Reconstructing Decision Trees
Guy Blanc
Stanford University, CA, USA

Jane Lange
MIT, Cambridge, MA, USA

Li-Yang Tan
Stanford University, CA, USA

—— Abstract

We give the first reconstruction algorithm for decision trees: given queries to a function f that is

opt-close to a size-s decision tree, our algorithm provides query access to a decision tree 1" where:
T has size S = SO((IOgS)Z/Eg);
dist(f, T) < O(opt) + &;
Every query to T is answered with poly((log s)/¢)-logn queries to f and in poly((log s)/e)-nlogn
time.

This yields a tolerant tester that distinguishes functions that are close to size-s decision trees
from those that are far from size-S decision trees. The polylogarithmic dependence on s in the
efficiency of our tester is exponentially smaller than that of existing testers.

Since decision tree complexity is well known to be related to numerous other boolean function
properties, our results also provide a new algorithm for reconstructing and testing these properties.

2012 ACM Subject Classification Theory of computation — Streaming, sublinear and near linear
time algorithms

Keywords and phrases Property reconstruction, property testing, tolerant testing, decision trees
Digital Object Identifier 10.4230/LIPIcs.ICALP.2022.24

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2012.08735

Funding Guy Blanc: Supported by NSF CAREER Award 1942123.

Jane Lange: Supported in part by NSF Award CCF-2006664, Big George Fellowship, Akamai
Presidential Fellowship and Google.

Li-Yang Tan: Supported by NSF CAREER, Award 1942123.

Acknowledgements We would like to thank the anonymous reviews of ICALP 2022 for their helpful
feedback.

1 Introduction

We study the problem of reconstructing decision trees: given queries to a function f that is
close to a size-s decision tree, provide fast query access to a decision tree, ideally one of size
not much larger than s, that is close to f. This can be viewed as an “on the fly” variant
of the problem of properly and agnostically learning decision trees, where the goal there
is to output the entire decision tree hypothesis. More broadly, reconstruction algorithms,
introduced by Ailon, Chazelle, Comandur, and Liu [2], can be viewed as sublinear algorithms
that restore structure — in our case, that of a decision tree — in a function that has been lost
due to noise.

Decision trees have long been a popular and effective model in machine learning, and
relatedly, they are among the most intensively studied concept classes in learning theory.
The literature on learning decision trees is vast, spanning three decades and studying the
? Guy Blanc, Jane Lvange, and Li-Ya.ung Tan;

5v icensed under Creative Commons License CC-BY 4.0
49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).

Editors: Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff;
Article No. 24; pp. 24:1-24:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ICALP.2022.24
https://arxiv.org/abs/2012.08735
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2

Reconstructing Decision Trees

problem in a variety of models and from a variety of perspectives [24, 41, 9, 26, 14, 8, 27, 36,
29, 39, 34, 31, 28, 22, 13, 7]. In contrast, the problem of reconstructing decision trees has
thus far been surprisingly understudied.

1.1 OQur contributions

We give the first reconstruction algorithm for decision trees. Our algorithm achieves a
polylogarithmic dependence on s in its query and time complexities, exponentially smaller
than the information-theoretic minimum required to learn.

» Theorem 1 (Main result). There is a randomized algorithm which, given queries to
f o {£1}" — {£1} and parameters s € N and € € (0,1), provides query access to a fized
decision tree T' where
T has size so((logS)Q/ES);
dist(T, f) < O(opt,) + & w.h.p., where opt, denotes the distance of f to the closest size-s
decision tree;
Every query to T is answered with poly((log s)/e)-logn queries to f and in poly((log s)/e)-
nlogn time.

Notably, in the standard setting where s = poly(n), the query and time complexities of
our algorithm are polylog(n) and O(n) respectively. Previously, the only known approach
was to simply properly and agnostically learn f; the current fastest such algorithm has query
and time complexities n@(oglogn) [7],

Our reconstruction algorithm is furthermore local in the sense of Saks and Seshadhri [43],
allowing queries to be answered in parallel assuming a shared random string. In particular,
once f,s,e and the random string are fixed, all queries are answered consistently with a
single decision tree.

1.1.1 Implications of Theorem 1 and further results

By a standard reduction, Theorem 1 gives a tolerant tester for decision trees:

» Corollary 2 (Tolerant testing of decision trees). There is a randomized algorithm which,
given queries to [: {£1}"™ — {x1} and parameters s € N and ¢ € (0, 1),
Makes poly((log s)/e) - logn queries to f, runs in poly((logs)/e) - nlogn time, and
Accepts w.h.p. if [is e-close to a size-s decision tree;
Rejects w.h.p. if f is Q(e)-far from size-sO(1089)°/€°) decision trees.
This adds to a long line of work on testing decision trees [33, 23, 19, 5, 15]. We give an
overview of prior testers in Section 1.2, mentioning for now that they all have (at least) an
exponentially larger dependence on s in their query and time complexities.

1.1.1.1 A new connection between tolerant testing and learning

It would be preferable if our tester can be improved to reject all f’s that are far from size-s
decision trees — or more strongly, if our reconstructor can be improved to provide query
access to a size-s decision tree.

We show that such a tester, even one that is considerably less efficient than ours, would
yield the first polynomial-time algorithm for properly learning decision trees:

G. Blanc, J. Lange, and L.-Y. Tan

» Theorem 3 (Tolerant testing = Proper learning). Suppose there is an algorithm which,
given query access to f: {x1}" — {£1} and parameters s € N and ¢ € (0,1),

Makes poly(s,n,1/e) queries to f, runs in poly(s,n,1/e) time, and

Accepts w.h.p. if f is e-close to a size-s decision tree;

Rejects w.h.p. if f is Q(e)-far from size-s decision trees.
Then there is a poly(s,n,1/e)-time membership query algorithm for properly learning size-s
decision trees with respect to the uniform distribution.

This would represent a breakthrough on a central open problem in learning theory. Recent
work of Blanc, Lange, Qiao, and Tan [7] gives a poly(n)-s©(°81°8) time algorithm, improving
on the prior state of the art of n©(1°85) [24]. Neither [24]’s nor [7]’s algorithm goes through
testing.

It is well known and easy to see that proper learning algorithms yield comparably efficient
testers [25]. Theorem 3 provides an example of a converse; we find the existence of such a
converse surprising, and are not aware of any previous examples.

1.1.1.2 Reconstructors and testers for other properties

Decision tree complexity is quantitatively related to numerous other complexity measures
of boolean functions: Fourier degree, approximate degree, randomized and quantum query
complexities, certificate complexity, block sensitivity, sensitivity, etc. Our results therefore
immediately yield new reconstructors and tolerant testers for these properties. For example,
we have the following:

» Corollary 4 (Reconstruction of low Fourier degree functions). There is a randomized algorithm
which, given queries to [: {£1}™ — {x1} and parameters d € N and ¢ € (0,1), provides
query access to a fized function g : {x£1}"™ — {£1} where
g has Fourier degree O(d" /%),
dist(f,g) < O(opt,) + € w.h.p., where opt, denotes the distance of f to closest h :
{£1}"* — {£1} of Fourier degree d.
Every query to g is answered in poly(d,1/¢) - nlogn time and with poly(d,1/e) - logn
queries to f.

This in turn yields a tolerant tester for Fourier degree. As in the case for decision trees,
all prior testers for low Fourier degree [23, 19, 20, 5, 12, 15] have an exponential dependence
on d in their query and time complexities.

Table 1 lists examples of measures for which we obtain new reconstruction algorithms,
each of which in turn give new tolerant testers.

1.2 Background and comparison with prior work

As already mentioned, Theorem 1 gives the first reconstruction algorithm for decision trees.
The problem of testing decision trees, on the other hand, has been intensively studied.

Testing decision trees. Recent work of Bshouty [15] gives an algorithm, running in
poly(s®,1/¢) - n time and using O((slog s)/e) queries, that distinguishes between size-s de-
cision trees from functions that are e-far from size-s decision trees. Prior to [15], Chakraborty,
Garcia-Soriano, and Matsliah [19] gave an O((slog s)/c?)-query algorithm, and before that
Diakonikolas, Lee, Matulef, Onak, Rubinfeld, Servedio, and Wan [23] gave an O(s*/e?)-query
algorithm. Like [15]’s algorithm, the algorithms of [19, 23] also run in poly(s®,1/¢) - n time.!

1 All these testers enjoy a weak form of tolerance: they are in fact able to distinguish between functions
that are O(poly(e/s))-close to size-s decision trees from those that are e-far from size-s decision trees.
(Briefly, this is because their queries, while correlated, are each uniformly distributed.)

24:3

ICALP 2022

24:4

Reconstructing Decision Trees

Table 1 Performance guarantees of our reconstruction algorithms for various complexity measures.
In each row, opt, denotes the distance from f to the closest function h such that the complexity
measure of that row for h is bounded by d. In all cases, every query to g is answered in poly(d, 1/¢) -
nlogn time with poly(d, 1/¢) - logn queries to f.

Assumption Guarantee
Complexity measure Query access to f that is Query access to g that is
opt,-close to h where: O(opt, + &)-close to f where:
Fourier degree deg(h) <d deg(g) < O(d" /e?)
Approximate degree (ié:g(h) <d (ié:g(g) < O(d’/e?)
Randomized query complexity R(h) <d R(g) < O(d"/&?)
Quantum query complexity Q(h) <d Q(g) < 0(d*/e?)
Certificate complexity C(h) <d C(g) < O(d®/&?)
Block sensitivity bs(h) <d bs(g) < O(d®/£?)
Sensitivity s(h) < d s(g) < O(d*?/e?)

Compared to these algorithms, our algorithm in Corollary 2 solves an incomparable
problem with efficiency parameters that compare rather favorably with theirs. Notably, our
time and query complexities both depend polylogarithmically on s instead of exponentially
and super-linearly respectively.

Turning to the parameterized setting, Kearns and Ron [33] gave a tester with time and
query complexities poly(n™, (log s)™) that distinguishes size-s decision trees over [0, 1]™ from
functions that are (3 — n=9()-far from size-poly(2", s) decision trees. The parameters of
this result are such that one should think of the dimension “n” as being a constant rather
than an asymptotic parameter.

Property reconstruction

Property reconstruction was introduced by Ailon, Chazelle, Comandur, and Liu [2]. (See
also the work of Austin and Tao [3], who termed such algorithms “repair algorithms”.)
Reconstruction has since been studied for a number of properties, including monotone
functions [2, 43, 4], hypergraph properties [3], convexity [21], expanders [32], Lipschitz
functions [30], graph connectivity and diameter [17], and error correcting codes [18]. Property
reconstruction falls within the local computation algorithms framework of Rubinfeld, Tamir,
Vardi, and Xie [42].

The paper of Blanc, Gupta, Lange, and Tan [6] designs a decision tree learning algorithm
that is amenable to learnability estimation [35, 10]: given a training set S of unlabeled
examples, the performance of this algorithm A trained on S — that is, the generalization
error of the hypothesis that A4 would construct if we were to label all of S and train A on it —
can be accurately estimated by labeling only a small number of the examples in S. Their

G. Blanc, J. Lange, and L.-Y. Tan

techniques can be used to derive a reconstruction algorithm that achieves guarantees similar
to those in Theorem 1, but only for monotone functions f. This limitation is inherent: as
noted in [6], their algorithm is fails for non-monotone functions.

1.2.1 The work of Bhsouty and Haddad-Zaknoon

Subsequent to the posting of our work to the ArXiv, Bshouty and Haddad-Zaknoon [16]
have given a tester that is closely related, but incomparable, to Corollary 2. Their tester:

Makes poly(s,1/¢) queries to f, runs in poly(n, 1/¢) time, and
Accepts w.h.p. if f is exactly a size-s decision tree;

Rejects w.h.p. if f is e-far from size-(s/e)0(1°8(s/2) decision trees.

Comparing [16]’s tester to ours, their query complexity is independent of n (whereas
ours has a logn dependence), and the size of decision trees in their reject condition is only
(s/£)000e(s/2) (whereas we require sO((108)°/e%)),

On the other hand, our tester is tolerant and has query complexity that achieves a
polylogarithmic instead of polynomial dependence on s. Furthermore, [16] does not give a
reconstruction algorithm, while that is the main contribution of our work.

1.3 Future directions

We list a few concrete avenues for future work suggested by our results:

Tighter connections between testing and learning: Our tester rejects functions that are
Q(e)-far from quasipoly(s) decision trees, and Theorem 3 shows that a tester that rejects
functions that are Q(e)-far from size-s decision trees would yield a comparably efficient
algorithm for properly learning decision trees. A concrete avenue for future work is to
narrow this gap between quasipoly(s) and s, with the ultimate goal of getting them to
match.

There are also other ways in which Theorem 3 could be strengthened: Do non-tolerant
testers for decision trees yield proper learning algorithms? Do tolerant testers yield proper
learning algorithms with agnostic guarantees?

Improved reconstruction algorithms and testers for other properties: The reconstruction
algorithms that we obtain for the properties listed in Table 1 follow by combining The-
orem 1 with known relationships between these measures and decision tree complexity.
It would be interesting to obtain improved parameters by designing reconstruction al-
gorithms that are tailored to each of these properties, without going through decision
trees.

The same questions can be asked of property testers, and about properties that are
not known to be quantitatively related to decision tree size. Can we achieve similar
exponential improvements in the time and query complexities of non-parameterized testers
by relaxing to the parameterized setting? Theorem 3 could be viewed as suggesting that
for certain properties, efficient algorithms may only be possible in the parameterized
setting.

Finally, we mention that there remains a large gap in the known bounds on the query
complexity of non-tolerant testing of decision trees in the non-parameterized setting: the
current best upper bound is O(s) [15, 19] whereas the current best lower bound is Q(log s) [23,
5]. It would be interesting to explore whether our techniques could be useful in closing this
exponential gap.

24:5

ICALP 2022

24:6

Reconstructing Decision Trees

Notation

All probabilities and expectations are with respect to the uniform distribution unless otherwise
stated; we use boldface (e.g.) to denote random variables. For two functions f, g : {£1}" —
{£1}, we write dist(f, g) to denote the quantity Pr[f(x) # g(x)]. We say that f and g are
e-close if Pr[f(x) # g(x)] < e, and e-far otherwise.

For a function f: {£1}"™ — {£1}, a decision tree T over the same variables as f, and a
node v in T, we write f, to denote the subfunction of f obtained by restricting f according
to the root-to-v path in T. We write |v| to denote the depth of v within T, and so the
probability that a uniform random x ~ {£1}" reaches v is 27/VI.

2 Proofs of Theorem 1 and Theorem 2

Our proof of Theorem 1 has two main components:
A structural lemma about functions f that are opt,-close to a size-s decision tree T*.
While we have no information about the structure of this tree T* that f is opt,-close
to, we will show that f is O(opt, + €)-close to a tree T of size S = S(s,¢) with a very
specific structure.
An algorithmic component that leverages this specific structure of 7 to show that for
any input x € {1}", the value of T°(z) can be computed with only log S - logn queries

to f.

Section 2.1 will be devoted to the structural lemma and Section 2.2 to the algorithmic
component. We prove Theorem 1 in Section 2.2.2, and we derive Corollary 2 as a simple
consequence of Theorem 1 in Section 2.3.

2.1 Structural component of Theorem 1

» Definition 5 (Noise sensitivity). The noise sensitivity of f : {£1}" — {£1} at noise rate p
is the quantity

NS, (f) = Pr[f(z) # f(y)],

where ® ~ {£1}™ is uniform random and y ~, « is a p-noisy copy of x, obtained from x by
independently rerandomizing each coordinate with probability p.

We assign each coordinate i € [n] of a function f a score, which measures the expected
decrease in the noise sensitivity of f if x; is queried:

» Definition 6 (Score of a variable). Given a function f : {£1}™ — {£1}, noise rate p € (0,1),
and coordinate i € [n], the score of x; is defined as

Score; (f,p) = NS, (f) E [NS,(fu=b)]-

B be{£1}

(Our notion of score is equivalent, up to scaling factors depending on p, to the notion of
“noisy influence” as in defined in O’Donnell’s monograph [38]. We use our definition of score
as it simplifies our presentation.) We are now ready to define the tree T° described at the
beginning of this section and state our structural lemma.

G. Blanc, J. Lange, and L.-Y. Tan

» Definition 7. For a function f : {£1}" — {£1}, parameters d € N and p € (0,1), we
write T}i’p to denote the complete decision tree of depth d defined as follows:

At every internal node v, query z; where i € [n] mazimizes Score;(f,,p).2

Label every leaf ¢ with sign(E[f]).

» Lemma 8 (Structural lemma). Let f : {£1}"™ — {£1} be opt,-close to a size-s decision
tree. Then for d = O((log s)?/e%) and p = ¢/(log s), we have dist(f, T}i’p) < O(opt,) +e.

While Lemma 8 covers the main essence of our structural result, we’ll need a slightly
more robust version.

» Lemma 9 (Robust version of Lemma 8). Let f: {£1}"™ — {£1} be opt,-close to a size-s
decision tree. For d = O((logs)3/e3), p = ¢/(logs), and T = O(3/(log s)3), let T be any
complete decision tree of depth d satisfying:

At every internal node v, the variable x; that is queried at this node satisfies:

Score; (fy,p) > m?)i {Score;(fy,p)} — 7.
jEen
Every leaf £ such that |E[fe]| > € is labeled sign(IE[f/]).
Then dist(f,T) < O(opt, +).

The proofs of Lemmas 8 and 9 are in the full version of this paper.

2.2 Algorithmic component of Theorem 1
2.2.1 Query-efficient simultaneous score estimation

We begin by designing a query-efficient subroutine that simultaneously estimates the scores
of all n variables of a function f. The fact that we are able to do so with O(logn) queries,
as opposed to Q(n) as would be required by a naive approach, will be a key component in
the query efficiency of our reconstructor.

» Theorem 10 (Score estimator). There is an algorithm which, given query access to a
function f : {£1}"™ — {£1}, noise rate p € (0,1), accuracy parameter 7 € (0,1), and
confidence parameter 6 € (0,1), for

<logn + 10g(1/5)>
—o 2T
-
makes O(q) queries, runs in O(gqn) time, and returns estimates My, ..., Ny, such that, with
probability at least 1 — §, satisfies
|mi — Score;(f,p)| <7 for alli € [n].

We prove Theorem 10 by first giving a 2-query algorithm, UNBIASEDESTIMATOR (Fig-
ure 1), that runs in O(n) time and outputs unbiased estimates of all n scores. The algorithm
of Theorem 10 takes the mean of multiple runs of that unbiased estimator, with its guarantees
following from a simple concentration bound.

» Lemma 11 (Analysis of UNBIASEDESTIMATOR). For any f : {£1}" — {+1} and p € (0,1),
let m1,...,ny be the outputs of UNBIASEDESTIMATOR(f,p). Then

E [n;] = Score;(f,p) for alli € [n].

z,Y

2 Ties are arbitrarily broken; our results hold regardless of how ties are broken.

24:7

ICALP 2022

24:8

Reconstructing Decision Trees

UNBIASEDESTIMATOR(f, p):

Input: Query access to a function f : {+1}" — {£1} and a noise rate p € (0,1).
Output: Unbiased estimates of Score;(f,p) for all ¢ € [n].

1. Choose & € {+1}" uniformly at random and generate a p-noisy copy y of x.
2. For each i € [n], return the estimate

m=115@ #)] (1= 25 1o =)

2

Figure 1 UNBIASEDESTIMATOR computes unbiased estimates of the scores of all variables of a

function f.

Proof. We first note that Pr[f(z) # f(y)] is NS,(f) by definition. Therefore, it is enough
for us to prove that

B NS, ()] = 1= Pr1f(@) # f(y) and @ =). (1)

NS

Given the above equation, the desired result holds by linearity of expectation and the
definition of score. Consider the distribution over (x,y) conditioned on the event that
b = x; = y;. That distribution is equivalent to if we picked & randomly from the domain of
fz,=b and selected y by rerandomizing each coordinate in that domain with probability p.

Therefore,
NSp(fo,=) = Pr(f(z) # f(y) |b =z = yi]

z,y
1
- Pry y[b=z; = yi]] 'Ei[f(w) # f(y) and b = x; = y;].

We now prove Equation (1):

petiny (el = B Prib=a, = g dilf@) 7 fly) and b =2 =y
1
3 Prlz; =yl ve(zn mr;[f(m) # f(y) an T; = yi
z,y
1
=1 2 Prlf@) # fy) and @ = yil
3-(1=5) 7 ev
1
= Pr(f(@) # f(y) and @ = yi).
L 2y
Lemma 11 then holds by linearity of expectation. <

We now prove Theorem 10.

Proof of Theorem 10. The algorithm runs UNBIASEDESTIMATOR(f,p) ¢ times and then
outputs the means of each returned estimates. Each estimate from UNBIASEDESTIMATOR is

bounded between —1 and 1. By Hoeffding’s inequality, for any i € [n],

q- 7
Pr [|n; — Score;(f,p)| > 7] < —exp, | — -

G. Blanc, J. Lange, and L.-Y. Tan

For ¢ as in Theorem 10, the above probability is at most §/n. By union bound, all estimates
are accurate within +7 with probability at least 1 — .

Finally, this algorithm uses only 2¢ = O(q) queries. Each run of UNBIASEDESTIMATOR
estimator takes O(n) time to construct the query and compute all the estimates, so the entire
algorithm takes O(gn) time. <

2.2.2 Proof of Theorem 1

We prove Theorem 1 by providing an algorithm, RECONSTRUCTOR (Figure 2), which assumes
query access to a function f : {£1}" — {%1} and provides fast query access to a tree T
meeting the criteria of Theorem 1. We build off a simple observation that also underlies
[6]: to determine the output of a decision tree T on a particular input z, it suffices to build
the root-to-leaf path corresponding to z, which can be exponentially faster than building
the entire tree. Our algorithm is different from [6]’s; as mentioned in the introduction their
algorithm is tailored to monotone functions, and is known to fail for non-monotone ones. We
on the other hand leverage the specific structure of T established in Section 2.1 together
with the query-efficient score estimator from Section 2.2.1 in our design and analysis of
RECONSTRUCTOR.

RECONSTRUCTOR maintains a partial tree 7° containing all the root-to-leaf paths in 7'
corresponding to queries received so far. In the pseudocode for RECONSTRUCTOR, we use the
notation T, . (a) € [n] U {@} to indicate the variable queried in [n] at internal node « of
the partial tree 7°, or @ if that node has not yet been built. Similarly, 73, (o) € {—1,1, 0}
indicates the value at leaf a in T°, or @ if that value has not yet been decided.

Theorem 1 follows from the following two lemmas, showing the correctness and efficiency
of RECONSTRUCTOR respectively.

» Lemma 12 (Correctness of RECONSTRUCTOR). For any f : {£1}" — {£1}, s € I,
€ € (O,%), § € (0,1), and sequence of inputs z(V, ... 2™ € {£1}", the outputs of
RECONSTRUCTOR are consistent with some decision tree T where

T has size so((logs)2/53),

dist(T, f) < O(opt,) + € with probability at least 1 — 0.

Proof. The outputs of RECONSTRUCTOR are always consistent with 7°° and the depth of T°
is always capped at d. Let T be the tree that T° would be if every z € {+1}" were given
as an input to RECONSTRUCTOR. Then, T has size at most 2¢ = so((logs)2/53), and every
output is consistent with T'.

If all score estimates in Step 3(b)i are accurate to £7 and expectation estimates is
Step 3c are accurate to &5, then 7" meets the criteria of Lemma 9 and therefore dist(7', f) <
O(opt,) + €. The number of time scores are estimated in Step 3(b)i is at most the number
of internal nodes of T, which is 2¢ — 1. Similarly, the number of expectation estimates in
Step 3(b)i is at most the number of leaves of T, which is 2¢. By union bound over the

possible failures, we see that the failure probability is at most §. |

» Lemma 13 (Efficiency of RECONSTRUCTOR). For any f : {+1}" — {£1},s € N, e € (0, 3),
§ € (0,1), particular input z € {1}, and

¢=0 <<1og 5)° - (log) .1og<1/5>> |

9

upon receiving z as input, RECONSTRUCTOR(f, s,¢,d) uses O(q) queries and O(qn) time to
return an output.

24:9

ICALP 2022

24:10

Reconstructing Decision Trees

RECONSTRUCTOR(f, s, ¢,d):

meter ¢, and failure probability 6.

probability at least 1 — 4.

1. Set parameters d,p, and 7 as in Lemma 9.
. Initialize T° to be the empty partial tree.
3. Upon receiving an input z € {£1}™:
a. Initialize « to be the root of T°.
b. Repeat d times.
i. IfT°

internal

N

left child.

2d
estimate is closer to.

d. Output T ¢(c).

Input: Query access to a function f: {£1}" — {%1}, size parameter s, error para-

Output: Query access to a decision tree T' that satisfies dist(f,T) < O(opt,) + ¢ with

(@) is @ use the estimator from Theorem 10 to compute estimates
of Score;(fo,p) with additive accuracy £7 and failure probability O(%) for

all 7 € [n] and set T, a1 (@) to the variable with highest estimated score.
ii. Fori=T2, ..(a), If Z; is 1, set « to its right child. Otherwise, set « to its

c. If T2 ¢(a) is @, use random samples to estimate E[f,] to additive accuracy
+¢ with failure probability O(2) and set T;2,() to whichever of {£1} that

Figure 2 RECONSTRUCTOR gives efficient query access to a decision tree is close to f with high

probability.

Proof. On each input, the estimator from Theorem 10 is used up to d times. Each uses

logn + 10g(2d/5)> _o (logn +d+ 10g(1/5)>

T2 72

Ginner = 0 (
queries and O(ginnern) time. By Hoeffding’s inequality, it is sufficient to take

log(Qd/5)) o <d+ log(1 /5))

g2 g2

Qleaf = 0 (
random samples in Step 3c. Therefore, the total number of queries used is
q = Qinner 1 Qleat

_0 <logn+d+log(1/5)) Lo <d+l(§(1/5)>

2

_0 <logn + ((log 5)* /%) +log(1/4) . ((log s)%/e?) + log(1/5))
N 6 /(log 5)6 g2
- ((logs)? - (logn) - log(1/4)

The time to prepare all queries is O(gn), and all other computation is asymptotically

faster.

<

G. Blanc, J. Lange, and L.-Y. Tan

» Remark 14 (Local reconstruction). We remark that our reconstruction algorithm can be
made local in the sense of [43]. They define a reconstruction algorithm, .4, to be local, if the
output of A on some input z is a deterministic and easy to compute function of z and some
small random string p. This allows queries to the reconstructor to be answered in parallel,
as long as the random string p is shared. To make our reconstructor local, we note that the
only place randomness is used is in generating samples consistent with some restriction a.
We can set p to be n bits per sample the constructor might wish to generate. Since the total
number of samples the reconstructor needs per input is poly(log s, 1/¢,log(1/4)) - logn, we
have

|p| = poly(log s, 1/¢,log(1/4)) - nlogn

On a particular input, the local reconstructor starts with 7° being the empty tree. Whenever
it wishes to produce a random sample consistent with «, it sets the € {£1}" to be next n
bits of p and then uses x, for the sample. It’s easy to see that this algorithm will keep T°
consistent between different runs because it will always compute the same variable as having
the highest score given some restriction. Furthermore, the analysis goes through without
issue. The only difference between this analysis and one where fresh random bits are used
to for each sample is that the queries of different paths may be correlated. In our proof of
Lemma 12, we use a union bound to ensure all estimates obtained through sampling are
accurate, and that union bound holds regardless of whether those estimates are independent.

2.3 Proof of Corollary 2

In this section we derive Corollary 2 as a simple consequence of Theorem 1. The connection
between reconstruction and tolerant testing has been noted in other works (see e.g. [17, 11]);
we provide a proof here for completeness.

» Theorem 15 (Corollary 2 restated). There is an algorithm which, given query access to
fA{£1}" = {£1} and parameters s € N and £,6 € (0,1), runs in poly(logs,1/e) - nlogn -
log(1/4) time, makes poly(logs,1/¢) -logn -log(1/6) queries to f, and

Accepts w.p. at least 1 — § if f is e-close to a size-s decision tree;
O((log s)

Rejects w.p. at least 1 — 0 if f is Q(e)-far from size-s */€°) decision trees.

Proof. The algorithm chooses m uniform random inputs, ,... &™) ~ {£1}"™ where

m = O(log(1/8)/€?). Let bV ... 6™ € {£1} be the output of RECONSTRUCTOR(, 5, ¢,).

The tester rejects if E;cpy [f(z®) # b®] > Q(e) and accepts otherwise.

First, we consider the case where f is e-close to a size-s decision tree (i.e. opt, < €). By
Lemma 12, with probability at least 1 — § the outputs of RECONSTRUCTOR are consistent
with a tree, T, satisfying dist(T, f) < O(e). By Hoeflding’s inequality,

Pr E [f(@®)#bD] > Q(e)| < exp(—2me?) < 4.

2 . ztm) |ig[m]
By a union bound, the tester rejects with probability at most d + § = 24.

We next consider the case where f is Q(e)-far from size-sO((108) /%) decision trees. By
Lemma 12 it is guaranteed to be consistent. A similar argument to the first case shows that

the probability of acceptance is at most § + exp(—2me?) = 2§. Finally, the efficiency of this
tester is a consequence of Lemma 13 and our choice of m = O(log(1/§)/&?). <

24:11

ICALP 2022

24:12

Reconstructing Decision Trees

3 Proof of Corollary 4

We first restate Theorem 1 with decision tree depth instead of size as the complexity measure:

» Theorem 16 (Theorem 1 in terms of decision tree depth). There is a randomized algorithm
which, given query access to f: {£1}" — {£1} and parameters d € N and e € (0,1), provides
query access to a fized decision tree T where
T has depth O(d?/€?),
dist(T, f) < O(opt,)+¢€ w.h.p., where opt, denotes the distance of f to the closest depth-d
decision tree.
Every query to T is answered in poly(d,1/e)-nlogn time and with poly(d,1/¢)-logn queries
to f.

To see that our proof of Theorem 1 also establishes Theorem 16, we use the fact that
every depth-d decision tree has size < 2%, and recall that the tree T that the algorithm
of Theorem 1 provides query access to is a complete tree and hence has depth logarithmic in
its size.

Decision tree depth and Fourier degree of boolean functions are known to be polynomially
related:

» Fact 17 (Decision tree depth vs. Fourier degree [37, 44]). For g: {£1}" — {£1} let deg(g)
denote g’s Fourier degree and D(g) denote the depth of the shallowest decision tree that
computes g. Then deg(g) < D(g) and D(g) < deg(g)3.

We first observe Theorem 16 and Fact 17 already gives a quantitatively weaker version
of Corollary 4 where g has degree O(d?/e?). To see this f: {1} — {&1} be opt -close
to a degree-d function h : {£1}" — {£1}. By Fact 17, D(h) < deg(h)?, and so the
algorithm of Theorem 16 provides query access to a decision tree T': {£1}" — {£1} that
is (O(opt,) + €)-close to f and where the depth of T is O(D(h)3/e?) = O(deg(h)?/e?).
Applying Fact 17 again, we conclude that deg(T") < D(T) < O(deg(h)?/£?).

To obtain the sharper bound of O(deg(h)”/e?), we observe that the proof of Lemma 8 in
fact bounds the depth of T by O(D(h)? Inf(h)/e?). Influence and degree of boolean functions
are related via the following basic fact (see e.g. [38, Theorem 37]):

» Fact 18. For all h: {£1}™ — {£1}, we have Inf(h) < deg(h).

Therefore, we can bound the degree of T' by O(D(h)? Inf(h)/e?) < O(deg(h)”/e?).

Guarantees for the other measures listed in Table 1 follow from similar calculations and
known quantitative relationships between these measures and decision tree complexity; the
current best bounds are summarized in Table 1 of [1].

4 Proof of Theorem 3
In this section, we prove the following theorem:

» Theorem 19 (Tolerant testing of DTs = Proper learning of DTs). Let ¢ > 0 be an absolute
constant and A be an algorithm with the following guarantee. Given query access to f :
{£1}™ — {£1} and parameters s € N and ¢ € (0,1), the algorithm A:

Accepts w.h.p. if f is e-close to a size-s decision tree;

Rejects w.h.p. if f is (ce)-far from all size-s decision trees.

G. Blanc, J. Lange, and L.-Y. Tan

Then there is an algorithm B with the following guarantee. Given parameters s' € N and
e’ € (0,1), and query access to a function g : {£1}" — {£1} that is computed by a size-
s decision tree, B makes poly(s',n,1/e’') calls to A, each with parameters s < s’ and
e > poly(1/s',¢"), and produces a decision tree which is &'-close to g with high probability.
Furthermore, the auziliary computation that g does takes time poly(n,s’,1/¢’).

Theorem 3 follows as a special case of Theorem 19.
We prove Theorem 19 in two steps:

1. A tolerant tester implies an algorithm for estimating the distance of any function to the
class of size-s decision trees. This is well known [40] and applies to any function class,
not just decision trees.

2. An algorithm for estimating distance to decision trees implies a proper learner for decision
trees. Here, we take advantage of the structure of decision trees.

For a function g : {£1}"™ — {£1} and s € IN, we write opt,(g) to denote the distance of
g to the closest size-s decision tree.

» Lemma 20 (Tolerant testing = distance estimation [40]). Let ¢ and A be as in Theorem 19.
There exists an estimator £ with the following guarantee. Given query access to g : {£1}" —
{1} and parameters s' € N and v € (0,1), the estimator £ makes ¢/~ calls to A and returns
an 1 that with high probability satisfies

n < opty(g) <c-m+7.
Furthermore, the auziliary computation of g takes time O(c/7).

Proof. The algorithm € runs A with e = 2,2 3 1 and sets n to be the largest ¢ for

c?’ c? c?

which A(g, s, €) rejects. Since A(g, s,n) rejected,

1 < opt4(g)

with high probability. Furthermore, since A(g, s, 1+) accepted,

opt,(9) <c-(n+2)
=cm+y

with high probability. Finally, we note that £ indeed makes ¢/v calls to A, and aside from
those calls, it only needs to make a single pass over the output of those calls and return the
largest € that led to a rejection, which takes time O(c/7). <

We are now ready to state our algorithm, BUuILDDT (Figure 3), for properly learning
size-s’ decision trees. BUILDDT will additionally take in a depth parameter d that will
facilitate our analysis of it (looking ahead, d will be chosen to be O(log(s’/¢’)) in our proof
of Theorem 19).

» Lemma 21 (Error of BUILDDT). For all functions f : {£1}" — {£1} and parameters
s,d € N and v € (0,1), the algorithm BUILDDT(f,s,d,~y) outputs a decision tree T satisfying

. ¢t —1 S
dlSt(T, f) < Cd . Opts(f) + v 0_71 + W (2)

24:13

ICALP 2022

24:14

Reconstructing Decision Trees

BuiLDDT(f, s,d,¥):

Input: Query access to f: {£1}"™ — {£1}, parameters s,d € IN and v € (0, 1).
Output: A size-s depth-d decision tree T

1. If s =1 or d = 0, return sign(E[f]).
2. For each i € [n] and integers sg, s > 1 satisfying so + $1 = s:
a. Use & from Lemma 20 to obtain estimates n(x; = 0, s9) and n(x; = 1,s1) that
satisfy:

b. Store error(i, sy, s2) %(17(xZ =0,s0) +n(z; = 1,51)).

3. Let (i*,s§,s7) be the tuple that minimizes error(s,so,s1). Output the tree
with 2;+ as its root, BUILDDT(f;,.—0,s5,d — 1,7) as its left subtree, and
BUILDDT(fz,,=1,57,d — 1,7) as its right subtree.

Figure 3 BUiILDDT computes a size-s depth-d decision tree that approximates a target function
fAE1 = {1}

Proof. We proceed by induction on s and d. If s = 1, then in Step 1, BUILDDT outputs
the best decision tree of size 1. Therefore, dist(7T, f) < opt,(f), satisfying Equation (2). If
d=0and s > 2, then 57 > % = % Furthermore, in Step 1, BUILDDT always outputs a
tree with error at most % Therefore,

. s d -1 S

dist(T, f) < 5d+2 <c?optg(f)+- P + EYIE
Finally, we consider the case where d > 1 and s > 2. Let Ty,¢ be the size-s decision tree that
is opt,,(f) close to f. Let x;, , the root of Type, and sg,opt, 51,0pt the sizes of the left and right
subtrees of T,y respectively. Since the estimates computed in Step 2a are underestimates
of or equal to the true error (i.e. error(iopt, So,0pts S1,0pt) < 0Pt(f)), and since i*, s§, s7 are
chosen in Step 3 to minimize the estimated error, we have

error(i*, 567 SI) < error(iopt, 50,0pt Sl,opt) < opt, (f)
Finally, we bound dist(T, f). Let Ty and T3 be the left and right subtrees of T. Then,

dist (7, f) = 3 (dist(Tb, fo,.=0) + dist(T1, fr,.=1))

d_1,1 *

d— C S
< (¢ 0pty (o) 47 e+ 5
d—1 -1 51
+c"7 - opt,. (fagu=1) +7- — + 2d+1) (Inductive hypothesis)
; P
d—1 * *
d-1 1 =1 sp+s)
=cC) (Opts(*J (fIi*:O) + Optsi‘ (fzi*:1)) +- c—1 + 9d+2
i1 1 x % -1 s
< S ((eommis = 0,50) +7) + (¢ m(is = 1,81) +7)) +7- =1 ‘'z
d. 1 " - d—1 -1 s
=c" 5 (n@is = 0,55) +mzis =1,51)) +¢ S e e ¥

G. Blanc, J. Lange, and L.-Y. Tan

AN e—1)+c -1 s
c—1 2d+2

d .
=" -error(i*, s5,51) + 7 -

d
c—1 s
< opt,(f) + - (7071) + a3

The desired result holds by induction. <

For readability, Lemma 21 assumes that BUILDDT is able to compute round(E[f]) in
Step 1. To make BUILDDT efficient, we would only estimate IE[f] by querying f on uniform
random inputs x € {£1}". If those estimates are computed to accuracy &', then each leaf of
our tree can have up to & additional error. This is not an issue since it increases the total
error of T, which is simply the average of the error at each leaf, by only &’.

Finally, we prove Theorem 19:

Proof of Theorem 19. Our goal is to properly learn a size-s’ decision tree g : {£1}" — {£1}
to accuracy €. To do so, we run BUILDDT (g, s, d,~), with d set to

d=log(s'/e") — 1,
and v set to

ax(1,l
/ ! 8/)mo\X(ogc)

€ € e
- = = 2—d max(1,log c) L
173 max(2,c)¢ 2 27 2 \s

By Lemma 21, for T the tree BUILDDT outputs,

dist(T, g) < ¢ - opt ¢e-1, &
ist(T,) < ¢ - opta(9) +7 - ——7 + 5
5./ d S/
< S [
=0+ 2 - max(2,c)¢ max(2, ¢)” + Qlog(s’/e")+1

e €

< —+—=¢.

=5 + 5 €

Hence, BUILDDT produces the desired output. We next argue that it is efficient. During the
recursion, BUILDDT is called at most s’ times in total. Each such call makes O(ns’) calls to
€. By Lemma 20, those calls to £ each make c/e calls to A. Hence, the total number of calls
to A is

N2 "2 7\ max(1,logc)
0 (n(i)) =0 (71(2) : (Z)) = poly(n, s’,1/¢).

The total auxiliary computation of BUILDDT is bounded by the same quantity. Finally,
, ,\ max(1,logc)
[g)

each call to A is made with parameters s and € where s < s’ and € = 5 (;

poly(1/s’,). <

—— References

1 Scott Aaronson, Shalev Ben-David, Robin Kothari, Shravas Rao, and Avishay Tal. Degree vs.
approximate degree and quantum implications of huang’s sensitivity theorem. arXiv preprint,
abs/2010.12629, 2020. arXiv:2010.12629.

2 Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Property-preserving data
reconstruction. Algorithmica, 51(2):160-182, 2008.

3 Tim Austin and Terence Tao. Testability and repair of hereditary hypergraph properties.
Random Structures € Algorithms, 36(4):373-463, 2010.

24:15

ICALP 2022

http://arxiv.org/abs/2010.12629

24:16

Reconstructing Decision Trees

10

11
12
13

14

15

16

17

18

19

20

21

22

23

Arnab Bhattacharyya, Elena Grigorescu, Madhav Jha, Kyomin Jung, Sofya Raskhodnikova,
and David Woodruff. Lower bounds for local monotonicity reconstruction from transitive-
closure spanners. SIAM Journal on Discrete Mathematics, 26(2):618-646, 2012.

Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds via communication
complexity. computational complexity, 21(2):311-358, 2012.

Guy Blanc, Neha Gupta, Jane Lange, and Li-Yang Tan. Estimating decision tree learnability
with polylogarithmic sample complexity. In Proceedings of the 34th Conference on Neural
Information Processing Systems (NeurIPS), 2020.

Guy Blanc, Jane Lange, Mingda Qiao, and Li-Yang Tan. Properly learning decision trees in
almost polynomial time. In Proceedings of the 62nd Annual Symposium on Foundations of
Computer Science (FOCS), 2021.

Avirm Blum, Merrick Furst, Jeffrey Jackson, Michael Kearns, Yishay Mansour, and Steven
Rudich. Weakly learning DNF and characterizing statistical query learning using Fourier
analysis. In Proceedings of the 26th Annual ACM Symposium on Theory of Computing (STOC),
pages 253-262, 1994.

Avrim Blum. Rank-r decision trees are a subclass of r-decision lists. Inform. Process. Lett.,
42(4):183-185, 1992. doi:10.1016/0020-0190(92)90237-P.

Avrim Blum and Lunjia Hu. Active tolerant testing. In Proceedings of the 31st Conference On
Learning Theory (COLT), volume 75, pages 474-497, 2018.

Zvika Brakerski. Local property restoring, 2008. Manuscript.

Joshua Brody and Pooya Hatami. Distance-sensitive property testing lower bounds. CoRR,
abs/1304.6685, 2013. arXiv:1304.6685.

Alon Brutzkus, Amit Daniely, and Eran Malach. ID3 learns juntas for smoothed product
distributions. In Proceedings of the 33rd Annual Conference on Learning Theory (COLT),
pages 902-915, 2020.

Nader Bshouty. Exact learning via the monotone theory. In Proceedings of 34th Annual
Symposium on Foundations of Computer Science (FOCS), pages 302-311, 1993.

Nader Bshouty. Almost optimal testers for concise representations. In Proceedings of the 24th
International Conference on Randomization and Computation (RANDOM), pages 5:1-5:20,
2020.

Nader H. Bshouty and Catherine A. Haddad-Zaknoon. On learning and testing decision tree.
ArXiv preprint, abs/2108.04587, 2021. arXiv:2108.04587.

Andrea Campagna, Alan Guo, and Ronitt Rubinfeld. Local reconstructors and tolerant
testers for connectivity and diameter. In Proceedings of the 17th International Workshop on
Randomization and Computation (RANDOM), pages 411-424, 2013.

Sourav Chakraborty, Eldar Fischer, and Arie Matsliah. Query complexity lower bounds for
reconstruction of codes. Theory of Computing, 10(19):515-533, 2014. doi:10.4086/toc.2014.
v010a019.

Sourav Chakraborty, David Garcia-Soriano, and Arie Matsliah. Efficient sample extractors
for juntas with applications. In International Colloguium on Automata, Languages, and
Programming (ICALP), pages 545-556, 2011.

Sourav Chakraborty, David Garcia-Soriano, and Arie Matsliah. Nearly tight bounds for testing
function isomorphism. In Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1683-1702, 2011.

Bernard Chazelle and C Seshadhri. Online geometric reconstruction. In Proceedings of the
22nd Annual Symposium on Computational Geometry (SoCG), pages 386-394, 2006.

Sitan Chen and Ankur Moitra. Beyond the low-degree algorithm: mixtures of subcubes and
their applications. In Proceedings of the 51st Annual ACM Symposium on Theory of Computing
(STOC), pages 869-880, 2019.

Ilias Diakonikolas, Homin Lee, Kevin Matulef, Krzysztof Onak, Ronitt Rubinfeld, Rocco
Servedio, and Andrew Wan. Testing for concise representations. In Proceedings of the 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 549-558, 2007.

https://doi.org/10.1016/0020-0190(92)90237-P
http://arxiv.org/abs/1304.6685
http://arxiv.org/abs/2108.04587
https://doi.org/10.4086/toc.2014.v010a019
https://doi.org/10.4086/toc.2014.v010a019

G. Blanc, J. Lange, and L.-Y. Tan

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38
39

40

41

42

43

44

Andrzej Ehrenfeucht and David Haussler. Learning decision trees from random examples.
Information and Computation, 82(3):231-246, 1989.

Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. Journal of the ACM, 45:653-750, 1998.

Thomas Hancock. Learning kpu decision trees on the uniform distribution. In Proceedings of
the 6th Annual Conference on Computational Learning Theory (COT), pages 352-360, 1993.
Thomas Hancock, Tao Jiang, Ming Li, and John Tromp. Lower bounds on learning decision
lists and trees. Information and Computation, 126(2):114-122, 1996.

FElad Hazan, Adam Klivans, and Yang Yuan. Hyperparameter optimization: A spectral
approach. Proceedings of the 6th International Conference on Learning Representations
(ICLR), 2018.

Jeffrey C. Jackson and Rocco A. Servedio. On learning random dnf formulas under the uniform
distribution. Theory of Computing, 2(8):147-172, 2006. doi:10.4086/toc.2006.v002a008.
Madhav Jha and Sofya Raskhodnikova. Testing and reconstruction of lipschitz functions with
applications to data privacy. SIAM Journal on Computing, 42(2):700-731, 2013.

Adam Kalai, Alex Samorodnitsky, and Shang-Hua Teng. Learning and smoothed analysis.
In Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 395-404, 2009.

Satyen Kale, Yuval Peres, and Comandur Seshadhri. Noise tolerance of expanders and sublinear
expansion reconstruction. STAM Journal on Computing, 42(1):305-323, 2013.

Michael Kearns and Dana Ron. Testing problems with sublearning sample complexity. Journal
of Computer and System Sciences, 61(3):428-456, 2000.

Adam Klivans and Rocco Servedio. Toward attribute efficient learning of decision lists and
parities. Journal of Machine Learning Research, 7(Apr):587-602, 2006.

Weihao Kong and Gregory Valiant. Estimating learnability in the sublinear data regime.
In Proceedings of the 31st Annual Conference on Neural Information Processing Systems
(NeurIPS), pages 5460-5469, 2018.

Dinesh Mehta and Vijay Raghavan. Decision tree approximations of boolean functions.
Theoretical Computer Science, 270(1-2):609-623, 2002.

Gatis Midrijanis. Exact quantum query complexity for total boolean functions. arXiv preprint,
quant-ph/0403168, 2004. arXiv:quant-ph/0403168.

Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.

Ryan O’Donnell and Rocco Servedio. Learning monotone decision trees in polynomial time.
SIAM Journal on Computing, 37(3):827-844, 2007.

Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance
approximation. Journal of Computer and System Sciences, 72(6):1012-1042, 2006.

Ronald Rivest. Learning decision lists. Machine learning, 2(3):229-246, 1987.

Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast local computation algorithms. In
Proceedings of the 2nd Symposium on Innovations in Computer Science (ICS), pages 223-238,
2011.

Michael Saks and Comandur Seshadhri. Local monotonicity reconstruction. SIAM Journal on
Computing, 39(7):2897-2926, 2010.

Avishay Tal. Properties and applications of boolean function composition. In Proceedings of
the 4th Conference on Innovations in Theoretical Computer Science (ITCS), pages 441-454,
2013.

24:17

ICALP 2022

https://doi.org/10.4086/toc.2006.v002a008
http://arxiv.org/abs/quant-ph/0403168

	1 Introduction
	1.1 Our contributions
	1.1.1 Implications of Theorem 1 and further results

	1.2 Background and comparison with prior work
	1.2.1 The work of Bhsouty and Haddad-Zaknoon

	1.3 Future directions

	2 Proofs of Theorem 1 and Theorem 2
	2.1 Structural component of Theorem 1
	2.2 Algorithmic component of Theorem 1
	2.2.1 Query-efficient simultaneous score estimation
	2.2.2 Proof of Theorem 1

	2.3 Proof of Corollary 2

	3 Proof of Corollary 4
	4 Proof of Theorem 3

