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Abstract
This paper develops a density-on-scalar single-index quantile regression modeling frame-

work to investigate the relationship between imaging responses and covariates of interest
while tackling the imaging heterogeneity. Conventional association analysis methods typ-
ically assume that the imaging responses are well aligned after some preprocessing steps.
However, this assumption is often violated in practice due to imaging heterogeneity. This
heterogeneity is primarily caused by the different pathological patterns across subjects. Al-
though some distribution-based approaches are developed to deal with this heterogeneity, ma-
jor challenges have been posted due to the nonlinear subspace formed by the distributional
responses and the unknown nonlinear association structure. Our method can successfully
address all the challenges. We establish both estimation and inference procedures for the un-
known functions in our model. The asymptotic properties of both estimation and inference
procedures are systematically investigated. The finite-sample performance of our proposed
method is assessed by using both Monte Carlo simulations and a real data example on brain
cancer images from The Cancer Imaging Archive Glioblastoma Multiforme collection.
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1 Introduction

With the rapid development of modern imaging acquisition technology, more and more imag-

ing studies have been conducted in recent years, e.g., The Cancer Imaging Archive (Clark et al.

2013) and UK Biobank Study (Bycroft et al. 2018). Among these studies, we are usually in-

terested in the association between imaging responses and several covariates of interest, such as

age and gender. To establish this association, the pixel-based morphometry was first developed

where statistical analysis is performed at each pixel on the basis of the general linear model and

the statistical parametric map, comprising the pixel-wise hypothesis testing results, is derived

throughout the entire image domain (Mechelli et al. 2005). However, these methods have limita-

tions as the image spatial smoothness and correlation are not well characterized or even ignored.

To address this issue, the functional data analysis tools are adopted and the function-on-scalar

model has been widely used for different image modalities (Morris 2015, Wang et al. 2016).

In the function-on-scalar model, the imaging responses are typically assumed to be well

aligned after some preprocessing steps, e.g., image registration and time warping (Srivastava

& Klassen 2016). However, this assumption is often violated in practice due to the imaging het-

erogeneity. The heterogeneity is primarily caused by the different pathological patterns across

subjects. For example, in brain cancer image analysis, the brain tumor is of great interest instead

of the whole brain. However, it is impossible to align all the tumors as they can significantly vary

across subjects and/or time in terms of their number, size, and location (Roy et al. 2018). As an il-

lustration, we consider the fluid-attenuated inversion recovery (FLAIR) brain image dataset from

The Cancer Imaging Archive Glioblastoma Multiforme (TCIA-GBM) collection (Bakas et al.

2017a). The left two columns in Figure 1 present FLAIR images for four patients with corre-

sponding tumor segmentation annotation. Different colors represent different tumor sub-regions,

i.e., necrosis (blue), edema (yellow), and enhancing tumor (orange). We observe different tumor
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Figure 1: Illustration of imaging heterogeneity. Left two columns show FLAIR brain images

of four patients from TCIA-GBM collection with corresponding tumor segmentation annotation.

Different tumor sub-regions are highlighted in different colors: necrosis (blue), edema (yellow),

and enhancing tumor (orange). The two panels in the right column show the boundary-corrected

kernel density estimates and corresponding LQD transformed curves of all four patients.

patterns across patients, which makes the conventional registration approaches not applicable for

the tumor regions. Thus, developing such association analysis tools that are resistant to the tumor

heterogeneity is important for understanding the role of imaging biomarkers in the pathological

progression of glioblastoma.

Currently, there are two kinds of approaches to tackle this imaging heterogeneity in the as-

sociation studies, i.e., feature-based approaches and distribution-based approaches. In the first

kind of approaches, a large number of imaging features, e.g., radiomic features and deep learning

based features, are extracted from medical images, and then regression analysis is conducted to

investigate the relationship between each feature and clinical variables. While theses features
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are resistant to the imaging heterogeneity and have potential to uncover the underlying patterns,

the feature-based approaches have drawbacks. Specifically, as some imaging features (e.g., min,

mean, and variance) are derived according to the predefined formulas (Lambin et al. 2012), it

may fail in recovering the association if the primary effects are not contained in the manually ex-

tracted features. Although the deep learning based features have the power to automatically learn

advanced abstract representations, they often face a lack of explainability and interpretability in

the association analysis (Bai et al. 2021).

In the second kind of approaches, instead of imaging features, some functional representa-

tions, such as density curves (Petersen et al. 2019, Mohammed et al. 2021) and quantile functions

(Yang et al. 2020), are extracted and treated as the imaging responses regressed on a set of scalar

covariates of interest. The functional representations can provide much richer information com-

pared to the manually extracted features and better interpretability compared to the deep learning

based features. However, there are couple of challenges in existing methods. First, the extracted

functional representations usually don’t constitute a linear Hilbert subspace due to some inherent

constraints. For example, the density function is always nonnegative and integrated to one (Pe-

tersen & Müller 2016). Thus, some popular functional data analysis tools established in the linear

function space, such as the functional principal component analysis (FPCA, Yao et al. (2005)),

may not be feasible for the functional data from the nonlinear subspace. Second, the linear model

is typically used in existing literature to characterize the relationship between extracted imaging

responses and scalar covariates (Zhu et al. 2012), which is restrictive in practice and may sub-

stantially lose efficiency when the true relationship is nonlinear (Luo et al. 2016). Although there

are some recent approaches employing the single-index or additive models to represent the non-

linear relationship between the imaging responses and covariates of interest (Han et al. 2019,

Bhattacharjee & Müller 2021, Ghosal et al. 2021), they proposed their methods with the focus on
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estimation procedures rather than inference procedures.

The aim of this paper is to develop a density-on-scalar single-index quantile regression mod-

eling framework to investigate the relationship between distribution-based imaging responses and

scalar covariates of interest. To address the challenges in existing approaches, we start with the

density function of pixel intensities (the top panel of the right column in Figure 1) and consider

some transformation functions, e.g., the log quantile density (LQD) transformation in Petersen &

Müller (2016) (the bottom panel of the right column in Figure 1), to transfer the density functions

to some functional representations lying in the linear Hilbert subspace. Meanwhile, the nonlinear

relationship between imaging responses and scalar covariates are established through a unknown

link function. We develop a three-step estimation procedure to estimate unknown functions in

our proposed model. In addition to the estimation procedure, a global Wald-type test statistic,

a simultaneous confidence band, and a simultaneous confidence region are constructed for the

varying coefficients, while a simultaneous confidence band is constructed for the link function.

We also systematically investigate the asymptotic properties in both estimation and inference

procedures. Furthermore, both simulation studies and real data analysis show that our proposed

method outperforms other competitors in terms of both estimation accuracy and robustness.

2 Methods

2.1 Density-on-scalar single-index quantile regression model

In this paper, we would like to investigate how the image signals (e.g., image intensities from

tumor regions) are affected by the covariates of interest (e.g., age and gender). Suppose that we

observe both image data and covariates of interest from n unrelated subjects. For the i-th subject,

it is assumed that xi is a p × 1 vector including covariates of interest and νi(t) is the imaging
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measurement derived at t ∈ T , where T ⊂ Rd is the region of interest (ROI), includingmi pixels

{t1, . . . , tmi
}, i = 1, . . . , n. Instead of the pixel-wise imaging measurements, we are interested in

their distributional representations, i.e., density functions {fi}ni=1. However, the density function

space F has its inherent constraints of being non-negative and integrated to one. To address this

issue, we construct the conditional mean of fi through the transformation function:

µ(·|xi) = Ψ−1 (E (Ψ(fi)|xi)) , (1)

where the transformation Ψ(·) : F → L2([0, 1]) maps the density function into an unrestricted

square integrable random function on [0, 1]. In this paper, we consider adopting the LQD transfor-

mation, i.e., Ψ(fi) = − log(fi(Qi)) where Qi(·) is the corresponding quantile function (Petersen

& Müller 2016). Note that, as alternatives to LQD transformation, some other transformations

satisfying the required criteria are also available in existing literature, including the log hazard

transformation (Petersen & Müller 2016), the square-root velocity function representation (Sri-

vastava & Klassen 2016), and among others.

To investigate the relationship between the transformed density functions and the covariates

of interest, we further specify the mean structure µ(·|xi) and introduce a density-on-scalar single-

index quantile regression model:

Ψ(fi)(s) = g
(
x⊤
i β(s)

)
+ ϵi(s), s ∈ [0, 1], (2)

where β(s) is a p × 1 vector including unknown varying-coefficient functions, g(·) is an un-

known index function, and ϵi(s) is a measurement error process including the individual varia-

tion. In practice, the density function fi is not actually observed, but must be estimated from the

pixel-wise imaging measurements {νi(tl)}mi
l=1. Through some nonparametric density estimation

methods, our model in (2) can be rewritten based on the estimated density functions {f̂i}ni=1:

yi(s) = g
(
x⊤
i β(s)

)
+ ηi(s), s ∈ [0, 1], (3)
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where yi(s) = Ψ(f̂i)(s) and ηi(s) = ϵi(s) + δi(s) with δi(s) = Ψ(f̂i)(s) − Ψ(fi)(s) be the

stochastic error resulting from the estimation of fi. In particular, similar to Liu et al. (2020),

we assume that the τ -th quantile of ηi(s) conditional on xi equals to zero, that is, P{ηi(s) <

0|xi} = τ for any s ∈ [0, 1]. Furthermore, {ηi(s)}ni=1 are assumed to be independent copies

of SP(0, γη), i.e., a stochastic process with mean function 0 and covariance function γη(s, s′).

To ensure identifiability, we impose following constraints on β(s): ∥β(s)∥2 = 1 with its first

entry positive for all s ∈ [0, 1]. Without loss of generality, the transformed functions are further

assumed to be measured at the same m grid points, i.e., Sm = {sl : 0 < s1 < · · · < sm < 1}.

2.2 Estimation procedure

Our estimation procedure mainly consists of three steps: (i) estimating the individual density

functions {fi}ni=1; (ii) estimating the coefficient functions β(s) and the index function g(·); and

(iii) smoothing the individual stochastic functions {ηi(s)}ni=1. In addition, the detailed bandwidth

selection procedures can be found in the Supplementary Material.

In step (i), according to the results in Petersen & Müller (2016), a boundary-corrected kernel

estimator of fi can be constructed as

f̂i(t) =

{
mi∑
l=1

∫ 1

0

K

(
ς − νi(tl)

hf

)
ω(ς, hf )dς

}−1 mi∑
l=1

K

(
t− νi(tl)

hf

)
ω(t, hf ), (4)

where K(·) is the kernel function and the bandwidth hf < 1/2. The weight function ω(t, hf ) is

set to (
∫ 1

−t/hf
K(ς)dς)−1 as t ∈ [0, hf ), (

∫ (1−t)/hf

−1
K(ς)dς)−1 as t ∈ (1− hf , 1], and 1 otherwise.

Compared to traditional kernel density estimators, the boundary-corrected one in (4) converges

to fi uniformly, i.e., supfi∈F ||f̂i − fi||∞ → 0 as mi → ∞ (Petersen & Müller 2016).

In step (ii), we first start with the locally weighted quantile regression loss function:

n∑
i=1

m∑
l=1

ρτ
(
yi(sl)− g(x⊤

i β(s))
)
Khβ

(sl − s), (5)
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where ρτ (u) = u{τ−I(u < 0)} is a check function (Koenker & Bassett 1978), I(·) is an indicator

function, and Khβ
(·) = h−1

β K(·/hβ). Then, the corresponding gradient of (5) with respect to

β(s) can be written as
∑n

i=1

∑m
l=1{φ0(β(s); yi(sl),xi) +φ1(β(s); yi(sl),xi)}, in which

φ0(β(s); yi(sl),xi) = (xi − x̃i)ψτ

(
yi(sl)− g

(
x⊤
i β(s)

))
ġ
(
x⊤
i β(s)

)
Khβ

(sl − s),

φ1(β(s); yi(sl),xi) = x̃iψτ

(
yi(sl)− g

(
x⊤
i β(s)

))
ġ
(
x⊤
i β(s)

)
Khβ

(sl − s),

with x̃i = xi − E{xi|x⊤
i β(s)}, ψτ (u) = τ − I(u < 0) is the score function of ρτ (u), and ġ(·)

denotes the first order derivative of g(·). According to the estimation efficiency of the central

mean subspace (Ma & Zhu 2014), φ0(β(s); yi(sl),xi) belongs to the tangent space of model (3)

with respect to β(s) while φ1(β(s); yi(sl),xi) belongs to its orthogonal component.

To construct an efficient empirical log likelihood ratio function for β(s), we introduce n

independent auxiliary random vectors {U i(β(s))
.
= 1

m

∑m
l=1 φ1(β(s); yi(sl),xi)}ni=1. Then, the

block empirical likelihood method (You et al. 2006) is adopted to accommodate the within-curve

correlation structure, and the empirical log likelihood ratio function of β(s) is

ℓn(β(s)) = −2 sup
pi

{
n∑

i=1

log(npi)|pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

piU i(β(s)) = 0

}
, (6)

where the unknown quantities in U i(β(s)) can be estimated via some nonparametric approaches.

In particular, the conditional expectation in x̃i is approximated by the Nadaraya-Watson estimator

while the estimators ĝ(x⊤
i β(s)) and ̂̇g(x⊤

i β(s)) are derived by using the weighted least squares

method (Luo et al. 2016). Then the optimal weights {pi}ni=1 are obtained from the Lagrange

multiplier method, and the function ℓn(β(s)) in (6) can be further written as

ℓ̂n(β(s)) = 2
n∑

i=1

log
(
1 + λ(β(s))⊤Û i(β(s))

)
, (7)

where λ(β(s)) satisfies 1
n

∑n
i=1 Û i(β(s))/{1 + λ(β(s))⊤Û i(β(s))} = 0.

Then, the estimator β̂(s) can be derived via minimizing the empirical log likelihood ratio

function in (7), and the estimator ĝ(x⊤β(s)) can be further derived via minimizing the following
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loss function with respect to G(x⊤β(s))
.
= [g(x⊤β(s)), hgġ(x

⊤β(s))]⊤:

n∑
i=1

m∑
l=1

ρτ

{
yi(sl)− ẑ⊤

il (s)G(x⊤β(s))
}
Khg

(
x⊤
i β̂(sl)− x⊤β(s)

)
, (8)

where ẑil(s) = [1, {x⊤
i β̂(sl)− x⊤β(s)}/hg]⊤ and hg is the bandwidth.

In step (iii), by using the local linear regression technique (Fan & Gijbels 1996), we can

smooth the updated residual functions, i.e., {ỹi(s)
.
= yi(s)− ĝ(x⊤

i β̂(s)), s ∈ [0, 1]}ni=1, to obtain

the estimators of the individual functions ηi(s). In particular, the estimator η̂i(s) is derived as

η̂i(s) =
∑m

l=1 ϱ(hη, s)ỹi(sl), where ϱ(hη, s) = (1, 0){
∑m

l=1Khη(sl − s)ϑl(s)ϑ
⊤
l (s)}−1Khη(sl −

s)ϑl(s) with ϑl(s) = [1, (sl−s)/hη]⊤ and hη is the bandwidth. Furthermore, we use the empirical

covariance (n−p)−1
∑n

i=1 η̂i(s)η̂i(s
′) to estimate γ̂η(s, s′). In particular, the FPCA can be applied

to the empirical covariance to further capture the within-curve dependence (Yao & Lee 2006).

In addition, the estimated density function of {ηi(s)}ni=1 at each s, i.e., f̂η(·; s), can be derived

through the kernel estimation of “residual-based” empirical distribution (Müller et al. 2007).

2.3 Inference procedure

Our inference procedure mainly consists of three components: (i) hypothesis testing of β(s); (ii)

constructing the simultaneous confidence band and simultaneous confidence region of β(s); and

(iii) constructing the simultaneous confidence band of g(·).

In component (i), we consider the linear hypotheses on β(s) as below:

H0 : Cβ(s) = c(s) for all s ∈ [0, 1] vs. H1 : Cβ(s) ̸= c(s) for some s ∈ [0, 1], (9)

where C is a r× p matrix with rank r and c(s) is a r× 1 vector of functions. A Wald-type global

test statistic Tn is defined as

Tn =

∫ 1

0

{
Cβ̂τ (s)− c(s)

}⊤ {
CΞ̂n(s, s)C

⊤
}−1 {

Cβ̂τ (s)− c(s)
}
ds, (10)
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where Ξ̂n(s, s) = τ(1− τ)f̂−2
η (0; s){

∑n
i=1 B̂i(s)}−1{

∑n
i=1 Âi(s)Â

⊤
i (s)}{

∑n
i=1 B̂

⊤
i (s)}−1 with

Âi(s) = {xi − Ê(xi|x⊤
i β̂(s))}ˆ̇g(x⊤

i β̂(s)) and B̂i(s) = Âi(s)x
⊤
i
ˆ̇g(x⊤

i β̂(s)). As the asymptotic

null distribution of Tn is a χ2-type mixture one, which is quite complicated, it is hard to directly

obtain the percentiles of Tn under the null hypothesis H0. To address this issue, a wild bootstrap

method is developed consisting of the following four steps:

• Fit the model (3) under H0 and obtain the estimated functions β̂(s), ĝ(·), the residuals

{êi(s)
.
= yi(s)− ĝ(x⊤

i β̂(s))}ni=1, and the global test statistic Tn;

• Generate random samples {ς(r)i (sl)}ml=1 independently from N(0, 1), and then construct

y
(r)
i (sl) = ĝ(x⊤

i β̂(sl)) + ς
(r)
i (sl)êi(sl), i = 1, · · · , n;

• Based on {xi, {y(r)i (sl)}ml=1}ni=1, recalculate β̂
(r)
(s) and the global test statistic T (r)

n ;

• Repeat the previous two stepsR times to have {T (1)
n , . . . , T

(R)
n }, which yields the empirical

p-value, i.e., p =
∑R

r=1 I{T
(r)
n ≥ Tn}/R.

In component (ii), we would like to constructe the simultaneous confidence band and simul-

taneous confidence region of coefficient functions β(s). First, for a given level α, the 1 − α

simultaneous confidence band of the j-th element in β(s), i.e., βj(s), is constructed as follows:(
β̂j(s)−

Cj(α)√
n
, β̂j(s) +

Cj(α)√
n

)
, j = 1, · · · , p, (11)

where Cj(α) is approximated by the efficient resampling method developed in Zhu et al. (2012),

which involves the following three steps:

• Fit model (3) and obtain β̂(s), ĝ(·), and {η̂i(s)}ni=1;

• Generate the samples {ς(r)i }ni=1 from N(0, 1) independently and construct the process sam-

ple ζ(r)j (s) = e⊤
j,pf̂η(0; s){ 1

n

∑n
i=1 B̂i(s)}−1{ 1√

n

∑n
i=1 ς

(r)
i Âi(s)ψτ (η̂i(s))}, where ej,p is a

p× 1 vector with the j-th element being 1 and 0 otherwise;
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• Repeat the second step for R times to obtain {sups |ζ
(1)
j (s)|, . . . , sups |ζ

(R)
j (s)|}, and then

adopt its 1− α empirical percentile to estimate Cj(α).

Next, the 1− α simultaneous confidence region of β(s) can be constructed according to

P{∥
√
n(β̂(s)− β(s))∥2 ≤ Cβ(α), ∀s ∈ [0, 1]} = 1− α, (12)

where the critical value Cβ(α) can be approximated via utilizing an efficient resampling method:

• Fit model (3) and obtain β̂(s), ĝ(·), and {η̂i(s)}ni=1;

• Generate the samples {ς(r)i }ni=1 from N(0, 1) independently and construct the process sam-

ple w(r)(s) = ∥f̂η(0; s){ 1
n

∑n
i=1 B̂i(s)}−1{ 1√

n

∑n
i=1 ς

(r)
i Âi(s)ψτ (η̂i(s))}∥2;

• Repeat the second step for R times to obtain {supsw
(1)(s), . . . , supsw

(R)(s)}, and then

adopt its 1− α empirical percentile to estimate Cβ(α).

In component (iii), the 1− α simultaneous confidence band of g(·) is proposed as follows:

(ĝ(z)− Cg(α), ĝ(z) + Cg(α)) , (13)

where the crtitical value Cg(α) can be determined via the bootstrap method:

• Fit the model (3) and obtain the estimated functions β̂(s), ĝ(·), and the residuals {êi(sl)
.
=

yi(sl)− ĝ(x⊤
i β̂(sl)), l = 1, . . . ,m}ni=1;

• Generate random samples {ς(r)i (sl)}ml=1 independently from N(0, 1), and then construct

y
(r)
i (sl) = ĝ(x⊤

i β̂(sl)) + ς
(r)
i (sl)êi(sl), i = 1, · · · , n;

• Based on {xi, {y(r)i (sl)}ml=1}ni=1, recalculate the estimator ĝ(r)(z) and the difference ∆(r)
g (z) =

ĝ(z)− ĝ(r)(z);

• Repeat the previous two steps R times to have {supz |∆
(1)
g (z)|, . . . , supz |∆

(R)
g (z)|}, and

then adopt its 1− α empirical percentile to estimate Cg(α).
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3 Asymptotic properties

We systematically investigate the asymptotic properties of all estimators proposed in Section 2.2

and inference procedures in Section 2.3. Assumptions used to facilitate the technical details can

be found in the Supplementary Material.

The following theorems tackle the theoretical properties of β̂(s), ĝ(·), and {η̂i(s)}ni=1. The

detailed proof can be found in the Supplementary Material.

Theorem 1 Under Assumptions 1-14, one has:

(i) Global uniform Bahadur representation of β̂(s):

√
n(β̂(s)− β(s)) = −fη(0; s)

{
1

n

n∑
i=1

Bi(s)

}−1 {
1√
n

n∑
i=1

Ai(s)ψτ (ηi(s))

}
+ op(1), (14)

where Ai(s) = [xi − E{xi|x⊤
i β(s)}]ġ(x⊤

i β(s)) and Bi(s) = Ai(s)x
⊤
i ġ(x

⊤
i β(s)).

(ii) Weak convergence of β̂(s):

√
n(β̂(s)− β(s)) ⇒ G1(s), in s ∈ S, (15)

where G1(s) is a centered Gaussian process with covariance matrix

Ξ1(s, s
′) = f−1

η (0; s)f−1
η (0; s′){Fη(0, 0; s, s

′)− τ 2}E[Bi(s)]
−1E[Ai(s)A

⊤
i (s

′)]E[B⊤
i (s)]

−1

with Fη(·, ·; s, s′) the joint distribution of (η(s), η(s′)).

Theorem 2 Under Assumptions 1-14, the following result holds:

(i) Weak convergence of ĝ(x⊤β̂(s)):

√
n
{
ĝ(x⊤β̂(s))− g(x⊤β(s))

}
⇒ G2(s), (16)

where G2(s) is a centered Gaussian process with covariance matrix

Ξ2(s, s
′) = f−1

η (0; s)f−1
η (0; s′)[Fη(0, 0; s, s

′)− τ 2]e⊤
1,2E[Γi(s)]

−1E[υi(s)υ
⊤
i (s

′)]E[Γi(s
′)]−1e1,2
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with Γi(s) =
∫ 1

0
ai(u, s)ai(u, s)

⊤κ(u, s)du and υi(s) =
∫ 1

0
ai(u, s)κ(u, s)du. Here κ(u, s) =

Khβ
{ξi(u, s)}π(u), ξi(u, s) = x⊤

i β(u)− x⊤β(s), and ai(u, s) = [1, h−1
g ξi(u, s)]

⊤.

(ii) Weak convergence of ĝ(z):

√
n {ĝ(z)− g(z)} ⇒ G3(z), z ∈ Z, (17)

where Z is the domain of function g(z) and G3(z) is a centered Gaussian process with covariance

matrix Ξ3(z, z
′) defined similarly as Ξ2(s, s

′) via replacing x⊤β(s) by z.

Theorem 3 Under Assumptions 1-14, one obtains

(a) sups∈[0,1] |η̂i(s)− ηi(s)| = Op(n
−1/2 + h2η).

(b) supt |f̂η(t; s)− fη(t; s)| = Op

{
n−1/2 + h2η + h2fη + n−3/2h−4

fη
+ h6ηh

−4
fη

+
√

logn
nhfη

}
,

for any s ∈ [0, 1].

(c) sups,s′∈[0,1] |γ̂η(s, s′)− γη(s, s
′)| = Op(n

−1/2 + h2η).

The following theorem derives the asymptotic distribution of global test statistic Tn under the

null hypothesis. The detailed proof can be found in the Supplementary Material.

Theorem 4 Under Assumptions S1-S14, one has

Tn ⇒
∫
s∈S

G⊤
C(s)GC(s)ds, (18)

where GC(s) = {CΞ1(s, s)C
⊤}−1/2CG1(s) is a centered Gaussian process, in which G1(s) and

Ξ1(s, s) are defined in Theorem 1.

4 Simulation study

To investigate the performance of our proposed method, we generated synthetic data from model

(2) using the LQD transformation Ψ and the index function g(x⊤
i β(s)) = sin(2x⊤

i β(s)) +
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2 cos(2+x⊤
i β(s)), i = 1, 2, . . . , n, where the varying coefficients β(s) are given by (1+s2, (1−

s)2)⊤, and then scaled as β(s)/∥β(s)∥ for model identification. For a given covariate vector

xi, inspired by the idea in Han et al. (2019), we implemented random sampling based on error-

contaminated random quantile functions

Q(s|xi) = θη(xi)
−1

∫ s

0

exp{g(x⊤
i β(s)) + ηi(s)}ds,

where θη(xi) =
∫ 1

0
exp{g(x⊤

i β(s)) + ηi(s)}ds and ηi(s) = ιi1ξ1(s) + ιi2ξ2(s) with ιi1 ∼

N(0, 0.012), ιi2 ∼ N(0, 0.052), ξ1(s) = cos(2πs), and ξ2(s) = sin(πs). Furthermore, the

covariates are generated by xi = Φ(vi), where Φ is the bivariate standard normal CDF and

vi ∼ N(0p,Σ), i = 1, 2, . . . , n, where Σ is a 2× 2 matrix with elements 0.6|j′−j| for j, j′ = 1, 2.

Then we generated ui,1, . . . , ui,Ni
∼ Uniform(0, 1) independent of xi, and obtained random sam-

ples {Q(ui,t|xi)}Ni
t=1 as the simulated observations, which will be used in estimating the response

densities {fi}ni=1. Examples of 20 randomly generated densities are illustrated in the Supple-

mentary Material. Without loss of generality, we assume Ni = N for each subject and consider

scenarios with N = 500 and 1000 to assess how it affects the estimation performance of the pro-

posed method. For the sample size n of simulated subjects, we choose n = 100 and 200. Finally,

we generated 200 datasets for each simulation scenario. Note that we did not directly generate

the density functions as in (2), nor were the quantile assumption of residual errors in (3) used in

any way in simulating the data. Therefore, the data generating process does not give any inherent

advantage to our approach over others.

We applied our method to the simulated data, where the unknown densities were estimated

first and the coefficient functions along with the single index function were estimated for τ =

0.1, 0.3, 0.5, 0.7, 0.9 respectively. As an illustration, for τ = 0.5, N = 1000, and n = 200,

the mean performance of the estimated functions β(s) and g(·) based on our proposed method

are shown in Figure 2. As expected, the estimated curves (broken lines) are very close to the
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Figure 2: Simulation results based on our proposed method with τ = 0.5, N = 1000, and

n = 200. In each panel, the solid line represents the true function, the broken line represents the

estimated function, and dashed lines are the corresponding 95% simultaneous confidence bands.

corresponding true curves (solid lines), and the true curves are all in the range of the correspond-

ing 95% simultaneous confidence bands (dashed lines). In addition to our proposed method, we

also considered a few alternative approaches and assessed their performance, including (i) a grid-

wised single index model in Ichimura (1993), where the coefficient functions β(s) were estimated

at each grid without using the kernel weights to borrow information from the neighborhoods, and

(ii) the single index varying coefficient model proposed in Luo et al. (2016). Note that the two

competitors were originally developed for well registered functional responses, not for the sce-

narios we are interested in here. To make it comparable, we applied them to the transformed

densities instead of the simulated random samples. Therefore, the same density estimation pro-

cedure is adopted in the three methods, and the corresponding density estimation performance

is evaluated by the mean and standard deviation of integrated squared error (ISE) in Table 1.

Furthermore, to compare the estimation performance among all three methods, the mean and

standard deviation of ISE are reported for the proposed estimators of functions β(s), g(·), and

the plug-in estimators of true density functions {Ψ−1[g(x⊤
i β(s))]}ni=1 in Table 1. Additional es-
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timation results from 200 simulated datasets for N = 1000 can be found in the Supplementary

Material.

Table 1: Estimation results from 200 simulated datasets for N = 500 measured by the mean and

standard deviation (std) of ISE.

n fi(·) Method τ β1(s) β2(s) g(·) Ψ−1[g(x⊤
i β(s))]

100

our method

0.1 0.0008 (0.0032) 0.0012 (0.0016) 0.0218 (0.0067) 0.0142 (0.0066)

0.3 0.0004 (0.0001) 0.0009 (0.0003) 0.0065 (0.0017) 0.0080 (0.0025)

0.5 0.0004 (0.0001) 0.0008 (0.0003) 0.0038 (0.0012) 0.0055 (0.0016)

0.0171 (0.0024) 0.7 0.0003 (0.0001) 0.0007 (0.0003) 0.0069 (0.0018) 0.0046 (0.0017)

0.9 0.0015 (0.0089) 0.0007 (0.0005) 0.0235 (0.0041) 0.0057 (0.0032)

grid-wised - 0.0123 (0.0001) 0.0078 (0.0285) 0.0061 (0.0103) 0.0100 (0.0131)

Luo et al. (2016) - 0.0004 (0.0012) 0.0052 (0.0260) 0.0046 (0.0102) 0.0071 (0.0128)

200

our method

0.1 0.0004 (0.0006) 0.0009 (0.0004) 0.0200 (0.0041) 0.0123 (0.0040)

0.3 0.0004 (0.0001) 0.0007 (0.0002) 0.0054 (0.0009) 0.0069 (0.0017)

0.5 0.0003 (0.0001) 0.0006 (0.0002) 0.0030 (0.0007) 0.0048 (0.0011)

0.0174 (0.0018) 0.7 0.0003 (0.0001) 0.0005 (0.0002) 0.0057 (0.0010) 0.0034 (0.0012)

0.9 0.0022 (0.0147) 0.0005 (0.0009) 0.0216 (0.0023) 0.0035 (0.0013)

grid-wised - 0.0123 (0.0001) 0.0038 (0.0007) 0.0037 (0.0004) 0.0072 (0.0010)

Luo et al. (2016) - 0.0004 (0.0007) 0.0020 (0.0080) 0.0030 (0.0032) 0.0052 (0.0037)

From Table 1, it can be found that: (i) for the kernel density estimators in all three methods,

when the number of random samples, N , is getting larger, the estimation performance is get-

ting better in terms of both the mean and standard deviation of ISE; (ii) except for the grid-wise

method, the increasing of N improves the estimation performance of functions β(s), g(·) and in-

dividual density functions {Ψ−1[g(x⊤
i β(s))]}ni=1; (iii) all three methods possess better estimation

performance when the sample size n increases; (iv) both our proposed method and the method in

Luo et al. (2016) outperform the grid-wised method for all different scenarios, which shows the

power of local kernel weights in estimating the coefficient functions; and (v) when τ = 0.5 or 0.7,
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our proposed method performs better than the method in Luo et al. (2016) for most scenarios in

terms of the mean ISE and more robust than the method in Luo et al. (2016) for all the scenarios

in terms of the standard deviation of ISE.

Next, for τ = 0.5, N = 1000, and n = 200, the empirical coverage probabilities of the

simultaneous confidence bands (SCB) of β1(s), β2(s) and g(·) and the simultaneous confidence

regions (SCR) of β(s) are summarized in Table 2(a) based on 200 replications. As expected, all

the empirical coverage probabilities are close to the significance levels.

Table 2: Inference results at 1− α significance level.

(a) Empirical coverage probabilities of SCB and SCR. (b) Rejection rates for hypothesis testing (19).

SCB SCR c

α β1(·) β2(·) g(·) β(·) α 0 0.1 0.2 0.3 0.4

0.05 0.980 0.830 0.960 0.940 0.05 0.0052 0.7710 0.9937 1 1

0.01 0.985 0.895 0.980 0.970 0.01 0 0.7634 0.9937 1 1

Finally, we examine the type I and II error rates of the global test statistic Tn. In particular,

we fixed β1(s) and set β2(s) = c(1− s)2, where c is a scalar specified below. We want to test the

following hypotheses

H0 : β2(s) = 0 for all s ∈ [0, 1] vs. H1 : β2(s) ̸= 0 for some s ∈ [0, 1], (19)

where we set c = 0 to assess the type I error rates for Tn, and set c = 0.1, 0.2, 0.3, and 0.4

to examine the power of Tn. For each simulation, the significance levels were set at α = 0.05

and 0.01, 500 bootstrap replications were generated to construct the empirical distribution of Tn

under H0, and 200 replications were used to estimate the rejection rates, which are summarized in

Table 2(b). It shows that the type I error rates for Tn based on the bootstrap method are accurate,

and the power increases rapidly while increasing the value of c.
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5 Real data analysis

In this real data analysis, we consider the pre-operative FLAIR brain images of 101 patients from

TCIA-GBM collection. The tumor segmentation annotation is also extracted via GLISTRboost, a

machine learning method based on a hybrid generative-discriminative model (Bakas et al. 2017b),

after registration of the whole brain. Illustration of the segmentation annotation is shown in

Figure 1. Similar to Yang et al. (2020), for each patient, we only focused on the image slice

with largest tumor area, extracted the pixel intensities within the tumor area, where the number

of pixels within the tumor ranged from 503 to 5053. The goal of this data analysis is to derive

functional representations of extracted pixel intensities and investigate their relationship with

some covariates of interests, including gender, age, survival length, and the area proportions of

tumor sub-regions, i.e., necrosis-tumor ratio and edema-tumor ratio. The summary statistics of

these covariates are shown in Table 3.

Table 3: Summary statistics of clinical and demographic variables from 101 patients.

Female (38 patients) Male (63 patients) Overall

min max median mean min max median mean min max median mean

age 18.0 84.0 55.0 54.7 23.0 81.0 60.0 59.6 18.0 84.0 59.0 57.7

survival length 71.0 1757.0 306.5 490.1 5.0 2768.0 430.0 595.0 5.0 2768.0 405.0 555.5

necrosis-tumor ratio 0.00 0.58 0.12 0.18 0.00 0.74 0.10 0.15 0.00 0.74 0.11 0.16

edema-tumor ratio 0.16 0.91 0.52 0.52 0.15 0.98 0.52 0.54 0.15 0.98 0.52 0.53

We first derived the boundary-corrected density estimators from these pixel intensities, and

applied the LQD transformation on the estimated density functions. Then we fitted our model

to the transformed curves based on different values of τ . Figure 3 shows the estimation (solid

curves) and 95% simultaneous confidence bands (dashed curves) of the coefficient functions and

index function at τ = 0.5. In particular, nonlinear patterns can be found in the estimated link
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Figure 3: The estimated coefficients functions and index functions (solid curves) with corre-

sponding 95% simultaneous confidence bands (dashed curves) at τ = 0.5.

function. Next, we tested the hypothesis:

H0 : βk(s) = 0 for all s vs. H1 : βk(s) ̸= 0 for at least one s,

where k = 1, 2, 3, 4, and 5, corresponding to the effects of age, gender, survival length, edema-

tumor ratio, and necrosis-tumor ratio, respectively. The corresponding p-values are summarized

in Fig.3 with those p-values less than the significant level 5% highlighted in red. Given the sig-

nificant level 0.05, age, gender and necrosis-tumor ratio are all found to be significant on the

LQD transformed curves. Consistent findings were also reported in some existing literature. For

example, some intensity based radiomic features, e.g., the minimum of intensity, were found to

be significantly correlated to the age division (Li et al. 2017); and females were found to have

higher pixel intensities than males, especially in the upper tails of the distribution (Yang et al.

2020). The significance of necrosis-tumor ratio is mainly caused by the FLAIR image acquisi-

tion techniques, i.e., pixel intensities with necrosis are higher than other tumor sub-regions, e.g.,
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edema, in FLAIR brain images (Henker et al. 2017). As the necrosis-tumor ratio is a helpful,

reliable sign of poor prognosis in supratentorial glioblastoma (Pierallini et al. 1996), our derived

LQD transformation based functional representations have the potential to be important biomark-

ers in defining prognosis and distinguishing different glioblastoma subtypes.

Furthermore, the prediction performance of our method in terms of the quantile functions was

assessed at different levels of τ . Another two methods, i.e., the quantile function on scalar regres-

sion model (Yang et al. 2020) and the single-index varying coefficient model (Luo et al. 2016),

were also considered for comparison. For our method and the method in Luo et al. (2016), the

inverse transformation (Petersen & Müller 2016) was applied on the predicted LQD transformed

curves to get the corresponding quantile functions. The two-fold cross-validation strategy is

adopted to calculate the prediction errors. Specifically, the original dataset was first randomly

partitioned into two equal sized sub-datasets, i.e., D1 and D2. Next, we trained the model on

D1 and predicted the quantile functions on D2, followed by training on D2 and predicting on

D1. Then, the the difference between predicted quantile functions and the empirical ones in each

of the two sub-datasets are averaged as the final prediction errors. Here we consider both the

integrated squared error (ISE) and the integrated absolute erros (IAE), which are shown in Table

4. It can be found that, when τ = 0.7 and 0.8, our method achieves the best performance among

the three competing methods in terms of both ISE and IAE, which indicates the advantages of

our method in introducing (i) the nonlinear link function compared to the method in Yang et al.

(2020) and (ii) the quantile regression methodology compared to the method in Luo et al. (2016).

6 Discussion

One of the key techniques in our method is to map the density functions to functions in an uncon-

strained linear Hilbert space by the LQD transformation. However, as discussed in Chen et al.
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Table 4: Prediction performance comparison in terms of the quantile functions.

Method
our method

Yang et al. (2020) Luo et al. (2016)
τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.8 τ = 0.9

ISE 0.1425 0.1306 0.1124 0.1066 0.1572 0.1368 0.1246

IAE 0.1021 0.0892 0.0747 0.0757 0.1171 0.1012 0.0833

(2021), the LQD transformation does not take into account the geometry of the space of proba-

bility distributions and therefore the corresponding transformation map is not isometric and leads

to deformations that change distances between pairs of densities. Some metrics have been con-

sidered to investigate the geometry of the space of density functions, including the Wasserstein

metric (Panaretos & Zemel 2020) and the Fisher-Rao metric (Srivastava & Klassen 2016). The

Wasserstein metric provides an optimal transport distance that measures the cost of transport-

ing one density to another while the Fisher-Rao metric can be viewed as the geodesic distance

between the square-roots of the densities (Petersen et al. 2021). Recently, these two metrics

have been widely adopted in establishing regression models with random distributions served

as responses and/or predictors (Chen et al. 2021, Ghosal et al. 2021, Mohammed et al. 2021,

Bhattacharjee & Müller 2021). However, few of these methods focuses on the statistical infer-

ence procedures such as hypothesis testing and constructing simultaneous confidence band (or

region) on the coefficient parameters. Therefore, in our future research work, it will be criti-

cally important to extend our density-on-scalar single-index quantile regression model to some

novel ones that can successfully incorporate the geometric properties of densities and establish

the corresponding estimation and inference procedures simultaneously.

SUPPLEMENTARY MATERIAL

Supplementary Material: Supplementary material includes bandwidth selection, assumptions
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of theorems, proofs of the theoretical results, and additional simulation results. (.pdf file)
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