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Abstract

We consider an online revenue maximization
problem over a finite time horizon subject to lower
and upper bounds on cost. At each period, an
agent receives a context vector sampled i.i.d. from
an unknown distribution and needs to make a de-
cision adaptively. The revenue and cost functions
depend on the context vector as well as some
fixed but possibly unknown parameter vector to
be learned. We propose a novel offline bench-
mark and a new algorithm that mixes an online
dual mirror descent scheme with a generic param-
eter learning process. When the parameter vector
is known, we demonstrate an O(+/T') regret re-
sult as well an O(+/T) bound on the possible
constraint violations. When the parameter is not
known and must be learned, we demonstrate that
the regret and constraint violations are the sums
of the previous O(v/T) terms plus terms that di-
rectly depend on the convergence of the learning
process.

1. Introduction

We consider an online revenue maximization problem over
a finite time horizon, subject to multiple lower and upper
bound cost constraints. At each time period, an agent re-
ceives a context vector and needs to make a real-time deci-
sion. After making a decision, the agent earns some revenue
and also incurs multiple costs, which may alternatively be
interpreted as the consumption of multiple resources. Un-
like the typical situation in online optimization and learning
(see, e.g., Hazan (2019)), the agent has estimates of the rev-
enue and cost functions available before making a decision.
These estimates are updated sequentially via an exogenous
learning process. Thus, there are three major challenges in
this online learning and decision-making environment: ()
balancing the trade-off between revenue earned today and
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ensuring that we do not incur too many costs too early, (i)
ensuring that enough costs are incurred to meet the lower
bound constraints over the full time horizon, and (iii) under-
standing the effects of the parameter learning process.

Examples of this online learning and decision-making setup
occur in revenue management, online advertising, and on-
line recommendation. In revenue management, pricing and
allocation decisions for goods and services with a limited
supply need to be made in real-time as customer arrivals
occur (Bertsimas & Popescu, 2003; Boyd & Bilegan, 2003).
This setup is also prevalent in online advertising, for exam-
ple, in the case of a budget-constrained advertiser who bids
in real-time auctions in order to acquire valuable impres-
sions. Importantly, each arrival typically has associated a
feature vector to it, for example, the cookie history of a user
to which an ad can be shown. How that feature may relate
to useful quantities, e.g., the probability of a user clicking
an ad, may need to be learned. Finally, our setting considers
lower bounds on cost since in many industries minimum
production or marketing goals are desired. Also, our setup
allows the cost and revenue functions to take negative values
which is key for some problems in chemistry or finance.

1.1. Contributions
Our contributions may be summarized as follows:

(1) We propose a novel family of algorithms to tackle a
joint online learning and decision making problem. Our
setting considers both lower and upper bound constraints
on cost functions and does not require strong assumptions
over the revenue and cost functions used, such as convexity.
Our work can be understood as an extension of an online
optimization problem in which we may also need to learn a
generic parameter. Furthermore, our work can be considered
as in a 1-lookup ahead setting as the agent can observe the
current context vector before taking a decision.

(2) We propose a novel benchmark used to measure the
regret of our algorithm. Our benchmark is considerably
stricter in comparison to the expected best optimal solu-
tion in hindsight. Our benchmark is specially well suited
to handle settings with an “infeasible sequence of context
vector arrivals" for which it is impossible to satisfy the
lower cost constraints. These infeasible context vector se-
quences may occur even if non-positive cost lower bounds
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are used. We construct a dual problem which upper bounds
the benchmark and we demonstrate how to efficiently obtain
stochastic subgradients for it.

(3) In the case when no “generic parameter learning” is
needed, we prove that the regret of our algorithm is upper
bounded by O(+/T) under a Slater condition. Given the
generic setup of our problem, this is a novel regret bound
in the pure online optimization setting. In the general case
with parameter learning, our regret decomposes between
terms upper bounded by O(+/T) and terms coming from
the convergence of the generic parameter learning process.

(4) We prove that the solution given by our algorithm may
violate any given lower bound constraint by at most O(v/T)
in the online optimization case, while upper bounds are
always satisfied by algorithm construction. Therefore, our
methodology is asymptotically feasible in the pure online
optimization case (Liakopoulos et al., 2019).

(5) We demonstrate that our algorithm is effective and ro-
bust as compared to a heuristic approach in a bidding and
allocation problem with no generic parameter learning in
online advertising. Additionally, we study the effects of
different generic parameter learning strategies in a linear
contextual bandits problem with bounds on the number of
actions taken.

1.2. Related Work

The problem of online revenue maximization under feasi-
bility constraints has been mostly studied under the lens
of online convex optimization (Hazan, 2019). While first
studied on resource allocation problems under linear con-
straints (Mehta et al., 2007; Devanur et al., 2011), arbitrary
convex revenue and cost functions have since been consid-
ered. Of major importance is the nature of the data arrivals.
Typically, data has been assumed to be received in an ad-
versarial (Devanur et al., 2011; Chen et al., 2017) or an
1.1.d. manner (Wei et al., 2020; Balseiro et al., 2020b), with
the data being sampled from an unknown distribution in
the latter case. Subgradient methods based on primal-dual
schemes have gained attraction (Devanur et al., 2011; Jenat-
ton et al., 2016; Chen et al., 2017; Yuan & Lamperski, 2018)
as they avoid taking expensive projection iterations by pe-
nalizing the constraints through duality (either Lagrangian
or Fenchel). Consequently, it is important to study both
objective function regret and the worst possible constraint
violation level.

In the adversarial setting, regret is typically measured
against the best-static decision in hindsight and algorithms
achieving O(/T) regret (which is optimal in the adversar-
ial setting) and different levels of constraint violations have
been achieved (Mahdavi et al., 2012; Jenatton et al., 2016;
Chen et al., 2017; Yuan & Lamperski, 2018). In the i.i.d.

setting and under linear constraints, Balseiro et al. (2020b)
obtains an O(v/T) regret bound and no constraint viola-
tion by algorithm construction (since they consider linear
constraints with no lower bounds). Since they consider a
1-lookup ahead setting with i.i.d. arrivals, Balseiro et al.
(2020b) use the best dynamic solution in hindsight as a
benchmark, which is a considerably stricter benchmark than
the commonly used best static solution. Our joint online
learning and optimization model and algorithmic strategy
builds upon the online optimization model and dual mir-
ror descent approach for resource allocation presented by
Balseiro et al. (2020b). Note that our first contribution, the
incorporation of arbitrary revenue and cost functions, was si-
multaneously obtained by the same set of authors (Balseiro
et al., 2020a). Compared to Balseiro et al. (2020b;a), our
work generalizes their setup by allowing “infeasible context
vectors,” which are possible since we consider cost lower
bounds constraints to the problem formulation and allow the
cost and revenue functions to take negative values. The latter
generalization motivated the novel and stricter benchmark
proposed here. The proposed benchmark can be informative
when previous benchmarks, such as the best dynamic solu-
tion, are not (our benchmark generalizes the best dynamic
solution benchmark). In addition, given the generality of
our setup, we bound the possible worst-constraint violation
for the lower cost constraints and propose a different way to
bound the dual variables, which we achieve through a Slater
condition. Also, our incorporation of generic parameter
learning into the online decision-making setup is novel.

A stream of literature studying a similar problem to ours
considers “Bandits with Knapsacks” (BwK) and extensions
thereof. In BWK, an agent operates over 1" periods of time.
At each period, the agent chooses an action, also known as
an arm, from a finite set of possible actions and observes
a reward and a cost vector. As in our setting, the agent
would like to satisfy global cost constraints. BwK is stud-
ied both in an adversarial and i.i.d. settings, but here we
only emphasize on the latter (see Immorlica et al. (2019) for
the adversarial case). Assuming concave reward functions,
Agrawal & Devanur (2014) proposes an upper-confidence
bound type of algorithm which achieves sublinear rates of
regret and constraint violations. Badanidiyuru et al. (2018)
proposes a primal-dual algorithm to solve BWK with has a
sublinear regret. By problem construction, their cost con-
straints are satisfied. Compared to this literature stream,
our work allows an arbitrary action space and extends the
literature as commented in the paragraph above for Balseiro
et al. (2020b;a).

1.3. Notation

Weuse RY :={z>0:2 e RV}, RN :={s <0:z €
RN}, and [N] := {1,..., N} with N being any integer. For
anyr € RN andy € RN, 20y := (z191,...,2nyn) and
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2Ty = Z?:l x;1y; representing the element-wise and dot
products between vectors of same dimension. We use x € A
to represent that = belongs to set A, and (2!,...,2") €
Al x- - x AN represents #° € A foralli € [n]. We reserve
capital calligraphic letters to denote sets. For any 2 € RY,
[z]+ = (max{z1,0},...,max{zy,0})and 1(z € A) :=
1if x € A and 0 otherwise. We use ||-|| to represent a norm
operator, and in particular, for any = € RY we use ||z[|; :=

N N
SNl el = /S o2 and o = maxiery,

|x;|. For any real-valued convex function f : X — R,
we say that g is a subgradient of f(-) atx € X if f(y) >
f(@) + g% (y — x) holds for all y € X, and use df(z) to
denote the set of subgradients of f(-) at x.

2. Preliminaries and Algorithm

We are interested in a real-time decision-making problem
over a time horizon of length 7" involving three objects: (i)
2t € Z C RY, the decision to be made at time ¢, (ii) 0* €
© C RP, a possibly unknown parameter vector describing
the revenue and cost functions that may need to be learned,
and (iii) w® € W C R™, a context vector received at
prior to making a decision at time ¢. These three objects
describe the revenue and cost functions that are central
to the online decision-making problem. In particular, let
f(5+9) : Z2x O xW — R denote the revenue function and
letc(s;-,+) : 2 x O x W — RE denote the collection of K
different cost functions. We assume that these functions are
bounded, namely for the true revenue function it holds that
SUD, ez wew f(2; 0%, w) < f with f > 0 and for the cost
functions it holds that sup,c z geco wewllc(z; 0, W)l <
C with C' > 0.

At each time period ¢, first w’ is revealed to the decision
maker and is assumed to be drawn i.i.d from an unknown
distribution P over V. For example, if WV is a finite set,
then w? could represent the scenario being revealed at time
t. We assume that once the decision maker observes a
context vector w! € W, then it also observes or otherwise
have knowledge of the parametric forms of revenue and cost
functions f(-;-,w') : Zx0O — Randc(+;-,w') : Zx0 —
RX. Although the true parameter §* may be unknown to
the decision maker at time ¢, whenever a decision z! € Z
is made the revenue earned is equal to f(2*, 0%, w') and the
vector of cost values incurred is equal to c(2%, 0%, w').

In an ideal but unrealistic situation, the decision planner
would be able to observe the sequence (w?,...,w’) of
future context vector arrivals and would set the decision
sequence (z1,...,2T) by solving the full observability (or

hindsight) problem:

where b € RE,, and a € [-1,1)% U {00} with a;, =
—oo meaning that no lower bounds are present for coordi-
nate k. Define b := minge(x) by and b = maXge|(k] b,
and we assume that b > 0. The vector b can be thought
as a resource or budget vector proportional to each period.
Then, (1) is a revenue maximization problem over the time
horizon T" with lower and upper cost constraints. Setting
—1 as the lower bound for o, for all k € [K] is an arbitrary
choice only affecting some of the constants in the regret
bounds we prove.

Before providing more details on the dynamics of the prob-
lem and our proposed algorithm, we introduce a novel
benchmark to evaluate the performance/regret of our al-
gorithm. The primary need for a new benchmark in our
context is that the generality of our problem leads to fea-
sibility issues. Indeed, for some combinations of context
vector arrivals, problem (1) may be infeasible due the pres-
ence of both lower and upper bound constraints as well as
the fact that the costs functions are generic. We now define
an offline benchmark as follows. A natural benchmark to
consider is the expected optimal value of (1). However, as
long as there is any positive probability of (1) being infea-
sible, then this benchmark will be —oo, which will lead
to trivial regret bounds. Thus, to avoid such trivialities,
we consider a benchmark that interpolates between the ex-
pected optimal value of (1) and a deterministic problem that
replaces the random revenue and cost functions with their
expected values. In particular, let v € [0, 1] denote this
interpolation parameter. Forany z € Z,0 € ©, w’' € W,
w ~ P, and v € [0, 1] we define:

rev(z;0,w',y) = (1 —7)f(z;0,w") + vEp|[f(2;0,w)]
cost(z;0,w', ) := (1 —v)c(z;0,w") + YEp[c(z; 0, w)].

Let PT := P x --- x P denote a product distribution of
length T, i.e., the distribution of (w!,...,w”). Now, for
any v € [0, 1], let us define

OPT(P,~) :=
T *
By S0

Epr .
st. Ta ©@b <>, cost(zh; 0%, w',v) <Tb
and let us further define

OPT(P) := max OPT(P,~). 2)
v€[0,1]
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Note that OPT(P, 0) is exactly the expected optimal value
of the hindsight problem (1). On the other hand, OPT (P, 1)
corresponds to a deterministic approximation of (1) that re-
places all random quantities with their expectations and is
typically a feasible problem. Then, we can understand v €
[0, 1] as an interpolation parameter between the more diffi-
cult hindsight problem OPT (P, 0) and the expectation prob-
lem OPT(P, 1). Importantly, the benchmark we consider is
OPT(P), which considers the worst case between these two
extremes. It is possible to have OPT(P) = OPT(P,0),
OPT(P) = OPT(P,1), OPT(P) = OPT(P,~) for
some v € (0,1), and OPT(P) = —oo. It is also possi-
ble to have a unique  that maximizes OPT(P, ) as well
as infinitely many such maximizers. Examples of all of these
possibilities are included in the supplementary materials.

2.1. Joint Learning and Decision-making Dynamics
and Regret Definition

Now we describe the dynamics of our joint online learning
and decision-making problem as well as a generic “algo-
rithmic scheme.” In Section 2.2, we give a complete algo-
rithm after building up the machinery of dual mirror descent.
Let Z! := (2%, 0% wt, f1(2t; 0%, wh), c(24; 6%, w?)) denote
the information obtained during period ¢, and let H! :=
(Z%,...,T%) denote the complete history up until the end of
period . Note that it is assumed that the decision planner
observes the exact incurred cost value vector ¢(z%; 6%, w?),
but there is a possibility of including additional randomness
in the observed revenue. In particular, the observed revenue
(2t 0%, w?) satisfies f1(2%; 0%, wt) = f(24 0%, wt) + &
where &, is a mean zero random variable that is allowed to
depend on w! but is independent of everything else.

Let Ay refer to a generic learning algorithm and let A, refer
to a generic decision-making algorithm. Then, at any time
period ¢, the decision planner sets

0t = Ay (Htil) ,
Zt = Az (f(';9t7wt)7c(';9t7wt)7Ht_1> (3)

We refer to (A, Ag) as A when no confusion is possible.
Note that an important special case is when Ay outputs
0* for all inputs, which is the case where 6* is known.
Algorithm 1, which alternates between an online learning
step using Ap and an online decision-making step using
A, specifies the precise sequence of events when using the
generic algorithm A. Recall that C' := SUD(-.0,w)e ZxOx W
|lc(z; 0, w)]|00, which is a constant that we will use as the
minimum allowable remaining cost budget. For simplicity
we assume that the constant C' is available although we can
easily replace it with an available upper bound.

Note that Steps 4. and 5. of Algorithm 1 ensure that the
total cost incurred is always less than or equal to b7, which
ensures that the upper bound constraints in (1) are always

Algorithm 1 Generic Online Learning and Decision-
making Algorithmic Scheme

Input: Initial estimate §' € ©, and remaining cost bud-
get vector b! < Tb.
fort=1,...,T do
1. Update §° < Ag (H'™1).
2. Receive w! € W, which is assumed to be drawn
from an unknown distribution P and is independent of
HIL
3. Set 2! < A, (f(50", wh),c(:; 0%, wh), HITT).
4. Update remaining cost budget b'*! <« bt —
c(2%; 0%, w?), and earn revenue f'(z%; 0%, wt).
5.If bl < O for any k € [K], break.
end for

satisfied, while there is a chance that some lower bound
constraints may not be satisfied. These steps make our
later theoretical analysis simpler, but less conservative ap-
proaches can be used, for example allowing the algorithm
to exceed b1 once.

Define R(A|P) = Epr [Zthl f(zt;é)*,wt)] as the ex-

pected revenue of algorithm A over distribution P7, where
2% is computed as in (3). We define the regret of algorithm
A as Regret(A|P) := OPT(P)— R(A|P). Since the prob-
ability distribution P is unknown to the decision maker, our
goal is to design an algorithm A that works well for any
distribution P. That is, we would like to obtain a good

distribution free regret bound.

2.2. Dual Problem and Dual Mirror Descent Algorithm

We now consider a Lagrangian dual approach that will natu-
rally lead to a dual mirror descent algorithm. Let A € R¥
denote a vector of dual variables, and we define the set of
feasible dual variables as A := {\ € RE : )\, > 0forall k
with ap = —oo}. For any triplet (A\,0,w) € A x © x W
define

o\ 0, w) = meazxf(z; 0,w) — A'e(z;0,w)

z(A;0,w) :€ argmeaécf(z; 0, w) — M'e(z;0,w),
and for any (\,0) € A x © define

p(A) =Y be((A+ — arl=Ael4)

ke[K]
D(X;0) == Ep[p(X; 0, w)] + p(A).

This works assumes that z(\; 6, w) exists and can be effi-
ciently computed for any (A, 6, w) € (A, ©,W). Further-
more, in case there are multiple optimal solutions corre-
sponding to ¢ (A; 0, w) we assume that the subroutine for
computing z(\; 6, w) breaks ties in a deterministic manner.
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We call D(-; 0) the dual function given parameters 6, which
is a key component of the analysis and algorithms proposed
in this work. In particular, we first demonstrate in Proposi-
tion 2.1 that D(+; 8*) can be used to obtain an upper bound
on OPT(P).

Proposition 2.1. For any \ € A, it holds that OPT(P) <
TD(X;0%).

Next, Proposition 2.2 demonstrates that a stochastic estimate
of a subgradient of D(-; #) can be easily obtained during the
sequence of events described in Algorithm 1.

Proposition 2.2. Let A € A, 0 € O, and w € W
be given. Define G(\;0,w) € RE by gi(\;0,w) =
fck(z()\;&w);é),w) + by (]l()\k > 0) + Oék]l(>\k <0 )
forall k € [K]. Then, if w ~ P, it holds that §g(X; 0, w)
is a stochastic subgradient estimate of D(-;0) at \, i.e.,
Ep[g(A;0,w)] € O\D(A; 0).

We are now ready to describe our dual mirror descent algo-
rithm. Let h(-) : A — R be the reference function for mirror
descent, which we assume is o1 -strongly convex in the ¢;-
norm, i.e., for some o7 > 0 it holds that A(A) > h(N) +
(VR(X),A\=X) + Z|A=X|3 forany A, \' in A. Also, we
assume that h(-) is a separable function across components,
ie., itsatisfies A(A) = SO0 hy (M) where g (-) : R — R
is a convex univariate function for all £ € [K]. Define
V(A X)) := h(\) — h(XN) — VA(XN)T (X — X), the Breg-
man divergence using h(-) as the reference function.

Algorithm 2 presents the main algorithm of this work. Al-
gorithm 2 is a specific instance of the more general algo-
rithmic scheme, presented in Algorithm 1, where we fill
in the generic decision making subroutine A, with a dual
stochastic mirror descent (Hazan, 2019; Beck & Teboulle,
2003) step with respect to the current estimate of the dual
problem minyep D();6). Note that the learning subrou-
tine Ay is left as a generic subroutine; the regret bounds
that we prove in Section 3 hold for any learning algorithm
Ay and naturally get better when Ay has better convergence
properties.

Note that Proposition 2.2 ensures that §* from Step 6. of Al-
gorithm 2 is a stochastic subgradient of D(-;0*) at A’. The
specific form of the mirror descent step in Step 7. depends
on the reference function A () that is used. A standard exam-
ple is the Euclidean reference function, i.e., h(-) := 1-[|3,
in which case Step 7. is a projected stochastic subgradi-
ent descent step. Namely, Aot « [\t — ngt], for all
k € [K] with o, = —o0o and A\EF! <~ AL — gt otherwise.
A simple extension of this example is A()) := ATQM for
some positive definite matrix ). When no lower bounds
are present, i.e., oy = —oo for all k € [K], we can
use an entropy-like reference function h(A) := 3, g
Ak log(Ay) wherein Step 7. becomes a multiplicative weight
update A\l < A exp(—n:gt) (Arora et al., 2012). Finally,

Algorithm 2 Online Learning and Decision-making via
Dual Mirror Descent
Input: Initial estimate #' € ©, remaining cost budget
vector b = T, and initial dual solution \®.
fort=1,...,T do
1. Update 6° < Ay (H'™1).
2. Receive w! € W, which is assumed to be drawn
from an unknown distribution P and is independent of
HEL
3. Make primal decision 2 < z(\%; 0, w?), i.e.,

2t € arg max f(z;0t,w') — (AT e(z; 6, w?).

4. Update remaining cost budget b*t! « bt —
c(2t; 6%, w?), and earn revenue ft(zt; 0%, w?).

5.1f bl < O for any k € [K], break.

6. Obtain dual stochastic subgradient g* where g} <
—cp (2508 wh) + b (I( A\ > 0) + apl (Mg < 0)) for
all k € [K).

7. Choose “step-size" n; and take dual mirror descent
step

t+1 cNT At 1 t
A eargr)\nel}\lx\ g Jrnth()\,)\ ).

end for

note that since the reference function is component wise sep-
arable, one may use a different type of univariate reference
function for different components.

While Algorithm 2 fills in the gap for A, using mirror de-
scent, the learning algorithm Ay in Step 1. is still left as
generic and there are a range of possibilities that one might
consider depending on the specific problem being addressed.
Considering only the revenue function for simplicity, let us
discuss a general form of performing Step 1. at any iter-
ation ¢t € [T]. At iteration ¢, we have observed the set
{2%,w*, f5(2%;0%,w*)}L_;. Then, Step 1. at iteration ¢
could aim to solve or approximate a solution of mingcg
SSTLF(2%50;w") — f5(2%;6%;w*) || Interesting para-
metric forms could be f(z;0,w) = exp(— Zfil w;b;2;),
f(z;0,w) = 2T (wwT)h, or others. In particular, in Sec-
tion 4 we study a linear contextual bandits experiment with
bounds on the number of actions. There, the regression
problem shown above corresponds to a ridge regression
problem (once a quadratic penalization term is added), but
we also suggest a Thompson Sampling type to use as Step 1.
as well. How to perform Step 1. such that §* is learned prop-
erly depends both on the problem structure and underlying
randomness of the data arrivals.

3. Regret Bound and Related Results

In this section, we present our main theoretical result, The-
orem 3.1, which shows regret bounds for Algorithm 2. In
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particular, the regret of Algorithm 2 can be decomposed
as the summation of two parts: (i) the terms that appear
when 0* is known, which emerge from the properties of
the Mirror Descent algorithm and can be bounded sublin-
early as O(v/T), and (ii) terms that naturally depend on the
convergence of the learning process towards 6*. We also
discuss the proof strategy for Theorem 3.1. Finally, for each
lower bound constraint in (1), we prove that our algorithm
may violate this lower bound by at most O(+/T') plus terms
that depend on how 6* converges to 6*.

3.1. Regret Bound

Before presenting our main theorem, we need to establish a
few more ingredients of the regret bound. First, we present
Assumption 3.1, which can be thought of as a boundedness
assumption on the dual iterates.

Assumption 3.1 (Bounded Dual Iterates). There is an ab-
solute constant Cy, > 0 such that the dual iterates {\'} of
Algorithm 2 satisfy E [|[VA(A\Y) | ] < Ch forall t € [T)].

Note that, in the Euclidean case where h()\) = 1|A[|3,
we have VR(\) = A and therefore Assumption 3.1 may
be thought of as a type of boundedness condition. After
stating our regret bound, we present a sufficient condition
for Assumption 3.1, which involves only the properties of

the problem and not the iterate sequence of the algorithm.

Now, recall that ! can be understood as all the information
obtained by Algorithm 2 up to period ¢. Then, Step 4. of
Algorithm 2 is intrinsically related to the following stopping
time with respect to H! 1.

Definition 3.1 (Stopping time). Define T4 as the minimum
between T and the smallest time t such that there exists

k € [K] with Y12, (240, wt) + C > b, T.

Finally, recall that we defined constants f > 0, C > 0,
b > 0and b > 0 such that sup.c z ey f(2; 0%, w) < f,
SUPc z peo wew (20, w)|loe < C, b := minge k) by
and b := maxyc (k) bg. Also, o refers to the strong convex-
ity constant of h(-). We are now ready to state Theorem 3.1,
which presents our main regret bound.

Theorem 3.1. Let A denote Algorithm 2 with a constant
“step-size” rule ny <— n for all t > 1 where n > 0. Suppose
that Assumption 3.1 holds. Then, for any distribution P over
w € W, it holds that Regret(A|P) < Apwm + Arcamn

where
2(C? 4 b2 1
Apwm = QUE[TA] + =Vu(0,A1)
o1 n
f(. C VAAY ||oo
o (04 QtITION)
b n
TA
ALearn =E (C(Zt;e*awt) - C(Zt;etth>)T/\t‘|
t=1

TA
E lz c(zh 0% w') — c(zt;Ht,wt)l

t=1

o0

Corollary 3.1. Consider the same setting as Theorem 3.1
with 0t < 0* for all t € [T). Then, Apcqrn = 0 and if
we choose nn = v/ VT for some constant y > 0 we have
Regret(A|P) € O(VT).

Theorem 3.1 states that the regret of Algorithm 2 can be
upper bounded by the sum of two terms: (i) a quantity
Apy that relates to the properties of the decision-making
algorithm, dual mirror descent, and (ii) a quantity Apearn
that relates to the convergence of the learning algorithm
Ay. More generally, Ay .-, depends on the convergence
of 6 to §*. Corollary 3.1 shows that setting 1 < /v/T for
some constant parameter v > 0 when 6* is known, i.e., a
pure online optimization case, we have Apy; is O(v/T') and
Atyearn = 0. Thus, extending the result presented by Bal-
seiro et al. (2020b). Under a stricter version of Assumption
3.1 and assuming the cost functions are Lipschitz in 6, we
demonstrate in the supplementary materials that A ¢q,., 1S

O(E [3272,116° — 6% lo])-

Let us now return to Assumption 3.1 and present a suffi-
cient condition for this assumption that depends only on the
structural properties of the problem and not directly on the
iterations of the algorithm. The type of sufficient condition
we consider is an extended Slater condition that requires
both lower and upper bound cost constraints to be satisfied
in expectation with positive slack for all § € ©. Let us first
define precisely what the average slack is for a given 6 € ©.

Definition 3.2. For a given 6 € ©, we define its slack dg €
R as §p := Ep[max,cz res(z;0,w)] with res(z; 0, w) :=
min{||Thy — ck(2; 0, W) || 0o, ||k (z; 0, w) — Tagbi||oo } for
all (z,w) € Z x W.

The following proposition uses the average slack to upper
bound C', in Assumption 3.1.

Proposition 3.1. Assume we run Algorithm 2 with a con-
stant “step-size” rule ny < n for all t > 1 where
n > 0. Assume also that there exists § > 0 such that

8¢ > O forall € O, and let C* := 2(0@ + f).
Suppose that we use the Euclidean reference function
h(:) := L|| - ||3, which corresponds to the traditional pro-
Jected stochastic subgradient method. Then, it holds that
O < max{||A! oo, v21/0.5(C> /5)2 + nC™ }.
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The Slater requirement in Proposition 3.1 can be understood
as a measure of the feasibility of problem OPT(P, 0) for
all & € ©. Also, notice that under the conditions of the
proposition and using n; = n = v/V/T for all t € [T] we
have that C}, is bounded by the maximum of ||A!||., and a
term in O(T~1/%), proving that C, is in O(1).

3.2. Proof Sketch and Cost Feasibility

The proof sketch for Theorem 3.1 is informative of how
the algorithm works and therefore we outline it here. At
a high level the proof consists of two major steps. First,
we prove that the E[7,4] is close to T for the pure online
optimization case. In the general case additional terms de-
pending on how 0% converges to 6* appear. Second, we
bound the expected regret up to period 74. In particular, we
prove E[raD(S-[2, LA 6%) ~ 372, f(2';6",w')] upper
bounds the regret and is O(+/T') in the pure online optimiza-
tion case. Finally, the expected regret up to period T is
bounded by the sum of the expected regret up to period 74
plus the trivial bound fE[T" — 74]. (Note that the two major
steps of our proof mimic those of Balseiro et al. (2020b)
but the generality of our setting as well as the presence of
parameter learning leads to new complications.)

A key element of the proof is that if we violate the upper cost
constraints this occurs near the final period 7" (as long as we
‘properly’ learn 6*). A solution obtained using Algorithm
2 can not overspend, but may underspend. Proposition
3.2 shows that the amount of underspending can again be
bounded by the sum of terms that arise from the decision-
making algorithm (mirror descent) and terms that depend
on the convergence of the learning process. In the pure
online optimization case, these lower constraint violations
are bounded by O(v/T) if we use 7 = ~v/+/T withy > 0
arbitrary. To put this result in context, even if constraint
violations can occur their growth is considerably smaller
than 7', which is the rate at which the scale of the constraints
in (1) grow. In the general case, terms depending on how §*
converges to #* again appear, analogously to Theorem 3.1.

Proposition 3.2. Assume we run Algorithm 2 under As-
sumption 3.1 using n; = 1 for allt > 1. For any k € [K]
with ay, # —o0 it holds:

TA
Tagby —E[Y  ex (2467, 0")] <
t=1
VR oo + Cr \ b+ agby  agbiC
n b b
apbi[ER 02, c(2'5 0%, w') — (2" 0%, w')]]| oo

b

TA
+ED 200, w') — (2607, 0]
t=1

4. Experiments

This section describes the two experiments performed. The
first models the problem of a centralized bidder entity bid-
ding on behalf of several clients. Each client has both
lower and upper bounds on their desired spending. This
experiment uses data from the online advertising company
Criteo (Diemert et al., 2017). The results show that our
methodology spends the clients budgets (mostly) in their
desired range, depleting their budgets close to the last pe-
riod (T'), and obtaining a higher profit than a highly used
heuristic. The second experiment is a linear contextual
bandits problem with lower and upper bounds on the num-
ber of actions that can be taken. This experiment is il-
lustrative of how different schemes to learn 6*, i.e., im-
plementations of Step 1. of Algorithm 2, may be more
or less effective depending on the inherent randomness
of the data arrivals. The experiments’ code is located at
https://tinyurl.com/br3dzeak.

4.1. Centralized repeated bidding with budgets

Consider a centralized bidding entity, which we here call the
bidder, who bids on behalf of K > 1 clients. The bidder can
participate in at most 7" > 1 auctions which are assumed to
use a second-price mechanism. In the case of winning an
auction, the bidder can only assign the reward of the auction
to at most one client at a time. At the beginning of each
auction, the bidder observes a vector w € W of features and
a vector r(w) € RX. Each coordinate of r(w) represents
the monetary amount the k*" client offers the bidder for the
auction reward. For each auction ¢ € [T'], call ‘mp®’ to the
highest bid from the other bidders. The goal of the bidder
is to maximize its profit while satisfying its clients lower
and upper spending bounds. Defining X := {z € ]Rf :
ZZK: 1 Z; < 1}, the problem the bidder would like to solve
is (special case of Problem (1)):

T K
t .t t t
max re(w’) —mp’ )z 1(z" > mp
(zt,xt)ER 4 X X:te[T] ;;( ( ) ) k ( )
T
M TahE 3 ) ©s 1 2 ) < T
t=1

where T'b represent the maximum the clients would like
to spent, and o € [0,1)¥ the minimum percentage to be
spent. The pair (2%, z') € R, x A represents the submitted
bid and the probabilistic allocation of the reward chosen
by the bidder at period ¢ (we later show that our algorithm
uses a binary allocation policy). We use 1{z% > mp’} to
indicate that the bidder wins the auction ¢ € [T only if its
bid is higher than mp’. Here we assume r(-) : W — RX as
known, but the extension to the case when we need to learn
it is natural.

An important property of this problem is that we can imple-
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ment our methodology without learning the distribution

of mp , making this experiment fall in the pure online

optimization case. The latter occurs as ¢(A; (w, mp)) =
max

" w)€R+XXZ§=1(7’k(w)(1 — ;) —mp)zgl{z > mp}

can be solved as Algorithm 3 shows.

Algorithm 3 Solving ¢(-; -, -)

Input: Pair (\, w) € RE x W, and reward vector 7(w).
1. Select k* € arg ;n%){(] re(w)(1 — Ag).
€

2. If re (w)(1 — Agw) > 0set z = rgs(w)(1 — Mg ),
zp- = land x, = 0 for all k € [K] # k*, otherwise
choose z =z, = 0 for all k € [K].

Output: (z,z) optimal solution for ¢(A; (w, mp)).

Experiment Details. This experiment is based on data
from Criteo (Diemert et al., 2017). Criteo is a Demand-Side
Platform (DSP), which are entities who bid on behalf of
hundreds or thousands of advertisers which set campaigns
with them. The dataset contains millions of bidding logs
during one month of Criteo’s operation. In all these logs,
Criteo successfully acquired ad-space for its clients through
real-time second-price auctions (each log represents a dif-
ferent auction and ad-space). Each log contains information
about the ad-space and user to which it was shown, the ad-
vertiser who created the ad, the price paid by Criteo for the
ad-space, and if a conversion occurred or not (besides from
other unused columns). The logs from the first three weeks
were used as training data, the next two days as validation,
and the last week as test.

The experiment was performed as follows. The user’s in-
formation and advertiser ids from the train data were used
to train the neural network for conversion prediction from
Pan et al. (2018). We validated the conversion prediction
model parameters choosing those that maximized the val-
idation AUC score. We used the predictions coming from
this architecture as if they were the truthful probabilities of
conversion. To obtain the r(w') € RE vectors at testing
time we used the conversion predictions predictions coming
form this architecture times a predefined price per conver-
sion. From the test data, we obtained total budgets to spend
for each advertiser, assuming that all advertisers expect
their budget to be spent at least by 95% (ay, = 0.95 for all
k € [K]). To simulate a real operation, we read the test logs
in order using batches of 128 logs (as updating a system at
every arrival is not realistic). We use 100 simulations for sta-
tistical significance and use traditional subgradient descent
on Step 7. of Algorithm 2. In all simulations 7" = 21073
(more experimental details in the supplement).

Figure 1 shows that our methodology obtains a higher profit
in comparison to the baseline. Also, almost all advertisers
got their total spending on the feasible range (above 95%

QOur
Method

+% ..

000 025 050 075 100 0 5000 10000 15000 20000
Budget Utilization Iteration Budget Depleted

74000 76000 78000 80000
Total Profit
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Figure 1. Box plots of the total profit obtained, and average budget
utilization and budget depletion iteration per advertiser over 100
simulations. Budget utilization corresponds to the percentage of
the total budget that an advertiser spent. If an advertiser never
depleted its budget, its depletion time equals the simulation length.

of their total target budget). In addition, advertisers tend
to deplete their budgets close to the end of the simulations.
Observe that few advertisers spent their budgets in average
closer to the beginning rather than the simulations end. We
found that those advertisers had relatively small budgets. We
saw that as budgets increased, advertisers average depletion
time steadily approached the simulation end.

4.2. Linear contextual bandits with bounds over the
number of actions.

At each period ¢ € [T, an agent observes a matrix W' €
R? x R™ and can decide between playing an action or not.
If it plays an action, it incurs a cost of p and selects a
coordinate i(t) € [d]. It then observes a reward r’ with
mean E[r!] = (Wit(t))TH*, where W, is the i(t)"™ row
of W* and 6* is an unknown parameter. We assume that
rt = (Wf,))"0* + € with € being a zero-mean noise in-
dependent of the algorithm history. If the agent does not
play an action it incurs no cost. The agent operates at most
for T" periods, requiring its total cost to be lower than T'
and higher than 0.57". The agent does not know the distri-
bution W over which Wt is sampled (but knows that they
are sampled i.i.d.). We can model this problem as having
Z={zeRE: Z?:l zi < 1}, W being the set of possible
matrix arrivals, f(z;60, W) = (W])T0,...,(WHTO)Tz,
and c(z;0,W*') = (p,...,p) ©® z. Even when Z allows
probabilistic allocations, there is always a solution of Step 3.
of Algorithm 2 which takes at most one action per period.

Experiment Details. We tried eight combinations of d x n,
run Algorithm 2 using 7" = 1000, 5000, 10000, use p = 4,
and run 100 simulations of each experiment setting. Each
simulation uses a unique seed to create §* and the mean
matrix W by sampling i.i.d. Uniform(—0.5,0.5) random
variables. Both 6* and W are then normalized to satisfy
[|0%]l2 = 1 and ||Wy |2 = 1 forall d’ € [d].

Besides the eight d x n configurations and three pos-
sible T' values, we tried six ways of obtaining the rev-
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enue terms (making a total of 144 experiment configura-
tions). First, to create W we either use Wt = W for
all t € [T), i.e. no randomness, or W = W + ¢! with
&' arandom matrix with each element being sampled i.i.d.
from a Uniform(—0.1,0.1) random variable. Also, given
a selected action i(¢) € [d] on period t € [T], the ob-

served revenue is either Wij(;)ﬁ* or Wi{t)ﬁ* plus either a

Uniform(—0.1,0.1) or Uniform(—0.5,0.5) random term.
We run Step 7. of algorithm 2 using subgradient descent.

We implemented Step 1. of Algorithm 2 in the following
ways. 1. Gaussian Thompson-Sampling as in Agrawal &
Goyal (2013). 2. Least-squares estimation. 3. Ridge re-
gression estimation. 4. Ridge regression estimation plus
a decaying randomized perturbation. 5. ‘Known 6*’. The
last method represents the case of a pure online optimiza-
tion problem. We also solve (1) optimally for each combi-
nation of experiment setting and simulation. In this case
OPT(P) = OPT(P,0), and each optimization problem in-
side OPT(P, 0) is a bag problem. Please refer to the supple-
ment for detailed descriptions of the methods, more experi-
mental details, and the proof that OPT(P) = OPT(P,0).

Table 1 shows the percentage of the average revenue
obtained against the best possible revenue achievable
over the 100 simulations when using (d X n) equal to
(50,50). A column label, such as (0.5,0.1) indicates that
a Uniform(—0.5,0.5) is added to the observed revenue
and that i.i.d. Uniform(—0.1,0.1) elements were added
element-wise to W' for each ¢ € [T]. ‘0.0’ indicates that no
randomness was added either to the revenue or W* matrices
depending on the case. (When W has no randomness, the
‘Known 6*” method matches OPT(P) as the optimal action
is always the same.)

T = 10000, | (0.0, | (0.1, | (0.5, (0.0, | (0.1, | (0.5,
(d x n) =(0.0)]0.0) |0.0) |01 |01 |0.1)
(50,50)
Least 432 |1 512 595|914 | 915 85.8
Squares

Thompson 98.1 132 |23 | 931|197 |35
Sampling

Ridge Reg. 449 | 529 | 65.0 | 95.6 | 945 | 84.9
Ridge Reg. + | 59.3 | 63.2 | 67.7 | 95.5| 944 | 85.2
Perturbation

Known 6* 100 | 100 | 999 | 96.7 | 96.7 | 96.8

Table 1. The results shown are the average revenue over 100 sim-
ulations relative to the best value possible. A column label, such
as (0.5,0.1) indicates that a Uniform(—0.5,0.5) is added to the
observed revenue and that ¢.i.d. Uniform(—0.1,0.1) elements
were added to each coordinate of W* for each ¢ € [T].

Table 1 shows interesting patterns. First, Thompson Sam-
pling implemented as in (Agrawal & Goyal, 2013) was the

best performing ‘learning” method when no randomness was
added, but performs terribly when the revenue had added
randomness. Differently, the Least Squares and the Ridge
Regression methods increased their relative performance
greatly when randomness was added to the revenue term.
Interestingly, adding uncertainty to ridge regression was a
clear improvement when W = W, but it did not help when
W* had randomness. These results show that how to apply
Step 1. of Algorithm 2 should depend on the application and
randomness. Finally, the results shown in Table | should be
considered just as illustrative as the methods’ parameters
were not tuned carefully, and neither the method’s particular
implementation as in the case of Thompson Sampling.
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