ′ and hence so
do the optimization over this bounded range. That said, we use Lemma B.1
with r = β√

n
h +Σ−1/2P⊥µw, to simplify the AO problem as follows:

max
0≤β≤K,w

min
0≤α,∣θ∣≤K′,v

β√
n
∥αg + aθz + 1 ∥µ∥`2 θ − v∥`2
− α∥ β√

n
P⊥µh + P⊥µΣ−1/2P⊥µw∥

`2

+wT µ̃θ − ̃̀(v,w)(B.53)

To continue we shall calculate the conjugate function ̃̀. This is the subject
of the next lemma and we refer to Appendix E.5 for its proof.

Lemma B.2 The conjugate of the function

`(v,θ) = 1

n

n∑
i=1
`(vi − ε ∥θ∥`q)

with respect to θ is equal to

̃̀(v,w) = sup
γ≥0

γ ∥w∥`p − 1

n

n∑
i=1
` (vi − εγ) .

Using the above lemma we have

−̃̀(v,w) = −(sup
γ≥0

γ ∥w∥`p − 1

n

n∑
i=1
` (vi − εγ)) = inf

γ≥0
−γ ∥w∥`p + 1

n

n∑
i=1
` (vi − εγ) .

Plugging this into (B.53) we arrive at

max
0≤β≤K,w

min
0≤α,∣θ∣≤K′,v,0≤γ

β√
n
∥αg + aθz + 1 ∥µ∥`2 θ − v∥`2

− α∥ β√
n
P⊥µh + P⊥µΣ−1/2P⊥µw∥

`2

+wT µ̃θ − γ ∥w∥`p + 1

n

n∑
i=1
` (vi − εγ)

(B.54)

Note that when p ≥ 1 the objective is jointly concave in (w, β) and jointly
convex in α, θ,v and therefore we can switch the orders of min and max.
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We next focus on optimization over v. Using the observation that for all
x ∈ R, minτ≥0

τ
2 + x2

2τ = x we write

min
v

β√
n
∥αg + aθz + 1 ∥µ∥`2 θ − v∥`2 + 1

n

n∑
i=1
` (vi − εγ)

=min
v

inf
τg≥0

β

2τgn
∥αg + aθz + 1 ∥µ∥`2 θ − v∥2`2 + βτg2

+ 1

n

n∑
i=1
` (vi − εγ)

=min
v

inf
τg≥0

β

2τgn

n∑
i=1
(αgi + aθzi + ∥µ∥`2 θ − vi)2 + βτg2

+ 1

n

n∑
i=1
` (vi − εγ)

=min
ṽi

inf
τg≥0

β

2τgn

n∑
i=1
(αgi + aθzi + ∥µ∥`2 θ − ṽi − εγ)2 + βτg2

+ 1

n

n∑
i=1
` (ṽi)

(B.55)

As a result (B.54) can be rewritten as

max
0≤β≤K,w

min
0≤α,∣θ∣≤K′,ṽ,0≤γ

inf
τg≥0

β

2τgn
∥αg + aθz + 1 ∥µ∥`2 θ − ṽ − εγ1∥2

`2
+ βτg

2

− α∥ β√
n
P⊥µh + P⊥µΣ−1/2P⊥µw∥

`2

+wT µ̃θ − γ ∥w∥`p + 1

n

n∑
i=1
` (ṽi)(B.56)

We note that since the quadratic over linear function is jointly convex the
above loss is jointly convex in the parameters (α, γ, θ, τg, ṽ). Also for p ≥ 1
the ∥⋅∥`p is convex and thus the objective is also jointly concave in (β,w).

We recall the definition of the Moreau envelope of function ` at a point x
with parameter µ, that is given by

e`(x;µ) ∶=min
t

1

2µ
(x − t)2 + `(t) .(B.57)

We can now rewrite equation (B.56) in terms of Moreau envelope of the loss
function `.

min
ṽ

inf
τg≥0

β

2τgn
∥αg + aθz + 1 ∥µ∥`2 θ − ṽ − εγ1∥2

`2
+ βτg

2
+ 1

n

n∑
i=1
` (ṽi)

= inf
τg≥0

βτg

2
+ 1

n

n∑
i=1
e` (αgi + aθzi + ∥µ∥`2 θ − εγ;

τg

β
)(B.58)

Thus (B.56) can be rewritten in the form

max
0≤β≤K,w

min
0≤α,∣θ∣≤K′,0≤γ

inf
τg≥0

βτg

2
+ 1

n

n∑
i=1
e` (αgi + aθzi + ∥µ∥`2 θ − εγ;

τg

β
)

− α∥ β√
n
P⊥µh + P⊥µΣ−1/2P⊥µw∥

`2

+wT µ̃θ − γ ∥w∥`p(B.59)
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Note that since (B.56) is jointly convex in (α, γ, θ, τg, ṽ) and jointly concave
in (β,w) and partial minimization preserves convexity thus (B.59) is jointly
convex in (α, γ, θ, τg) and jointly concave in (β,w).

B.3.2. Scalarization of the auxiliary optimization problem The auxiliary
problem (B.59) is in terms of high-dimensional vectors g,z,h,w,µ. We turn
this problem into a scalar optimization by taking the pointwise limit of its
objective and then showing that such convergence indeed holds in a uniform
sense and therefore the minimax value also converges to that of the limit
objective.

Note that by definition of the Moreau envelope, for all x and µ we have

e`(x;µ) ≤ 1

2µ
(x − x)2 + `(x) = `(x) = log(1 + e−x) ≤ log 2 + ∣x∣ .

Hence,

E [e` (αg + aθz + ∥µ∥`2 θ − εγ;
τg

β
)] ≤ log 2 + E[∣αg + aθz + ∥µ∥`2 θ − εγ∣] < ∞ ,

for any finite value of α, θ and γ. Therefore by an application of the Weak
Law of Large Numbers, we have that

1

n

n∑
i=1
e` (αgi + aθzi + ∥µ∥`2 θ − εγ;

τg

β
) → E [e` (αg + aθz + ∥µ∥`2 θ − εγ;

τg

β
)]

= E [e` (√α2 + a2θ2g + ∥µ∥`2 θ − εγ;
τg

β
)] .

We define the expected Moreau envelope L(a, b, µ) = E[e`(ag + b;µ)], where
the expectation is taken with respect to independent standard normal variable
g.

This simplifies the AO problem as

max
0≤β≤K,w

min
0≤α,∣θ∣≤K′,0≤γ,τg

βτg

2
+L(√α2 + a2θ2, ∥µ∥`2 θ − εγ, τgβ )

− α∥ β√
n
P⊥µh + P⊥µΣ−1/2P⊥µw∥

`2

+wT µ̃θ − γ ∥w∥`p .(B.60)

We note that since (B.59) is jointly convex in (α, γ, θ, τg) and jointly
concave in (β,w) and expectation preserves convexity thus the objective in
(B.60) is also jointly convex in (α, γ, θ, τg) and jointly concave in (β,w) and
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by Sinov’s theorem we can flip the maximization over w and the minimization
to arrive at

max
0≤β≤K

min
0≤α,∣θ∣≤K′,0<γ,τg

βτg

2
+L(√α2 + a2θ2, ∥µ∥`2 θ − εγ, τgβ )

−min
w
{α∥ β√

n
P⊥µh + P⊥µΣ−1/2P⊥µw∥

`2

−wT µ̃θ + γ ∥w∥`p } .(B.61)

By our asymptotic setting (cf. Definition 1, part (c)), ε = ε0 ∥µ∥`p for a
constant ε0. We let γ0 ∶= γ ∥µ∥`p and rewriting (B.61) in terms of γ0 in lieu
of γ we arrive at

max
0≤β≤K

min
0≤α,∣θ∣≤K′,0<γ0<K′′,0<τg

βτg

2
+L(√α2 + a2θ2, ∥µ∥`2 θ − ε0γ0, τgβ )

−min
w
{α∥ β√

n
P⊥µh + P⊥µΣ−1/2P⊥µw∥

`2

−wT µ̃θ + γ0∥µ∥`p ∥w∥`p } .(B.62)

• Optimization over w. Continuing with optimization over w we have

min
w

α∥ β√
n
P⊥µh + P⊥µΣ−1/2P⊥µw∥

`2

−wT µ̃θ + γ0∥µ∥`p ∥w∥`p
= min
w,τh≥0

α

2τh
∥ β√

n
P⊥µh + P⊥µΣ−1/2P⊥µw∥2

`2

+ ατh
2
−wT µ̃θ + γ0∥µ∥`p ∥w∥`p

= min
w,τh≥0

α

2τh
∥ β√

n
P⊥µh + P⊥µΣ−1/2w∥2

`2

+ ατh
2
−wT µ̃θ + γ0∥µ∥`p ∥w∥`p ,

(B.63)

where in the last step we used that P⊥µΣ−1/2Pµ = 0, which follows from
Assumption 5. Note that the above loss is jointly convex in (w, τh). So that
continuing from (B.61) the overall objective is jointly convex in (α, γ, θ, τg)
and jointly concave in (β,w, τh).
Let w̃ ∶=Σ−1/2w. The optimization over w can be written as

min
w̃

1

2
∥ β√

n
P⊥µh + P⊥µw̃∥2

`2

+ f(w̃) ,(B.64)

where
f(w̃) ∶= −⟨w̃,Σ1/2µ̃⟩θτh

α
+ τh
α

γ0∥µ∥`p ∥Σ1/2w̃∥
`p
.
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Let w̃∗ be the optimal solution. Then,

−P⊥µ ( β√
n
h + w̃∗) ∈ ∂f(w̃∗) .(B.65)

By the conjugate subgradient theorem, this implies that

w̃∗ ∈ ∂f∗ (−P⊥µ ( β√
n
h + w̃∗)) .

Let t∗ ∶= β√
n
h + w̃∗, then writing the above equation in terms of t,

t∗ − β√
n
h ∈ ∂f∗ (−P⊥µt∗) .(B.66)

Therefore,

−P⊥µ (t∗ − β√
n
h) ∈ −P⊥µ∂f∗ (−P⊥µt∗) .(B.67)

Equation (B.67) is equivalent to saying that

t∗ ∈ arg min
t

1

2
∥P⊥µ ( β√

n
h − t)∥2

`2

+ f∗ (−P⊥µt) .(B.68)

Lemma B.3 For function f ∶ Rp ↦ R given by

f(w̃) ∶= −⟨w̃,Σ1/2µ̃⟩θτh
α
+ τh
α

γ0∥µ∥`p ∥Σ1/2w̃∥
`p
,

its convex conjugate reads as

f∗(u) = 1S(u), S ∶= {u ∶ ∥Σ−1/2u + τhθ
α
µ̃∥

`q

≤ γτh
α
} , 1S(u) = ⎧⎪⎪⎨⎪⎪⎩

0 if u ∈ S∞ if u ∉ S
The proof of Lemma B.3 is delegated to Appendix E.6.
Define B ∶= {µ}⊥ ∩ −S. Then (B.68) implies that

P⊥µt
∗ = PB (P⊥µ ( β√

n
h)) .(B.69)

Lemma B.4 For a convex set S and B ∶= {µ}⊥ ∩ S, we have PBP
⊥
µ = PB.
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We refer to Appendix E.7 for the proof of Lemma B.4.
Using Lemma B.4 and (B.69) we obtain

P⊥µt
∗ = PB ( β√

n
h) .

Recalling definition of t∗ this implies

P⊥µw̃
∗ = PB ( β√

n
h) − β√

n
P⊥µh .(B.70)

Now note that for p > 1,∇∥w∥`p = 1

∥w∥p−1
`p

[∣w1∣p−1sign(w1), . . . , ∣wp∣p−1sign(wp)]T.
Therefore in this case ⟨∇∥w∥`p ,w⟩ = ∥w∥`p . Similarly, for p = 1 for any
s ∈ ∂ ∥w∥`p we have ⟨s,w⟩ = ∥w∥`p . Therefore, for all p ≥ 1 for any
s ∈ ∂ ∥w∥`p we have ⟨s,w⟩ = ∥w∥`p .
Therefore, for the defined function f and any s ∈ ∂f(w̃) there is a vector
s̃ ∈ ∂ ∥x∥`p ∣x=Σ1/2w̃

such that

⟨s, w̃⟩ = ⟨−Σ1/2µ̃
θτh
α
+ τh
α

γ0∥µ∥`p Σ1/2s̃, w̃⟩
= −⟨w̃,Σ1/2µ̃⟩θτh

α
+ τh
α

γ0∥µ∥`p ⟨s̃,Σ1/2w̃⟩
= −⟨w̃,Σ1/2µ̃⟩θτh

α
+ τh
α

γ0∥µ∥`p ∥Σ1/2w̃∥
`p

= f(w̃) .(B.71)

Therefore by invoking (B.65)

f(w̃∗) = ⟨−P⊥µ ( β√
n
h + w̃∗) , w̃∗⟩

= ⟨− β√
n
P⊥µh − P⊥µw̃∗,P⊥µw̃∗⟩

= ⟨−PB ( β√
n
h) ,PB ( β√

n
h) − β√

n
P⊥µh⟩

= −∥PB ( β√
n
h)∥2

`2

+ β√
n
⟨PB ( β√

n
h) ,P⊥µh⟩ .(B.72)
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Putting things together, the optimal value of objective (B.64) over w is
given by

min
w̃

1

2
∥ β√

n
P⊥µh + P⊥µw̃∥2

`2

+ f(w̃)
= 1

2
∥ β√

n
P⊥µh + P⊥µw̃∗∥2

`2

+ f(w̃∗)
= 1

2
∥PB ( β√

n
h)∥2

`2

− ∥PB ( β√
n
h)∥2

`2

+ β√
n
⟨PB ( β√

n
h) ,P⊥µh⟩

= −1

2
∥PB ( β√

n
h)∥2

`2

+ β√
n
⟨PB ( β√

n
h) ,P⊥µh⟩

= β2
2n
∥P⊥µh∥2`2 − 1

2
∥PB ( β√

n
h) − β√

n
P⊥µh∥2

`2

= β2
2n
∥P⊥µh∥2`2 − 1

2
∥PB ( β√

n
h) − β√

n
h∥2

`2

+ β2
2n
∥Pµh∥2`2

= β2
2n
∥h∥2`2 − 1

2
∥PB ( β√

n
h) − β√

n
h∥2

`2

.(B.73)

Following the argument after (B.63) since the objective is jointly convex
in (α, γ, θ, τg) and jointly concave in (β,w, τh) and partial maximization
preserves concavity after plugging the above the objective is jointly convex
in (α, γ, θ, τg) and jointly concave in (β, τh).

• On projection PB. As part of our scalarization process of the auxiliary
optimization problem, in the next lemma we provide an alternative charac-
terization of the distance ∥PB(h) −h∥`2 , and refer to Appendix E.8 for its
proof.

Lemma B.5 Recall the set B ∶= {µ}⊥ ∩ −S, where S is given by

S ∶= ⎧⎪⎪⎨⎪⎪⎩u ∶ ∥Σ
−1/2u + τhθ

α
µ̃∥

`q

≤ τh
α

γ0∥µ∥`p
⎫⎪⎪⎬⎪⎪⎭ .

Also, suppose that Σ1/2µ̃ = aµ̃. Then, for any vector h the following holds:

1

2
∥PB (h) −h∥2`2 = sup

λ≥0,ν
eq,Σ (Σ−1/2h − (τhθ

α
+ ν
a
) µ̃;λ) − λ⎛⎝ γ0∥µ∥`p

τh
α

⎞⎠
q + νµ̃Th − ν2

2

(B.74)
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Using equation (B.73) along with Lemma B.5 we have

min
w̃

1

2
∥ β√

n
P⊥µh + P⊥µw̃∥2

`2

+ f(w̃)

= inf
λ≥0,ν

β2

2n
∥h∥2`2 + λ⎛⎝τhα γ0∥µ∥`p

⎞⎠
q − νβ√

n
µ̃Th + ν2

2
− eq,Σ ( β√

n
Σ−1/2h − (τhθ

α
+ ν
a
) µ̃;λ)

(B.75)

Recalling equation (B.63) we have

min
w

α∥ β√
n
P⊥µh + P⊥µΣ−1/2P⊥µw∥

`2

−wT µ̃θ + γ0∥µ∥`p ∥w∥`p
= min
τh,λ≥0,ν

α

τh

⎧⎪⎪⎨⎪⎪⎩
β2

2n
∥h∥2`2 + λ⎛⎝τhα γ0∥µ∥`p

⎞⎠
q − νβ√

n
µ̃Th + ν2

2
− eq,Σ ( β√

n
Σ−1/2h − (τhθ

α
+ ν
a
) µ̃;λ)⎫⎪⎪⎬⎪⎪⎭+ ατh

2

= min
τh,λ≥0,ν

α

τh
{β2

2n
∥h∥2`2 + λ0 (τhγ0α )

q − νβ√
n
µ̃Th + ν2

2
− eq,Σ ( β√

n
Σ−1/2h − (τhθ

α
+ ν
a
) µ̃;λ0 ∥µ∥q`p)}

+ ατh
2

(B.76)

where we used the reparameterization λ0 ∶= λ
∥µ∥q

`p

. Next we use Assumption 7

to take the limit of the above expression as n→∞. By definition of function
E we have

lim
n→∞

eq,Σ ( β√
n

Σ−1/2h − (τhθ
α
+ ν
a
) µ̃;λ0 ∥µ∥q`p) = E(β,(τhθα + νa) ;λ0) .

Also, since h ∼ N(0,Id) we have

lim
n→∞

1

n
∥h∥2`2 = 1

δ
, lim

n→∞

1√
n
µ̃Th = 0 .

Using the above two equations in (B.76) we have

lim
n→∞

min
w

⎧⎪⎪⎨⎪⎪⎩α∥
β√
n
P⊥µh + P⊥µΣ−1/2P⊥µw∥

`2

−wT µ̃θ + γ0∥µ∥`p ∥w∥`p
⎫⎪⎪⎬⎪⎪⎭

= α
τh
{β2

2δ
+ λ0 (γ0τh

α
)q + ν2

2
− E(β,(τhθ

α
+ ν
a
) ;λ0)} + ατh

2
.

(B.77)
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Finally, incorporating the above equation in (B.62) and using Assumption 2,
the AO problem simplifies to:

max
0≤β≤K

min
0≤α,∣θ∣≤K′,0<γ0<K′′,0<τg

βτg

2
+L(√α2 + a2θ2, V θ − ε0γ0, τg

β
)

− min
τh,λ0≥0,ν

[ α
τh
{β2

2δ
+ λ0 (γ0τh

α
)q + ν2

2
− E(β,(τhθ

α
+ ν
a
) ;λ0)} + ατh

2
]

(B.78)

Now recall the argument after (B.73) that the objective is jointly convex in(α, γ, θ, τg) and jointly concave in (β, τh). We used Lemma B.5 to provide
alternative characterization for quantity ∥PB (h) −h∥2`2 , which led into
introducing the new variables λ0, ν. Therefore, the objective (B.78), after
maximization over λ0, ν, is jointly convex in (α, γ0, θ, τg) and jointly concave
in (β, τh). Because of that we can interchange the order of minimization
and minimization over using Sion’s minimax theorem to get the following.

min
θ,0≤α,γ0,τg

max
0≤β,τh

Dns(α, γ0, θ, τg, β, τh)
Dns(α, γ0, θ, τg, β, τh) = βτg

2
+L(√α2 + a2θ2, V θ − ε0γ0, τg

β
)

− min
λ0≥0,ν

[ α
τh
{β2

2δ
+ λ0 (γ0τh

α
)q + ν2

2
− E(β,(τhθ

α
+ ν
a
) ;λ0)} + ατh

2
] .

(B.79)

B.3.3. Uniform convergence of the auxiliary problem to its scalarized version
We showed that the auxiliary optimization objective converges pointwise to
the function Dns given by (B.79). However, we are interested in the minimax
optimal solution of the auxiliary problem and need to have convergence of
optimal points to the minimax solution of D. What is required for this aim
is (local) uniform convergence of the auxiliary objective to function D. This
can be shown by following similar arguments as in [63, Lemma A.5] that is
essentially based on a result known as “convexity lemma” in the literature (see
e.g. [39, Lemma 7.75]) by which pointwise convergence of convex functions
implies uniform convergence in compact subsets.

B.3.4. Uniqueness of the solution of the AO problem First note that
since the loss `(t) is a convex function and 1

2µ(x − t)2 is jointly convex in(x, t, µ), then 1
2µ(x− t)2 + `(t) is jointly convex in (x, t, µ). Given that partial

minimization preserves convexity, the Moreau envelope e`(x;µ) is jointly
convex in (x,µ). In addition, by using the result of [63, Lemma 4.4] the
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expected Moreau envelope of a convex function is jointly “strictly” convex
(indeed this holds without requiring any strong or strict convexity assumption
on the function itself). An application of this result to our case implies that
L (a, b, µ) is jointly strictly convex in R≥0 × R × R≥0.

In addition, as we argued before the function Dns given by (B.79) is jointly
convex in (α, γ0, θ, τg) and jointly concave in (β, τh). Hence, using strict
convexity of L (a, b, µ), the function Dns is indeed jointly “strictly” convex in(α, γ0, θ, τg) and jointly concave in (β, τh).

As the next step, we note that maxβ,τhD(α, γ0, θ, τg, β, τh) is strictly convex
in (α, γ0, θ, τg). This follows from the fact that if a function f(x,y) is strictly
convex in x, then maxy f(x,y) is also strictly convex in x. Moreover, by using
the result of [63, Lemma C.5] we have that infτg>0 maxβ,τhD(α, γ0, θ, τg, β, τh)
is strictly convex in (α, γ0, θ) and therefore has a unique minimizer (α∗, γ0∗, θ∗).
This concludes the part (a) of the theorem and the given scalar minimax
optimization to characterize the limiting behavior of parameter of interest
α, γ0, θ.

Part (b) of the theorem follows readily from our definition of parameters
α, θ and γ. Part (c) of the theorem also follows from combining Lemma 2.1
with part (b) of the theorem.

This completes the proof of Theorem 6.4.

B.4. Proof of Remark 6.1 We start by establishing an explicit expres-
sion for the weighted Moreau envelope eq,Σ for case of p = q = 2.

Lemma B.6 We have

e2,Σ(x;λ) = λ ∥(Σ + 2λI)−1/2Σ1/2x∥2
`2

The proof of Lemma B.6 is given in Appendix E.9.
Suppose that items (i), (ii) in the statement of the remark are satisfied.

We then prove that Assumption 6 and 7 hold.
Proof [Verification of Assumption 6] To check Assumption 6 for p = q = 2,
we use Lemma B.6 to get

lim
n→∞

e2,I+b0Σ ((I + b0Σ)−1 { c0
2
√
n

Σ1/2P⊥µh − c12 µ̃} ; b1 ∥µ∥2`2)

= lim
n→∞

b1 ∥µ∥2`2 ∥((1 + 2b1 ∥µ∥2`2)I + b0Σ)−1/2 (I + b0Σ)−1/2 ( c0
2
√
n

Σ1/2P⊥µh − c12 µ̃)∥
2

`2

(B.80)

Consider a singular value decomposition Σ = USUT with S = diag(s1, . . . , sd),
and the first column of U being µ̃ and s1 = a2 (Recall that µ̃ is a singular
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value of Σ with eigenvalue a2.) Also let h̃ ∶= UTh ∼ N(0,Id). Continuing
from (B.80) we write

lim
n→∞

e2,I+b0Σ ((I + b0Σ)−1 { c0
2
√
n

Σ1/2P⊥µh − c12 µ̃} ; b1 ∥µ∥2`2)

= lim
n→∞

1

n
b1 ∥µ∥2`2 ∥U ((1 + 2b1 ∥µ∥2`2)I + b0S)−1/2 (I + b0S)−1/2UT (c0

2
Σ1/2P⊥µh − c12 √nµ̃)∥

2

`2

(B.81)

Write U = [µ̃, Ũ] and S̃ = diag(s2, . . . , sd). In addition, define h̃ ∶= ŨTh ∼
N(0,Id−1). We then have

UTΣ1/2P⊥µh = ( 0
˜S1/2h̃
) , UT µ̃ = e1 , lim

n→∞
∥µ∥`2 = σM,2 ,

in probability, with the last limit following from item (i) in the statement
Remark 6.1. Using the above identities in (B.81) we get

lim
n→∞

e2,I+b0Σ ((I + b0Σ)−1 { c0
2
√
n

Σ1/2P⊥µh − c12 µ̃} ; b1 ∥µ∥2`2)
= lim
n→∞

b1σ
2
M,2

n

⎧⎪⎪⎨⎪⎪⎩
c21n

4
⋅ 1(1 + 2b1σ2M,2 + b0a2)(1 + b0a2) +

c20
4

d∑
i=2

sih̃
2
i(1 + b0si)(1 + 2b1σ2M,2 + b0si)

⎫⎪⎪⎬⎪⎪⎭
= b1σ2M,2

⎧⎪⎪⎨⎪⎪⎩
c21

4(1 + b0a2)(1 + 2b1σ2M,2 + b0a2) +
c20
4δ

lim
d→∞

1

d

d∑
i=2

sih̃
2
i(1 + b0si)(1 + 2b1σ2M,2 + b0si)

⎫⎪⎪⎬⎪⎪⎭
(B.82)

Define νi ∶= si(1 + b0si)−1(1 + 2b1σ
2
M,2 + b0si)−1. Then the last sum reads

as 1
d ∑di=2 νih̃2i . Recall that h̃ ∼ N(0,Id−1). Therefore, by applying the Kol-

mogorov’s criterion of SLLN the above limit exists (almost surely and so
in probability as well) provided that 1

d2 ∑di=2 ν2i Var(h̃2i ) < ∞. We note that
V ar(h̃2i ) = 2 and since νi ≥ 0, we have

1

d2

d∑
i=2
ν2i ≤ (1

d

d∑
i=2
νi)2 .

Hence it suffices to show that 1
d ∑di=2 νi < ∞. Now by item (ii) of Remark 6.1,

the empirical distribution of eigenvalues of Σ converges weakly to a distribu-
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tion ρ with Stieltjes transform Sρ(z) ∶= ∫ ρ(t)
z−t dt. We write

si(1 + b0si)(1 + 2b1σ2M,2 + b0si)
= 1

2b0b1σ2M,2

⎧⎪⎪⎨⎪⎪⎩−
1

1 + b0si +
1 + 2b1σ

2
M,2

1 + 2b1σ2M,2 + b0si
⎫⎪⎪⎬⎪⎪⎭

= 1

2b20b1σ
2
M,2

⎧⎪⎪⎪⎨⎪⎪⎪⎩−
1

1
b0
+ si +

1 + 2b1σ
2
M,2

1+2b1σ2
M,2

b0
+ si
⎫⎪⎪⎪⎬⎪⎪⎪⎭(B.83)

Therefore,

lim
d→∞

1

d

d∑
i=2
νi = lim

d→∞

1

d

d∑
i=2

si(1 + b0si)(1 + 2b1σ2M,2 + b0si)
= 1

2b20b1σ
2
M,2

lim
d→∞

1

d

d∑
i=2

⎧⎪⎪⎪⎨⎪⎪⎪⎩−
1

1
b0
+ si +

1 + 2b1σ
2
M,2

1+2b1σ2
M,2

b0
+ si
⎫⎪⎪⎪⎬⎪⎪⎪⎭

= 1

2b20b1σ
2
M,2

⎧⎪⎪⎨⎪⎪⎩Sρ (−
1

b0
) − (1 + 2b1σ

2
M,2)Sρ ⎛⎝−

1 + 2b1σ
2
M,2

b0

⎞⎠
⎫⎪⎪⎬⎪⎪⎭ .(B.84)

It is worth noting that although the sum is over 2 ≤ i ≤ d, the term for
i = 1 is O(1/d) and is negligible in the limit. Therefore, we can include that
in our calculation above. By using Equation (B.84) in (B.82) we get that
Assumption 6 holds with

F(c0, c1; b0, b1) = b1σ
2
M,2c

2
1

4(1 + b0a2)(1 + 2b1σ2M,2 + b0a2)
+ b1σ

2
M,2c

2
0

8δb20b1σ
2
M,2

⎧⎪⎪⎨⎪⎪⎩Sρ (−
1

b0
) − (1 + 2b1σ

2
M,2)Sρ ⎛⎝−

1 + 2b1σ
2
M,2

b0

⎞⎠
⎫⎪⎪⎬⎪⎪⎭ .(B.85)

Proof [Verification of Assumption 7] To check Assumption 7 we use Lemma B.6
and write

lim
n→∞

e2,Σ ( c0√
n

Σ−1/2h − c1µ̃;λ0 ∥µ∥2`2)
= lim
n→∞

λ0 ∥µ∥2`2 ∥(Σ + 2λ0 ∥µ∥2`2 I)−1/2Σ1/2 ( c0√
n

Σ−1/2h − c1µ̃)∥2
`2

= lim
n→∞

λ0 ∥µ∥2`2 ∥(Σ + 2λ0 ∥µ∥2`2 I)−1/2 ( c0√nh − c1aµ̃)∥
2

`2

(B.86)
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Consider a singular value decomposition Σ = USUT with S = diag(s1, . . . , sd),
and the first column of U being µ̃ and s1 = a2 (Recall that µ̃ is a singular
value of Σ with eigenvalue a2.) Also let h̃ ∶= UTh ∼ N(0,Id). Continuing
from (B.86) we write

lim
n→∞

e2,Σ ( c0√
n

Σ−1/2h − c1µ̃;λ0 ∥µ∥2`2)
= lim
n→∞

1

n
λ0 ∥µ∥2`2 ∥U(S + 2λ0 ∥µ∥2`2 I)−1/2 (c0h̃ − c1√nae1)∥2`2

= lim
n→∞

λ0σ
2
M,2

n

⎧⎪⎪⎨⎪⎪⎩
(c0h̃1 − c1√na)2
a2 + 2λ0σ2M,2

+ d∑
i=2

c20h̃
2
i

si + 2λ0σ2M,2

⎫⎪⎪⎬⎪⎪⎭
= λ0σ2M,2

⎧⎪⎪⎨⎪⎪⎩
c21a

2

a2 + 2λ0σ2M,2

+ 1

δ
lim
d→∞

1

d

d∑
i=2

c20h̃
2
i

si + 2λ0σ2M,2

⎫⎪⎪⎬⎪⎪⎭ .(B.87)

By applying the Kolmogorov’s criterion of SLLN the above limit exists (almost
surely and so in probability as well) provided that 1

d2 ∑di=2 1
(si+2λ0σ2

M,2)2
< ∞.

Note that since λ0, si ≥ 0, we have

1

d2

d∑
i=2

1(si + 2λ0σ2M,2)2 ≤
1

d2

d∑
i=2

1

4λ20σ
4
M,2

→ 0 .

By using the LLN we obtain that the summation in (B.87) converges (almost
surely) to its expectation. Now recalling item (ii) in Remark 6.1, we know
that the empirical distribution of eigenvalues of Σ converges weakly to a
distribution ρ with Stieltjes transform Sρ(z) ∶= ∫ ρ(t)

z−t dt, and therefore we
have

E(c0, c1;λ0) ∶= lim
n→∞

e2,Σ ( c0√
n

Σ−1/2h − c1µ̃;λ0 ∥µ∥2`2)
= λ0σ2M,2

⎧⎪⎪⎨⎪⎪⎩
c21a

2

a2 + 2λ0σ2M,2

− c20
δ
Sρ(−2λ0σ

2
M,2)⎫⎪⎪⎬⎪⎪⎭ .(B.88)

APPENDIX C: PROOFS FOR ISOTROPIC GAUSSIAN MODEL
(SECTION 4)

This section is devoted to the proof of our theorems for the isotropic
Gaussian model. We discuss how these theorems can be derived as special cases
of our results for the anisotropic model, after some algebraic simplifications.
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The claim of Theorem 4.1 on the separability threshold is an immediate
corollary of Theorem 6.1, with Σ = Ip×p and a = 1. We next move to the two
other theorems on precise characterization of standard and robust accuracy
in the separable and non-separable regimes.

C.1. Proof of Theorem 4.3 Suppose that Assumption 4 in the state-
ment of Theorem 4.3 holds. We first show that this assumption implies
Assumption 6, required by Theorem 6.3, in case of Σ = I and then show how
Theorem 4.3 can be derived as a special case of Theorem 6.3.

To prove Assumption 6(b) for isotropic case, we use the following two
properties of the weighted Moreau envelop that holds for all q ≥ 0:

eq,αI(x;λ) = αeq,I (x, λ
α
) ,(C.1)

1

b2
eq,I (bx;

λ

bq−2
) = eq,I(x;λ) .(C.2)

Combining the above two identities we get

eq,αI(α−1x;λ) = αeq,I (x
α

;
λ

α
) = α

b2
eq,I (bx

α
;

λ

αbq−2
) .

Using the above identity with α = 1 + b0 and b = α√d we have

eq,(1+b0)I ((1 + b0)−1 { c0
2
√
n
P⊥µh − c12 µ̃} ; b1 ∥µ∥q`p)

= 1(1 + b0)deq,I
⎛⎝
√
dc0

2
√
n
P⊥µh − c1

√
d

2
µ̃;

b1 ∥µ∥q`p(1 + b0)q−1d q2−1
⎞⎠(C.3)

We next proceed to take the limit of the above expression as n → ∞. By
Assumption 4 we have

∥µ∥q`p → σqM,pd
q
2
−1 , ∥µ∥`2 → σM,2 ,(C.4)

with high probability. Also by Assumption 1, we have n/d→ δ. Therefore,

lim
n→∞

eq,(1+b0)I ((1 + b0)−1 { c0
2
√
n
P⊥µh − c12 µ̃} ; b1 ∥µ∥q`p)

= lim
n→∞

1(1 + b0)deq,I
⎛⎝
√
dc0

2
√
n
P⊥µh − c1

√
d

2
µ̃;

b1 ∥µ∥q`p(1 + b0)q−1d q2−1
⎞⎠

= lim
n→∞

1(1 + b0)deq,I
⎛⎝
√
dc0

2
√
n
P⊥µh − c12

√
dµ∥µ∥`2 ;

b1 ∥µ∥q`p(1 + b0)q−1d q2−1
⎞⎠

= lim
n→∞

1(1 + b0)deq,I ( c0

2
√
δ
P⊥µh − c12

√
dµ

σM,2
; b1(1 + b0)1−qσqM,p)(C.5)
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We next note that by definition of the weighted Moreau envelop we have
eq,I(x;λ) = ∑di=1 Jq(xi;λ). Also, by Assumption 7 the empirical distribution
of entries of

√
dµ converges weakly to distribution PM . Therefore, continuing

from (C.5) we can write

lim
n→∞

eq,(1+b0)I ((1 + b0)−1 { c0
2
√
n
P⊥µh − c12 µ̃} ; b1 ∥µ∥q`p)

(a)= lim
n→∞

eq,(1+b0)I ((1 + b0)−1 { c0
2
√
n
h − c1

2
µ̃} ; b1 ∥µ∥q`p)

= lim
n→∞

1(1 + b0)d
d∑
i=1
Jq ( c0hi

2
√
δ
− c1

2

√
dµi

σM,2
; b1(1 + b0)1−qσqM,p)

(b)= 1

1 + b0 E [Jq ( c0h
2
√
δ
− c1M

2σM,2
; b1(1 + b0)1−qσqM,p)] = (1 + b0)−1J (c02 , c12 ; b1(1 + b0)1−q) ,

(C.6)

where the expectation in (b) is taken with respect to the independent random
variables h ∼ N(0,1) and M ∼ PM . The last equality follows by definition of
function J given by (4.7) and by deploying Assumption 4.

Here, (a) follows by writing

c0

2
√
δ
P⊥µh − c1

√
dµ

2σM,2
= c0

2
√
δ
h − ⎛⎝ c1

√
d

2σM,2
+ c0

2
√
δ ∥µ∥`2 h

T µ̃
⎞⎠µ

and noting that µ̃Th ∼ N(0,1) since ∥µ̃∥`2 = 1, and ∥µ∥`2 → σM,2 which
implies that the last term in the right-hand side is dominated by the second
term therein that is of order

√
d.

The chain of equalities in (C.6) shows that Assumption 6(a) is satisfied by
F (c0, c1; b0, b1) = J ( c02 , c12 ; b1(1 + b0)1−q) for the isotropic model.

Assumption 6(b) also clearly holds for isotropic model (Σ = I) with
Sρ(z) = 1

z−1 .
Now that Assumption 6 holds we can use the result of Theorem 6.3 for the

special case of Σ = I. As we showed above for this case, we have the following
identities

F (c0, c1; b0, b1) = J (c0
2
,
c1
2

; b1(1 + b0)1−q) , Sρ(z) = 1

z − 1
.(C.7)

Now by using these identities in the AO problem (6.2) and after some
simple algebraic manipulation we obtain the AO problem (4.8).
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C.2. Proof of Theorem 4.5 We prove Theorem 4.5 as a special case of
Theorem 6.4. We first show that in the isotropic case, Assumption 4 implies
Assumption 7, required by Theorem 6.4.

Note that by Assumption 4 we have

∥µ∥q`p → σqM,pd
q
2
−1 , ∥µ∥`2 → σM,2 ,(C.8)

with high probability.
We then write

lim
n→∞

eq,I ( c0√
n
h − c1µ̃;λ0 ∥µ∥q`p) (a)= lim

n→∞

1

d
eq,I
⎛⎝c0
√
d√
n
h − c1√dµ̃;

λ0 ∥µ∥q`p
d
q
2
−1
⎞⎠

= lim
n→∞

1

d
eq,I
⎛⎝c0
√
d√
n
h − c1

√
dµ∥µ∥`2 ;

λ0 ∥µ∥q`p
d
q
2
−1
⎞⎠

(b)= lim
n→∞

1

d
eq,I ( c0√

δ
h − c1

√
dµ

σM,2
;λ0σ

q
M,p)

(c)= lim
n→∞

1

d

d∑
i=1
Jq (c0hi√

δ
− c1
√
dµi

σM,2
;λ0σ

q
M,p)

(d)= E [Jq ( c0√
δ
h − c1 M

σM,2
;λ0σ

q
M,p)]

= J (c0, c1;λ0) .(C.9)

Here (a) follows from (C.2) with b = √d; (b) follows from (C.8); (c) holds
due to the identity eq,I(x;λ) = ∑di=1 Jq(xi;λ), which follows readily from the
definition of weighted Moreau envelop eq,I and the function Jq given by (4.5).
Finally, (d) holds due to Assumption 4. The series of equalities (C.9) implies
that Assumption 7 holds in isotropic case with

E(c0, c1;λ0) = J (c0, c1;λ0) .(C.10)

Having Assumption 6 in place, we can specialize the result of Theorem 6.4
to isotropic model. Substituting for E(c0, c1;λ0) from (C.10) in the AO
problem (6.4) yields the AO problem (4.16).

APPENDIX D: PROOFS FOR SPECIAL CASES OF P (SECTION 5)

D.1. Proof of Corollary 5.1 Part (a) is already proved in Example 2,
cf. (4.4).
Proof [Part (b)] We start by an explicit characterization of J function for
case of p = q = 2.
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Lemma D.1 Recall function J (c0, c1;λ0) given by

J (c0, c1;λ0) = E [Jq ( c0√
δ
h − c1 M

σM,2
;λ0σ

q
M,p)] ,(D.1)

Then the following identity holds for case of p = q = 2:

J (c0, c1;λ0) = λ

α2 + 2λα
∥x∥2`2

Proof It is straightforward to see that

J2(x;λ) = λ

1 + 2λ
x2 .

Therefore,

J (c0, c1;λ0) = λ0σ
2
M,2

1 + 2λ0σ2M,2

E
⎡⎢⎢⎢⎢⎣(

c0√
δ
h − c1 M

σM,2
)2⎤⎥⎥⎥⎥⎦ =

λ0σ
2
M,2

1 + 2λ0σ2M,2

(c20
δ
+ c21) .

Using Lemma D.1 in AO problem (4.8) for q = 2, we have

Ds(α, γ0, θ, β, λ0, η, η̃) = 2(1 + η

2α
)−1J (β

2
,
η̃

2
;
λ0
2γ0
(1 + η

2α
)−1)

− (β2
δ
+ η̃2) 1

4(1 + η
2α) − λ0γ0 −

ηα

2
− η̃θ

+ β
¿ÁÁÁÀE

⎡⎢⎢⎢⎢⎣ ((1 + ε0γ0 − θσM,2) + αg)2+
⎤⎥⎥⎥⎥⎦

= λ0
4γ0
σ2M,2(1 + η

2α)2 + (1 + η
2α)λ0γ0 σ2M,2

(β2
δ
+ η̃2)

− (β2
δ
+ η̃2) 1

4(1 + η
2α) − λ0γ0 −

ηα

2
− η̃θ

+ β
¿ÁÁÁÀE

⎡⎢⎢⎢⎢⎣ ((1 + ε0γ0 − θσM,2) + αg)2+
⎤⎥⎥⎥⎥⎦

= −(β2
δ
+ η̃2) 1

4(1 + η
2α + λ0

γ0
σ2M,2) − λ0γ0 −

ηα

2
− η̃θ

+ β
¿ÁÁÁÀE

⎡⎢⎢⎢⎢⎣ ((1 + ε0γ0 − θσM,2) + αg)2+
⎤⎥⎥⎥⎥⎦ .(D.2)
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Setting ∂Ds

∂β to zero we conclude that

β̂ = 2δ (1 + η

2α
+ λ0
γ0
σ2M,2)

¿ÁÁÁÀE
⎡⎢⎢⎢⎢⎣ ((1 + ε0γ0 − θσM,2) + αg)2+

⎤⎥⎥⎥⎥⎦ .
Thus the AO problem reduces to

min
α,γ0≥0,θ

max
λ0,η≥0,η̃

−η̃2 1

4(1 + η
2α + λ0

γ0
σ2M,2) − λ0γ0 −

ηα

2
− η̃θ

+ δ (1 + η

2α
+ λ0
γ0
σ2M,2)E

⎡⎢⎢⎢⎢⎣ ((1 + ε0γ0 − θσM,2) + αg)2+
⎤⎥⎥⎥⎥⎦ .(D.3)

Setting the derivative with respect to η̃ to zero we arrive at

̂̃η = −2θ (1 + η

2α
+ λ0
γ0
σ2M,2) ,

which further simplifies the AO problem to

min
α,γ0≥0,θ

max
λ0,η≥0

−λ0γ0 − ηα
2
+ θ2 (1 + η

2α
+ λ0
γ0
σ2M,2)

+ δ (1 + η

2α
+ λ0
γ0
σ2M,2)E

⎡⎢⎢⎢⎢⎣ ((1 + ε0γ0 − θσM,2) + αg)2+
⎤⎥⎥⎥⎥⎦ .(D.4)

Note that if α2 < θ2 + δ E
⎡⎢⎢⎢⎢⎣ ((1 + ε0γ0 − θσM,2) + αg)2+

⎤⎥⎥⎥⎥⎦ then the maximum

over η is +∞. Furthermore, when α2 ≥ θ2 + δ E
⎡⎢⎢⎢⎢⎣ ((1 + ε0γ0 − θσM,2) + αg)2+

⎤⎥⎥⎥⎥⎦
then the optimal η = 0. Thus the above AO is equivalent to

min
α,γ0≥0,θ

max
λ0≥0

−λ0γ0 + θ2 (1 + λ0
γ0
σ2M,2)

+ δ (1 + λ0
γ0
σ2M,2)E

⎡⎢⎢⎢⎢⎣ ((1 + ε0γ0 − θσM,2) + αg)2+
⎤⎥⎥⎥⎥⎦

subject to α2 ≥ θ2 + δ E
⎡⎢⎢⎢⎢⎣ ((1 + ε0γ0 − θσM,2) + αg)2+

⎤⎥⎥⎥⎥⎦(D.5)
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Using a similar argument for optimization over λ0, it is straightforward to
see that the above optimization is equivalent to

min
α,γ0≥0,θ

θ2 + δ E
⎡⎢⎢⎢⎢⎣ ((1 + ε0γ0 − θσM,2) + αg)2+

⎤⎥⎥⎥⎥⎦
subject to α2 ≥ θ2 + δ E

⎡⎢⎢⎢⎢⎣ ((1 + ε0γ0 − θσM,2) + αg)2+
⎤⎥⎥⎥⎥⎦ ,

and
γ20
σ2M,2

≥ θ2 + δ E
⎡⎢⎢⎢⎢⎣ ((1 + ε0γ0 − θσM,2) + αg)2+

⎤⎥⎥⎥⎥⎦ .(D.6)

Since the objective function is increasing in α and γ, then the optimal α and
γ should make the inequality constraints equality and therefore γ0 = ασM,2.
This brings us to the following problem:

min
α≥0,u

α2

subject to α2 ≥ θ2 + δ E [(1 + (ε0α − θ)σM,2 + αg)2+] .(D.7)

By change of variable u = θ
α we have

min
α≥0,u

α2

subject to 1 ≥ u2 + δ E [( 1

α
+ (ε0 − u)σM,2 + g)2

+
](D.8)

By another change of variable α̃ = ( 1α + ε0σM,2)−1 we have

min
1

ε0σM,2
≥α̃≥0,u

( 1

α̃
− ε0σM,2)−2

subject to 1 ≥ u2 + δ E [( 1

α̃
− uσM,2 + g)2

+
](D.9)

Since objective is increasing in α̃ this is equivalent to

min
1

ε0σM,2
≥α̃≥0,u

α̃2

subject to 1 ≥ u2 + δ E [( 1

α̃
− uσM,2 + g)2

+
](D.10)

Note that we can drop the constraint 1
ε0σM,2

≥ α̃ because for 1
ε0σM,2

= α̃ one
can already find u that satisfies the inequality constraint. As such the optimal
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α̃ should be less than 1
ε0σM,2

. To see why, by letting u = θ√
1+θ2

with θ the
minimizer in separability condition (4.4) we have

u2 + δ E [( 1

α̃
− uσM,2 + g)2

+
] = θ2

1 + θ2 + δ E
⎡⎢⎢⎢⎢⎣((ε0 −

θ√
1 + θ2 )σM,2 + g)2

+

⎤⎥⎥⎥⎥⎦
= θ2

1 + θ2 + δ

1 + θ2 E [((√1 + θ2ε0 − θ)σM,2 +√1 + θ2g)2
+
]

≤ θ2

1 + θ2 + 1

1 + θ2 = 1 .

This brings us to the following AO problem:

min
α̃≥0,u

α̃2

subject to 1 ≥ u2 + δ E [( 1

α̃
− uσM,2 + g)2

+
](D.11)

Denoting by α̃∗ the solution of the above problem, it is clear that by our
change of variable we have

α∗ = (α̃−1∗ − ε0σM,2)−1 , θ∗ = u∗α∗, γ0∗ = α∗σM,2 .(D.12)

This concludes the proof of part (b).

Proof [Part (c)] We focus on part of the AO problem (4.16) that involves
the variables λ0, ν, τh and specialize it to the case of q = 2:

min
λ0≥0,ν

[ α
τh
{β2

2δ
+ λ0 (γ0τh

α
)2 + ν2

2
− J (β,(τhθ

α
+ ν) ;λ0)} + ατh

2
] .

We next plug in for J (c0, c1;λ0) from Lemma D.1 which results in

min
λ0≥0,ν

⎡⎢⎢⎢⎢⎣
α

τh

⎧⎪⎪⎨⎪⎪⎩
β2

2δ
+ λ0 (γ0τh

α
)2 + ν2

2
− λ0σ

2
M,2

1 + 2λ0σ2M,2

(β2
δ
+ (τhθ

α
+ ν)2)⎫⎪⎪⎬⎪⎪⎭ +

ατh
2

⎤⎥⎥⎥⎥⎦ .
Writing the first order optimality for λ0, ν, τh we get a set of equations that
admits a solution only if γ0 = σM,2

√
α2 + θ2. Then,

ν = 2λ0σ
2
M,2

τhθ

α
, τh = 1

1 + 2λ0σ2M,2

β√
δ
.

In this case, the value of λ0 does not matter and the above part of the AO
simplifies to αβ/√δ.
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This simplifies the AO problem (4.16) to

max
0≤β

min
θ,0≤α,τg

βτg

2
+L(√α2 + θ2, σM,2θ − ε0√α2 + θ2, τg

β
) − αβ√

δ
.(D.13)

We next further simplifies the AO problem by solving for τg. We use the
shorthand L′3(a, b;µ) = ∂L

∂µL(a, b;µ) to denote the derivative of the expected
Moreau envelop with respect to its third argument. Writing the first order
optimality condition for β and τg in optimization (D.13), we get

β

2
+ 1

β
L′3 (√α2 + θ2, σM,2θ − ε0√α2 + θ2, τg

β
) = 0 ,

τg

2
− τg
β2
L′3 (√α2 + θ2, σM,2θ − ε0√α2 + θ2, τg

β
) − α√

δ
= 0 .(D.14)

Combining the above two equations, we obtain τg = α√
δ
. Substituting for τg

in (D.13), the AO problem for case of q = 2 simplifies to

max
0≤β

min
θ,0≤α

L(√α2 + θ2, σM,2θ − ε0√α2 + θ2, α

β
√
δ
) − αβ

2
√
δ
.(D.15)

This completes the proof of part (c).

D.2. Proof of Theorem 5.2 Proof [Part (a)] The first part of the the-
orem is on precise characterization of the separability threshold. We use
the result of Theorem 4.1 that holds for any choice of (p, q), in particular(p = 1, q = ∞), and relates the separability threshold to the spherical width.
What is remaining to prove is the characterization of the spherical width given
by (5.9). To this end, we follow a similar argument as in Lemma 4.2. However,
since ∥⋅∥q`q is not well defined for q = ∞ (recall that `q is the dual norm of
`p and p = 1), it requires a slightly different analysis. Specifically, in the La-
grangian we write the constraint ∥u∥`∞ ≤ 1

ε0∥µ∥`∞
as the term ∥u∥`∞ − 1

ε0∥µ∥`p
,

as compared to the case of finite q where we raised the both sides to power q
to use the separability property of function ∥⋅∥q`q . Then, by following a similar
derivation as in (E.4), we obtain

min
z∈S(α,θ,ε0,µ)

− 1√
n
hTz

= sup
λ,η≥0,ν

ηJ∞ ( h

η
√
n
− (ν

η
− θ) µ̃;

λ

η
) − ν2

2η
− 1

2ηn
∥h∥2`2 + ν

η
√
n
µ̃Th − η

2
α2 − λ

ε0 ∥µ∥`1 ,
(D.16)
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where J∞(x;λ) is defined as

J∞(x;λ) =min
v

1

2
∥x − v∥2`2 + λ ∥v∥`∞ .(D.17)

Our next step is scalarization of the optimization (D.16) in the large sample
limit (as n→∞), and a challenge along this way is that the function J(x;λ)
is not a separable function over the entries of x. To cope with this problem,
we propose an alternative representation of this function that involves an
additional variable t0.

We write

J∞(x;λ) =min
v

1

2
∥x − v∥2`2 + λ ∥v∥`∞

= min
v,t≥0

1

2
∥x − v∥2`2 + λt subject to ∥v∥`∞ ≤ t

=min
t≥0

1

2
∥ST(x; t)∥2`2 + λt .(D.18)

Let t0 = ∥µ∥`1 t and λ0 = λ
∥µ∥`1

. Similar to the trick of ‘artificial’ bounded-

ness that we used in applying the CGMT framework (e.g., cf. explanation
after (B.16) and Appendix E.3), we continue by the ansatz that the optimal
value of λ0 and t0 remain bounded as n → ∞. After we take the limit of
the Lagrangian to obtain a scalar auxiliary optimization (AO) problem, this
ansatz is verified by the boundedness of solutions of the AO problem.

For x = c0√
n
h − c1µ̃ we have

lim
n→∞

1

2
∥ST(x; t)∥2`2 + λt

= lim
n→∞

1

2

d∑
i=1

ST(xi; t0∥µ∥`1 )
2 + λ0t0

= lim
n→∞

1

2

d∑
i=1

ST( c0√
n
hi − c1µ̃i; t0∥µ∥`1 )

2 + λ0t0
(a)= lim

n→∞

1

2d

d∑
i=1

ST( c0√
δ
hi − c1

√
dµi

σM,2
;
t0
σM,1

)2 + λ0t0
= 1

2
E
⎡⎢⎢⎢⎢⎣ST(

c0√
δ
h − c1 M

σM,2
;
t0
σM,1

)2⎤⎥⎥⎥⎥⎦ + λ0t0 ,= f(c0, c1; t0) + λ0t0 ,(D.19)

with high probability. In (a) we used the fact that as n → ∞, we have∥µ∥`1 →√dσM,1 along with the identity 1
a2
ST(ax;aλ) = ST(x;λ).
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Note that this is a pointwise convergence. However, the left hand side is
a convex function of t and it’s minimizer satisfies t ≤ ∥x∥∞ ≤ c0 + c1 and so
belongs to a compact set. Therefore, by applying the convexity lemma, see
e.g, [39, Lemma 7.75], [63, Lemma B1], we can change the order of limit and
minimization, and get that for x = c0√

n
h − c1µ̃ ,

lim
n→∞

J∞(x;λ)
= lim
n→∞

min
t≥0
{1

2
∥ST(x; t)∥2`2 + λt}

=min
t0≥0
{f(c0, c1; t0) + λ0t0} ,(D.20)

in probability. In addition, as n→∞ we have

1

n
∥h∥2`2 → 1

δ
,

1√
n
µ̃Th→ 0 , ∥µ∥`1 → σM,1

√
d ,(D.21)

with high probability.
Using the above limits, we see that the objective function (D.16) converges

pointwise to the following function:

min
t0≥0

η {f (1

η
,
ν

η
− θ; t0) + λ0

η
t0} − ν2

2η
− 1

2ηδ
− η

2
α2 − λ0

ε0
(D.22)

Note that (E.4) is the dual optimization and hence is a concave problem. We
apply the convexity lemma [63, Lemma B.2] to conclude that the objective
value in (E.4) also converges to the supremum of function (E.8) over λ0, η ≥
0, ν. Therefore the solution of optimization (D.16) converges to the solution
of the following optimization problem:

sup
λ0,η≥0,ν

min
t0≥0

ηf (1

η
,
ν

η
− θ; t0) + λ0t0 − ν2

2η
− 1

2ηδ
− η

2
α2 − λ0

ε0
(D.23)

Note that the above objective is linear in λ0. Therefore the optimal t∗0
should satisfy t∗0 ≤ 1

ε0
. Otherwise λ∗0 = ∞ which makes the above max-min

value unbounded, and this is a contradiction because the above problem
involves minimization over t0 and it is easy to see that by choosing t0 = 0 the
optimal objective value over {λ0, η ≥ 0, ν} becomes zero.

Therefore, we can assume t0 ≤ 1
ε0

which yields λ∗0(t0− 1
ε0
) = 0. This simplifies

the problem (D.23) to

sup
η≥0,ν

min
0≤t0≤ 1

ε0

ηf (1

η
,
ν

η
− θ; t0) − ν2

2η
− 1

2ηδ
− η

2
α2(D.24)
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Since f(c0, c1; t) is decreasing in t, the optimal value t∗0 is given by t∗0 = 1
ε0

and the problem is further simplified and along with (D.16) implies that

min
z∈S(α,θ,ε0,µ)

− 1√
n
hTz

= sup
η≥0,ν

ηf (1

η
,
ν

η
− θ; 1

ε0
) − ν2

2η
− 1

2ηδ
− η

2
α2(D.25)

Now similar to the proof of Lemma 4.2 we use Equation (E.3) to write

ω(α, θ, ε0)= lim
n→∞

ωs (S(α, θ, ε0,µ))
= − sup

η≥0,ν

√
δ {ηf (1

η
,
ν

η
− θ; 1

ε0
) − ν2

2η
− 1

2ηδ
− η

2
α2}

= min
η≥0,ν

√
δ {ν2

2η
+ 1

2ηδ
+ η

2
α2 − ηf(1

η
,
ν

η
− θ; 1

ε0
)} .(D.26)

This completes the proof.

Proof [Part (b)] The proof of this parts proceeds along the same lines of
Theorem 4.3 for the special case of p = 1, q = ∞. However, it requires a slightly
different treatment as in part (a) because the function ∥⋅∥q`q and therefore Jq
given by (4.5) are not well defined in this case.

Here we only highlight the modifications that are needed to the proof of
Theorem 4.3 to apply it for case of q = ∞.

We proceed the exact same derivation that yields (B.22), repeated here
for convenience:

min
θ,θ,γ≥0,α≥0

max
β,λ,η≥0,η̃

∥θ∥2`2 + 2λ(∥θ∥`q − γ) + β√
n
hTP⊥µΣ1/2θ

+ β
¿ÁÁÁÀE

⎡⎢⎢⎢⎢⎣ ((1 + εγ − θ ∥µ∥`2) + αg)
2

+

⎤⎥⎥⎥⎥⎦ + η (∥Σ
1
2θ∥

`2
− α) + η̃ (µ̃Tθ − θ)

(D.27)

We substitute for ∥Σ 1
2θ∥

`2
using the identity ∥Σ 1

2θ∥
`2
=minτ≥0

∥Σ
1
2 θ∥

2

`2

2τ + τ
2
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to get

min
θ,θ,γ≥0,α≥0

max
β,λ,η≥0,η̃

min
τ≥0

∥θ∥2`2 + 2λ ∥θ∥`∞ − 2λγ + β√
n
hTP⊥µΣ1/2θ

+ β
¿ÁÁÁÀE

⎡⎢⎢⎢⎢⎣ ((1 + εγ − θ ∥µ∥`2) + αg)
2

+

⎤⎥⎥⎥⎥⎦
+ η

2τ
∥Σ 1

2θ∥2
`2
+ ητ

2
− ηα + η̃ (µ̃Tθ − θ) .(D.28)

Specializing it to Σ = I and q = ∞, the optimization over θ takes the form

min
θ

(1 + η

2τ
)∥θ∥2`2 + 2λ ∥θ∥`∞ + β√

n
hTP⊥µθ + η̃µ̃Tθ .(D.29)

Note that

β√
n
P⊥µh − η̃µ∥µ∥`2 =

β√
n
h − η̃µ∥µ∥`2 −

β√
n
Pµh

= β√
n
h − ( η̃∥µ∥`2 +

β√
n ∥µ∥`2 hT µ̃)µ ,

where µ̃Th ∼ N(0, 1) since ∥µ̃∥`2 = 1, and ∥µ∥`2 → σM,2 which implies that the
last term in the right-hand side is dominated by the second term. Therefore
in the asymptotic regime n→∞, we can equivalently work replace P⊥µh by h
and by using the symmetry of the Gaussian distribution work with

min
θ

(1 + η

2τ
)∥θ∥2`2 + 2λ ∥θ∥`∞ − β√

n
hTθ + η̃µ̃Tθ .(D.30)

We let x = β√
n
h − η̃µ̃ and consider the change of variable u ∶= 2(1 + η

2τ )θ
and write

min
θ

(1 + η

2τ
)∥θ∥2`2 + 2λ ∥θ∥`∞ − β√

n
hTθ + η̃µ̃Tθ

=min
u

1

2
(1 + η

2τ
)−1 {1

2
∥u∥2`2 + 2λ ∥u∥`∞ −xTu}

=min
u

1

2
(1 + η

2τ
)−1 ⎧⎪⎪⎨⎪⎪⎩

1

2
∥u −x∥2`2 + 2λ ∥u∥`∞ − ∥x∥

2
`2

2

⎫⎪⎪⎬⎪⎪⎭
= 1

2
(1 + η

2τ
)−1 J∞(x; 2λ) − 1

4
(1 + η

2τ
)−1 ∥x∥2`2(D.31)
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Using (D.31) and substituting for x in (D.27), our AO problem becomes

min
θ,γ≥0,α≥0

max
β,λ,η≥0,η̃

min
τ≥0

1

2
(1 + η

2τ
)−1 J∞ ( β√

n
h − η̃µ̃; 2λ) − 1

4
(1 + η

2τ
)−1 ∥ β√

n
h − η̃µ̃∥2

`2

− 2λγ + β
¿ÁÁÁÀE

⎡⎢⎢⎢⎢⎣ ((1 + εγ − θ ∥µ∥`2) + αg)
2

+

⎤⎥⎥⎥⎥⎦ +
ητ

2
− ηα − η̃θ(D.32)

Our next step is to scalarize the AO problem by taking the asymptotic limit
of the objective.

We have

lim
n→∞
∥ β√

n
h − η̃µ̃∥2

`2

= β2
δ
+ η̃2 , lim

n→∞
∥µ∥`2 = σM,2 .

in probability. Also by using (D.20) we have

lim
n→∞

J∞ ( β√
n
h − η̃µ̃; 2λ) =min

t0≥0
{f(β, η̃; t0) + 2λ0t0} ,

with λ0 = λ
∥µ∥`1

. Using these limits in the AO problem (D.32) we obtain the
following scalar AO problem

min
θ,γ≥0,α≥0

max
β,λ,η≥0,η̃

min
τ,t0≥0

1

2
(1 + η

2τ
)−1 (f(β, η̃; t0) + 2λ0t0) − 1

4
(1 + η

2τ
)−1 (β2

δ
+ η̃2)

− 2λ0γ0 + β
¿ÁÁÁÀE

⎡⎢⎢⎢⎢⎣ ((1 + ε0γ0 − θσM,2) + αg)2+
⎤⎥⎥⎥⎥⎦ +

ητ

2
− ηα − η̃θ ,(D.33)

where we recall our notation ε0 = ε
∥µ∥`1

and γ0 = γ ∥µ∥`1 .
Now note that objective function (D.33) is linear in λ0 and therefore the

optimal t∗0 should satisfy t∗0 ≤ 2γ0 (1 + η
2τ
), otherwise λ∗0 = ∞ which makes

the above max-min value unbounded. As such, we also have λ∗0 = 0 which
further simplifies the problem as follows:

min
θ,γ≥0,α≥0

max
β,η≥0,η̃

min
0≤τ,0≤t0≤2γ0(1+ η

2τ
)

1

2
(1 + η

2τ
)−1 f(β, η̃; t0) − 1

4
(1 + η

2τ
)−1 (β2

δ
+ η̃2)

+ β
¿ÁÁÁÀE

⎡⎢⎢⎢⎢⎣ ((1 + ε0γ0 − θσM,2) + αg)2+
⎤⎥⎥⎥⎥⎦ +

ητ

2
− ηα − η̃θ ,(D.34)
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Since f(c0, c1; t0) is decreasing in t0, the optimal value of t0 is given by
t∗0 = 2γ0(1 + η

2τ ) which results in the following AO problem:

min
θ,γ≥0,α≥0

max
β,η≥0,η̃

min
τ≥0

1

2
(1 + η

2τ
)−1 f (β, η̃; 2γ0(1 + η

2τ
)) − 1

4
(1 + η

2τ
)−1 (β2

δ
+ η̃2)

+ β
¿ÁÁÁÀE

⎡⎢⎢⎢⎢⎣ ((1 + ε0γ0 − θσM,2) + αg)2+
⎤⎥⎥⎥⎥⎦ +

ητ

2
− ηα − η̃θ .(D.35)

Our final step of simplification is to solve for τ . To this end, we define the
function

R(η
τ
) ∶= 1

2
(1 + η

2τ
)−1 f (β, η̃; 2γ0(1 + η

2τ
)) − 1

4
(1 + η

2τ
)−1 (β2

δ
+ η̃2) ,

where we make the dependence on η
τ explicit in the notation. Setting derivative

of the AO objective with respect to η, to zero we obtain

1

τ
R′ (η

τ
) + τ

2
− α = 0 .

Setting derivative with respect to τ to zero gives

− η
τ2
R′ (η

τ
) + η

2
= 0 .

Combining the above two optimality condition implies that η(1 − α
τ ) = 0. So

either α = τ or η = 0. If η = 0, then it is clear that the terms involving τ in the
AO problem would vanish and therefore the value of τ does not matter. So
in this case, we can as well assume τ = α. Substituting for τ the AO problem
further simplifies to

min
θ,γ≥0,α≥0

max
β,η≥0,η̃

1

2
(1 + η

2α
)−1 f (β, η̃; 2γ0(1 + η

2α
)) − 1

4
(1 + η

2α
)−1 (β2

δ
+ η̃2)

+ β
¿ÁÁÁÀE

⎡⎢⎢⎢⎢⎣ ((1 + ε0γ0 − θσM,2) + αg)2+
⎤⎥⎥⎥⎥⎦ −

ητ

2
− η̃θ .(D.36)

This concludes the proof of part (b).

Proof [Part (c)] The proof of part (c) follows along the same lines of the
proof of Theorem 6.4 (and Theorem 4.5 for isotropic case). But similar to
previous parts, we need to make slight modifications to the proof.
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Note that in our derivation of the AO problem (6.9), we replaced the
constraint ∥u∥`q ≤ τh

α
γ0
∥µ∥`p

with the equivalent constraint ∥u∥q`q ≤ ( τhα γ0
∥µ∥`p

)q,
see (E.11) for more details. The benefit of this alternative representation is
that it results in the Moreau-envelope eq,Σ of the ∥⋅∥q`q function, see (E.15),
which is separable over the samples. As a result, in the isotropic case the
expected Moreau envelope reduces to the expected of the one-dimensional
function Jq, given by (4.5), (C.9).

However, for q = ∞ the function ∥⋅∥q`q is not well-defined and requires a
slightly different treatment. In this case we stay with the original constraint∥u∥`q ≤ τh

α
γ0
∥µ∥`p

. Proceeding along the same derivations of AO problem (4.16),
it is straightforward to see that this results in the following AO problem for
the non-separable regime:

max
0≤β,τh

min
θ,0≤α,γ0,τg

Dns(α, γ0, θ, τg, β, τh)
Dns(α, γ0, θ, τg, β, τh) = βτg

2
+L(√α2 + θ2, σM,2θ − ε0γ0, τg

β
)

− min
λ0≥0,ν

[ α
τh
{β2

2δ
+ λ0γ0τh

α
+ ν2

2
− Ẽ(β, τhθ

α
+ ν;λ0)} + ατh

2
]

(D.37)

with

Ẽ(c0, c1;λ0) ∶= lim
n→∞

J∞ ( c0√
n
h − c1µ̃;λ0 ∥µ∥`1) ,(D.38)

and J∞(x;λ) given by (D.17). Using (D.20), we have

Ẽ(c0, c1;λ0) =min
t0≥0
{f(c0, c1; t0) + λ0t0} ,(D.39)

Substituting for Ẽ function in the AO problem (D.37) results in

max
0≤β,τh

min
θ,0≤α,γ0,τg

Dns(α, γ0, θ, τg, β, τh)
Dns(α, γ0, θ, τg, β, τh) = βτg

2
+L(√α2 + θ2, σM,2θ − ε0γ0, τg

β
)

− min
λ0≥0,ν

sup
t0≥0
[ α
τh
{β2

2δ
+ λ0 (γ0τh

α
− t0) + ν2

2
− f (β, τhθ

α
+ ν; t0)} + ατh

2
]

(D.40)

Note that the above objective is linear in λ0. Clearly, the optimal value t∗0
should satisfy t∗0 ≤ γ0τh

α ; otherwise λ∗0 = ∞ which makes the objective value
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unbounded. For t0 ≤ γ0τh
α , we have λ∗0 = 0. Therefore, t0 only appears in the

term f(β, τhθα + ν; t0). Given that f(c0, c1; t0) is decreasing in t0, we have
t∗0 = γ0τh

α .
We substitute for t∗0 in the AO problem to obtain

max
0≤β,τh

min
θ,0≤α,γ0,τg

Dns(α, γ0, θ, τg, β, τh)
Dns(α, γ0, θ, τg, β, τh) = βτg

2
+L(√α2 + θ2, σM,2θ − ε0γ0, τg

β
)

−min
ν
[ α
τh
{β2

2δ
+ ν2

2
− f (β, τhθ

α
+ ν;

γ0τh
α
)} + ατh

2
] .

(D.41)

This completes the proof of part (c).

APPENDIX E: PROOF OF TECHNICAL LEMMAS

E.1. Proof of Lemma 2.1 By definition, we have

SA(θ̂) ∶= E[1(ŷ = y)] = P(y⟨x, θ̂⟩ > 0)
= P(y⟨yµ +Σ1/2z, θ̂⟩ > 0)
= P(⟨µ +Σ1/2z, θ̂⟩ > 0)
= P(⟨µ, θ̂⟩ + ∥Σ1/2θ̂∥

`2
Z > 0)

= Φ
⎛⎝ ⟨µ, θ̂⟩∥Σ1/2θ̂∥

`2

⎞⎠ ,(E.1)

where z ∼ N(0,Id) and Z ∼ N(0,1).
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Likewise for the adversarial risk we have

RA(θ̂) ∶= E
⎡⎢⎢⎢⎢⎣ min
∥δ∥`p≤ε

1(y⟨x + δ, θ̂⟩ ≥ 0)⎤⎥⎥⎥⎥⎦
(a)= E

⎡⎢⎢⎢⎢⎣1(y⟨x, θ̂⟩ − ε ∥θ̂∥`q ≥ 0)⎤⎥⎥⎥⎥⎦= P(y⟨x, θ̂⟩ − ε ∥θ̂∥
`q
≥ 0)

= P(y⟨yµ +Σ1/2z, θ̂⟩ − ε ∥θ̂∥
`q
≥ 0)

(b)= P(⟨µ, θ̂⟩ + ∥Σ1/2θ̂∥
`2
Z − ε ∥θ̂∥

`q
≥ 0)

= Φ
⎛⎜⎝
⟨µ, θ̂⟩ − ε ∥θ̂∥

`q∥Σ1/2θ̂∥
`2

⎞⎟⎠ ,(E.2)

where (a) we used that ⟨δ, θ̂⟩ ≥ −∥δ∥`p ∥θ̂∥`q ≥ −ε ∥θ̂∥`q , using Hölder inequal-

ity (with 1
p + 1

q = 1) and that ∥δ∥`p ≤ ε, with equality achieving for some δ in
this set. In (b), we used the symmetry of Gaussian distribution.

E.2. Proof of Lemma 4.2 We first note that

min
z∈S(α,θ,ε0,µ)

− 1√
n
hTz = − 1√

n/d sup
z∈S(α,θ,ε0,µ)

1√
d
hTz → − 1√

δ
ω(α, θ, ε0) ,

(E.3)

in probability, using the fact that h/√d is asymptotically uniform on the
unit sphere, and for S ∈ Sd−1 the function f(u) = supz∈S z

Tu is Lipschitz.
Therefore, using the concentration of Lipschitz functions on the sphere
(see e.g. [66, Theorem 5.2.2]), f(u) concentrates around its mean E f(u) =
ωs(S(α, θ, ε0,µ)). More precisely,

P{∣ sup
z∈S

1√
d
hTz − ωs(S(α, θ, ε0,µ))∣} ≤ 2e−cdt

2

,

for an absolute constant c > 0 and for every t ≥ 0. Therefore, by invoking
the assumption on the convergence of spherical width, cf. Assumption 3, we
arrive at

lim
d→∞

P{∣ sup
z∈S

1√
d
hTz − ω(α, θ, ε0)∣ ≥ η} = 0 , ∀η > 0 .
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Therefore, supz∈S(α,θ,ε0)
1√
d
hTz → ω(α, θ, ε0), in probability.

To evaluate the left hand side, we form the Lagrangian corresponding to
the set S. Let µ̃ ∶= µ

∥µ∥`2
and consider the change of variable u ∶= z + θµ̃. We

then have

min
z∈S(α,θ,ε0,µ)

− 1√
n
hTz

= sup
λ,η≥0,ν

min
u
− 1√

n
hT (u − θµ̃) + λ⎛⎝∥u∥q`q − ⎛⎝ 1

ε0 ∥µ∥`p
⎞⎠
q⎞⎠ + η2 (∥u − θµ̃∥2`2 − α2) + νµ̃T (u − θµ̃)

= sup
λ,η≥0,ν

min
u

η

2
∥u − θµ̃ + ν

η
µ̃ − h

η
√
n
∥2
`2

+ λ ∥u∥q`q − 1

2η
∥νµ̃ − h√

n
∥2
`2

− η
2
α2 − λ(ε0 ∥µ∥`p)q

= sup
λ,η≥0,ν

min
u

η

⎡⎢⎢⎢⎢⎣
1

2
∥u + (ν

η
− θ) µ̃ − h

η
√
n
∥2
`2

+ λ
η
∥u∥q`q

⎤⎥⎥⎥⎥⎦ −
1

2η
∥νµ̃ − h√

n
∥2
`2

− η
2
α2 − λ(ε0 ∥µ∥`p)q

= sup
λ,η≥0,ν

η
d∑
i=1
Jq ( hi

η
√
n
− (ν

η
− θ) µ̃i; λ

η
) − 1

2η
∥νµ̃ − h√

n
∥2
`2

− η
2
α2 − λ(ε0 ∥µ∥`p)q

= sup
λ,η≥0,ν

η
d∑
i=1
Jq ( hi

η
√
n
− (ν

η
− θ) µ̃i; λ

η
) − ν2

2η
− 1

2ηn
∥h∥2`2 + ν

η
√
n
µ̃Th − η

2
α2 − λ(ε0 ∥µ∥`p)q

(E.4)

Recall that h ∼ N(0,Id). As n→∞ and n/d→ δ, we have

1

n
∥h∥2`2 → 1

δ
,

1√
n
µ̃Th→ 0 ,(E.5)

in probability. In addition,

∥µ∥`p → σM,pd
1
p
− 1

2 = σM,pd
1
2
− 1
q ,(E.6)

in probability. Using the identity Jq(x;λ) = c2Jq(x/c;λcq−2) and letting
λ0 ∶= λd1− q2 we have

d∑
i=1
Jq ( hi

η
√
n
− (ν

η
− θ) µ̃i; λ

η
) = 1

d

d∑
i=1
Jq (
√
dhi

η
√
n
− (ν

η
− θ) √dµi

σM,2
;
λ

η
d1−q/2)

= 1

d

d∑
i=1
Jq ( hi

η
√
δ
− (ν

η
− θ) √dµi

σM,2
;
λ0
η
) .

Since Jq(x;λ) ≤ 1
2x

2, the function Jq is pseudo-lipschitz of order 2 and by an
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application of [3, Lemma 5], we have

lim
n→∞

1

d

d∑
i=1
Jq ( hi

η
√
δ
− (ν

η
− θ) √dµi

σM,2
;
λ0
η
) = E [Jq ( h

η
√
δ
− (ν

η
− θ) M

σM,2
;
λ0
η
)] ,

(E.7)

almost surely, where the expectation in the last line is taken with respect to
the independent random variables h ∼ N(0,1) and M ∼ PM .

Using the above limits, we see that the objective function (E.4) converges
pointwise to the following function:

η E [Jq ( h

η
√
δ
− (ν

η
− θ) M

σM,2
;
λ0
η
)] − ν2

2η
− 1

2ηδ
− η

2
α2 − λ0(ε0σM,p)−q(E.8)

Note that (E.4) is the dual optimization and hence is a concave problem. We
apply the convexity lemma [63, Lemma B.2] to conclude that the objective
value in (E.4) also converges to the supremum of function (E.8) over λ0, η ≥
0, ν.

Using this observation along with Equation (E.3) and (E.4) we obtain

ω(α, θ, ε0)= lim
n→∞

ωs (S(α, θ, ε0,µ))
= − sup

λ0,η≥0,ν
η
√
δ E [Jq ( h

η
√
δ
− (ν

η
− θ) M

σM,2
;
λ0
η
)] −√δ {ν2

2η
+ 1

2ηδ
+ η

2
α2 + λ0(ε0σM,p)−q}

= min
λ0,η≥0,ν

√
δ {ν2

2η
+ 1

2ηδ
+ η

2
α2 + λ0(ε0σM,p)−q} − η√δ E [Jq ( h

η
√
δ
− (ν

η
− θ) M

σM,2
;
λ0
η
)] ,

(E.9)

which completes the proof.

E.3. Proofs that the minimization and maximization primal prob-
lems can be restricted to a compact set In this section we demonstrate
how the minimization and maximization problems can be restricted to com-
pacts sets.

E.3.1. Bounded domains in optimization (B.17) We start with the re-
striction on θ. Note that one of the claims of Theorem 6.3, part (b), is to
show that ∥θ̃ε∥

`2
→ α∗ as n→∞, in probability, for some α∗ by the solution

of minimax problem (6.2). We define Sθ = {θ ∶ ∥θ∥`2 ≤Kα} with Kα = α∗ + ξ
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for a constant ξ > 0. We start by the ansatz that θ ∈ Sθ and add this ‘artifi-
cial constraint’ in the minimax optimization. In addition, by the stationary
condition for γ in optimization (B.17) we have

1

n
εuT1 = 2λ .

Therefore
1

n
uT1 = 2λ

ε
= 2λ

ε0 ∥µ∥`p .
Let λ0 ∶= λ

∥µ∥`p
. Assuming the ansatz that λ0 = O(1), we also use this ‘artificial

constraint’ in the minimax optimization.
With these compact constraints in place, we then deploy the CGMT

framework to prove Theorem 6.3. This theorem implies that ∥θ̃ε∥
`2
→ α∗ as

n→∞ and so our initial ansatz on the boundedness of θ is verified. Further,
as it can be seen from the proof of Theorem 6.3 (see the line following
Equation (B.28)), we have λ0 = λ

∥µ∥`p
→ λ0∗ as n → ∞, in probability, for

some λ0∗ that is determined by the solution of minimax problem (6.2).
This also verifies our ansatz that λ0 = O(1), which in turn implies that
u ∈ Su = {u ∶ 0 ≤ ui, 1

n1Tu ≤ Ku} for some sufficiently large constant
Ku > 0.

E.3.2. Bounded domains in optimization (B.38) Similar to previous sub-
section, we start by the ansatz that θ ∈ Sθ where Sθ = {θ ∶ ∥θ∥`2 ≤ Kα}
with Kα = α∗ + ξ for a constant ξ > 0, and add this ‘artificial constraint’
in the minimax optimization (B.38). Also by stationarity condition for v
in (B.38) we have ui = `′ (vi − ε ∥θ∥`q) and hence ∣ui∣ ≤ Ku for some large
enough constant Ku > 0, using our assumption on the loss function `.

E.4. Proof of Lemma B.1 First note that by Cauchy–Schwarz inequal-
ity we have

⟨P⊥µr,(P⊥µΣ1/2P⊥µ)θ⊥⟩ ≥ −∥P⊥µr∥`2 ∥(P⊥µΣ1/2P⊥µ)θ⊥∥
`2
= −α ∥P⊥µr∥`2 .

To achieve equality, note that similar to (B.50) we have

(P⊥µΣ1/2P⊥µ)(P⊥µΣ−1/2P⊥µ)r = P⊥µr .
Therefore equality is achieved by choosing θ = λΣ−1/2P⊥µr with λ = α

∥P⊥µr∥`2
.
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E.5. Proof of Lemma B.2 By definition of the conjugate function we
have

̃̀(v,w) = sup
θ
wTθ − `(v,θ)

= sup
θ
wTθ − 1

n

n∑
i=1
`(vi − ε ∥θ∥`q)

Now assume θ = γu with ∥u∥`q = 1. We thus have,

̃̀(v,w) = sup
u∶∥u∥`q=1,γ

γwTu − 1

n

n∑
i=1
` (vi − εγ)

= sup
γ≥0

γ
⎛⎜⎝ sup
u∶∥u∥`q=1

wTu
⎞⎟⎠ −

1

n

n∑
i=1
` (vi − εγ)

= sup
γ≥0

γ ∥w∥`p − 1

n

n∑
i=1
` (vi − εγ) .

E.6. Proof of Lemma B.3 By definition

f∗(u) ∶= sup
w̃
⟨u, w̃⟩ − f(w̃)

= sup
w̃
⟨u, w̃⟩ + ⟨w̃,Σ1/2µ̃⟩θτh

α
− τh
α

γ0∥µ∥`p ∥Σ1/2w̃∥
`p

= sup
w̃
⟨u +Σ1/2µ̃

θτh
α
, w̃⟩ − τh

α

γ0∥µ∥`p ∥Σ1/2w̃∥
`p

= sup
w̃
⟨Σ−1/2u + µ̃θτh

α
,Σ1/2w̃⟩ − τh

α

γ0∥µ∥`p ∥Σ1/2w̃∥
`p

By Hölder’s inequality,

⟨Σ−1/2u + µ̃θτh
α
,Σ1/2w̃⟩ ≤ ∥Σ−1/2u + µ̃θτh

α
∥
`q

∥Σ1/2w̃∥
`p

Therefore, if u ∈ S then the supremum is achieved by choosing w̃ = 0. If u ∉ S,
by scaling w̃ the supremum would be +∞.
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E.7. Proof of Lemma B.4 Fix arbitrary u. By definition,

PB(u) ∶= arg min
z∈B
∥u − z∥`2

= arg min
z∈B
∥P⊥µ(u − z)∥2`2 + ∥Pµ(u − z)∥2`2

(a)= arg min
z∈B
∥P⊥µu − z∥2`2 + ∥Pµu∥2`2

= arg min
z∈B
∥P⊥µu − z∥2`2= PBP⊥µu ,(E.10)

where step (a) follows from that fact that z ∈ B and hence z = P⊥µz.
E.8. Proof of Lemma B.5 By definition of the set B, the value of∥PB (h) −h∥2`2 is given by the optimal objective value of the following opti-

mization:

minimizez ∥z −h∥`2
subject to ∥Σ−1/2z − τhθ

α
µ̃∥

`q

≤ τh
α

γ0∥µ∥`p , µ̃Tz = 0 .(E.11)

By the change of variable u ∶= Σ−1/2z − τhθ
α µ̃ and forming the Lagrangian,

the optimal value of (E.11) is equal to the optimal value of the following
problem:

sup
λ≥0,ν

min
u

1

2
∥Σ1/2 (u + τhθ

α
µ̃) −h∥2

`2

+ λ⎛⎝∥u∥q`q − ⎛⎝τhα γ0∥µ∥`p
⎞⎠
q⎞⎠ + νµ̃TΣ1/2 (u + τhθ

α
µ̃) .

(E.12)

Rearranging the terms we get the next alternative representation

sup
λ≥0,ν

min
u

1

2
∥Σ1/2 (u + τhθ

α
µ̃) −h + ν µ∥µ∥`2 ∥

2

`2

+ λ⎛⎝∥u∥q`q − ⎛⎝τhα γ0∥µ∥`p
⎞⎠
q⎞⎠ + νµ̃Th − ν

2

2
,

(E.13)

Now adopting the notation ∥v∥2Σ ∶= vTΣv and invoking the assumption
Σ1/2µ̃ = aµ̃, we rewrite the optimization as follows:

sup
λ≥0,ν

min
u

1

2
∥u + (τhθ

α
+ ν
a
) µ̃ −Σ−1/2h∥2

Σ
+ λ⎛⎝∥u∥q`q − ⎛⎝τhα γ0∥µ∥`p

⎞⎠
q⎞⎠ + νµ̃Th − ν

2

2
,

(E.14)
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Rearranging the terms further we obtain

sup
λ≥0,ν

min
u
[1

2
∥u + (τhθ

α
+ ν
a
) µ̃ −Σ−1/2h∥2

Σ
+ λ ∥u∥q`q] − λ⎛⎝τhα γ0∥µ∥`p

⎞⎠
q + νµ̃Th − ν2

2

= sup
λ≥0,ν

eq,Σ (Σ−1/2h − (τhθ
α
+ ν
a
) µ̃;λ) − λ⎛⎝τhα γ0∥µ∥`p

⎞⎠
q + νµ̃Th − ν2

2
.

(E.15)

This concludes the proof.

E.9. Proof of Lemma B.6 We recall the definition of weighted Moreau
envelope

e2,Σ(x;λ) =min
v

1

2
∥x − v∥2Σ + λ ∥v∥2`2 .(E.16)

Setting derivative to zero we get

−Σ(x − v∗) + 2λv∗ = 0 ,

which implies that v∗ = (Σ + 2λI)−1Σx. Now consider a singular value
decomposition Σ = USUT . Then, v∗ = U(S + 2λI)−1SUTx. Substituting
for v∗ in (E.16) we obtain

e2,Σ(x;λ) = 2λ2 ∥U(S + 2λI)−1S1/2UTx∥2
`2
+ λ ∥U(S + 2λI)−1SUTx∥2

`2= λxTUT (S + 2λI)−1SUx
= λ ∥U(S + 2λI)−1/2S1/2Ux∥2

`2

= λ ∥(Σ + 2λI)−1/2Σ1/2x∥2
`2

which yields the desired result.

APPENDIX F: PROPOSITION 3.2 (AN EXTENDED STATEMENT)

Consider the adversarial training loss

L(θ) ∶= 1

n

n∑
i=1
`(yi⟨xi,θ⟩ − ε ∥θ∥`q) ,

where the loss `(t) can be expressed as `(t) = e−f(q) obeying the following
technical assumptions:
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• f ∶ R→ R is C2-smooth.
• f ′(q) > 0 for all q ∈ R.
• There exists bf ≥ 0 such that qf ′(q) is non-decreasing for q ∈ (bf ,∞)

and qf ′(q) → ∞ as q →∞.
• Let g ∶ [f(bf),∞) → [bf ,∞) be the inverse function of f on the domain[bf ,∞). There exists p ≥ 0 such that for all x > f(bf), y > bf ,

∣g′′(x)
g′(x) ∣ ≤ px, ∣f ′′(y)

f ′(y) ∣ ≤ py .
(It can be verified that the above assumptions are satisfied by exponential
loss and logistic loss.) Then, the gradient descent iterates

θτ+1 = θτ − µ∇L(θτ)
with a sufficiently small step size µ obey

lim
t→∞

XXXXXXXXXXXX
θt∥θt∥`2 −

θ̃ε∥θ̃ε∥
`2

XXXXXXXXXXXX`2 = 0 ,(F.1)

where θ̃ε is the solution to the following max-margin problem

θ̃ε =arg min
θ∈Rd

∥θ∥2`2
subject to yi⟨xi,θ⟩ − ε ∥θ∥`q ≥ 1 .(F.2)
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