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ABSTRACT
We study the formation, evolution and collapse of dense cores by tracking density structures in a magnetohydrodynamic
simulation of a star-forming cloud. We identify cores using the dendrogram algorithm and utilize machine learning techniques,
including Neural Gas prototype learning and Fuzzy 2-means clustering, to analyze the density and velocity dispersion profiles
of these cores together with seven bulk properties. A two-dimensional t-distributed stochastic neighbor embedding visualization
facilitates the connection between physical properties and three partially-overlapping phases: i) unbound turbulent structures
(Phase I), ii) coherent cores that have low turbulence (Phase II), and iii) bound cores, many of which become protostellar (Phase
III). Within Phase II we identify a population of long-lived coherent cores that reach a quasi-equilibrium state. Most prestellar
cores form in Phase II and become protostellar after evolving into Phase III. Due to the turbulent nature of the molecular cloud
environment, the initial core properties do not uniquely predict the eventual evolution and we find no one evolutionary path
for cores. The phase lifetimes are 1.1±0.1×105 yr, 1.2±0.2×105 yr, and 1.8±0.4×105 yr for Phase I, II, and III, respectively. We
compare our results to NH3 observations of dense cores. Known coherent cores are predominantly mapped into Phase II, while
most turbulent “pressure-confined" cores are mapped to Phase I or III. We predict that a significant fraction of observed starless
cores have unresolved coherent regions and that most observed starless cores will not form stars. Measurements of core radial
profiles, in addition to the bulk properties usually constructed, will enable more accurate predictions of core evolution.
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1 INTRODUCTION

Since the first identification of dense cores in molecular line obser-
vations made by Myers et al. (1983), astronomers have used the term
“core” to describe the small (∼0.1 pc; Jĳina et al. 1999), roundish (as-
pect ratio ≤ 2; Myers et al. 1991) and quiescent (velocity dispersion
nearly thermal; Fuller &Myers 1992) blobs of gas that are likely pro-
genitors of low-mass stars. Later observations further characterized
most star-forming cores as gravitationally bound, if not collapsing
(Caselli et al. 2002; Enoch et al. 2008; Seo et al. 2015). On the other
hand, Shu et al. (1987) formulated analytical star formation models
and proposed an evolutionary sequence that describes the formation
of protostars within cores through continuous accretion initiated by
gravitational collapse and regulated by thermal pressure. Efforts us-
ing both observations and numerical simulations to understand the
evolution of dense cores have since been largely focused on how
dense cores evolve from the point of time when they become self-
gravitating (“prestellar cores”) to when protostars form within them
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(“protostellar cores”; Li et al. 2004; Tafalla et al. 2004; McKee &
Ostriker 2007; Offner et al. 2008; Lada et al. 2008; Kauffmann et al.
2008; Rosolowsky et al. 2008a; Dib et al. 2010; Heigl et al. 2016;
Chen & Ostriker 2018; Grudić et al. 2022).

Barranco & Goodman (1998) used observations of NH3 hyperfine
line emission to show that the line widths in the interiors of some
dense cores are roughly constant at a value slightly higher than a
purely thermal line width. Goodman et al. (1998) made observations
of OH and C18O line emission of dense cores and proposed that a
characteristic radius exists where the scaling law between the line
width and the core size changes from a power law to a virtually con-
stant relationship. Goodman et al. (1998) found this characteristic
radius to be ∼0.1 pc and called this change in the line width–size
relation the “transition to coherence.” A “coherent core,” defined
by the transition to coherence, is hypothesized to provide the ideal
low-turbulence environment for further star formation through grav-
itational collapse (Goodman et al. 1998; Caselli et al. 2002). At
around the same time, by measuring the near-infrared extinction,
Alves et al. (2001) found that the internal density structures of the
dark cloud Barnard 68 are well described by a pressure-confined,
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self-gravitating isothermal sphere that is critically stable according
to the Bonnor-Ebert criteria (Ebert 1955; Bonnor 1956). Later obser-
vations of C18O molecular line emission confirmed that Barnard 68
is a thermally supported dense core (although a later study found ev-
idence that Barnard 68 is possibly merging with a smaller structure,
which would lead to destabilization and collapse; Lada et al. 2003;
Burkert & Alves 2009). Both the observation of coherent cores and
the identification of a thermally supported dense core resembling a
critical Bonnor-Ebert sphere provide important hints about the initial
condition of dense cores before the formation of protostars within
them.
Recent observational works have revealed that coherent cores are

common in nearby molecular clouds. Pineda et al. (2010) made the
first direct observation of a coherent core in the B5 region in Perseus.
Pineda et al. (2010) observed NH3 hyperfine line emission using the
Green Bank Telescope (GBT) and resolved the transition to coher-
ence across the boundary of the core. Using Very Large Array (VLA)
observations of the interior of the coherent core in B5, Pineda et al.
(2015) found substructures within the B5 coherent core that will
likely form protostars in a freefall time of ∼40,000 yr. Chen et al.
(2019a) identified a population of at least 18 coherent structures1 in
Ophiuchus and Taurus using data from the GBT Ammonia Survey
(GAS; Friesen et al. 2017). These include “droplets,” a population
of coherent cores that are not bound by self-gravity but are predomi-
nantly confined by the pressure provided by the turbulent motions of
the ambient gas (Chen et al. 2019a). The non-self-gravitating droplets
have density structures shallower than a critical Bonnor-Ebert sphere
(Chen et al. 2019a) and sometimes show signs of internal veloc-
ity gradients that are likely the result of a combination of turbulent
and rotational motions (Chen et al. 2019b). It was conjectured that
these coherent structures, not bound by self-gravity, are either i) at
an early stage of core formation, ii) an extension of the more mas-
sive coherent core population, or iii) transient. Together, Pineda et al.
(2010) and Chen et al. (2019a) revealed an entire population of coher-
ent cores, ranging from self-gravitating and sometimes star-forming
ones, including the B5 coherent core, to non-self-gravitating and pre-
dominantly pressure-confined droplets. If coherent cores do indeed
provide the necessary low-turbulence environment for star forma-
tion as hypothesized by Goodman et al. (1998), then an important
question concerns whether there is an evolutionary relation between
different “flavors” of coherent cores and between coherent cores and
the better known pre-/protostellar cores. Unfortunately, no coherent
cores defined by a transition to coherence have been identified in sim-
ulations to date, although cores with subsonic velocity dispersions
have been identified in simulations (e.g., Klessen et al. 2005).
In this work, we develop a method to identify, track and charac-

terize the evolution of dynamic gas structures in simulations, which
may be applied to other numerical models of star formation. We aim
to provide a complete picture of core formation and evolution that
links turbulent molecular clouds to star-forming cores. In particular,
we aim to answer the following questions: i) how do cores form in
a turbulent environment, ii) what role do coherent cores play in the
star formation process, and iii) is there an evolutionary connection
between coherent cores and pre-/protostellar cores? To answer these

1 In this work, “coherent cores” and “coherent structures” are used inter-
changeably to refer to dense cores defined by a transition to coherence. The
non-self-gravitating and pressure confined population of “droplets” identified
by Chen et al. (2019a) is a subset of coherent cores by this definition. This
slightly differs from the convention adopted by Chen et al. (2019a), where
the term “coherent cores” specifically means self-gravitating coherent cores.
See §3 in Chen et al. (2019a).

questions, we carry out a comprehensive analysis of density struc-
tures in a magnetohydrodynamic (MHD) simulation of a turbulent
molecular cloud. We examine these structures as they evolve and
move across the simulation without any prior assumptions regarding
their internal structures. We achieve this by utilizing unsupervised
machine learning techniques, including Neural Gas prototype learn-
ing and Fuzzy 2-means clustering. We then compare our results to
cores identified in NH3 in the Orion, Perseus, Taurus, Ophiuchus
and Cepheus star-forming regions (Kirk et al. 2017; Kerr et al. 2019;
Chen et al. 2019a; Keown et al. 2017), including the known sample
of coherent cores.

In §2, we describe theMHD simulation and the set of observations
that we compare to. We then introduce our method to identify and
track density structures in §3.1 and describe how we calculate core
properties in §3.2. In §3.3 we present our approach to cluster cores
using prototype learning and then describe the t-distributed stochastic
neighbor embedding (t-SNE) approach to visualize the result §3.4.
We examine the properties of the core clusters (“phases"), investigate
core evolution and compare to observations in §4. We discuss the
implication of the phases for an evolutionary sequence in §5.1 and
compare with core, filament and star formation models in §5.2-§5.3.
We discuss the implications for core observations in §5.4 and caveats
to our approach in §5.5. We summarize our work in §6.

2 DATA

2.1 Magnetohydrodynamic Simulation of Star Formation

We analyze the magnetohydrodynamic (MHD) simulation of a tur-
bulent star-forming cloud from Smullen et al. (2020). The simulation
models a box of 5 pc on a side with periodic boundary conditions.
We focus on the data in the basegrid and first adaptive mesh re-
finement (AMR) level, which corresponds to a voxel size of ∼0.004
pc and is consistent with a Nyquist sampling of the beam size of
observations used by Chen et al. (2019a). The initial conditions
of this simulation are identical to those of run W2T2 in Offner &
Arce (2015), where these conditions are chosen to model a typi-
cal nearby molecular cloud like the Perseus molecular cloud. The
simulation is run using the ORION2 code and includes ideal MHD,
self-gravity and Lagrangian accreting sink particles (Krumholz et al.
2004; Li et al. 2012, 2021). The mean gas density of the simulation is
d0 = 2.04 × 10−21 g cm−3, or = ∼430 cm−3, where = is the molecu-
lar hydrogen number density assuming a mean molecular weight per
H2 molecule of 2.8 a.m.u. (Kauffmann et al. 2008). The simulation
begins with a uniform density, a uniform temperature of 10 K and
a uniform magnetic field in the I-direction, �I = 13.5 `G. The gas
is then perturbed for two Mach crossing times by a random velocity
distribution with dispersion f3� = 2.0 km s−1 that corresponds to a
flat power spectrum in Fourier space with 1 ≤ :!/2c ≤ 2, where
: is the wavenumber and ! is the domain size. At the end of the
driving phase, the gas reaches a turbulent steady state with a turbu-
lent power spectrum %(:) ∝ :−2, plasma parameter (ratio of thermal
pressure to magnetic pressure) V = 8cd02

2
B/�2

I = 0.02, and virial
parameter Uvir = 5f2

1D!/(2�"cloud) = 1.0 , where 2B is the sonic
speed and "cloud ' 3800M� (Offner & Arce 2015). See Smullen
et al. (2020) for details. We follow the cloud evolution for 6× 105 yr
and use simulation snapshots with time spacing ΔC ∼1.5×104 yr for
the analysis.
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2.2 Source Catalogs

We compare the cores identified in the MHD simulation to cores
observed using the NH3 emission from the GBT Ammonia Survey
(GAS, Friesen et al. 2017). These data were combined with different
ancillary datasets to identify cores and derive their properties in
several different star-forming regions. Note that each of the analyses
takes a slightly different approach to core identification aswe describe
below.

2.2.1 Coherent Cores

Chen et al. (2019a) identified a population of 23 candidate coherent
structures in two star-forming regions in nearby molecular clouds,
L1688 in Ophiuchus and B18 in Taurus, using observations of NH3
emission from the GBT Ammonia Survey (Friesen et al. 2017) and
column density maps derived from Herschel observations of dust
emission (André et al. 2010). These cores are identified by a sharp
transition from supersonic to subsonic linewidths, which determines
their boundaries, and a coherent, subsonic non-thermal velocity dis-
persion in their interiors. To identify coherent cores, Chen et al.
(2019a) adopt a five-step process, similar to Pineda et al. (2010).
First, they define the structure boundary as the contour where the
thermal and non-thermal components are equal, and each is required
to contain a column density peak and local minimum in dust temper-
ature as defined by Herschel. Any region containing multiple NH3
peaks is sub-divided using the emission saddle point. The cores are
required to have a signal-to-noise ratio greater than 10 and pixels that
produce a large local high-velocity gradient are excluded. 18 of the
23 structures identified by Chen et al. (2019a) satisfy all five criteria
and are considered “droplets." The remaining five do not satisfy all
the criteria and are therefore considered “droplet candidates." The
median mass of all 23 cores is 0.2+0.3−0.1 M� , and the median radius
is 0.033+0.01

−0.008 pc. Chen et al. (2019a) found that the cores have a
typical total velocity dispersion, ftot = 0.23+0.01

−0.02 km s−1, where

ftot =
√
f2

turb + f
2
therm, (1)

fturb is the turbulent velocity dispersion and ftherm is the thermal
velocity dispersion. These cores have density profiles shallower than
a critical Bonnor-Ebert sphere, and they are not bound by self-gravity
but are instead bound by pressure provided by the ambient gasmotion,
i.e., the turbulent pressure.

2.2.2 Pressure-Confined Cores

Kirk et al. (2017) survey dense cores in the Orion A star-forming
region. They use gas temperature and velocity dispersion data from
GAS (Friesen et al. 2017) and derive core masses and sizes from
the James Clerk Maxwell Telescope Gould Belt Survey (JCMT GBS
Ward-Thompson et al. 2007). The JCMT GBS observed 6.2 square
degrees around the Orion A molecular cloud at 850 `m and 450 `m
with SCUBA-2 with resolutions of 14.6′′and 9.8′′. Kirk et al. (2017)
adopt the dense core catalogue presented in Lane et al. (2016). Lane
et al. (2016) use getsources, a multi-scale, multi-wavelength source
extraction algorithm, to compute the sizes, total fluxes, and peak
positions of the cores. Getsources decomposes the dust emission at
each wavelength into a variety of scales and then creates a Gaussian
model for the sources, separating them from the surrounding larger-
scale emission features (Men’shchikov et al. 2012). Kirk et al. (2017)
approximate the core radii as the geometric mean of the major and

minor axis full-width half-max (FWHM) of the getsources fit and
apply a correction for the telescope beam.

The Kirk et al. (2017) sample contains 237 cores, of which 26 are
cross-matchedwith Spitzer sources and classified as protostellar.Kirk
et al. (2017) find that in fact very few of these cores are sufficiently
massive to be bound when considering only the balance between
self-gravity and thermal plus internal turbulent motions. This would
naively imply that these cores are in the process of dispersing or are
non-star-forming. However, the cores are considered bound when the
additional pressure imposed by the weight of the ambient molecular
cloud is included, suggesting thatmost of the cores are in fact pressure
confined.

In addition to being a more clustered, higher pressure high-mass
star-forming region, gas in Orion is warmer. For the purpose of
comparing more directly with our simulated cores, we exclude all
observed cores with gas temperatures ≥ 15 K, since they have a
significantly larger thermal linewidth then the cores in our simula-
tion. The median mass and radius of the 43 cold dense cores are
0.8+0.3−0.4 M� and 0.026+0.01

−0.005 pc, respectively. They have a median
total velocity dispersion, ftot = 0.32+0.02

−0.04 km s−1.

2.2.3 Starless Cores in Low-Mass Star-Forming Regions

Kerr et al. (2019) present an analysis of starless dense cores identified
in three nearby low-mass star-forming regions: Ophiuchus, NGC
1333 in Perseus, and B18 in Taurus. They adopt the same procedure
followed by Kirk et al. (2017) to identify cores in the JCMT GBS
data, combine the footprints with the GASNH3 data to compute core
properties and then estimate the ambient cloud weight from Planck
and Herschel-based column density maps.

The combined sample totals 132 cores, all starless by construction.
Ophiuchus and Perseus also include regions with warmer gas, so
as above we exclude all cores in these regions with ) ≥15 K in
the comparison with the simulation data. This leaves a total of 30
cores in Ophiuchus cores, 33 cores in Perseus and all 8 cores in
Taurus. The median mass and radius of the 71 cold dense cores
are 0.4+0.4−0.3M�and 0.023+0.008

−0.003 pc, respectively. They have a median
total velocity dispersion, ftot = = 0.37+0.09

−0.05.

2.2.4 Virialized Cores in Cepheus

Keown et al. (2017) analyze theGASobservations ofCepheus-L1251
to identify hierarchical gas structures. To circumvent the complex hy-
perfine structure of NH3, they construct a simulated Gaussian emis-
sion data cube, in which the NH3 structure is represented by Gaus-
sians (the hyperfine structure is effectively removed). They apply
astrodendro to the simulated data to identify 22 high-level structures
or "leaves," which are equivalent to cores for our purposes. The ef-
fective radius of each structure is the geometric mean of the major
and minor axes returned by the dendrogram analysis. Keown et al.
(2017) estimate the masses of the ammonia-identified structures us-
ing the H2 column density measured by Herschel dust continuum
observations (Di Francesco et al. 2020).

In contrast to the analyses above, Keown et al. (2017) find that
all the cores are roughly virialized, i.e., have comparable kinetic
and gravitational energies, without accounting for the contribution
of the cloud weight. All of the cores have temperatures below 15K,
so we include all cores in our simulation comparison. The median
mass and radius of the Cepheus-L1251 core sample are 2.5+1.9−0.8 M�
and 0.022+0.005

−0.007 pc, respectively. They have a median total velocity
dispersion, ftot = 0.23+0.05

−0.01. While the measured sizes and velocity
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dispersions are similar to those above, the core masses are signifi-
cantly higher.

3 ANALYSIS

To carry out a comprehensive analysis of independent density struc-
tures in the MHD simulation, we first identify structures using a
source extraction algorithm like the one implemented by Rosolowsky
et al. (2008b), which places structures into a hierarchy as described
by a “tree-like” dendrogram2 This algorithm is functionally a water-
shed decomposition algorithm. We next classify the structures using
a t-SNE and c-means analysis on their properties. Finally, we track
each independent structure in the dendrogram as it evolves andmoves
across both the simulation and the t-SNE space. Fig. 1 is a schematic
summary of our analysis procedure.

3.1 Core Identification & Tracking

We identify cores in each snapshot of the MHD simulation described
in §2.1 using the dendrogram algorithm (hierarchical structure ex-
traction algorithm; Rosolowsky et al. 2008b; Goodman et al. 2009).
Dendrogram-based extraction algorithms (hereafter the dendrogram,
for simplicity) efficiently identify density structures in star-forming
regions in both simulations (e.g., Hopkins 2012; Burkhart et al. 2013;
Koch et al. 2017) and observations (e.g., Goodman et al. 2009; Lee
et al. 2014; Seo et al. 2015). For each snapshot, we apply the den-
drogram on the density distribution in the 3D space. We construct
the dendrogram to find structures with densities above 104 cm−3.
To guarantee enough sampling points for the analysis of density and
velocity distributions, a structure must have a volume of at least 100
voxels (∼0.02 pc in linear size) to be included in the dendrogram.
To avoid the inclusion of insignificant local density fluctuations, a
structure must also have a difference of 104 cm−3 in density between
its peak and the node where it merges onto the tree3. We identify a
total of 3,538 structures over a time span of 6.0 × 105 years, with
a nominal time resolution of ∼ 1.5 × 104 years. Note that we use
the dendrogram only to identify independent density structures and
locate their peaks. We do not limit our following analysis of the
density distribution to only the density range above 104 cm−3 (see
§3.1 for details), and we only use the dendrogram boundary to avoid
confusion with a neighboring core. See Fig. 2 for an example of the
independent structures identified using the dendrogram algorithm.
To follow the identified cores as they move and evolve in the sim-

ulated box, we devise a tracking procedure by first identifying the
density peaks within independent structures, leaves, in the dendro-
gram of each snapshot. The tracking procedure then uses the velocity
at the position of the density peak to predict where the density peak
is expected to be in the previous and following snapshots. If the ex-
pected position falls within the boundary of a dendrogram leaf, the
tracking procedure “links” the original structure with the leaf in the
previous or following snapshot. This tracking procedure is similar
to but less detailed than the one deployed and analyzed by Smullen
et al. (2020), in which the overlap in various physical quantities and
statistical measurements are examined when dendrogram structures
in different snapshots are compared. Our tracking procedure then

2 We use astrodendro, a Python package to extract extended sources in
astronomical data (http://dendrograms.org).
3 These setup parameters translate to min_value of 104 cm−3, min_delta of
104 cm−3 and min_npix of 100 in astrodendro. A “tree” is a full dendrogram
representation of hierarchical structures.

repeats the process by going through the total of 3,627 independent
structures of the dendrograms derived for the snapshots used in this
study.

We find that 3,538 out of 3,627 structures (∼97%) are connected
to 450 tracks, which link cores identified in two or more snapshots.
As Smullen et al. (2020) have pointed out, the robustness of the iden-
tification using the dendrogram algorithm is subject to uncertainties
due to the stochastic fluctuation in the density distribution over time,
even when the dendrograms are derived using the same set of input
parameters. We try to avoid the issue of density fluctuations affecting
the robustness of dendrogram tracking by excluding structures that
are not connected to any of the tracks. This is equivalent to remov-
ing structures that are captured by a dendrogram only in a certain
snapshot but not the preceding nor the subsequent ones (separated
by ΔC ∼1.5×104 yr; see above).

Of the 450 tracks, 146 (32%) end after merging with another track
such that they no longer have a unique, distinct peak that can be
identified. Since we are particularly interested in the evolution of
cores from formation to either star formation or dispersal, we limit
our evolutionary study to consider only the 304 main tracks, i.e., we
exclude short-lived over-densities that merge with larger ones. We
exclude only the "minor" structure in the merger for the following
reasons. If the peak of a structure disappears due to a merger, its track
terminates abruptly after a significant jump in the core properties
(because the track is matched to a new peak/object). Neglecting
these histories allows a cleaner analysis and clearer visualization of
evolutionary trends. We, however, include the dominant structure
in the analysis since the merger does not abruptly affect the inner
profiles near the peak or the bulk properties, which are generally
derived from a compact region around the peak.

The average lifetime of the 304 tracks is 2.15×105 years. 21 tracks
span the entire simulation calculation of ∼ 6 × 105 yr. 15 out of the
remaining 304 tracks (∼5%) are connected to at least one structure
with a sink particle of a mass ≥ 0.1 M�; several of these are matched
to two or three sink particles. 167 of 304 (∼55% or ∼ 37% of 450)
cores disperse, i.e., their track ends before forming a sink particle,
merging with another track or reaching the last snapshot. Generally,
this occurs if the core size or density maximum falls below the
dendrogram structure requirement.

3.2 Constructing Physical Properties of Identified Cores

In order to analyze the core evolution and compare with observations,
we must define a set of fundamental core properties that represent es-
sential characteristics of each core. This step serves as an initial layer
of dimensionality reduction, where we reduce the high-dimensional
simulation phase space of gas position (xi), velocity (vi), and density
(d(G8)) to a smaller set of parameters that more directly represents
each core and can readily be compared with observations.

We represent each core as a vector of 3 = 107 physical properties
that contains the radial density and velocity dispersion profiles (50
radial measurements for each), exponent of a power-law fit to the den-
sity profile, and bulk core properties, including radius, mass, velocity
dispersion, kinetic energy and gravitational energy. We adopt this
particular set of bulk properties because they correspond to the
set of physical properties that were derived from the observed dense
cores in our observational samples (see §2.2). Here, we describe
how we derive each of these parameters.

We take the following steps to derive radial profiles. First, we draw
a series of constant density isosurfaces, each at a number density =8 .
Since the isosurfaces may take any shape as dictated by the gas
distribution, we make no assumption about the geometry of the

MNRAS 000, 1–22 (2022)

http://dendrograms.org


Core Evolution 5

Figure 1. Schematic summary of the analyses carried out in this work. (a) Density structure identification using dendrograms. (b) Prototype t-SNE analysis
and Fuzzy c-means clustering analysis on the density profiles, velocity dispersion profiles and core properties. (c) Tracking each density structure as it moves
and evolves across the simulation. Note that the clustering analysis and tracking are done independently from each other.

Figure 2. Cores identified as dendrogram leaves. (a) Dendrogram structures plotted on top of the density field integrated over the G-axis. The contours are
color coded according to the ID number the astrodendro package assigns, and each corresponds to the structure in the dendrogram with the same color. (b)
Dendrogram with the leaves color coded by the ID number the astrodendro package assigns. This snapshot is at C = 4.7×105 yr. Note that since neighboring
structures in the dendrogram are usually assigned consecutive ID numbers, structures that share the same branch may have a difference in color too subtle to be
recognized by eye.

Figure 3. Probability density function (PDF) of density of a snapshot taken
at C = 5×105 yr (solid black line). The shaded area and bins correspond to
the range of density and the series of =8 used for deriving the density and
velocity dispersion profiles (see §4.1).

cores. We use 51 density values uniformly spaced on a logarithmic
scale from = = 102.5 cm−3 to 105.5 cm−3. As Fig. 3 shows, these
densities sample the underlying probability density function (PDF)
of gas density well. Each isosurface is then converted to an equiva-
lent radius by finding the radius that would construct a sphere that

has the same volume as the volume enclosed by the isosurface, i.e.,
+iso = 4c'3

eq/3.4 The radial density profile, =(A), is then constructed
from the series of densities, =8 , that define the isosurfaces and the cor-
responding equivalent radii, 'eq,i. For the velocity dispersion profile,
we calculate the velocity dispersion of material enclosed within each
isosurface, f8 , and similarly construct the profile of velocity disper-
sion, f(A), from f8 and 'eq,i. Note that the profile represents the 3D
turbulent velocity dispersion and does not include the thermal sound
speed. The structure boundaries defined by the dendrogram are only
used to avoid confusion with another core. We stop the construction
of profiles when the volume enclosed by the isosurface overlaps with
the dendrogram boundary of another core. This occurs mostly when
the core has a sibling, i.e., a nearby leaf that has the same density
minimum and shares the same parent branch in the dendrogram. For
a core that does not have a sibling (the “trunk-leaves”—independent
structures at the bottom level; Rosolowsky et al. 2008b), the extent of
the radial profile is not limited by the dendrogram structure bound-
ary (see §3.1). This method does not involve spherical averaging and
can produce radial profiles for structures with different shapes in a
reliable and consistent way.

We use the 1D profiles to derive the rest of the core properties. In
order to better compare with the observations described in §2.2, we
define the boundary such that the core radius, ', is the FWHM of
the density profile. This definition is similar to that adopted by the
getsources algorithm, which is commonly used to define observed
structures. While this does not allow a true “apples-to-apples" com-
parison, using the FWHM as the core boundary produces simulated

4 We note this definition is the 3D equivalent of the effective radius that
is often derived in observations of clouds and cores (Rosolowsky & Leroy
2006).
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core with masses, sizes and velocity dispersions comparable to the
those of observed cores (see §4.5). We derive the core mass, "2 ,
by integrating the density profile to obtain the mass enclosed by
'2 . Since observations do not include protostellar information in
core estimates, we exclude the sink mass in the calculation of "2
and all the other core properties. For the total velocity dispersion
of the core, we adopt the observational definition in Equation 1. Here,
fturb = f('2)/

√
3 and 2B is the sound speed for a 10 K molecular

gas. We define the radius of coherence, 'coh, as the radius where the
velocity dispersion falls below the sound speed: f(A)/

√
3 < 2s. We

obtain the density power-law index by performing a least squares fit
on the density profile for A < 0.1 pc.
Using the mass, the size and the velocity dispersion, we derive

the kinetic energy and the gravitational potential energy. For the
purpose of later observational comparison (see §4.5), we adopt the
expressions from Chen et al. (2019a), where the kinetic energy is

ΩK =
3
2
"2f

2
tot (2)

and the gravitational energy is

ΩG = −3
5
�"2

'2
. (3)

The latter expression assumes the cores have a uniform density dis-
tribution. Cores with a density profile d ∝ A−2 will have an actual
gravitational energy a factor of ∼ 1.7 times larger than that expressed
in Equation 3 (Pattle et al. 2015).
To evaluate the impact of the choice of core definition on our

analysis, we also adopt a fixed density contour to define core bound-
aries. We present this analysis in Appendix C. There we demonstrate
that while the quantitative distribution of core properties depends
on core definition, the qualitative determination of phases and our
conclusions are reasonably robust to the core definition.
After deriving the properties for each core, we assemble a data

matrix comprising measurements of 3 = 107 physical properties of
each of the # = 3, 538 structures identified by the method of §3.1.

3.3 Core Clustering Methodologies

Our goal is to identify groupings of the 3,538 cores in order to elicit
phases of evolutionary differentiation based on their physical prop-
erties. Because our data arises from discrete snapshots of the contin-
uous process of a MHD simulation (§2.1) we have reason to suspect
the boundaries separating (defining) each phase to be less crisp than
those arising from a truly discrete process. This complicates the
clustering task, whose goal is delineation of such boundaries. To aid
cluster saliency while still acknowledging the “fuzziness” of our data
groupings we employ two approaches from unsupervised machine
learning: (1) we learn prototype representations of our data and then
(2) create a soft partitioning of these prototypes based on the Fuzzy
2-means algorithm. The benefits of this two-pronged approach are
discussed in the next two sections.

3.3.1 Learning Prototypes of Core Properties

Prototype-based methods in machine learning (Biehl et al. 2016)
apply common machine learning tasks (e.g., clustering or classifica-
tion) to intelligently formed representations of the data called pro-
totypes (vs. the data themselves). That is, from # data observations
- = {G8 ∈ R3}#8=1 we learn " prototypes, = {F 9 ∈ R3}"9=1. The
prototypes arise from the codebook of a vector quantizer (Gray 1984)
trained on - and benefit the learning task by simultaneously reducing
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Phase III

-1000
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-1000 0 1000
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t 2

t-SNE Embedding of Core Prototypes

Figure 4. A two-dimensional t-SNE Embedding (using perplexity = 8, as
discussed in Appendix B) of 150 neural gas prototypes learned from the 3,538
cores identified from simulation. Prototype colors indicate cluster (phase)
membership, while their transparency represents their cluster membership
strength * (fainter points belong less confidently to their reported cluster);
both are determined by the Fuzzy 2-means algorithm applied to the high-
dimensional core profiles. Point sizes are mapped to the number of cores
each prototype represents, which is determined during a recall of the entire
training dataset through the neural gas network. The shaded ellipses are 80%
confidence regions of an intra-cluster Gaussian fit of the embedded prototype
locations, shown to facilitate identification of coarse cluster boundaries in t-
SNE space. The presence of the largest and darkest prototypes near the center
of each ellipse indicate an organized t-SNEprojection of the high-dimensional
cluster structure to two dimensions. Prototypes denoted with star shapes have
learned to represent the sink particles identified from simulation.

sample size (typically" << #) and decreasing noise (the process of
quantizing an G8 by its best representative F 9 separates the signal and
noise components of G8). While classical :-means (MacQueen et al.
1967) with a large number of centroids is a common method for ob-
taining prototypes, in this work we obtain" = 150 prototypes of our
# = 3, 538 cores from the Batch Neural Gas algorithm (Cottrell et al.
2006, extended fromMartinetz & Schulten 1991) trained on the core
properties. Neural vector quantizers (Neural Gas, as well as the Self-
OrganizingMap, see Kohonen et al. 2001) benefit from a cooperative
element during their training process, rendering them less sensitive
to the initialization issues common for :-means (Cottrell et al. 2006).
While no theory currently exists for selecting an “optimal” number
of prototypes, empirical rules of thumb suggest " = O(

√
#)). Be-

yond sample size and noise reduction, vector quantization provides
a unique prototype similarity measure (see Appendix B) and intelli-
gent resampling methods useful for empirical statistical analysis (see
Appendix A).

3.3.2 Fuzzy c-means Clustering

Once learned, the core prototypes are clustered by a user-selected
method and the cores themselves inherit the cluster label of their best
representative. The continuous nature of our data (§3.3) suggests we
should expect some cluster overlap; to account for this, we choose
a soft partitioning of the core prototypes by the Fuzzy 2-means
algorithm (or FCM, Bezdek et al. 1984). Typical hard partition-
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Figure 5. Structures at 4.7 × 105 yr overlaid on the gas column density and
colored by their assigned phase. White dots indicate the location of sink
particles. The time and view are the same as in Figure 2.

ing schemes assume well separated data clusters and, consequently,
assign data to a single cluster. Soft partitionings instead report a
membership strength *8: representing the degree to which datum
G8 belongs to cluster : . By convention, 0 ≤ *8: ≤ 1,

∑
:

*8: = 1,

where *8: > 0.5 denotes a datum’s strong membership in cluster
: . Importantly, the graded information contained in* influences the
formation of cluster centers in soft partitioning algorithms. For com-
pleteness, we note that hard partitionings are a special case of soft
partitionings where the *8: are constrained to the set {0, 1}. From
the analysis of Appendex A, FCM applied to our core prototypes
suggests 2 = 3 clusters (evolutionary phases) exist in the simulated
core sample. Tomitigate initialization issues, the clusterings reported
in this work are optimal (i.e., have lowest within-group error) over
1,000 different randomly initialized runs of FCM.

3.4 Visualization with t-SNE

Note that the evolutionary tracks described in §3.1 were not used by
FCM during clustering procedure; therefore, the resulting partition-
ing produces clusters of cores with similar physical properties. Our
goal is to uncover a relationship between these groupings and a core’s
evolution. To this end we employ a 2-d visualization of core proto-
types via the commonly used t-SNE algorithm (Van der Maaten &
Hinton 2008), which serves two purposes: 1) it allows inspection of
the integrity of the three FCM-identified clusters and 2) provides an
organized space upon which to view the core tracks. Figure 4 shows
the t-SNE visualization of the prototype data and the resulting three
clusters identified as described in §3.3.2. The data visualizations
(e.g., Figures 4 and 6), along with associated group-wise statistics
of Figure 7 and Table 1 underpin the evolutionary interpretation of
our clustering, as discussed in §4.2. An overview of t-SNE and an
explanation of its parameterization used in this work can be found in
Appendix B.

4 RESULTS

4.1 Properties of Core Phases

Table 1 summarizes the simulation core properties for all 3,538
cores and for cores classified in each of the phases. While the core
masses are similar across all phases, clear differences appear in the
other median properties. Phase I and Phase II cores have similar
masses, sizes and density indices, however Phase II cores contain a
significantly sized subregion with a subsonic non-thermal velocity
dispersion, i.e., a region of coherence (Pineda et al. 2015; Chen et al.
2019a). Consequently, we term Phase II the coherent phase. Phase II
cores also have a slightly lower overall non-thermal dispersion and
lower bulk velocity. Phase III cores have the steepest density index
(? = 1.35±0.25) and the lowest ratio of kinetic to gravitational energy
(ΩK/|ΩG | = 2.9+2.1−1.1). Since our calculation for the gravitational
potential assumes a uniform potential these virial parameters are
likely over-estimated by a factor of 1.7, which means that most of
the Phase III cores are gravitationally bound. We also find ∼ 30%
of these contain sink particles (compared to 0.4% and 0% of Phase
I and II cores, respectively). Consequently, we term Phase III the
prestellar/protostellar phase. Of the three phases, Phase I has the
highest ratio of kinetic to gravitational energy. In order for cores
in this phase to form stars they must either gain significant mass
or reduce their gas velocity dispersion (possibly by passing through
Phase II). Consequently, we refer to Phase I as the transitional phase.

Cores almost always belong to Phase III after forming protostars
(see Figure 4), so it can be loosely considered the “last" phase.
However, there is no one evolutionary order between I, II and III
and not all cores that belong to Phase III at a given time go on to
form protostars (see §4.2 for more discussion). Cores may form in
any phase and take a variety of different routes to evolve through
the parameter space until they become protostellar or disperse as we
discuss in detail in §4.2.

Figure 5 shows a column density mapwith the identified structures
colored by their phase. Most of the Phase III cores are located within
large filaments, which is also where most of the protostars reside.
Many of the Phase I and II structures are associated with shocks
and/or more isolated filamentary features. They also tend to be larger
and have lower column densities, which is consistent with being
gravitationally unbound.

Figure 6 shows the distributions of core radii, masses, velocity
dispersion and virial ratio (ratio of kinetic to gravitational energy).
The clusters do not divide cleanly across any of these properties,
but there is evidence of property gradients. For example, Figure 6a
shows the core prototypes transition from large to small from top
right to bottom left. Similarly, there are two distinct regions of high
virial ratio in Figure 6d: one appears in Phase I, where cores seem
to be genuinely unbound due to high levels of turbulence, and the
other occurs in the leftmost corner of Phase III, where the high
dispersion is produced by infall. The prototypes near and within
the region of Phase III protostellar prototypes have the lowest virial
ratios, suggesting that cores are becoming bound as they approach
the stage of gravitational collapse.

Fig. 7 displays the density and non-thermal velocity dispersion
profiles for each of the clusters (left panels) and the distributions
for radius, total velocity dispersion, mass and virial ratio (center and
right panels). With the exception of mass, the profiles and prop-
erties exhibit distinct differences for the three phases. Phase I and
II have significant overlap in several of the properties but are distin-
guished by the velocity dispersion: Phase I cores are more turbulent
at all radii, while Phase II cores have velocity dispersion profiles
that dip to sub-sonic values near the core center, i.e., they have an
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Core Classification # "2 (M�) '2 (pc) 'coh (pc) p ftot (km s−1) +bulk,1D (km s−1) ΩK/ |ΩG | 5∗ (%) 3̄ (pc)

Phase I (Transitional) 1376 0.3+0.2−0.1 0.034+0.008
−0.008 0.012+0.004

−0.004 -0.9+0.2−0.2 0.27+0.03
−0.02 0.6+0.2−0.2 5.6+2.7−1.6 0.44 0.17+1.0−0.07

Phase II (Coherent) 1373 0.4+0.2−0.1 0.037+0.01
−0.005 0.028+0.008

−0.006 -0.9+0.2−0.2 0.23+0.02
−0.01 0.4+0.3−0.2 3.2+1.3−0.7 0.0 0.17+1.0−0.07

Phase III (Protostellar) 789 0.3+0.2−0.2 0.022+0.005
−0.004 0.006+0.007

−0.006 -1.35+0.25
−0.25 0.26+0.07

−0.03 0.6+0.2−0.2 2.9+2.1−1.1 29.6 0.13+0.06
−0.05

All 3538 0.3+0.2−0.1 0.032+0.01
−0.008 0.015+0.01

−0.007 -0.9+0.2−0.3 0.25+0.03
−0.02 0.5+0.3−0.2 3.9+2.1−1.1 6.8 0.16+0.10

−0.06

Table 1. Physical properties of cores in each phase.We assign those that have partial membership in two different clusters to the one with the highest membership.
The physical properties are measured using the density and velocity profiles derived from the dendrogram structure. The columns are number of cores and
median core mass, radius, size of the coherent region, density index, total velocity dispersion, bulk velocity, ratio between the kinetic energy and the absolute
value of the gravitational potential energy, fraction of members containing protostars and nearest neighbor separation. The density index is the power-law index
of the function, = = =0 (A/A0) ? , fitted to the density profile of each core. The spreads are calculated using the 0.25 and 0.75 quantiles of the distribution.
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Figure 6. Projection of four different core properties ((a) radius, (b) mass, (c) velocity dispersion, (d) virial ratio) to the learned core prototype locations in
t-SNE space. As described in Section 3.3.1, each prototype learns to represent a subset of cores known as its receptive field (RF); point colors represent the
median value of the four properties shown, computed over each prototype’s RF. In this visualization prototype point sizes represent the size of the interquartile
range of the values in a prototype’s RF, so that small points in the above indicate a uniformity of values in their respective prototype’s RF.

internal coherent region. This difference in velocity dispersion is
also reflected by the virial ratio, which tends to be higher for Phase I
cores. Phase III cores exhibit noticeably steeper density profiles with
a higher central density. Meanwhile, the velocity dispersion of Phase
III cores is typically supersonic for all radii with velocity disper-
sion flattening or increasing near the center. This feature, together
with the steeper density profile, is consistent with gravitational infall
dominating the internal kinematics of the core and the incipient for-
mation of protostars. For this reason, Phase III cores are also more

compact on average because the FWHM corresponds to a smaller
region (see Appendix C).

4.2 Core Evolution

In this section we use the core histories and cluster assignments to
explore how cores evolve through the cluster phase space.

We first calculate how long cores typically spend in each of the
three phases. By averaging over the time cores spend “visiting" each
phase, we derive an effective phase lifetime; cores that never visit
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Figure 7. Summary of cluster statistics. Radial profiles of density (a) and 3D velocity dispersion (d) for each of the three clusters, where thick lines represent
the median profile and the spread is the interquartile range. The horizontal grey line in (d) denotes the value at which the turbulent velocity dispersion equals
the sonic speed at 10 K. The violin plots show the distributions of intra-cluster (b) radius, (c) mass, (e) velocity dispersion and (f) virial ratio. The interquartile
range (thick black lines), median (white point) and Tukey’s fences (thin black lines) have been added to the violin plots to aid cluster comparison.

a phase are not included in its time average. We estimate typical
lifetimes of 1.1±0.1×105 yr, 1.2±0.2×105 yr, and 1.8±0.4×105 yr,
for Phase I, II and III, respectively. We find that a core evolving into
Phase III spends significantly longer there. For example, cores that
eventually form protostars spend 7.4× 104 yr visiting Phase I and/or
II and 4.9 × 105 yr in Phase III. This is because star-forming cores
remain in Phase III after becoming protostellar and also because the
lifetimes of cores that visit Phase III tend to be systematically longer.
The lifetime of Phase I is the shortest, which is consistent with it
being transitional.
Next we investigate the trajectories of cores through the phase

space. Figure 8 shows tracks for three different sets of core histories:
short-lived tracks, which connect cores that appear only in two snap-
shots, long-lived tracks, in which the cores persist for all simulation
snapshots but do not form stars, and sink tracks, which represent
the evolution of cores that eventually become protostellar. Arrows
represent the aggregate direction of movement for all cores passing
through the associated prototype, constructed as a quadratic Bézier
curvewith control points set by themedian incoming direction (arrow
tail), the prototype itself, and the median outgoing direction (arrow
head). The unit vectors describing the incoming/outgoing control
points are further scaled by the proportion of incoming/outgoing
tracks transiting through each prototype. Thus, higher arrow curva-
ture indicates more misalignment between the median incoming and
outgoing track directions, and an asymmetry in arrow length (rela-
tive to the arrow’s middle elbow) indicates areas of core birth (longer
outgoing head) or dissipation (longer incoming tail).
As t-SNE is a highly non-linear manifold projection, some of the

strong curvature observed in Figure 8 is to be expected. For example,
t-SNE prototypes representing sink particles neatly form a circle at
the bottom left of Figure 8c, and the arrows connecting neighboring
prototypes naturally possess curvature to follow the circular structure
in an organized manner. However, in more linear regions of the em-
bedding, curvature indicates track reversal of the incoming / outgoing

movement of a prototype’s typical core. The strongest examples of
such core “meandering” occur in the long lived tracks of Fig. 8b, in-
dicating that these tracks bounce from one prototype to another (i.e.,
they migrate between different set of physical characteristics) contin-
uously due to small changes in their properties. One fundamental
implication of this figure is that there is no one evolutionary path
for cores.

Note that the core histories are not included in the information used
to perform the clustering, and thus represent an independent view of
how the clusters relate to one another. In many cases, the clustering
appears to intuit some of the evolutionary movement, since related
prototypes, e.g., those for star-forming cores, are confined to specific
regions of the t-SNE projection.

The short-lived tracks represent relatively transient cores that
quickly disperse. These tracks inhabit the top part of the phase space,
lying almost entirely within Phase I and II. Many of the arrows point
upwards and away from Phase III or outwards as if they are exiting
the boundaries of our three defined clusters. These cores disappear
because their densities and/or sizes fall below the threshold of de-
tection by our dendrogram algorithm, which is consistent with the
small masses of prototypes in this region of the parameter space.

The long-lived tracks inhabit Phase I, II and the upper half of
Phase III. They appear to complement the short-lived tracks, since
their motion is concentrated more centrally in Phase I and II and
the arrows point inwards and down. Their longevity suggests that
they have achieved some degree of equilibrium, and inspection of
many of these cores indicates that they become coherent, moving
into Phase II, and remain there for much of their lifetime. This is
illustrated by the shortness of the arrows, which indicate that many
cores mapped to prototypes in the middle of Phase I and II do not
undergo rapid or significant changes in their properties between snap-
shots. The general impression is that this subset of cores evolve more
gradually between phases, circling around a central point located at
∼ (250, 400). However, there is no preferred phase where cores start
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and so the initial position is not predictive of the longevity or the
direction of evolution.
The behavior of the cores following sink tracks is potentially the

most interesting, since these cores are the subset that go on to form
stars. The arrow directions generally point towards the lower left,
suggesting that these cores move downwards in the parameter space
as they evolve. Cores with sink particles lie almost exclusively in the
bottom left corner of Phase III, which is consistent with the apparent
trajectory of these cores. Prestellar cores, i.e., those that later go
on to form stars, mostly (8 of 15) start in Phase II. These cores
become protostellar while in Phase III, in a region of the parameter
space in which the virial ratio is small, and remain in Phase III for the
remainder of their evolution.Despite spendingmost of their evolution
in Phase III, 73% of cores that eventually become protostellar spend
time in another Phase: on average 7.4×104 yr visiting Phase I and/or
II and 4.9×105 yr in Phase III. Note that prototype locations in Phase
III can also host some short and long-lived cores, and thus the initial
core properties and phase space location are not entirely predictive
of the eventual evolution.

4.3 Survival Rates & Lifetimes

In §4.2, we show that evolutionary tracks exist that connect three pop-
ulations of cores with different physical properties. A closer exami-
nation of the survival rates, defined as the fraction of cores remaining
in a given phase, reveals that cores classified in the same phase can
follow distinctly different evolutionary paths. Figure 9 shows the per-
centages of cores in a given phase that stay in that phase, eventually
move to another phase and/or disperse. For example, if a core starts
in Phase I, moves into Phase II, and then moves to Phase III before
finally dispersing, it will be counted in the statistics of cores that
move from I to II (49%) and from II to III (7%) and then disperse
from III (17%). Stated another way, this figure shows the transition
probabilities for a core observed in a given phase. For example, if
a core is currently observed in Phase III, the probabilities of either
transitioning next to I or II or to dispersing from Phase III are shown
in the figure. We include 95% confidence intervals to give a sense of
the uncertainties based on the core statistics.
We find that all cores have a relatively high probability of phase

transition: 85±4% either move to another phase, disperse, or both,
during the simulation, while 59±6% of cores belong to two or more
phases during their evolution. Phase I cores are the most transient
with only 1318

7 %chance that a core in that phase remains there for the
remainder of its life. Approximately a quarter of the cores disperse
from each phase, with cores in Phase II having the lowest survival rate
and Phase III cores having the highest (only 1727

7 % cores disperse
from this phase).
Figure 9 shows there is a lot of movement between Phase I and

II. While most Phase I cores, 4955
43%, transition into Phase II, there

is a nearly equal probability, 4754
41%, of a Phase II core transitioning

to Phase I. Phase III cores are most likely to remain in their current
phase, in part because 30% of Phase III cores are protostellar. Phase
III cores that do leave are more likely to move into Phase I (2939

19%)
than into Phase II (1929

9 %). This core subset has a significant amount
of initial turbulence: they can’t immediately collapse because they
are not bound by gravity.
Note that while the phases can be described by average proper-

ties, there is a range of properties within each phase. This is also
illustrated by Figure 10, which shows the distribution of prototype
“visiting times," i.e., how long a typical core is matched to a given
prototype. For example, cores in the lower left of Phase III are not

likely to change phase or disperse because most already host stars.
This is reflected in the longer time periods a core matches a given
prototype in this region (see Figure 10). Interestingly, Figure 10
shows there is another grouping of long-lived prototypes towards
the bottom of Phase II. Inspection of Figure 7 indicates that these
are moderately-sized cores that are marginally bound and quiescent,
i.e., these are coherent cores that have reached a quasi-equilibrium
state. In contrast, the prototypes in Phase I tend to have the shortest
lifetimes (e.g., a few 104 yr), indicating that the properties of Phase
I cores change relatively quickly.

4.4 Core Properties

In this section we present an analysis of the physical properties
derived using the core profiles constructed from the dendrogram-
identified hierarchy.

Fig. 11a shows mass as a function of size for cores in each of the
three phases. The phases generally fall along a power-law relation
where the Phase III cores, which are often protostellar, are offset
to a higher mass at a given radius. The protostellar cores are more
centrally peaked such that the FWHM core definition returns more
compact structures. A power-law fit to the mass-size distribution of
cores belonging in all three phases gives a power-law index of ∼1.5.
A fit to only the Phase I and Phase II cores returns a power-law
index of ∼ 2.0, as expected from Larson’s relations (Larson 1981).
Appendix C shows that the power-law index is sensitive to the core
definition.

Fig. 11b shows non-thermal velocity dispersion, fturb, as a func-
tion of size for structures in each of the three phases. As expected
from the velocity dispersion profiles examined in §4.2, Phase I and
Phase III cores generally have larger velocity dispersions than Phase
II structures, which generally have subsonic dispersions. Protostel-
lar cores have the largest velocity dispersions due to gravitational
infall. Since the simulations neglect mass-loss due to protostellar
outflows, the sink particles are over-massive (Smullen et al. 2020)
and the degree of infall, and hence the non-thermal component, is
likely over-estimated.

Fig. 12 shows gravitational energy versus kinetic energy for cores
in the three phases. Such a comparison, conventionally known as
a virial analysis, provides a first-order estimate of the gravitational
boundedness of a structure. A virial analysis may sometimes include
other terms such as the magnetic energy and the surface pressure
term (see Ward-Thompson et al. 2006; Pattle et al. 2015; Chen et al.
2019a). Since the core mass does not include the sink mass, we
note the gravitational binding energy of the protostellar core is
underestimated. We find that there is no clear separation in the
distribution of kinetic and gravitational energies between Phases. In
contrast, see the analysis in Appendix C, which also shows that these
properties are sensitive to the core definition. However, there appear
to be more Phase III cores with high gravitational and kinetic energy
that are more gravitationally bound, consistent with the star-forming
activities found within many of them. Phase I and II cores are almost
all below the equilibrium line and are unboundwhen considering only
thermal, gravitational and kinetic energy. Recall that our definition
for the gravitational energy in Equation 3 assumed a uniform density;
we see here this description is more accurate for Phase I and Phase
II cores, which have a relatively flat density profile.

4.5 Classification of Observations

In this section we compare the observed cores with the simulated
cores by using their properties to match them to prototypes and
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Figure 8. Directional evolution of cores following short-lived (a), long-lived (b), and sink tracks (c). Short-lived tracks exist in only 2 of the 26 time snapshots
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project them into the t-SNE parameter space. Each observed core
inherits coordinates in the t-SNE plane from their most representa-
tive prototype among those trained on our simulated cores according
to §3.3.1. Recall (§3.2) that each prototype represents 107 different
physical core properties, with the radial density and velocity dis-
persion profiles comprising 100 of the 107. As this information is
missing from the observed cores, we have mapped observations to
prototypes based solely on their radius, mass, velocity dispersion,
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Figure 10. Median time (log(years)) that cores spend “visiting” (being rep-
resented by) each prototype along their evolutionary track, represented in
t-SNE space. The marker size also corresponds to time. Inset: Distribution
of visiting times by evolutionary phase, which can also be considered the
prototype "lifetime." Prototypes with longer visiting times, such as those in
Phase III, indicate that the core properties are stable and change relatively
slowly.

and virial ratio by excluding the radial profiles learned by the neural
gas prototypes during quantization. We acknowledge that the neu-
ral gas algorithm may well have learned to represent this reduced
four-dimensional space differently (i.e., produced a different set of
prototypes), but any re-training would necessitate a separate cluster-
ing (§3.3.2) and produce a different t-SNE embedding (§3.4).

We note that 33 (of 159) observed cores have a property that falls
slightly outside the range of the properties of the simulated cores.
TheCepheus cores, which adopt a different core definition and appear
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Figure 11. (a) Mass-size distribution of all 3,538 independent structures. The green, purple and orange circles correspond to structures in Phase I, II and III,
respectively. The symbol transparency is set by the weight of the core cluster assignment. Black filled circles indicate cores with sink particles. The grey line
shows a fit to the Phase I and Phase II core populations. (b) Non-thermal velocity dispersion-size distribution of all 3,538 independent structures, with a color
coding scheme the same as (a). The horizontal black lines denotes the velocity dispersion values when the non-thermal velocity dispersion is equal to the sonic
speed (thicker line) and half the sonic speed (thinner line) at 10 K. Nearly all protostellar cores are members of Phase III. They tend to be more compact and
have higher velocity dispersions compared to other cores.

Figure 12. Gravitational potential energy, |ΩG |, versus kinetic energy, ΩK,
for all 3,538 structures. The green, purple and orange circles correspond to
structures in Phase I, II and III, respectively. The red band from the lower left
to the top right marks equilibrium between the gravitational potential energy
and the internal kinetic energy (grey line) within a factor of two (grey shaded
region).

the most bound of all the core catalogs, have the most discrepancy.
However, since these differences are within the observational uncer-
tainties, we do not exclude them from our comparison. Inspection
of their phases and location in t-SNE space indicates that their clas-
sification is still consistent with the expectation from their general
properties.
Figure 13 shows observed cores are mapped to prototypes across

the t-SNE space. In some cases, multiple cores in different regions
are mapped to the same prototype, as in the bottom left, while other
prototypes have no observational match. Of particular interest, the
droplets identified by Chen et al. (2019a) are nearly all mapped
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-1000

0

1000

-1000 0 1000
t1

t 2

Cepheus

Droplets

Ophiuchus

Orion

Perseus

Taurus

Embedding Observed Cores

Figure 13. Observed cores (§2.2) embedded in t-SNE space according to the
procedure outlined in §4.5. Some prototypes (primarily in the bottom-left of
Phase II) represent multiple observations from our data catalog, but most have
no observational match. Conclusions from the analysis relating cluster-wise
physical properties to evolutionary phase (§4.1 ) apply most confidently to
observations located inside the ellipsoidal cluster footprints.

to prototypes in Phase II. This is consistent with droplets being
quiescent, coherent structures by definition. Several of the droplets
are also mapped to prototypes slightly outside the shaded Phase I
and II regions, which means they have membership characteristics
of both phases and may be in the process of transitioning between
phases. The cores observed in Taurus (Kerr et al. 2019) are likewise
mapped to prototypes that are either classified as Phase II or located
in the transition region nearby.

In contrast, few cores in Perseus, Ophiuchus and Orion (Kirk et al.

MNRAS 000, 1–22 (2022)



Core Evolution 13

2017; Kerr et al. 2019) match prototypes in Phase II. These cores
predominantly belong to Phase I or III, and they are instead located
in regions of the parameter space characterized by high velocity
dispersions and high virial ratios (bottom left and middle right) as
shown in Figure 6. The Perseus and Ophiuchus cores were selected to
be starless by construction, and their correspondence with prototypes
in the bottom left – where the simulated protostellar cores lie – may
either mean they are prestellar and close to forming stars or that
their properties are similar because they belong to more clustered
environments, which is also true of the simulated protostellar cores
(see Table 1). The Cepheus cores from Keown et al. (2017) are all
mapped to a few prototypes in the middle left of Phase III, a region
of the parameter space containing mostly starless, bound simulated
cores (see Fig. 6).
Figures 14 and 15 compare the properties of the individual ob-

served cores to the simulated cores. As shown by the prototype com-
parison in Figure 13, there is good agreement between properties of
observed and simulated cores. In the 2D parameter spaces of physical
properties there is significant overlap between the phases, so it is not
always clear which phase an observed core belongs to, for example,
on the basis of velocity dispersion and radius, alone. However, we
can still infer some general trends by inspecting the distribution of
observed core properties.
Figure 14a displays total velocity dispersion versus effective radius

for the three phases and the observed cores. Nearly all the droplets
lie in the Phase II region, which has a lower total velocity dispersion
and where the total is dominated by the thermal component. The
cores in the warmer and more clustered regions – Orion, Perseus
and Ophiuchus – lie predominantly in the Phase I and Phase III
regions, where the velocity dispersions are higher. By construction
most of these cores are starless and relatively few fall into the high-
dispersion, compact size region (upper-left Phase III quadrant) where
the simulated protostellar cores lie. The Taurus and Cepheus cores
generally fall within the Phase I and II regions. As we discussed in
§4.3 the simulations predict a high level of core dispersal, and the
location of the observed starless cores in phase space is not predictive
of whether a core will definitively go on to form stars (although cores
found in the lower part of Phase III are more likely to be or become
star-forming).
Figure 14b shows gravitational energy versus kinetic energy for the

three phases and the observed cores. There is likewise a high degree
of overlap between the phases, which suggests that the virial ratio
cannot uniquely determine the core phase. In this space, there is also
good agreement between the simulated and observed cores with most
of both appearing to be unbound. However, a subset of the observed
cores have high gravitational energies and these extend outside the
simulation parameter space. Nearly all of these are cores in Cepheus,
which were defined using the dendrogram leaf boundary and thus are
systematically larger than cores in the other clouds. Our analysis in
Appendix C suggests that in fact the low virial ratios may be partially
due to the core definition. The droplets follow a narrow, well-defined
"track" through the center of the Phase I and II regions. Some of the
smallest of these may move upwards toward virial equilibrium by
gaining more mass. While our analysis suggests many of such Phase
II cores are long-lived, there is still a high dispersal rate and these
are not guaranteed to eventually form protostars.
Figure 15 shows core mass versus coherent region size for the

three phases and cores from Chen et al. (2019a). This data is only
available for the droplet population, which are explicitly identified
and defined by the extent of a region with non-thermal velocity dis-
persion less than the sound speed. For the simulation, the radius of
the coherent region is defined to be where the 1D velocity disper-

sion becomes smaller than the thermal sound speed. The droplets
fall almost entirely within the simulated Phase II region; two have
significantly higher masses and sizes. While there is some overlap
between the three phases, the resolution of the observations appears
to limit the minimum detected size of coherent cores, such that any
detected sizable coherent region uniquely identifies cores as Phase II.
The simulation phase distributions suggest that other observed cores
likely contain coherent regions on scales below the observational
resolution (∼ 0.02 − 0.05 pc).

5 DISCUSSION

5.1 Predicting Core Evolution

Based on the results presented in §4, we propose an evolutionary
scenario where cores inhabit three distinct phases. Cores in these
three phases bear characteristically different physical properties. In
summary, cores are “born” as turbulent density structures that, de-
pending on their initial size and virial ratio, may belong to any of
the three phases. A subset of the smallest and most unbound cores
quickly disperse as shown in Fig. 8a. Cores that are initially bound
and classified as Phase III may begin collapse and form protostars
without passing through other phases (see 8c). In contrast, cores that
are marginally bound and/or pressure confined (depending on core
definition, see Appendix C) but not sufficiently massive to collapse
will undergo a phase of turbulent decay, developing a significant
central coherent region, and evolving into Phase II. Such cores may
transition between Phases I, II and III depending on their local envi-
ronments and how they accretematerial (e.g., as described byBurkert
& Bodenheimer 2000; Hennebelle & Chabrier 2009; Hopkins 2013;
Padoan et al. 2020).

Due to the turbulent nature of the core environment, we find that
core characteristics are non-deterministic. Cores in all three phases
disperse at a relatively high rate (Fig. 9, see also Smullen et al.
2020). This suggests that the location of an observed core in the
parameter space does not predict whether it will survive or become
protostellar. Cores with significant coherent regions are more likely
to live longer but are also not guaranteed to form stars at a later
time. This suggests that many observed starless cores may not in fact
go on to form stars. For example, our results suggest that low-mass
cores with initially high virial ratios, such as subset of Orion and
Ophiuchus cores that appear in the rightmost part of Phase I (see
Fig.14) have a high likelihood of dissipation within ∼ 2 × 105 years.
Kirk et al. (2017) and Kerr et al. (2019) argue that these cores persist
due to external confining pressure provided by the weight of the
cloud. We find a similar population of unbound objects here. Our
analysis suggests that the degree of unboundedness may be due in
part to the core definition (see Appendix C). However, we caution
that even if confining pressure helps to explain the existence of the
large number of such structures, our results imply that many of these
will not go on to form stars.

Cores inhabiting Phase III have the highest likelihood both of
persisting (35%) and of being protostellar (30%). This suggests some
subset of observed cores in Ophiuchus, Orion and Perseus mapped
to Phase III prototypes will become protostellar. Based on our tracks
this may occur within a few 105 years, although the timescale for the
evolution is difficult to constrain from the placement alone.

The exact percentages for the survival rates likely depend on the de-
gree of clustering and cloud physical conditions (e.g., Guszejnov et al.
2022). However, the fact that some cores not bound by self-gravity
continue to evolve and may eventually become prestellar/protostellar
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Figure 14. (a) Total velocity dispersion versus size with colors indicating their assigned phase as discussed in §4.1. The distribution of simulated cores in each
phase is shown as contours of constant posterior probability in a Gaussian kernel density estimation (KDE) analysis that estimates the underlying probability
density function in this parameter space. Cores observed in different star-forming regions are indicated by the symbols. (b) Same as (a) for the kinetic and
gravitational potential energies.

is consistent with the substantial number of observed unbound cores.
Chen et al. (2019a) observed that (Phase II) coherent cores, not bound
by self-gravity, are instead confined by turbulentmotions of the ambi-
ent gas. Similarly, Orion contains a large number of unbound cores,
which can be explained by a significant confining pressure (Kirk
et al. 2017). This confinement, provided by the turbulent pressure
of the ambient gas, helps explain why these cores persist and some
eventually become protostellar (e.g., Fig 8bc).
Overall, cores appear to transition smoothly between phases as

evinced by the significant amount of time cores often spend in one
prototype and one phase before moving to another (e.g., Fig 10) and
the concentration of tracks in limited parts of the parameter space
(e.g., Fig 9). As discussed above, the appearance and growth of coher-
ent regions appears to be gradual, and a core likely remains not bound
by self-gravity in the early stages of Phase II. On the other hand, the
transition between Phase II and Phase III or Phase I and Phase III
corresponds to a shrinking or complete disappearance of the central
coherent region. However, we note that there is a certain degree of
overlap and that some of the Phase III cores still have coherent region
within them (Fig. 14). An observational example is the star-forming
coherent core in the B5 region in Perseus identified by Pineda et al.
(2010). This coherent core is associated with a known protostar
and contains at least three other starless substructures (Pineda et al.
2015). Pineda et al. (2010) observed an increase in velocity disper-
sion near the protostar in B5, which is also exhibited in some of the
star-forming Phase III cores (Fig. 7). This elevated dispersion could
either be due to gravitational infall or the protostellar outflow. How-
ever, one of the starless substructures, B5-Condensation1, exhibits a
larger central linewidth at higher resolution, which is likely due to
infall (Schmiedeke et al. 2021).
Another criterion often used to distinguish between conventionally

known starless and prestellar cores is gravitational boundedness. As
shown in Fig. 6d, there is no sharp boundary between gravitationally
bound and unbound cores. There are Phase II cores that are gravita-
tionally bound according to the virial analysis, and there are Phase III
cores that are not gravitationally bound. Both the disappearance of
the coherent region and the emergence of gravitational boundedness
are related to the onset of gravitational infall in our evolutionary pic-
ture. In this dynamic picture, one should not rely on the conventional
virial analysis to predict whether a core will eventually form stars

Figure 15. Core mass versus size of the coherent regions. Contours show
lines of constant probability from a KDE analysis for each of the phases.
Diamonds indicate droplet properties, where the droplet size is the size of the
coherent region by definition. Most droplets appear to be Phase II members.

or not. Future simulations with different parameters will be needed
to explore how the survival rates depend on initial cloud gas density,
velocity dispersion and magnetic field.

5.2 Comparison with Low-mass Star and Core Formation
Models

So, how does a core form in a molecular cloud, and how does core
formation lead to the formation of stars? In this section we discuss
three representative models of low-mass core and star formation and
compare our results with these models.

First of all, starting with Padoan et al. (1997), a series of works
have proposed turbulent fragmentation as the dominant mechanism
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in forming cores (see Lee et al. 2020, and references therein). In
this model, structures develop in a “top-down” sense. Structures at
smaller scales formwhen turbulent fluctuations in the “parent” larger-
scale structure cause sub-regions to become gravitationally unstable.
Hopkins (2013) suggests that the physical properties of cores formed
via this mechanism are set at the time of fragmentation and are
only weakly modified by the collapse process. In the Hennebelle
& Chabrier (2008) model the decay of turbulence does not affect
the “selection process,” which adopts gravitational instability as the
criterion to “select” structures that continue evolving and eventually
become prestellar/protostellar. In contrast, we find that the evolution
of turbulence within the core plays an important role. As discussed
in §5.1, turbulence dissipation in the first ∼1×105 to 2×105 years is
necessary to reduce turbulent support before gravitational collapse
starts. Although we do find that some Phase I cores are close to being
gravitationally unstable and evolve directly into Phase III, we find
that focusing only on density structures that are above the collapse
threshold would bias the analysis by excluding cores that eventually
become star-forming. However, based on our analysis, we agree that
turbulent fluctuations are important in creating the initial distribution
of density structures, although unlike in the theoretical framework
of turbulent fragmentation, these density structures do not need to
be initially gravitationally unstable to continue evolving to become
prestellar cores.
Chen & Ostriker (2014), Chen & Ostriker (2015) and Chen &

Ostriker (2018) examine the formation of cores in the post-shock
layers of supersonic converging flows. In their model, the converging
flows collide in a plane-parallel fashion. Chen &Ostriker (2015) find
that cores and filaments form simultaneously in these post-shock
layers. The cores have subsonic velocity fields not unlike the Phase II
coherent cores, as a result of the assumption that the turbulence has
already been dispersed on small scales due to the initial conditions
(e.g., see Fig. 5 in Chen et al. 2016). They find that although the
subsonic cores are initially not bound by self-gravity, anisotropic
flows (referred to as “anisotropic contraction” in Chen & Ostriker
2014) along directions parallel to the post-shock layers help the
subsonic cores collect mass. The anisotropic flows continue to add
mass to the cores, even after the cores becomegravitationally unstable
and collapse starts. Generally speaking, the process examined by
Chen & Ostriker (2015) corresponds to the evolution of a subset of
our Phase II cores toward Phase III. They find that the timescale
of the anisotropic phase, which starts when the anisotropic flows
emerge and ends when the cores become gravitationally unstable, is
2×105 to 3×105 years, comparable to the characteristic timescale of
Phase II (∼3.3×105 years) in the model presented in this paper. These
works by Chen & Ostriker (2015) demonstrate that converging flows
can be an efficient way to dissipate turbulence, although in reality,
the idealized setup of cloud-scale plane-parallel converging flows is
unlikely in turbulent clouds. A similar process involving converging
flows may explain the formation of the dense filaments and the cores
within them as presented in this paper. However, their setup alone
cannot fully explain the formation and evolution of isolated Phase I
andPhase II cores outside the filaments,which appear to be correlated
with mild and local shock-induced features in our model (see Fig. 5).
These isolated cores collect mass as they move across the turbulent
cloud without need for converging flows. Future studies of cloud-
scale converging flows in more realistic settings within turbulent
clouds are needed to understand their effects on core evolution and
turbulence dissipation.
Recently, Vázquez-Semadeni et al. (2017) andBallesteros-Paredes

et al. (2018) propose a gravity-regulated model of core formation,
where dense cores form via “hierarchical gravitational fragmenta-

tion.” In the analytical model put forward by Ballesteros-Paredes
et al. (2018), a star-forming core starts its evolution in a state of grav-
itational instability and remains gravitationally unstable throughout
the evolution. Thus, a core in this model undergoes gravitational
collapse at all times. Ballesteros-Paredes et al. (2018) propose that
outside-in gravitational collapse generates the distribution of veloc-
ity dispersions observed in coherent cores, with larger velocity dis-
persions at larger radii and smaller velocity dispersions in the core
centers. The simulated core in this model develops a density profiles
similar to the critical Bonnor-Ebert sphere, with d ∝ A−2. Based on
our analysis, we conclude this model lacks the ability to explain the
turbulence in Phase I cores and the dissipation of turbulence dur-
ing Phase I and Phase II. In our analysis, when a core evolves from
Phase II to Phase III, gravitational collapse starts at the center of the
core (an “inside-out” collapse as proposed by Shu 1977), raising the
velocity dispersion at the center above the thermal sonic speed first
before increasing the gas dispersion towards the core edges. This can
be seen in Fig. 7, where many of the Phase III cores have centrally en-
hanced velocity dispersions. As discussed above, most Phase I cores
and some Phase II cores have density profiles that are shallower than
a critical Bonnor-Ebert sphere, although at later times, the profiles
do approach Bonnor-Ebert-like profiles with d ∝ A−2. On the other
hand, Vázquez-Semadeni et al. (2017) show that hierarchical gravi-
tational fragmentation is capable of creating star-forming cores that
have physical properties similar to those of the observed cores in a
study of core formation in a molecular cloud undergoing global grav-
itational collapse in simulations. However, similar to the analytical
model presented by Ballesteros-Paredes et al. (2018), the cores in
the simulations studied by Vázquez-Semadeni et al. (2017) appear
to be gravitationally supercritical at all times, while in our model,
cores form as subcritical structures, whose evolution is driven by the
details of their formation from the turbulent cloud environment. The
gravity-regulated model cannot fully explain the evolution of cores
seen in our analysis.

In summary, the underlying difference between the model pre-
sented in this paper and previous theoretical models is the inclusion
of gravitationally subcritical structures in the core evolution theory.
In previous models, subcritical density structures are excluded in
the analysis under the conventional assumption that such structures
disperse before they can become prestellar/protostellar. Our model
shows otherwise. As discussed in §4.2, we find that a portion of cores
that are not bound by self-gravity continue to evolve and eventually
become prestellar/protostellar. Critically, turbulence dissipation ap-
pears to constitute an important separate stage of core evolution.
Future studies that examine gravitationally subcritical cores along
with supercritical ones are needed to understand the process of tur-
bulence dissipation and how it sets the initial conditions for the later
phase of gravitational collapse and star formation.

5.3 Comparison with High-mass Star Formation Models

Our simulation represents typical nearby low-mass star-forming re-
gions, like Perseus, Ophiuchus and Taurus, with similar gas tem-
peratures, column densities and velocity dispersions. Likewise, the
simulated core properties, including masses and sizes, are similar to
those of cores identified in these regions. This reinforces that our
proposed core evolution model is applicable in the context of low-
mass star formation as defined by stars with masses below a few
solar masses. High-mass star formation, which is characterized by
higher gas temperatures, velocity dispersions, column densities and
stellar densities, may proceed very differently and not pass through
the phases we propose here. However, observations suggest star for-
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mation exists on a continuum, low and high-mass star formation
occurs co-spatially and contemporaneously, and there is not neces-
sarily a clear dichotomy between them. To date, no coherent cores
with high masses that could be progenitors of massive stars have
been observed. This may be because such cores are distant and rare
or because few, if any, massive starless cores exist (Tan et al. 2014).
However, our evolutionary model shares some characteristics with
several models for high-mass star formation, as we discuss here. Dur-
ing Phase I cores are trans-to-supersonically turbulent and appear to
be supported by turbulent pressure, characteristics that are adopted
as the initial conditions of massive cores in the “turbulent core” (TC)
model for high-mass star formation (McKee & Tan 2002, 2003). In
this model, turbulence provides internal pressure support and me-
diates gravitational collapse. Later work notes that strong magnetic
fields may also contribute to the stability of massive cores (Tan et al.
2013). However, the TC model does not address in detail how such
cores form. The challenge of identifying truly massive, starless cores
and the apparent rarity of such objects suggest that some degree
of collapse and star formation proceeds before a large reservoir of
gas accumulates (Padoan et al. 2020). In other words, massive star
formation is contemporaneous with massive core formation. In our
model a significant portion of the core mass accumulates before the
internal turbulence decays and collapse proceeds. However, the mass
becomes more centrally concentrated during Phase III, suggesting
that some degree of core growth continues during the collapse phase
but may not be included within the FWHM boundary (see Appendix
C).
In the opposite extreme, the competitive accretion (CA) model

predicts that cores as discrete objects are relatively unimportant to
the final outcome of star formation (Zinnecker 1982; Bonnell et al.
2001a,b). Instead,massive stars format the center of cloudswithin the
largest gravitational potential well, which funnels material inwards
and facilitates high stellar accretion rates. In this case, coremasses are
independent of the final masses of the stars that form within them,
and massive starless cores never exist (Smith et al. 2009; Mairs
et al. 2014). The CA model stresses the importance of the local
environment and role of neighboring stars. In our model, cores form
both outside and inside filamentary regions, where the latter has the
greatest ability for cores (and protostars) to grow due to inflowing
gas. We find that Phase III cores tend to have closer near-neighbors,
3̄ = 0.13+0.06

−0.05 versus 3̄ = 0.17+0.1−0.07 (see Table 1) for both Phase
I and II cores. This suggests that environment has some influence
on the progression of core evolution. The difference in clustering
between Phase I/II cores and Phase III cores may be in part because
some fraction of cores disperse before reaching Phase III, which
could be more likely to occur if their local environment does not
allow sufficient mass accretion to trigger collapse. However, we note
that cores form in both clustered and isolated regions, and given
the similarity between the separation distributions, the environment
appears to play a relatively minor role, at least for low-mass star
formation. Future studies of simulations that include outflows are
needed to fully understand the effects of possible interactions between
cores in the more crowded environment.
Recently, Padoan et al. (2020) proposed the inertial-inflow model,

in which massive stars form in turbulent regions characterized by
large-scale converging flows. The inertial-inflowmodel is formulated
by analyzing magnetized, driven turbulent simulations not too dis-
similar from the one we analyze here, although Padoan et al. (2020)
follow a larger spatial volume and do not resolve the formation of
low-mass stars (M∗ . 2 M�). Turbulent fragmentation produces the
initial core properties and sets their growth timescale; massive stars
form in cores that continue to grow through accretion. This model

predicts that truly massive starless cores do not exist, since collapse
begins before a significant amount of mass accumulates. Similarly,
Grudić et al. (2022) find a very dynamic picture for high-mass star
formation, in which massive stars require a long time (& 1Myr) to
reach their high masses and these stars accrete at increasingly high
rates. Of the high-mass models we discuss here, these two models
are the most similar to the one we propose for low-mass star forma-
tion, namely, in that it emphasizes the role of shocks and filaments
in core formation and growth. However, it does not explicitly ad-
dress the early stages of core formation, and the cores identified in
the simulation are gravitationally bound by construction, so they are
most analogous to our Phase III cores. It seems possible that turbu-
lent decay and the formation of coherent regions play an important
role in low-mass star formation as we propose here (e.g., Figure 15),
and the inertial-inflow model represents a natural extension of core
evolution for higher mass stars. Future work is required to determine
how the Phases we identify here relate to high-mass core formation
and evolution.

5.4 Observational Identification of Core Phases

Intriguingly, coherent cores have only been directly observed and
resolved using observations of NH3 hyperfine line emission. Mean-
while, there are observations of C18O and N2H+ molecular line
emission that either did not resolve the transition to coherence and/or
probed only the interior of a coherent core (Goodman et al. 1998;
Caselli et al. 2002). Our models suggest that many starless cores
contain compact coherent regions that are below the current obser-
vational resolution. By comparing the profiles in Fig. 7, we see that
the transition to coherence generally corresponds to a density thresh-
old of ≥ 2×104 cm−3 and that most such cores have peak densities
below 105 cm−3, which may make them difficult to detect. In addi-
tion, extended coherent regions may be hidden in observations due
to the embedding turbulent gas (Choudhury et al. 2021).

Phase I cores have similarly low peak densities and properties;
without sufficiently high resolution (e.g., . 0.01 pc) it would be
observationally difficult to distinguish between Phase I and Phase II
cores. Molecular line tracers that are also sensitive to lower densities
would make the observed line widths appear broader due to the
turbulent motions of the lower-density materials along the line of
sight. Consequently, it would be difficult to identify and resolve
an internal coherent region. Molecular line tracers tracing higher
densities would resolve the interior of the coherent region but not
the transition to coherence occurring at ≥ 2×104 cm−3 at the same
time (this may be the case for the N2H+ observations performed by
Caselli et al. 2002).

In contrast, Phase III cores are relatively easier to detect. They
are expected to be denser and more chemically evolved, providing a
larger selection of possible molecular line tracers. These properties
likely account for the larger number of observed gravitationally bound
prestellar and protostellar cores compared to coherent cores. Probing
the internal velocity structures of Phase III cores is usually limited by
the saturation threshold, and choosing the right molecular line tracer
becomes critical. Numerous examples of prestellar and protostellar
cores that likely correspond to this phase in the simulations have
been identified in observations (Tafalla et al. 2004; Enoch et al.
2008; Kauffmann et al. 2008; Rosolowsky et al. 2008a; Belloche et al.
2011). At an even later stage, the formation of protostars within cores
provides an extra observational hint that they belong to Phase III such
as excess infrared emission and/or molecular outflows (Bontemps
et al. 1996; Arce et al. 2007).

The starting time of a core is subject to the uncertainty in the
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definition of a core. In our analysis, cores are defined by the setup
parameters of the dendrogram identification algorithm, and choosing
slightly different parameters would yield slightly different core prop-
erties. As described in §3.1, we require a density structure to have
a size larger than ∼0.028 pc above a density threshold of 104 cm−3

to be identified as a core. In reality, the growth of a density structure
in the molecular cloud starts before gas reaches these densities. The
growth time before we identify the core may be estimated with the
free-fall time, Cff =

√
3c/32�d, which is 3.1×105 yr for a density

of 104 cm−2. Processes such as the formation of complex molecular
species likely start during the initial growth of the density structures
and before the core is classified into one of the three Phases we define
here.

5.5 Comparison Caveats

In this section we discuss several caveats to our analysis and com-
parison to observations.
First, our simulation does not include stellar feedback. Feedback,

particularly in the form of protostellar outflows, appears to be crit-
ical in setting both the local core-to-star and global cloud-to-star
efficiencies (Federrath 2015; Offner & Chaban 2017; Grudić et al.
2022). Feedback is also responsible for driving turbulence over a
range of scales within molecular clouds (e.g., Offner & Arce 2014;
Offner & Liu 2018). The star-forming regions we compare with in
this work appear to have ubiquitous feedback in the form of outflows
and winds (e.g., Xu et al. 2020a,b, 2021). Consequently, we expect
the presence of feedback to alter the simulation core properties and
their cloud environment to some degree. In comparing with observa-
tions, we mitigate the lack of feedback in the simulation in two main
ways. First, we compare to NH3 observations, which trace denser gas,
where the imprint of feedback is small. Protostellar cores observed
with dense-gas tracers have relatively low (sub- or trans-sonic) ve-
locity dispersions (Kirk et al. 2007; Rosolowsky et al. 2008a). The
signature of feedback in NH3 linewidths at higher resolution is also
usually small as in the case of B5, which hosts a Class I protostar
(Pineda et al. 2015). Second, the large majority of the observed cores
that we compare with are thought to be starless. Thus, while stellar
feedback will likely alter the details of the prototype learning and t-
SNE visualization, we expect it will have little effect on the resulting
classification and our general conclusions.
Protostellar outflows also regulate core lifetimes by entraining and

expelling dense material. Simulations with feedback find that the
lifetime of protostellar cores, as defined by when most accretion
occurs, is ∼ 2 × 105 yr (Offner & Chaban 2017), albeit with a large
amount of scatter (Grudić et al. 2022). Only one of the protostellar
cores in the simulation disperses by the end of the calculation (from
Phase III). Without feedback the protostellar core lifetime and more
generally the time star-forming cores spend in Phase III (4.9 × 105

yr, see §4.2) is over-estimated, since there is no mechanism to halt
additional gas accretion onto a core and protostar.
We also caution that the simulation models core evolution under

one set of initial conditions. These conditions represent the gas tem-
peratures, densities and velocity dispersions typical of conditions in
nearby low-mass star-forming clouds. Although we find these con-
ditions produce cores with properties in good agreement with those
of observations (e.g., Fig. 14 and 15), further work is required to
determine the impact of variations in mean magnetic field, density,
velocity dispersion and cloud geometry on core formation and evo-
lution (e.g., Guszejnov et al. 2021, 2022).
In addition, we do not carry out synthetic observations of the sim-

ulations, which are required for true "apples to apples" comparisons

between models and observations (Haworth et al. 2018; Rosen et al.
2020). This would require calculating the NH3 abundances using
chemical networks or adopting an abundance model (e.g., Offner
et al. 2013; Gaches et al. 2015; Friesen et al. 2017), performing ra-
diative transfer calculations to model the emission (e.g., Beaumont
et al. 2013; Gaches et al. 2015) and accounting for observational
resolution (e.g., Bradshaw et al. 2015; Betti et al. 2021). We miti-
gate the impact of these uncertainties by focusing on cores observed
in NH3, which has a low volume filling factor within local clouds
and thus suffers less from projection effects that otherwise produce
chance alignments of over-densities along the line-of-sight. We also
calculate the properties of the simulated cores using a grid resolution
comparable to the GAS pixel resolution of the observed star-forming
regions. Despite this, our approach does not fully encapsulate the
uncertainties in the observational data. Future work analyzing the
evolution of cores in the space of synthetic NH3 observations is re-
quired to more securely map the observations to the simulated data.

Finally, as discussed in §4.5, we project the observations into
the simulation space using a subset of the core properties. A more
complete comparison requires including the radial profiles of the ob-
served cores in the prototype matching. However, these data have not
been derived for cores in most of the catalogs we compare with. This
additional information would help disentangle high velocity disper-
sions produced by infall motions from those produced by core turbu-
lence. Our prototype learning makes this distinction easily, cleanly
separating protostellar cores, which are experiencing infall (Phase
III), from cores that are simply very turbulent (Phase I; see Figure 7).
However, the set of observed bulk core properties may be insufficient
to identify this distinction. For example, in Figure 13 a number of
cores in Ophiuchus, Perseus and Orion are mapped into the lower left
part of Phase III, where the simulated protostellar cores reside. Most
of these observed cores are not (currently) associated with any identi-
fied infrared source, so we cannot determine whether their placement
there indicates incipient star-formation or whether it indicates only
that they have a high degree of turbulence. The latter scenario would
suggest some of these are more analogous to our Phase I cores, which
are less likely to become star-forming. Future catalogs of core prop-
erties that include velocity dispersion and column density profiles
will enable methods like this one to better distinguish between these
two possibilities.

6 CONCLUSIONS

We present a method to identify, track and characterize the evolution
of dynamic gas structures in simulations. Our method is general and
is applicable to other numerical models of star formation. Unlike
many previous core identification and analysis methods, we do not
make a priori assumptions about the physical properties of the cores
or their density and velocity dispersion distributions.

To provide a complete picture of core formation and evolution
that links turbulent molecular clouds to star-forming cores, we study
the formation, evolution and collapse of dense cores identified in
an MHD simulation. We identify all independent density structures
above 104 cm−3 in the simulation using the dendrogram algorithm.
For each core we construct a data vector comprised of the density and
velocity dispersion profiles, core mass, radius, coherent region ra-
dius, total velocity dispersion, density exponent, kinetic energy and
gravitational energy. We utilize prototype learning to characterize
the core data features, Fuzzy C-means to cluster the data, and t-SNE
to project the information to two-dimensional space. We then track
the cores as they evolve and move across both the simulation and
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the learned prototype space. As a result, we find three distinct evo-
lutionary phases. Phase I represents unbound turbulent structures;
we refer to this phase as the transitional phase, since these cores are
unbound and must gain mass or become quiescent in order to form
stars. Phase I cores have turbulent internal velocity dispersions and
shallow density profiles. Phase II corresponds to the dissipation of
turbulence and the formation of extended coherent regions, which
are defined as a region with subsonic and nearly uniform velocity
dispersion. Phase II cores resemble observed coherent cores, includ-
ing ones that are not bound by self-gravity like the droplets observed
by Chen et al. (2019a). We refer to this phase as the coherent phase.
Phase III cores are characterized by gravitational infall, which often
dominates the internal dynamics. Phase III cores include both gravi-
tationally bound prestellar and protostellar cores. They also tend to be
more compact and lie in more clustered regions. About 30% of these
cores contain protostars, such that this cluster contains 99% of the
protostellar cores. Consequently, we refer to Phase III as the prestel-
lar/protostellar phase. We estimate typical lifetimes of 1.1±0.1×105

yr, 1.2±0.2×105 yr, and 1.8±0.4×105 yr respectively, for Phase I, II
and III.
We track the evolution of cores through prototype space and ex-

amine how they evolve through Phases over time. Overall, we find
that core evolution is dynamic with 85±4% of cores changing phase
at least once or dispersing during their lifetimes. In addition, the
instantaneous properties of a given core are not predictive of its
eventual evolution; cores do not follow one single evolutionary
path through the three identified phases. We attribute this to a
combination of truly stochastic processes, such as ongoing gas ac-
cretion and interactions with the turbulent cloud environment as well
as with other cores, and ambiguity about the core boundary location,
which does not always capture all the associated gas. Of the cores
we identify and track, 37% disperse before becoming self-gravitating
and 32% merge with another core. This suggests that most observed
starless cores have highly uncertain futures and many will not go on
to form stars.
However, we are able to identify some general trends for different

core populations. We find that cores that are “short-lived" and exist
for only two snapshots before dispersing primarily belong to Phase
I or II. The subset of “long-lived" cores that exist for all snapshots
appear to cycle through adjacent regions of Phase I, II and III space,
spending a significant fraction of their lives as quiescent Phase II
coherent cores. Finally, cores that form protostars can begin in any
of the three phases but spend most of their lives in Phase III, where
they remain once they become protostellar. As prestellar cores these
structures evolve downwards in the t-SNE space, until they reach
the region of Phase III parameter space where nearly all protostellar
cores reside.
We find that Phase I cores form both within denser filamentary

structures and in isolation outside the filaments. Many of the isolated
Phase I cores appear to be associated with shock-related features.
These Phase I cores can evolve to become Phase II cores before they
reach dense filamentary structures.Meanwhile, filamentary fragmen-
tation and the convergence of material flows appear to act simulta-
neously in the denser and more clustered environment within the
filaments, where many of the Phase III cores are found.
We compare our simulated cores to cores detected inNH3 emission

in the Taurus, Cepheus, Orion, Perseus and Ophiuchus star-forming
regions by the Green Bank Ammonia Survey (GAS Friesen et al.
2017; Kirk et al. 2017; Kerr et al. 2019; Keown et al. 2017; Chen
et al. 2019a). After excluding cores with gas temperatures ≥ 15K,
we demonstrate that the simulated and observed cores have similar
core masses, sizes, velocity dispersions and virial ratios. We map

the observed cores into the prototype space and project them onto
the two-dimensional t-SNE visualization derived from the simulated
cores. We show the observed cores are matched to core prototypes
in all three phases.

We find that the coherent cores observed by Chen et al. (2019a) are
primarily classified as Phase II. The core evolution paths we identify
indicate that coherent cores represent an important, earlier stage of
evolution for many prestellar and protostellar (Phase III) cores. We
demonstrate that the observations of NH3 hyperfine line emission
with a physical resolution of ∼0.2 pc or finer, like the ones carried
out by Friesen et al. (2017), are ideal for detecting Phase II cores.
However, the simulations suggest that many observed cores mapped
to Phase I and some in Phase III likely host a compact coherent
region, 'coh . 0.02 pc, that remains unresolved. We find a number
of cores in more quiescent star-forming regions, such as Taurus and
Cepheus, are also classified as Phase II cores. Follow-up examination
of the velocity profiles of these cores may find evidence of a coherent
sub-region. In contrast, cores detected in Orion, Perseus (specifically
in NGC 1333), and Ophiuchus have higher velocity dispersions and
are predominantly classified as Phase I or III.

Futurework is needed that examines simulationswithmore diverse
initial conditions and additional physics to evaluate the impact of en-
vironment and stellar feedback on core evolution.Weplan a follow-up
study to the analysis presented here using the STARFORGE simula-
tions (Grudić et al. 2022; Guszejnov et al. 2022).
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APPENDIX A: SELECTING THE NUMBER OF CLUSTERS

The 2-means algorithm partitions data into : clusters (: is a user-
specified parameter) regardless of whether : well-defined clusters
are actually present in the data. Thus, the success of 2-means is
dependent upon proper specification of : . As there is no universally
superior method for determining the most appropriate value of : a
number of Cluster Validity Indices (CVIs) reporting the degrees of
compactness and separation of clusters in a partitioning have been
developed (Arbelaitz et al. 2013). Typically an analyst selects : as
the argmax (or argmin, as appropriate) of a CVI computed for each
clustering resulting from a range of : . The weakness of such an
approach is that there is, again, no universally superior CVI (the
problem of choosing : has been replaced with that of choosing the
“correct” CVI for the data at hand). Consultation of several CVIs
computed for a range of : is an intuitive way to make this process
more robust to (potentially) user-biased CVI selection, but the range
and optimality conditions of each CVI vary which prohibits direct
and simultaneous comparisons. Additionally, some CVIs possess an
inherent bias toward a small or large : (e.g., the averagewithin-cluster
variance is monotonically decreasing function of :).
Recent work (Akhanli & Hennig (2020)) proposes a method based

on resampling techniques to build an empirical sampling distribution
�̂] (:) of CVI ](:). This sampling distribution represents values of a
particular CVI ]which could result from clustering multiple datasets
similar to the one originally observed, for a fixed value of : . Themean
and standard deviation of �̂] (:) are used to create a standardized Z-
Score of each resampled ](:); repeating this process � times for a
collection of CVIs � (:) = {]1 (:), ]2 (:), . . .} yields a collection of
Z-Scores {I1

]1 (:) , I
1
]2 (:) , . . .}

�
1=1 which are directly comparable (i.e.,

have a similarly standardized scale), both amongst themselves and
over a range of : . Further, the observed value of CVI ]∗ (:) (resulting
from the original clustering, before any resampling occurs) is also
standardized according to �̂] (:) , and averaged to create an aggregate
index ]̄∗ (:) bearing influence from all members of � (:). The ]̄∗ (:)
can now be compared across : , and the best clustering according to
this aggregation is selected as argmax: ]̄∗ (:).

The CVI aggregation method described above is intuitive but its

authors acknowledge (and attempt a correction) of one weakness: the
empirical distribution �̂] (:) resulting from bootstrapped resamplings
may be a poor estimate of the true (unknown) distribution �] (:) . Be-
cause we have adopted prototype-based methods for our clustering
task (§3.3.1), we have a sensible framework for intelligently resam-
pling a set of prototypes. The receptive field '� 9 of prototype F 9 is
the subset of data - for whom 9 is best representative; if the vector
quantizer is properly trained, any element from '� 9 can serve as a
proxy for F 9 , and an entire set of resampled prototype ,̃ can be
obtained by sampling single elements from each '� 9 . Thus, vector
quantization offers a more refined way (compared to Akhanli & Hen-
nig (2020, §4)) of generating a bootstrapped resample with similar
distributional characteristics to the one originally observed.

We have applied the aggregation method of Akhanli & Hennig
(2020) (with RF-based resampling) to build sampling distributions
and associated Z-Scores of the observed values of six different CVIs
for 2-means clusterings of the core prototypes, with : ranging from
2 to 6:

(i) SILhouette Index Rousseeuw & Kaufman (1990); Campello
& Hruschka (2006)

(ii) Generalized Dunn Index with set distance X5 and diameterΔ3,
or GD53, as defined in Bezdek & Pal (1995)
(iii) Davies-Bouldin Index Davies & Bouldin (1979))
(iv) Xie-Beni Index Xie & Beni (1991)
(v) Pakhira-Bandyopadhyay-Maulik Index Pakhira et al. (2004)
(vi) CONN Index Taşdemir & Merényi (2011)

TheseCVIswere chosen to appeal to both convention and our specific
clustering task: (i)-(iii) are commonly used in practice; (iv)-(v) are
tailored to assess fuzzy clusterings; (vi) is designed specifically for
prototype-based clusterings, and measures the degree of topological
connectivity/separation of clusters.

The sampling distributions and derived Z-Scores for (i)-(vi) are
shown in Figure A1. The : = 3 clustering achieved the highest
aggregate Z-Score (i.e., the average of our six constituent scores)
with a value of 0.53 and a 95% confidence interval (0.526, 0.542),
using the standard error estimated from its sampling distribution.
Because the next highest aggregate score is achieved by : = 2 with a
value of 0.47 and a 95%CI (0.464, 0.480), we have selected the : = 3
clustering for further analysis in this work. We note for completeness
that the : = 1 case is not addressed by most CVIs. Because our
simulated data possesses at least two natural groupings (whether or
not a core is identified as a stellar object), any : = 1 considerations
(i.e., whether that data contains any clusters at all) are not applicable
here.

APPENDIX B: T-SNE DIMENSIONALITY REDUCTION

t-SNE is a non-linear dimensionality reduction technique (Lee &
Verleysen 2007) to embed high-dimensional point clouds - ⊂ R3
in a lower-dimensional space ) ⊂ R3′ . In this work, 3 = 107 and
we specify 3′ = 2 to facilitate visualization. The low-d points C8
are formed by minimizing the Kullback-Leibler divergence between
an (assumed) Gaussian point similarity among - and a Student’s
t-distributed similarity among ) (with one degree of freedom). The
scale of the Gaussian kernel which defines the similarity in - is
controlled by the user-specified perplexity parameter, which is a
rough measure of the effective number of neighbors each kernel
similaritymeasuresVan derMaaten&Hinton (2008), and can greatly
influence the quality of the resulting embedding Wattenberg et al.
(2016).
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Figure A1. Bootstrapped sampling distributions of each Cluster Validity
Index for the different number of clusters : considered during our analysis.
: = 3 attained the highest average score among all CVIs.

t-SNE perplexity is typically selected via trial and error over a grid
of candidate values. In lieu of an ad-hoc grid search, we appeal to a
more data-driven perplexity specification utilizing additional infor-
mation about our data gleaned during Neural Gas learning (§3.3.1).
A recall of data through any vector quantizer (not just Neural Gas)
gives rise to the CONN graph of its prototypes Taşdemir & Merényi
(2009), whoseweighted edges convey topological adjacencies of, and
local distributions surrounding, the prototypes in high-dimensional
space. The number of such edges incident to each prototype yields an
effective “number of neighbors” measure specific to each prototype.
As t-SNE allows only a single (global) perplexity specification, we
have set it equal to the mean number of adjacencies (average degree)
of the CONN graph, = 8.

APPENDIX C: SENSITIVITY TO CORE DEFINITION

In this appendix we examine the effect of the choice of the core
definition on the clustering and core properties. Instead of using the
FWHM to set the core size as above, we define the core boundary as
the radius where the density profile equals 104cm−3,which is amore
physically motivated core definition. This is effectively the average
radius for a core enclosed by an isosurface with = = 104cm−3,
which has the benefit of making the core size independent of the
peak density. Given the very different core definition, we view
this analysis as a strong test of the robustness of our analysis
approach.
Table C1 summarizes the core properties. We find that the dis-

tinguishing feature of each phase are preserved: cores in Phase II
are still coherent, nearly all of the protostellar cores are mapped
into one phase (Phase III), and Phase I cores are more turbulent and
unbound. However, we find that the cores overall, especially those
with protostars, are more extended and more massive. The median
radius, 0.07 pc, is also significantly higher than the median sizes of
the observed cores,while the median mass, 2.1M� , is comparable
to that of the cores identified by Keown et al. (2017) (see §2.2.4).

As in the previous Phase assignments, cores in Phase I and II have
significant overlap in their properties with similar masses, radii and
virial ratios. However, cores belonging to Phase III, which contains
95% of the protostellar cores, are now systematically larger, 0.1 pc,
and more massive, 6.5M� . They are now ∼4-6 times more massive
than Phase I and II cores, such that mass becomes a key characteristic
distinguishing Phase I/II and Phase III. The FHWM definition ap-
pears to significantly underestimate the mass associated with Phase
III cores and thus misses the growth of prestellar and protostellar
cores. Unfortunately, it is not possible to define cores in observations
using a number density based criterion; this is one reason we adopt
the FWHM boundary as the fiducial core definition.

Despite the change in core definition and properties 89% of the
cores are classified into the same phase as before. The largest change
occurs for Phase III cores, which increase in number by ∼ 20%.
Most of the cores that are reclassified swap between Phase I and III
with 154 of Phase I cores moving into Phase III and 34 moving from
Phase III into Phase I. Less than 7% of Phase II cores are reclassified.
This gives confidence that our core classifications are robust and
largely insensitive to differences between core definitions.

Figures C1 and C2 show the distributions of the core properties.
In all cases, the phases show clearer separation than those identified
using the FWHM definition (see the analogous Figures 11 and 12
for comparison). This suggests that a core definition encompassing
more of the core envelope leads to more distinct clusters. While
this core definition appears superior for clustering and classification,
we instead adopt the FHWM definition in the body of the paper
for the purpose of comparing more directly with the GAS data.
Our analysis here suggests that the observed cores defined using
getsources may be missing additional material in the core envelope
that would improve their classification and produce more physically
accurate core properties. Recovering this mass is non-trivial, since
the observations are limited by the resolution, signal-to-noise and
chemical characteristics of the tracers observed as discussed in §5.4.

In Figure C1a the mass-size relation is steeper with "2 ∝ '3.1
2 ,

rather than "2 ∝ '2
2 as expected from the observed line-width

size relation. In addition, the choice of boundary leads to better
continuity in the properties, with the Phase III cores falling on the
same, considerably tighter, mass-size relation. This suggests that
underestimating the core size, or in other words adopting a core size
that varies with the density peak, produces scatter in the mass-size
relation. This may partially explain the very flat, high scatter mass-
size relationship of the GAS data Kirk et al. (see Fig. 5 in 2017, for
example).

In Figures C1 and C2 we overlay the droplet data from Chen et al.
(2019a), which are the core sample defined in the most similar way.
The droplets are again matched predominantly with Phase II proto-
types. Like Phase II cores they have small masses, sizes and velocity
dispersions. While they overlap in all areas of the parameter space
their sizes are systematically smaller than the median simulated core
size. However, they appear to follow a similar steep mass-size rela-
tion to the simulation data.5 In a virial analysis, the droplets appear
to follow a narrow track that hugs the distribution of simulated Phase
II cores, which here are slightly offset from the Phase I distribution
and closer to virial equilibrium. Nearly all of the other samples of
observed cores have masses and sizes that fall outside the simulated

5 Note that Chen et al. (2019a) found amass-radius power-law index of 2.4 by
combining the droplet data with updated observations of dense cores taken
from Goodman et al. (1998), which are larger and more massive than the
droplets.
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parameter space and performing the comparison presented in §4.5 is
no longer a statistically rigorous or meaningful exercise.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Core Classification # "2 (M�) '2 (pc) 'coh (pc) p ftot (km s−1) +bulk,1D (km s−1) ΩK/ |ΩG | 5∗ (%) 3̄ (pc)

Phase I (Transitional) 1192 1.1+0.9−0.5 0.06+0.01
−0.01 0.012+0.003

−0.004 -0.9+0.2−0.2 0.33+0.05
−0.04 0.6+0.2−0.2 3.7+1.9−1.1 2.0 0.17+0.1−0.07

Phase II (Coherent) 1389 1.7+1.3−0.8 0.07+0.01
−0.01 0.028+0.008

−0.006 -0.9+0.2−0.2 0.28+0.03
−0.03 0.4+0.3−0.2 1.9+0.7−0.5 0.0 0.17+0.1−0.07

Phase III (Protostellar) 957 6.5+2.3−1.8 0.10+0.01
−0.01 0.009+0.007

−0.009 -1.35+0.25
−0.25 0.38+0.06

−0.04 0.6+0.2−0.2 1.4+0.5−0.4 22.7 0.13+0.06
−0.05

All 3538 2.1+2.7−1.2 0.074+0.02
−0.02 0.016+0.01

−0.007 -0.9+0.2−0.3 0.32+0.06
−0.04 0.5+0.3−0.2 2.1+1.1−0.7 6.8 0.16+0.10

−0.06

Table C1. Physical properties of cores in each phase. We assign those that have partial membership in two different clusters to the one with the highest
membership. The physical properties are measured using the density and velocity profiles derived from the dendrogram structure. The columns are number of
cores and median core mass, radius, size of the coherent region, density index, total velocity dispersion, bulk velocity, ratio between the kinetic energy and
the absolute value of the gravitational potential energy, fraction of members containing protostars and nearest neighbor separation. The density index is the
power-law index of the function, = = =0 (A/A0) ? , fitted to the density profile of each core. The spreads are calculated using the 0.25 and 0.75 quantiles of the
distribution.

Figure C1. (a) Mass-size distribution of all 3,538 independent structures. The green, purple and orange circles correspond to structures in Phase I, II and III,
respectively. The symbol transparency is set by the weight of the core cluster assignment. Black filled circles indicate cores with sink particles. The grey line
shows a fit to all cores. The grey diamonds represent the droplets from Chen et al. (2019a). (b) 1D Non-thermal velocity dispersion-size distribution of all 3,538
independent structures, with a color coding scheme the same as (a). The non-thermal velocity dispersion is derived for the droplets (grey diamonds) by assuming
a gas temperature of 10K. The horizontal black lines denote the velocity dispersion values when the non-thermal velocity dispersion is equal to the sonic speed
(thicker line) and half the sonic speed (thinner line) for 10 K molecular gas. Nearly all protostellar cores are members of Phase III, which tends to contain more
massive and larger cores than Phase I and II. Move sinks to a higher z plane.
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Figure C2. Distribution of the gravitational potential energy and the kinetic
energy of all 3,538 structures where the core boundary is defined using
the = = 104cm−3 density contour. The green, purple and orange circles
correspond to structures in Phase I, II and III, respectively. The band from
the lower left to the top right marks equilibrium between the gravitational
potential energy and the internal kinetic energy (grey line) within a factor of
two (grey shaded region). The droplets from Chen et al. (2019a) are overlaid
for comparison.
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