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Abstract: The focus of this paper is the development, numerical simulation and parameter analysis of a model of the
transcription of ribosomal RNA in highly transcribed genes. Inspired by the well-known classic Lighthill-Whitham-Richards
(LWR) traffic flow model, a linear advection continuum model is used to describe the DNA transcription process. In this model,
elongation velocity is assumed to be essentially constant as RNA polymerases move along the strand through different phases of
gene transcription. One advantage of using the linear model is that it allows one to quantify how small perturbations in
elongation velocity and inflow parameters affect important biology measures such as Average Transcription Time (ATT) for the
gene. The ATT per polymerase is the amount of time an individual RNAP spends traveling through the DNA strand. The
numerical treatment for model simulations includes introducing a low complexity and time accurate method by adding a simple
linear time filter to the classic upwind scheme. This improved method is modular and requires a minimal modification of adding
only one line of code resulting in increased accuracy without increased computational expense. In addition, it removes the
overdamping of upwind. A stability condition for the new algorithm is derived, and numerical computations illustrate stability
and convergence of the filtered scheme as well as improved ATT estimation.

Keywords: Advection Equation, Lighthill-Whitham-Richards Model, Ribosomal RNA, RNA Polymerases, Time Filter,
Traffic Flow Models, Transcription Time, Upwind Scheme

1. Introduction
This paper considers a simple one compartment model

that is to be used for future work in the construction of a
larger ribosome assembly model. Ribosome assembly relies
on several processes including the transcription of ribosomal
RNA, the transcription of mRNA of ribosomal proteins and
the translation of ribosomal proteins. Each of these processes
can be considered as an individual compartment that is coupled
to the others through inputs and outputs. Each compartment
process also relies on the availability of various amino acids
as well as initiation and termination complexes and signaling
molecules. The availability of many of these quantities vary
depending on the bacterial response to changes in the supply

of environmental nutrients. The goal of this paper is to begin
with a simple compartment model to understand how small
perturbations in two key parameters influence the output of the
compartment, a quantity providing a crucial measure that can
be viewed as a proxy for the efficiency of protein production.
The focus is on using a simple continuum model that allows
one to explore the accuracy of a new numerical method and to
use analytical results for the associated parameter analysis.

The continuum model takes the form of a linear advection
equation where the parameters of interest determine advection
speed and inflow. A time filter technique is combined with
the standard upwind algorithm for model simulations. It is
shown that the time filter can be applied repeatedly, and the



Applied and Computational Mathematics 2021; 10(6): 121-137 122

consistency and stability requirements for these approaches
are derived. Numerical results demonstrate that the filtered
approach improves accuracy for the same computational
expense as the original upwind scheme.

In the following subsection, we give a brief background
of the relevant biological application. The remainder of
the paper is organized as follows. Section 2 gives a brief
derivation of the transcription model, and a rescaling provides
a dimensionless form of the continuum model which is
convenient for introducing the computational schemes. The
algorithms used to numerically approximate solutions to the
mathematical model are given in Section 4. A time filtering
approach is combined with the classical upwind scheme, and
consistency, stability and convergence is addressed. Section
5 illustrates the numerical results. Finally, Section 6 contains
a discussion of two important parameters in the transcription
model, and it is shown that the filtered scheme provides
accurate numerical approximations of biological quantities of
interest related to these parameters. Perturbations of these
key parameters are interpreted in the context of the original
transcription model.

Protein synthesis is a complex biopolymerization process
requiring an immense amount of cellular energy. Transcription
and translation are two key stages of protein synthesis, and
a full understanding and model characterization of these
mechanisms is an active area of research for experimentalists
and modelers [1, 2, 3, 4]. Transcription involves the transfer
of genetic information from DNA to several types of RNA
including messenger mRNA, transfer RNA, ribosomal RNA
and others. Transcription begins when an RNA polymerase
(RNAP) binds to a promoter sequence of a gene (initiation)
and then proceeds through the elongation process. During
elongation, the RNAP motors along the coding region of the
gene, reading the DNA strand and generating a single-stranded
RNA copy. Transcription ends at the gene’s termination
region, where the RNAP releases the nascent copy of RNA
and unbinds from the DNA strand. When mRNA is produced
from this transcription process, the mRNA then becomes the
ribbon that is translated by a ribosome to form a chain of
amino acids that will eventually become a protein. When the
transcription process yields rRNA or tRNA, it is not translated
but provides necessary building blocks for other RNA-protein
complexes, such as ribosomes, to form. Ribosomes translate
mRNA strands in order to form protein, and this activity
accounts for a large amount of the energy use in the cell.
A DNA strand contains several genes, each of which codes
for a particular type of RNA, and the rrn operon codes to
produce the rRNA strand. The ribosomal assembly process
and subsequent protein production depends explicitly on the
cell’s ability to produce rRNA via transcription of the rrn
operon.

Parameters that are key to the model control the initiation
rate and the elongation rate of RNA polymerase on the rrn
operon. While the density of polymerases on most genes is
believed to be low, the rrn operon is a prototypical example
of a gene in the bacteria E. coli where the density of RNAPs
is observed to be very high. In such genes, transcriptional

elongation of RNAPs is not uniform over the extent of the
strand or over the time horizon of a cell cycle. Indeed,
bacteria are capable of adjusting their growth rate according
to the available resources in their environment, and they can
respond quickly and efficiently to sudden changes in these
resources. Environmental changes can affect both the initiation
and elongation rates of the RNAPs transcribing the gene. This
paper considers a simple continuum model for transcription
which focuses on the crucial biological measure of average
transcription time and the effects of small perturbations on this
measure.

Figure 1. Schematic diagram of the transcription process on the rrn operon. Three RNA
polymerase transcribe the DNA strand, and nascent rRNA strands can be seen emanating
from each polymerase.

2. Mathematical Models
In its simplest form, the transcription process is

characterized by the RNA polymerase moving in a preferred
direction with some velocity on an individual gene that forms
a segment of DNA strand. Many types of mathematical
models have been employed to capture the overall behavior
of this complex biological phenomena, and these date back
as far as the 1960’s and continue through present day. Such
models range from the stochastic, such as the well-known
Totally Asymmetric Simple Exclusion Process (TASEP) and
its variants, to systems of ODEs, and finally to continuum
models. Early work using stochastic approaches to model
protein synthesis can be found in [5, 6] with fundamental work
on Markov processes that provided the statistical theoretical
foundations of TASEP done in 1970 by Spitzer [7]. As
early as the 1980’s, systems of ordinary differential equations
were explored as a means of determining the rate-limiting
step [8]. At the turn of the century, interest in the TASEP
models resulted in the analysis and derivation of closed
form solutions and model extensions to more biologically
relevant constructions [9, 10, 11, 12, 13]. Ordinary and partial
differential equations have also been explored in recent years
to establish connections between the stochastic, the discrete
and continuous models [14, 15, 16, 17, 18].

One simple continuum model that has been used to explore
this phenomena is the classical first order traffic flow model
[19, 20, 21]. The well-known Lighthill-Whitham-Richards
(LWR) continuum model was proposed by researchers in the
1950’s in order to analyze and quantify traffic flow, but it
was soon dismissed by traffic researchers because it didn’t
account for driver decision-making and response times during



123 Lisa Davis et al.: An Accurate and Stable Filtered Explicit Scheme for Biopolymerization
Processes in the Presence of Perturbations

changing road conditions. More recently there has been
debate over higher order continuum models that smooth out
discontinuities in density and their ability to predict negative
flows and speeds [22], and others have proposed models that
ensure that the trajectory of a car is not influenced by what
happens behind it on the road [23, 24]. These types of models
are still being compared to assess their suitability for a variety
of modeling situations such as stop-and-go phenomena as well
as others [25].

The LWR equation takes the form of a nonlinear
conservation law that describes the density of cars travelling
on a one-lane roadway [26, 27]. The density evolves in time
and space according to its relationship with the governing
velocity field. Inspired by these traffic flow models, the authors
use a simple model problem to focus on the fundamental
relationships between flow and density, the parameter analysis
and the development of a numerical scheme that provides
a computationally inexpensive boost to accuracy. The
fundamental property one seeks to translate from traffic flow
phenomena to transcription is the relationship between the
flow rate and the RNAP density on the strand. The flow rate is
interpreted as the number of RNAPs passing a specific position
on the gene per unit time, and the density of RNAPs is the
average number of RNAPs per length of the gene.

The main biological quantity of interest is related to the
gene’s overall transcription rate and the time to transcribe
the length of the strand. This quantity measures the gene’s
ability to be transcribed by many RNAPs simultaneously, and
this is considered to be a proxy for the amount of protein
that the bacteria can produce in a life cycle. This can be
described mathematically in terms of the model variables and
parameters. The average transcription time per polymerase
is the amount of time an individual RNAP spends during
the initiation, elongation and termination processes. For the
simple case considered here, one can rely on the method of
characteristics to compute trajectories of individual RNAPs on
the DNA strand, and thereby compute transcription times of
those individual particles using an analytical formula. Upon
initiation at the left boundary, the RNAP particle traverses the
domain along a path governed by the flow velocity v(x, t).
This same particle then exits the domain at a later time.

3. A Simple Continuum Model

We seek to describe the elongation of RNAPs on a DNA
strand in the same abstract manner as cars travelling around a
roadway. This involves the simplification that the DNA strand
is unwound and identified with a long, straight roadway on
which a velocity field is defined. In the general conservation
law form, the velocity field may depend on the density of the
RNAPs as a function of space and time, but we consider a
simple case here in order to focus on the parameter analysis
and the numerical schemes.

The classical PDE model in conservation law form is given
as

ρt + [v(x, t)ρ]x = 0 x ∈ (0, 1), T > 0 (1)

with boundary and initial conditions given by

f(ρ(0, T )) = f`, ρ(x, 0) = ρ0 (2)

where the flow or “flux” is defined as

f(ρ) = v(x, T )ρ(x, T ) (3)

and v(x, T ) is a velocity field. The inflow boundary is at
x = 0 with x = 1 as outflow. The inflow boundary
represents the initiation site or the promoter site for the gene
under consideration, and the outflow boundary corresponds
to the gene’s termination site. The variable ρ(x, t) denotes
the density of the RNAPs at the spatial point x along the
strand at time t. The well-known LWR model is nonlinear and
uses the elongation velocity field v(x, t) = vmax(x, t)(1 −
ρ(x, t)), which describes the speed at which the RNAP is
travelling on the strand. Low density corresponds to RNAPs
elongating near a maximum speed vmax(x, t) while a high
density of RNAPs on the strand results in a lower elongation
velocity. Even using constant initial and inflow conditions
in (2) that result in an equilibrium state for the density,
ρ(x, t), in the presence of velocity perturbations, one can
encounter shock and rarefaction waves using the classical
LWR model. Here we begin with a linear model with
discontinuous solutions to explore parameter analysis in a
setting where the discontinuities in the solution are completely
understood.

As a model problem, we consider the simplest choice for
the velocity field in the case where it is constant v(ρ) = vmax.
Using this expression for velocity in equation (1) leads to a flux
function that is defined to be f(ρ) = vmax ρ, and the linear
PDE given by

∂ρ

∂T
+

∂

∂x
(vmaxρ) = 0, 0 < x < 1, T > 0 (4)

with a boundary condition and an initial condition given by

ρ(x, 0) = ρ0 (5)
f(ρ(0, T )) = vmaxρ(0, T ) = f` (6)

The spatial variable is scaled so that x = 1 corresponds
to the length of the gene on the DNA strand. The constant
vmax is measured as the fraction of the strand that the RNAP
transcribes per second. The time variable T is measured
in seconds. The density ρ is measured with units of the
total number of RNAPs per strand, and with the flux used
in (4), the inflow condition means that vmaxρ(0, T ) = f`.
The PDE model in (4) is known as the linear advection
equation, and it can be scaled to a convenient form. Many
quantities can be calculated analytically for this equation,
and numerical methods for solving this equation are well
understood. Rescaling the equation to a dimensionless form
allows for a thorough parameter analysis and testing of the
numerical scheme. The details of the rescaling are given in
Section 7, and in the sections that follow, we simply work with
the dimensionless form of the model. Connections are made
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to the original biological model once the numerical results are
presented.

The parameters vmax, f` and ρ0 in (4) - (6) are important for
model analysis. Some parameters may be dealt with through
dimensional analysis; for example, by proper scaling of the
original dimensioned PDE, vmax is set to equal 1. However,
perturbations of this parameter are important for the biological
application, and Section 6 explores this.

3.1. Linear Model Problem

Here we focus on the linear model and introduce a time
filter approach to improve the numerical approximations
obtained through the classical upwind scheme. After
nondimensionalizing in Section 7, the linear problem has the
form

ρt + v̄ρx = 0 (7)
ρ(x, 0) = ρ0 (8)
f((0, t)) = v̄ρ(0, t) = ρI(t) (9)

The parameter v̄ represents the linear advection speed,
and it has a nominal value of v̄ = 1 from Section 7. In
the sections that follow, we consider small perturbations to
this parameter as we construct the filtered numerical scheme,
and we introduce it here for the sake of consistency. Note
that the parameters appearing in the initial and boundary
condition above, ρ0 and ρI represent dimensionless quantities
that appear once the equation has been scaled appropriately.

For equation (7) the flux is f(ρ) = v̄ρ, and the appropriate
flux condition at the inflow boundary is given in terms of the
density variable.

Also note that we have relabelled the notation returning
to our original variable so that ρ(x, t) represents the
dimensionless density variable, and x and t are dimensionless
in what follows. The model in (7) - (9) is convenient for
expressing an analytical solution, testing simulation methods
and analysing the impact of small perturbations on key
measures. Each of these is carried out in the following section.

3.2. Analytical Solutions, Parameter Dependence and
Perturbations

Equation (7) is a scalar, linear, constant-coefficient PDE that
is of hyperbolic type. The general solution of this equation has
characteristics in the form of x(t) = v̄t+ x0. For the equation
(7), we see that along x(t) the time derivative of ρ(x(t), t) is:

d

dt
ρ(x(t), t) = ρt(x(t), t) + ρx(x(t), t)

dx

dt
(10)

= ρt(x(t), t) + v̄ρx(x(t), t) (11)
= 0 (12)

Thus ρ(x, t) is constant along the characteristics. If we
denote the initial and boundary conditions as ρ(x, 0) = ρ0

and ρ(0, t) = ρI(t) = ρ` respectively, where ρ` is a fixed

parameter, then the analytical solution is given by,

ρ(x, t) =

{
ρ`, 0 < x < v̄t
ρ0, v̄t < x < 1.

(13)

We investigate perturbations in velocity and initial and
boundary conditions, their effects on the solution and the
accuracy of our numerical schemes in Section 6. Given a small
perturbation in the advection velocity, say v̄ = 1 + ε where
0 ≤ ε ≤ 0.5, the analytical solution is constant along the
characteristic lines of x(t) = (1 + ε)t + x0 = v̄t + x0 and
is described by (13).

We study perturbation in the inflow condition separately;
that is, we fix the advection velocity at v̄ = 1 when the inflow
parameter is perturbed. Let 0 ≤ ε ≤ 0.1 be a perturbation in
the inflow ρ`, and let ρ̂ denote the solution to the perturbed
equation given by,

ρ̂t + ρ̂x = 0 (14)
ρ̂(x, 0) = ρ0 (15)
ρ̂(0, t)) = ρ` ± ε (16)

The characteristics lines are in the form of x(t) = t + x0

and the analytical solution is formulated as,

ρ̂(x, t) =

{
ρ` ± ε, 0 < x < t
ρ0, t < x < 1.

(17)

4. Numerical Schemes and Time Filter
for the Model

Two methods for numerical simulation of the linear model
are considered here. The first is the basic upwind scheme,
and we introduce a time filter that is amended to the upwind
scheme in order to improve accuracy. A description of the
discretization is given, and both schemes are outlined. A
stability condition for the filtered scheme is derived, and it is
shown that the filtered scheme is guaranteed to converge when
the appropriate CFL condition is satisfied.

Discretize the domain [0, 1] × [0, T ] using a mesh width
h = ∆x and a time step k = ∆t. This will define a collection
of grid points by

xj = jh, j = 0, 1, 2, . . . M (18)
tn = nk, n = 0, 1, 2, . . . N (19)

For simplicity, we use a uniform mesh with h and k
constants. We denote the true solution ρ evaluated at the mesh
points as follows:

ρnj = ρ(xj , tn),

and two algorithms are proposed for approximating these
values at the grid points. The approximations are dentoed as
Pnj . That is,

Pnj ≈ ρnj = ρ(xj , tn)
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4.1. Upwind Scheme

The upwind scheme is a classical method that provides a
simple choice for solving the linear advection equation. It is
first order accurate, and the method is guaranteed to be stable
and convergent provided that the CFL condition is satisfied. In
terms of the notation presented here, the method is expressed
as

Pn+1
j = Pnj − ν

(
Pnj − Pnj−1

)
, (20)

for j = 1, 2, . . .M and n = 1, 2, . . . N . The parameter ν can
be defined to simplify the statement of the method

ν = v̄
∆t

∆x
,

and for a fixed choice of the parameters, the value of ν is
constant. The upwind method is known to be stable when

0 ≤ ν ≤ 1. (21)

This is the well-known CFL condition, and it is necessary
for this inequality to be satisfied in order for the numerical
method to be convergent. [28, 29, 30, 31].

4.2. Upwind with Time Filter Scheme

This section introduces a scheme that combines a time filter
with the fully explicit upwind method introduced in Section
4.1. This approach is inspired from the article [32] as well
as early work applying a time filter within a PDE framework
[33]. The idea as introduced in [32] is that the filter increases
the accuracy of the scheme and reduces the discrete curvature
of the solution simply by adding a single line of code. In
addition, the scheme can be easily extended to a variable time
step. In our application, the algorithm can be viewed as a
two-step method where the unfiltered approximation at each
time step is computed using the upwind method as step 1,
and the approximation is then filtered in step 2. The filtered
approximation becomes the next iterate in the scheme and is
constructed as follows.

Step 1:

P̃n+1
j − Pnj

∆t
+ v̄

Pnj − Pnj−1

∆x
= 0 (22)

Step 2:

Pn+1
j = P̃n+1

j − γ

2
(P̃n+1
j − 2Pnj + Pn−1

j ) (23)

where P̃n+1 and Pn+1 stand for the unfiltered and filtered
density at any xj respectively. As shown in [32], the
combination of backward Euler with the time filter in step 2
is 0-stable for −2 ≤ γ ≤ 2 and A-stable for −2

3 ≤ γ ≤ 2
3 .

Furthermore it is noted that the filtering process can be applied
twice. In that case, the second step will consist of two filtering
equations resulting in an increase value of the filter parameter
γ to γ(2 − γ

2 ). The two filter equations can be combined and

written as one single equation given below,

Pn+1
j = P̃n+1

j − γ

2
(2− γ

2
)(P̃n+1

j − 2Pnj + Pn−1
j ) (24)

For the case of linear differential equations the two-step
method for time filtering can be simplified into a single step
method. Solving equation (23) for the filtered variable and
substituting into the upwind scheme in equation (22) yields
a one-step scheme. Below we show the obtained one-step
scheme for the choice of filter parameter γ = 2

3 .
Algorithm 4.1. Upwind method with the time filter assuming

a constant time step with γ = 2
3 . Given Pnj−1, P

n
j and Pn−1

j ,
find Pn+1

j satisfying the following

Pn+1
j =

2

3
(2− ν)Pnj −

1

3
Pn−1
j +

2

3
νPnj−1 (25)

Similarly, the two filtering equation in (24) provides the
following single step method

Pn+1
j =

4

9
(
7

2
− ν)Pnj −

5

9
Pn−1
j +

4

9
νPnj−1. (26)

Proof The equation in (25) is obtained by solving (23) for
P̃n+1 in step 2 and replacing it into the upwind scheme in step
1. Equation (26) is obtained in a similar fashion using (24).

4.3. Stability Condition for the Upwind with Time Filter

The upwind scheme in (20) is first order accurate, and the
method is guaranteed to be stable and convergent provided that
the CFL condition is satisfied [28, 29]. One can derive similar
consistency and stability results for the upwind method that
uses the time filter defined in Algorithm 4.1.

Proposition 4.1. The scheme (25) in Algorithm 4.1 is
consistent of first order in both O(∆t) and O(∆x). When
0 < ν ≤ 1

2 , the method is stable and convergent.
Proof
The local truncation error for Algorithm 4.1 is defined by

τn =
1

∆t

(
N (ρn)− ρn+1

)
where N (ρ) represents the right side of equation (25)
evaluated at true solution ρ of (7).

N (ρnj ) =
2

3
(2− ν)ρnj −

1

3
ρn−1
j +

2

3
νρnj−1

with ρnj = ρ(xj , t
n).

It follows that

τn = −2

3

(
ρt + v̄ρx + ∆tρtt −

1

2v̄
ρxx∆x+O(∆t2)

)
= −2

3

(
∆tρtt −

1

2v̄
∆xρxx +O(∆t2)

)
Therefore, the local truncation error for the method is
O(∆t), and the method is first order.

For stability of the method, we follow the Modified
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Equation analysis in order to derive a CFL condition for the
method, see Chapter 8 of [28]. Define a function v(x, t) that
agrees with Pnj in (25) at the grid points in the mesh, where
we identify x = xj and t = tn. Then u(x, t) satisfies

u(x, t+∆t) =
2

3
(2−ν)u(x, t)−1

3
u(x, t−∆t)+

2

3
νu(x−∆x, t)

Using Taylor expansions about the point (x, t), one arrives
at

ut + v̄ux = −∆t utt +
1

2
v̄∆x uxx +O(∆x2)

or
ut + v̄ux =

1

2
v̄∆x uxx −∆tutt (27)

if we neglect higher order terms. Differentiating (27) with
respect to t, one can show that

utt = v̄2uxx +O(∆t).

Neglecting the terms of order O(∆t), this expression can
replace the term involving utt in (27) to obtain

ut + v̄ux =
1

2
v̄∆x uxx −∆t v̄2uxx

= v̄∆x

(
1

2
− ν
)
uxx

Hence the numerical solution for the scheme propagates
with the correct advection speed v̄, but it also exhibits some
diffusion and smearing of the wavefront. If one chooses the
parameter ν = 1

2 , then the diffusion coefficient vanishes.
Moreover, the diffusion coefficient is positive only when

0 < ν <
1

2
,

and this yields a stability condition for the scheme in
Algorithm 4.1. Since the method is both consistent and stable
when the time step ∆t is chosen so that the CFL condition is
satisfied, then by the Lax Equivalence Theorem, the method is
convergent.

For the sample problems considered in this paper, the CFL
condition reduces to imposing the inequality

∆t ≤ 1

2v̄
∆x.

For the results presented in the next section, the two cases
arise where v̄ = 1 or v̄ = 1 + ε. A similar stability and
convergence conclusion holds for when the double filtering
process is applied. The following statement provides the CFL
condition for this particular case.

Proposition 4.2. The scheme (26) in Algorithm 4.1 is
consistent of first order in both O(∆t) and O(∆x). When
0 < ν ≤ 2

7 , the method is stable and convergent.
Proof
This result can be obtained easily following the same steps

shown in Proposition 4.1.

5. Numerical Results

This section presents a few numerical illustrations including
the stability and convergence properties for the numerical
schemes introduced above. First we examine the CFL
condition for both filtered upwind schemes when the filter
is applied to the original linear model in equations (7)-(9)
once and twice. Second an error analysis and convergence is
shown for upwind, filtered upwind and double filter upwind
schemes leading us to a proper time step for our calculations
in the following sections. All the computations in this paper
are carried out using the programming language Python. The
results in this section are given for the case when ρ0 = 0, and
the inflow condition below. These conditions are chosen in
order to compare the performance of the time filtered scheme
with that of the standard upwind on a model problem that
contains a jump discontinuity.

ρI(t) =

{
ρ`, 0 < t < 3
0, t ≥ 3

(28)

5.1. Numerical Stability

The numerical results in this section convey our choice
of time step considering a balance between stability and
generating a smooth curve free of oscillations. As proved
in Proposition 4.1, the CFL condition for filtered upwind
in (25) is 0 < ν ≤ 1

2 . Figure 2 shows that with the
choice of ∆t = 1

2∆x, the solution surface in phase one
exhibits oscillations on the top surface. As numerically tested
decreasing the time step by about 20% to ∆t = 2

5∆x, the
oscillations disappear resulting in a smooth surface. Similarly,
when using a double time filter with the time step ∆t = 2

7∆x
based on the CFL condition shown in Proposition 4.2, we
experience the presence of small oscillations on the top surface
area. Reducing the time step to ∆t = 0.22∆x by about 23%,
the surface becomes smooth, see Figure 3.

5.2. Numerical Error and Convergence

In order to estimate accuracy and demonstrate convergence
in this section, we examine the computational error for
approximated density using upwind, upwind with one time
filter and double time filter over the finite time interval [0, 1]
or final time T = 1. Denote the error at the grid point
(xj , tn) as Enj = ρnj − Pnj , and our choice for the error
norm is the L1-norm defined as ||En|| = ∆x

∑M
j=0 |Enj | for

n = 0, 1, 2, . . . , N . In the error calculations for (20) and
(25), we assume a fixed ratio ν = ∆t

∆x = 2
5 for the case of

v̄ = 1 as discussed in the previous section for a numerical
solution free of oscillations. This ratio is taken equal to 1

5 for
computations using a double time filter introduced in equation
(26). Letting ∆t → 0 by refining the spatial grid, i.e. ∆x, the
error calculations at different times within the interval [0, 1] are
given in Tables 1 and 2. As one observes at each fixed time , i.e.
t = 0.2, 0.4, 0.6, 0.8 and 1, the errors using all three schemes
become smaller converging to zero as ∆x → 0. Comparing
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the errors in Table 1 for the approximated density, Pnj by
upwind and upwind with time filter, the latter scheme shows
a better accuracy at all computed times. The errors in Table
2 for the density approximations via the double time filter in
equation (26) presents a close accuracy to the upwind with one
time filter; however, it requires a finer time step. Therefore it is
not viewed to be as computationally efficient as upwind with
one time filter.

Calculations to estimate the rate of convergence at t = 1 for
all the schemes are listed in Table 3. Given a grid size defined
as hi = 2−(i+5) for i = 1, 2, 3, . . . , 6, the convergence rate
of the error is determined by calculating the exponent a in the

following expression,(
hi
hi+1

)a
=
||E(hi)||
||E(hi+1)||

(29)

The convergence rate values indicate that the 1-norm of the
errors decay at the rate of about 1

2 in all cases. This means that
error decreases like (∆x)

1
2 . Although the methods are all first

order based on the local truncation error analysis in Section
5.3, these results are valid for smooth solutions only. One
might expect a lower rate of convergence for discontinuous
solutions as indicated in Section 8.7 of [28].

(a) ∆t = 1
2 ∆x

(b) ∆t = 0.45∆x

(c) ∆t = 0.4∆x

Figure 2. The density surface plot for first phase using upwind with one time filter in equation (25) of Algorithm 4.1 and different choices of ∆t.
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(a) ∆t = 2
7 ∆x

(b) ∆t = 0.25∆x

(c) ∆t = 0.22∆x

Figure 3. The density surface plot for first phase using upwind with double time filter in equation (26) of Algorithm 4.1 and different choices of ∆t.

Table 1. The density approximation for upwind using 1-norm with ∆t = 2
5 ∆x.

L1 Errors using Upwind

∆ x t=0.2 t=0.4 t=0.6 t=0.8 t=1

2−6 1.67227e−2 2.31087e−2 2.45148e−2 3.22691e−2 1.46734e−2

2−7 1.15544e−2 1.62118e−2 1.98373e−2 2.29609e−2 1.10689e−2

2−8 8.10591e−3 1.14828e−2 1.40368e−2 1.62686e−2 8.1833e−3

2−9 5.74139e−3 8.13431e−3 9.94978e−3 1.14867e−2 5.96816e−3

2−10 4.06715e−3 5.74334e−3 6.80282e−3 8.11829e−3 4.31221e−3

2−11 2.87167e−3 4.05914e−3 4.97113e−3 5.74109e−3 3.09567e−3
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Table 2. The density approximation for upwind with filter using 1-norm with ∆t = 2
5 ∆x.

L1 Errors using Upwind with Filter

∆ x t=0.2 t=0.4 t=0.6 t=0.8 t=1

2−6 1.08676e−2 1.42594e−2 1.35085e−2 1.93542e−2 7.41581e−3

2−7 7.12969e−3 9.67841e−3 1.17014e−2 1.346341e−2 5.75938e−3

2−8 4.83920e−3 6.73171e−3 8.18264e−3 9.46543e−3 4.37694e−3

2−9 3.36585e−3 4.73276e−3 5.77234e−3 6.65238e−3 3.26458e−3

2−10 2.36636e−3 3.32619e−3 3.84139e−3 4.69451e−3 2.39717e−3

2−11 1.66309e−3 2.34726e−3 2.87294e−3 3.31711e−3 1.74039e−3

Table 3. The density approximation error for upwind with twice time filter using 1-norm and ∆t = 1
5 ∆x.

L1 Errors using Upwind with Double Filter

∆ x t=0.2 t=0.4 t=0.6 t=0.8 t=1

2−6 1.23805e−2 1.66519e−2 2.00012e−2 2.30880e−2 9.45654e−3

2−7 8.32595e−3 1.15513e−2 1.41535e−2 1.62979e−2 7.34205e−3

2−8 5.77565e−3 8.14898e−3 9.96176e−3 1.15347e−2 5.5362e−3

2−9 4.07449e−3 5.76734e−3 6.59036e−3 8.13089e−3 4.09231e−3

2−10 2.88367e−3 4.06544e−3 4.97358e−3 5.74322e−3 2.98432e−3

2−11 2.03272e−3 2.87161e−3 3.5171e−3 4.06051e−3 2.15619e−3

Table 4. The convergence rate estimate for upwind with double time filter, filtered once and upwind at t = 1 according to the error values in Tables 1 and 2 using the values of i to
estimate the value of a in equation (29).

Rate of Convergence

i Double Filter Filtered Upwind

1 0.365129996 0.364690772 0.406698343

2 0.407270352 0.395991797 0.435754044

3 0.435998053 0.423025599 0.455396211

4 0.455513924 0.445564016 0.468859993

5 0.468917266 0.461922391 0.478176194

(a) Error plots at t = 1 (b) Log-log plots at t = 1

Figure 4. The L1-error and log-log plots for the filtered and upwind schemes at t = 1 with ∆t = 2
5 ∆x.
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(a) x = 0.25 (b) x = 0.5

(c) x = 0.75 (d) x = 1

Figure 5. The density plot for 0 < t < 1 at x = 0.25, 0.5, 0.75 and 1 respectively with the choice of ∆x = 1
128 and ∆t = 2

5 ∆x.

Figure 4 shows a graphical comparison for the error between
the density approximation using the upwind scheme and the
filtered upwind scheme at time t = 1 as well as a graphical
comparison for the rate of convergence using a log-log plot.
Although both schemes have the same order of convergence as
shown in the log-log plot, the error plot in 4a shows that the
filtered upwind scheme exhibits a significant reduction in error
over that of the upwind scheme for a coarse mesh size. Hence
the filtered scheme has advantages when used in a broader
ensemble model simulation framework.

The numerical solutions obtained by upwind and filtered
upwind versus the analytical solution over the time interval
[0, 1] are demonstrated in figures 5 and 6. These figures
demonstrate a comparison of the numerical solutions as
functions of one variable at a time. In Figure 5, the
approximated density is calculated at different locations as
a function of time and in Figure 6 (a)-(c), it is shown at
different times as a function of space. Figure 6 (d) illustrates
the numerical solutions along the characteristic line x =
t. As one can observe, the upwind with time filter drops
down to zero faster than upwind thus capturing the jump

discontinuity quicker. All the plots present a better accuracy
of the numerical solution via filtered upwind. Overall our
numerical results is in favor of using the time filter. Although
all the numerical schemes that we have tested share the same
rate of convergence, the calculated errors speak of a smaller
error and therefore a better estimation when a time filter is
applied.

6. Parameter Analysis for the Biological
Model

In this section, parameters related to the physical properties
of the rrn operon are used to connect the output of the
PDE model simulations given in Section 5 with the original
transcription model. We focus on the estimation of the
average transcription time (ATT) for an RNA polymerase,
an important biological measure of cell fitness. An accurate
estimate of the ATT is crucial to understanding a full
ribosome assembly model as it describes the amount of time
required to produce a single strand of rRNA, a fundamental
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building block of the ribosome. Results in this section
illustrate that the filtered algorithm is superior to upwind when
approximating the ATT, and the effects of perturbations on
various parameters are explored in this context. Perturbations

of the elongation velocity are considered first as the velocity is
key to determining the average transcription time of individual
RNAPs. The effects of perturbations in the initiation rate of
RNAPs at the promoter site are also discussed.

(a) t = 0.25 (b) t = 0.5

(c) t = 0.75 (d) x = t

Figure 6. Figures (a)-(c) are the density plots for 0 < x < 1 at t = 0.25, 0.5 and 0.75 respectively and figure (c) is the density plots along the characteristic line x = t with the
choice of ∆x = 1

128 and ∆t = 2
5 ∆x.

The results contained in this section are based on gene
information gathered experimentally and reported in the paper
[34]. In particular, the length of the rrn operon isL = 5500nts.
The average density of RNAPs on the gene is reported as
ρ` = 51.5 RNAPs per strand, and we refer to this average value
as the equilibrium density for the purposes of the continuum
model considered in this paper. The maximum density of
RNAPs on the strand is given by ρmax = 110 RNAPs per
strand. The average initiation rate, or the rate at which RNAP
molecules initiate onto the strand, is assumed to be 0.86 RNAP
molecules per second. The parameter vmax = 91nts per
second is the average elongation rate of the RNAP, and when
it is converted to the units of strand per second, then it is given

as below.

vmax =
91

5500
≈ 0.016545 strand per second

While vmax describes the average elongation rate, it is
known that the elongation rate of individual RNAPs can vary,
and a range for the elongation rate is reported as 70 - 200nts
per second, see page 3744 of [34]. We consider perturbations
in the velocity of the linear model problem once it has been
nondimensionalized. For the simplest case, we do not consider
a time dependent velocity but simply a constant velocity where
the parameter is perturbed. That is, v̄ = 1 + ε in equation
(7). Taking into account the rescaling in Section 7, the
perturbations correspond to values of average elongation rate
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that range from 90nts per second to 136nts per second. In the
results that follow, we report on only the positive perturbations
of the elongation velocity. Similar results were obtained with
negative perturbations of the velocity, but we omit those for
brevity.

The initial and boundary conditions for the linear models
(unperturbed and perturbed) are imposed so that at t = 0, the
strand is empty, that is, ρ0 = 0 in (7). The total time that
the model is simulated is partitioned into three phases. These
correspond to a ramp-up (to equilibrium density) phase and a
ramp-down phase separated by an equilibrium phase. We refer
to these in the following way. Phase I is the time required
for the density across the entire strand to ramp up to the
equilibrium density, ρ`, after the simulation begins. Phase II
corresponds to the amount of time the density, ρ(x, t) remains
at the equilibrium density value. During the simulation at some
time after Phase II is established, the inflow condition is set
to 0 so that RNAP initiation is no longer permitted. For the
results presented here, we chose this time to be at t = 3 units

of dimensionless time. In terms of the rescaling outlined in
Section 7, this corresponds to an inflow boundary condition of
the form in equation (28). Phase III corresponds to the amount
of time required for the entire strand to be emptied of RNAPs
after the inflow condition is set to 0. For all calculations in this
work, the parameter ρ` = 0.47. Figure 7 shows the solution
surface for all the three phases using the analytical solution.

Note that the time durations of all phases are analytically
computable for the linear model, and the values are controlled
by specification of initial and boundary conditions, along with
the perturbation in the velocity in (7). The time duration of
Phases I and II depend on the elongation velocity, specifically
whether it is perturbed by ε or not. The time duration of Phase
III is exactly the same value as that of Phase I. In the following
sections, we give the analytical expressions of those values,
relate them to the original biological model outlined above
and report on the numerical simulations’ ability to accurately
estimate these time durations.

Figure 7. The density surface plot for 0 ≤ t ≤ 4 and 0 ≤ x ≤ 1.

6.1. Perturbations in the Average Elongation Velocity

For the linear PDE model, the ATT for each RNAP is
constant, and it is determined by the flow velocity parameter.
Another consequence of the linear PDE regime is that the
length of Phase I is equal to that of the ATT. The characteristics
of the governing PDE are all one needs to consider in order
to analytically compute the ATT. Perturbations in the average
elongation velocity directly influence the value, and here we
give the analytical value based on the nature of the perturbation
in the velocity term. With regards to Phase I, the ATT is also
the time required for the density across the strand to ramp up
to the equilibrium density after the simulation begins at t = 0.
The ATT is easily computed analytically using a sketch of
characteristic lines.

With ε = 0 and v̄ = 1 in the governing PDE (7) - (9), the
time to reach equilibrium density from the beginning of the
simulation is one non-dimensional unit of time. This value is
labelled t? = 1 in the discussion that follows. If the velocity is
perturbed as v̄ = 1 + ε in (7) - (9), then we denote the time to
reach equilibrium density as t+, which is given by

t+ =
1

1 + ε

One can explore the accuracy with which each numerical
scheme is able to estimate the ATT. In order to estimate
this value, one finds the first discrete time value tK when
PKM − 0.46 ≥ 0, where xM = 1.0. In order to assess
the scheme’s ability to estimate the ATT in the presence of
velocity perturbations, this is computed for several values of
ε. Table 5 gives the analytical values of the time duration of
Phase I along with the errors in the approximations calculated
using both the filtered scheme in Algorithm 4.1 and the
upwind scheme described in equation (20). The filtered
scheme is consistently more accurate than the upwind scheme,
reducing the error by a factor of about 1/3. It is notable
that the errors for both schemes are smaller for larger values
of the perturbation parameter ε, and this is expected since
the results in Figure 8 illustrate that both numerical schemes
more accurately estimate the jump in the function ρ(1, t) for
larger perturbations. The wave travels more quickly across the
domain, and the approximation schemes have less time for the
discontinuity to smear.
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Table 5. Analytical and numerical estimates for the duration time of Phases I and III. The second column gives the dimensionless value of the time duration based on the analytical
expressions above. The columns labelled Filtered report the error in the numerical estimate of the duration time using the filtered upwind algorithm from Algorithm 4.1. Those columns
labelled Upwind give the error in numerical estimates of the duration time using only the upwind scheme in (20) without filtering. The grid size for all calculations presented in the
table is ∆x = 1

128 , and ∆t = 0.3∆x. Note that this choice for ∆t satisfies the CFL condition in Proposition 4.1 for all choices of ε in Column 1.

Estimation Errors Estimation Errors
Phase I, III Phase I Phase I Phase III Phase III

0 t? = 1.0 0.114 0.157 0.044 0.056

0.1 t+ = 0.909 0.093 0.138 0.037 0.051

0.2 t+ = 0.833 0.077 0.124 0.030 0.044

0.3 t+ = 0.769 0.058 0.11 0.023 0.039

0.4 t+ = 0.714 0.044 0.100 0.021 0.037

0.5 t+ = 0.667 0.030 0.091 0.016 0.032

(a) ε = 0.1 (b) ε = 0.2

(c) ε = 0.3 (d) Upwind with time filter

Figure 8. The density plot along x = 1 for perturbed velocity by ε. Plots (a), (b), and (c) show the comparison between upwind and upwind with time filter with the perturbed
velocities. Plot (d) presents the approximated density using upwind with time filter for all velocity perturbations over the entire process including all the phases. The grid size for all
calculations presented in the table is ∆x = 1

128 , and ∆t = 0.3∆x. Note that this choice for ∆t satisfies the CFL condition in Proposition 4.1 for all choices of ε in Column 1.

One can relate the range of perturbations in ε to that of the
original dimensioned model in (4)-(6) to assess their effects
on the corresponding perturbations in average transcription
time for the rrn gene. We explore this for Phase I in Table
6 below. The numerical algorithms show similar behavior in
their predictions of the time duration for Phase III.

Table 6 shows the average elongation rate and the
corresponding ATT in terms of the units associated with
the original dimensioned biological model for the range
of perturbations in ε. Both the filtered upwind and the
original upwind scheme consistently overestimate the ATT;
however, the filtered scheme arrives at an estimate which is
consistently overestimating by about 10% while the upwind
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scheme overestimates by about 15%. This is also consistent
with the graphs shown in Figure 8 where we see the
density approximations using the filtered scheme exhibit more

accuracy close to the jump in the density at the point x = 1
as a function of the time variable. Hence the filtered upwind
scheme allows one to better estimate the ATT in the linear
regime.

Table 6. Analytical and numerically estimated values for duration time of Phase I in terms of the dimensioned time for the original biological model. The second column gives the
dimensioned value of the average transcription time using the time scaling in (36).

Dimensioned Values Avg. TT Estimation
ε Elong. Rate Phase I Avg.TT Filtered Upwind Upwind Estimate
0 91 (nt/sec) 60.44s 67.39s 69.93s
0.1 100.1 49.95s 55.11s 57.53s
0.2 109.2 42.03s 45.88s 48.25s
0.3 118.3 35.85s 38.54s 40.96s
0.4 127.4 30.82s 32.77s 35.18s
0.5 136.5 26.92s 28.12s 30.58s

6.2. Perturbations in the Initiation Rate

In this section, we consider small perturbations in the inflow
rate for (7) - (9), and the elongation velocity is fixed at
v̄ = 1. The parameter ρ` = 0.47 ± ε is perturbed, and
this corresponds to small perturbations in the initiation rate of
the biological model. Note that the length of Phase I is then
t? = 1, and the density along the right boundary at x = 1
should attain the value ρ` = 0.47 ± ε at that time. The
beginning of Phase II occurs at time t? = 1 and continues
until t = 3 for the simulations. Here we report how closely
numerical schemes reach the analytical value of the density
ρ` = 0.47 ± ε for various values of ε. Table 7 illustrates that
both methods perform equally well for density approximations

under perturbations in ρ`. The differences between the analytic
value of the density and the approximations are on the order
of the grid size. As noted, the ATT is independent of any
perturbation in the parameter ρ`, and we note that the results
in Table 7 indicates that the calculations of ATT done in this
case with the filtered scheme are independent of the size of
ε for this type of perturbation. The upwind scheme shows
some dependence of the ATT for perturbations in the inflow
parameter. In addition, the ATT estimations by the filtered
scheme presents about 50% better accuracy compared to that
of the traditional upwind for all the ε values using the same grid
size. It is notable that the filtered scheme delivers increased
accuracy over the range of perturbations and with the same
computational overhead.

Table 7. The density values and average transcription time approximated by filtered upwind and upwind along line x = 1 with perturbed inflow for ε =
±0.01,±0.025,±0.05,±0.075,±0.1 and the grid size of ∆x = 1

128 and ∆t = 2
5 ∆x. The analytic values are given for comparison.

Density Density Estimation Avg TT Estimation

ε Analytic Filtered Upwind Filtered Upwind

−0.1 0.37 0.3620 0.3605 1.0719 1.1375

−0.075 0.395 0.3865 0.3858 1.0719 1.1406

−0.05 0.42 0.4109 0.4102 1.0719 1.1406

−0.025 0.445 0.4354 0.4356 1.0719 1.1438

−0.01 0.46 0.4501 0.4502 1.0719 1.1438

0.01 0.48 0.4721 0.4708 1.0750 1.1469

0.025 0.495 0.4868 0.4855 1.0750 1.1469

0.05 0.52 0.5114 0.5109 1.0750 1.1500

0.075 0.545 0.5360 0.5355 1.0750 1.1500

0.1 0.57 0.5606 0.5601 1.0750 1.1500

7. Conclusions and Future Work

Motivated by the LWR traffic flow model, this work
gives the derivation of a simple continuum model for
RNAPs transcribing a gene on a DNA strand. After
nondimensionalizing, the linear model describes the density
of RNAPs evolving as a function of space and time within

a velocity field. Our initial study considers the simple case
of a constant velocity. The paper illustrates the advantage
of combining a time filter with the standard upwind in
all the numerical computations, and a CFL condition is
derived for the cases of filtering once and twice. The
filtering technique shows an increased accuracy and a reduced
numerical dissipation along the jump discontinuity compared
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to the upwind. The improved estimation using a filtered
scheme is consistent throughout the parameter analysis studies
where we perturb the average elongation velocity and the
initiation rate and illustrate their impact on the average
transcription time for the model.

Future work will include consideration of a spatially
dependent, piecewise defined elongation velocity function
that is parametrized to allow for local variation in RNAP
elongation rates. A long term research goal is to combine a
version of this compartment model with a nonlinear system of
ordinary differential equations as well as other compartments
to construct a comprehensive model of ribosome assembly.
The results contained here provide a positive initial step
towards that goal.
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Appendix: Nondimensionalization for
the Linear Problem

The simplest PDE model is the linear model. The velocity
is constant v(ρ) = vmax. Using this expression for velocity
in the general conservation law form in equation (1) leads to a
flux function that is defined to be

f(ρ) = vmax ρ,

and the linear PDE is given by

∂ρ

∂T
+

∂

∂x
(vmaxρ) = 0, 0 < x < 1, T > 0 (30)

with a boundary condition and an initial condition given by

ρ(x, 0) = ρ0 (31)
f(ρ(0, T )) = vmaxρ(0, T ) = f`

The spatial variable is already scaled so that it corresponds
to the dimensionless length of the gene on the DNA strand;
x = 1 corresponds to a length of 5500 nucleotides for the
gene under consideration in this work. The time variable T is
measured in seconds. The units associated with ρ are in the
number of RNAPs per strand. Hence, we first scale the density

variable so that it is unitless. Define,

ρ̂(x, T ) =
1

ρmax
ρ(x, T )

Multiplying (30) by 1
ρmax

, we have the PDE

∂

∂T

(
ρ

ρmax

)
+

∂

∂x

(
vmax

(
ρ

ρmax

))
= 0 (32)

∂

∂T
(ρ̂) +

∂

∂x
(vmaxρ̂) = 0 (33)

with a boundary condition and an initial condition given by

ρ̂(x, 0) =
ρ(x, 0)

ρmax
=

ρ0

ρmax
(34)

f̂(ρ̂(0, T )) = vmaxρ̂(0, T ) = vmax
ρ(0, T )

ρmax
=

f`
ρmax

(35)

Finally, we rescale time so that the dimensionless time
variable is

t = vmaxT so that [t] = [vmaxT ] =
strand

sec
· sec = 1 (36)

Based on the dimensionless independent variables, we
define a new variable to represent the concentration z(x, t) =
ρ̂(x, T (t)) = ρ̂(x, T ). Given an arbitrary function g(x, t) =
ĝ(x, T (t)), we note that the partial derivatives are related in
the following way.

gt(x, t) =
∂ĝ(x, T )

∂T

dT

dt

This leads to

zt =
1

vmax

∂ρ̂

∂T
⇒ vmaxzt =

∂ρ̂

∂T
and zx = ρ̂x

Substituting this into equation (33) above, we have

∂

∂t
(vmaxz) +

∂

∂x
(vmaxz) = 0

zt + zx = 0

with boundary and initial condition as follows:

z(x, 0) =
ρ0

ρmax
(37)

f((0, t)) = z(0, t) =
f`

vmaxρmax
(38)

Note that the inflow boundary is computed carefully here.
Since f(z, t) = z, the appropriate flux condition at the inflow
boundary must use the last equation in (35) to obtain

f(0, t) = z(0, t) = ρ̂(0, t) =
ρ(0, t)

ρmax
=

1

vmax

f`
ρmax

In summary, the dimensionless form of the linear PDE
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problem is given below.

zt + zx = 0 (39)

z(x, 0) =
ρ0

ρmax
(40)

f((0, t)) = z(0, t) =
f`

vmaxρmax
(41)

Once the equation is derived, we relabel the z variable so
that we return to our original variable and ρ(x, t) represents
the dimensionless density variable that is treated in the main
body of this paper.
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