Phish in Sheep’s Clothing:
Exploring the Authentication Pitfalls of Browser Fingerprinting

Xu Lin, Panagiotis Ilia, Saumya Solanki, and Jason Polakis
University of Illinois at Chicago, {x1in48, pilia, ssolan5, polakis } @uic.edu

Abstract

As users navigate the web they face a multitude of threats;
among them, attacks that result in account compromise can be
particularly devastating. In a world fraught with data breaches
and sophisticated phishing attacks, web services strive to
fortify user accounts by adopting new mechanisms that
identify and prevent suspicious login attempts. More recently,
browser fingerprinting techniques have been incorporated into
the authentication workflow of major services as part of their
decision-making process for triggering additional security
mechanisms (e.g., two-factor authentication).

In this paper we present the first comprehensive and in-depth
exploration of the security implications of real-world systems
relying on browser fingerprints for authentication. Guided by
our investigation, we develop a tool for automatically construct-
ing fingerprinting vectors that replicate the process of target
websites, enabling the extraction of fingerprints from users’
devices that exactly match those generated by target websites.
Subsequently, we demonstrate how phishing attackers can
replicate users’ fingerprints on different devices to deceive the
risk-based authentication systems of high-value web services
(e.g., cryptocurrency trading) to completely bypass two-factor
authentication. To gain a better understanding of whether at-
tackers can carry out such attacks, we study the evolution of
browser fingerprinting practices in phishing websites over time.
While attackers do not generally collect all the necessary fin-
gerprinting attributes, unfortunately that is not the case for
attackers targeting certain financial institutions where we ob-
serve an increasing number of phishing sites capable of pulling
off our attacks. To address the significant threat posed by our at-
tack, we have disclosed our findings to the vulnerable vendors.

1 Introduction

The web plays a pivotal role in many facets of everyday
life, and ensuring that user accounts and the sensitive data
found therein are protected is of paramount importance.
Consequently, account hijacking attacks pose a serious threat

to users. In fact, OWASP reports broken authentication as the
second biggest risk in its list of top web application risks [11].
Additionally, phishing remains the most common account
compromise vector for major web services [23, 68].

To prevent unauthorized access, online services often em-
ploy various forms of risk-based authentication mechanisms,
which attempt to identify suspicious login attempts [74] (e.g.,
based on the geolocation of the IP address [58]). When such
attempts are detected, services can take different courses of
action, with two-factor authentication (2FA) being the de facto
defense for fortifying accounts against hijacking attacks. In
most cases 2FA significantly raises the bar, as attackers will
also need to obtain the second factor. Indeed, a study of over
350K real-world hijacking attempts against Google accounts
found that device-based 2FA blocks more than 94% of the
attempts that originate from phishing attacks [30].

However, due to the usability challenges and friction [73]
introduced by 2FA [60], sites may attempt to minimize the
inconvenience by reducing the frequency of 2FA challenges so
that they are only shown when a login attempt presents some
risk. If the site determines that the user entering the credentials
is indeed the account owner, it will not trigger 2FA. To achieve
that, sites gather information about the user’s “environment”
during the authentication process. More recently, as browser
fingerprinting [46] has gained significant traction as a web
tracking vector [16], such device fingerprints have been
incorporated into the risk analysis process so as to augment
authentication. During the login workflow websites can collect
the user’s device fingerprints (e.g., installed fonts, canvas ren-
dering) and compare them to the fingerprints collected during
a previous legitimate browsing session. If the values match,
this is a strong indication that the login attempt is legitimate
and the website can refrain from showing a 2FA challenge.

Unfortunately, the inherent characteristics of browser finger-
prints that render them an attractive authentication-augmenting
factor also lend them to being used against the authentication
process itself. This dichotomy forms the key motivation be-
hind our research. Specifically, browser fingerprints can be triv-
ially generated by any website the user visits through a series

of JavaScript functions, and certain fingerprinting attributes
remain stable over time [71]. Accordingly, malicious web-
sites can collect users’ fingerprints and use them to mimic the
user’s device, thus negating the protection offered by additional
authentication mechanisms. While many attacks can lead to
account hijacking (e.g., credential stuffing [69], cookie hijack-
ing [36,62,63]) our main threat model is that of an attacker that
has deployed a phishing website, which the victim user visits.

In this paper we provide the first, to the best of our knowl-
edge, empirical real-world analysis of the security implica-
tions of leveraging browser fingerprints for augmenting the
authentication process. Specifically, we provide an in-depth
investigation of how high-value web services rely on browser
fingerprints, and detail how attackers can generate and misuse
auser’s fingerprints to completely bypass two-factor authen-
tication. First, we explore popular websites across different
high-value categories (e.g., banking, tax-related) and identify
those that leverage fingerprints during the login process, using
a combination of static and dynamic analysis. Guided by our
findings, we build a browser extension that identifies and “ex-
tracts” the fingerprinting process deployed by a website and
automatically generates the code that will calculate the exact
fingerprint that the website would create for a specific device.
This includes techniques like canvas fingerprinting, which re-
quire specific input data and parameters to produce an identical
fingerprint. We then incorporate the fingerprinting code of tar-
geted websites into a testing website; when a user visits the
website it generates the user’s fingerprint for each target web-
site. Subsequently, we visit each website from a different device
(i.e., the attacker’s device) and try to log into the user’s account
by providing the correct credentials. To mimic the user’s device,
we develop an extension that loads the user’s corresponding
fingerprints for a given website and mimics all the fingerprint-
ing attributes that the target website collects. This manipulates
the website into considering the attacker’s device to be a known
device and deciding that 2FA should not be triggered.

We experimentally evaluate our attack against popular
and highly-valuable websites across different categories and
provide an in-depth analysis and assessment of the inner
workings of risk-based authentication systems. While our
study reveals that reliance on browser fingerprints as a strong
signal during the authentication process is not yet widespread,
it is common among critical and high value services (e.g.,
financial). We are able to bypass the security offered by
risk-based authentication in ten of the 16 (62.5%) popular
services we tested (including a bank, a credit card company,
and a cryptocurrency trading service). In practice, our attack is
only ineffective against a subset of the services that require the
attacker to obtain an IP address used by the victim in the past.
Finally, we conduct an extensive exploration of the phishing
ecosystem and identify rampant deployment of browser
fingerprinting, including advanced techniques. Our analysis
reveals that phishers already collect sufficient information to
carry out our attacks in a subset of the analyzed websites.

Overall, as account hijacking remains a serious threat to
users, 2FA is a crucial component of account protection and
is typically the last line of defense. While using browser fin-
gerprints for augmenting authentication can prevent certain
attacks like credential stuffing, our research demonstrates that
it can also have the opposite effect and undermine an account’s
security by allowing attackers to completely bypass any 2FA
mechanism. Naturally, this poses a significant threat to users.
As such, we present the first comprehensive and in-depth assess-
ment of the security implications of ancillary authentication
mechanisms, and find that fingerprints must be used in conjunc-
tion with other signals (e.g., [P address, requiring the presence
of specific cookies) to prevent our attack. We hope that our
findings will kickstart additional research on the security im-
plications of browser fingerprinting and further incentivize
studies on more robust fingerprinting techniques for web au-
thentication. In summary, our research contributions are:

* We present a novel practical attack that demonstrates how
phishers can obtain and replicate users’ exact browser
fingerprints to deceive risk-based authentication mecha-
nisms and eliminate two-factor authentication. We develop
an automated pipeline for extracting and constructing
website-specific fingerprinting vectors, as well as mimicking
atarget user’s browser in the targeted websites.

* We present an empirical exploration and in-depth analysis
of the use of browser fingerprinting for augmenting web
authentication in the wild. Our experimental evaluation
reveals that while this is not yet a widespread practice in
general, it is prevalent in high-value services, highlighting
the severe implications of our attack.

* We present a large-scale study on the use of browser
fingerprinting techniques by phishing sites. Our findings
reveal that this has become an increasingly common
phenomenon, with the majority of phishing sites gathering
browser fingerprints. Alarmingly, we identify a series of
sites generating all the fingerprinting attributes necessary
for bypassing 2FA in major financial institutions.

¢ In an effort to kickstart remediation, we have disclosed
our findings and offered remediation guidelines to affected
vendors. Additionally, we will share our code with other
researchers to foster more research in the area.

2 Background and Threat Model

Here we briefly present pertinent background information and
then define the threat model that will guide our analysis.
Browser fingerprinting. Cookie-based tracking has been
an unavoidable aspect of web browsing for more than two
decades [33, 34,48]. However, with average users becoming
more privacy-aware and browsers deploying anti-tracking de-
fenses, cookie-less tracking techniques have come to the fore-
front [53]. In fact, browser fingerprinting has garnered signifi-
cant attention from the security community, resulting in a mul-
titude of measurement studies and fingerprinting techniques

being demonstrated [25, 32, 38,40,43,45,46,52,64,66,71].
In a nutshell, browser fingerprinting is a stateless approach
to tracking users, which identifies a series of attributes that
possess “discriminating” power, thus allowing websites to
re-identify users based on unique characteristics of their
browser and device. All these attributes, including those for
more advanced fingerprinting techniques, can be obtained
through various JavaScript APIs available in modern browsers.

Threat model. Studies have reported that phishing remains
the most common source of account hijacking, even in major
services [23, 68]. Preventing phishers and other attackers that
have obtained users’ credentials (e.g., through keyloggers)
from gaining access to users’ accounts is a significant
authentication challenge, which has contributed to the rise of
risk-based authentication mechanisms. In our main attacker
model we assume that the attacker is able to trick the user into
visiting a malicious website and divulging their credentials.
The malicious website includes JavaScript code that generates
the exact browser/device fingerprints that the target website
would generate for that specific user (we describe how we
achieve this in §3.1). To increase the attack’s coverage, the
website also generates site-specific fingerprints for a series
of additional target websites, so as to take advantage of any
instances of the password being reused [26, 57].

While our main threat model is that of a phisher, due to
the fact that risk-based checks typically occur at login time,
a large-scale study on cookie-hijacking attacks [31] reported
a website that prevented cookie hijacking by also employing
these checks on requests carrying valid authentication cookies
from pre-established sessions. As such, in our evaluation
we also include an experiment that investigates this specific
scenario. Itis, however, important to note that since the attacker
needs the ability to execute JavaScript code to obtain the user’s
browser fingerprints, this attack is limited to attackers that can
execute arbitrary code and also steal the user’s cookies (e.g.,
through an XSS attack [47]), thus precluding passive network
eavesdroppers. Moreover, attacks against password managers
and autofill [49, 54, 61] could also potentially be used, but we
do not explore such attacks in this work.

We emphasize that our threat model focuses on attackers
that are able to obtain the user’s browser fingerprints by luring
them to a malicious website, and then submit them from their
own device. Our attack is not applicable to other attacks (e.g.,
brute-forcing, credential-stuffing that relies on passwords
leaked in data breaches, etc.). Similarly, if the user visits the
phishing website from a different browser or device than the
one normally used to log into their accounts, the use of browser
fingerprints as arisk-based authentication signal would prevent
the phishing attacker from compromising the user’s accounts.

3 Misusing Browser Fingerprints

We present a novel attack that allows an attacker to bypass 2FA
by deceiving web services into thinking that the attacker’s login

attempt originates from a known device, i.e., the user’s device.
In essence, our attack leverages the use of browser fingerprint-
ing techniques as a part of the risk-based authentication process.
An overview of our attack is shown in Figure 1. In this section
we give an overview of our methodology and then describe in
detail how we “extract” the fingerprinting code from vulner-
able websites (phase 1) which is incorporated into our attack
site (phase 2). Finally, we detail the spoofing process when the
attacker attempts to log into the victim’s accounts (phase 3).

Attack overview.The main observation behind our attack is
that sites that employ 2FA often “remember” users’ devices dur-
ing authentication, so as to minimize friction and skip 2FA for
legitimate login attempts. In other words, if the user has visited
these websites in the past from that specific device, they con-
sider the login attempt to be low-risk and refrain from asking
the user to solve a 2FA challenge. Through an initial manual ex-
ploration we observed that these websites often rely on HTTP
cookies but may also generate and collect browser fingerprints
(and in some cases rely on a combination of both) for deter-
mining whether they have encountered the device in the past.
However, since these fingerprints can be easily collected us-
ing JavaScript, our work explores whether we can circumvent
authentication mechanisms that rely on browser fingerprinting.

For our experiments we built a honeysite that plays the role
of the attacker’s phishing site and serves the purpose of col-
lecting users’ fingerprints. Our honeysite does not rely on a
generic fingerprinting library, such as Fingerprint js2 but,
instead, failors the fingerprint-generation process to match that
of a targeted website. For example, if the attacker deploys a
phishing site that aims to steal the user’s Google credentials, the
site should also replicate Google’s exact fingerprint-generation
process. To that end, in the preparatory phase of our attack (Fig-
ure | — phase 1) we visit the target websites and “extract” their
fingerprinting code. That specific code is then incorporated in
our honeysite. The reasoning behind this is that any differences
in the fingerprinting implementation can result in us generating
values that are different from those that the target website ex-
pects from the user. For instance, our implementation can use
different parameters when computing advanced fingerprints
(e.g., render different images with WebGL or enumerate a dif-
ferent list of fonts), which would result in different fingerprints.

By automatically analyzing and replicating the fingerprint-
ing process of target websites, we ensure that the fingerprints
we collect are generated identically to the ones expected by
the target websites. We note that an attacker can incorporate
the fingerprinting code of multiple sites in the phishing page,
including multiple variations of a fingerprinting function (e.g.,
multiple different images to be rendered through canvas).
This allows the attacker to collect fingerprints that can be
used to exploit multiple websites. Even though the credentials
collected by the phishing website correspond to the specifically
targeted website, in practice, these credentials might be useful
for accessing other websites as well, as prior work has found
that users often reuse passwords across services [26].

PHASE 1

B
o
oo

PHASE 2 PHASE 3 ‘

‘\@
) 3¢

johndoe @@
........ ;)i
d hr-wtHiE

=88 | 899

Figure 1: Overview of our attack workflow that misuses browser fingerprints for bypassing ancillary security checks.

Our attack’s next phase (Figure | —phase 2) revolves around
an unsuspecting user being tricked into visiting the phishing
site and providing their credentials @. When visiting the at-
tacker’s site, the page’s JavaScript code (which was extracted
from the target sites) will be executed on the client side and
generate the fingerprints of the victim’s device @) that are
required by the target websites for authentication (i.e., the web-
site knows this device for that user). With the users’ fingerprints
and credentials at their disposal, attackers can now log into the
victims’ accounts. In the final attack phase (Figure | — phase
3), the attacker visits the target websites for which they have
acquired the victim’s fingerprints, and attempts to log into the
victim’s accounts @. At this point, the attacker spoofs their
own device’s fingerprints to mimic those of the victim’s de-
vice @. This deceives the target websites’ risk-assessment
systems into considering the attacker’s device as known. As a
result, they will refrain from presenting a 2FA challenge, thus
allowing the attacker to gain access to the victim’s accounts @).

The two most crucial aspects of our attack are (i) identifying
and extracting the fingerprinting code from the vulnerable
websites that will be incorporated into the attacker’s site, and
(ii) spoofing the attacker’s fingerprints to match those of the
victim’s device. We have built two browser extensions that
streamline these tasks and eliminate the need for manual effort.
In the remainder of this section we describe the two extensions
and provide technical details about their implementation.

3.1 Extraction of Fingerprinting Code

Our FP-Extractor extension runs at “document_start”, so
that its content script is executed before any of the site’s scripts.
The content script injects JavaScript code directly at the top of
the page (i.e., with a <script> tag) to be executed first. [t is im-
portant to ensure that the injected code runs first, as it hooks the
properties and methods that are typically used for fingerprint-
ing, in order to keep track of accesses to these properties and
the relevant API calls with their arguments. Based on the infor-
mation logged, our extension generates and exports JavaScript
code that corresponds to the exact fingerprinting code of the
target website. Our extension currently targets the fingerprint-
ing techniques employed by popular libraries and tools (e.g.,
FingerprintJs [5], AmIUnique [2], OpenWPM [10]).

JavaScript objects. The injected code hooks various
properties of the Navigator, Window and Screen objects.
These properties provide an abundance of information about
the user’s system/device, and it is a common practice for fin-
gerprinting scripts to collect these properties. A complete list
of these properties is provided in the Appendix. We note that
we are not interested in the values of these properties during
the code extraction process, as our goal is only to identify
which properties are being used by the target website. By
knowing which properties are needed, our extension generates
code that will collect this information in our honeysite.

Canvas and WebGL. These two APIs are used for drawing
graphics using JavaScript. They use the HTMLS5 <canvas>
element; the Canvas API is typically used for drawing 2D
images while WebGL for 3D graphics. This fingerprinting
technique draws text and shapes on the canvas and uses
ToDataURL () to get a Base64-encoded representation of the
binary pixel data of the image [16].

FP-Extractor identifies when a canvas object is created by
hooking the createElement method and checking whether
“canvas” is passed as an argument when the method is called.
When the canvas is created, the extension records the values
of its height, width and style.display properties. Then,
it gets the rendering context (CanvasRenderingContext2D,
WebGLRenderingContext), and traces all the methods that
are available to that context (i.e., fillStyle, fillText,
strokeStyle, font etc). Since these methods are the ones
that specify what is drawn on the canvas, our extension records
all the methods called along with their arguments. Finally,
it also traces the use of the toDataURL and get ImageData
methods that return the image data. In the case of WebGL, we
also trace the invocations of the get SupportedExtensions,
getParameter and getExtension methods that return
WebGL'’s constants and supported extensions. With the infor-
mation recorded, the extension is able to generate and export
code that replicates the canvas/WebGL fingerprinting code
of the target websites. In its simplest form, this code creates
the canvas element, initializes the rendering context, draws the
respective images on the canvas, and returns the image data.
Importantly, the images that are drawn and the fingerprints
that are generated on the attacker’s website are identical to
those generated when the victim visits the target website.

Enumeration of supported fonts. A common technique
for fingerprinting fonts is to include multiple elements
in the page that contain the same text but use a different font
family in each element. By measuring the dimensions (i.e.,
offsetWidth and of fsetHeight) of each span element, the
website can determine which fonts are supported by the user’s
system, as the dimensions of specific elements will deviate
from those that correspond to fonts that are unavailable (as
those will all use the same fallback font). For extracting the
code that fingerprints fonts, our extension detects when the
offsetWidth or of fsetHeight properties of a span element
are accessed, and logs information about the textContent,
fontSize and fontFamily of the span element. In this way,
the extension obtains the list of fonts that a target website tests.
The extension then generates and exports code for creating the
respective span elements in the attacker’s website and compar-
ing their dimensions for determining which fonts are available.

3.2 Fingerprint Spoofing

For basic fingerprints that correspond to properties of the
Navigator, Window and Screen objects, our FP-Spoofer
extension uses the Object.defineProperty method to
determine when these properties are being accessed and
overrides their values according to the victim’s values. Our
extension also compares navigator properties, deleting those
that do not exist on the victim’s machine and only adding
those that the attacker’s machine lacks. Since websites can list
the properties present in the navigator object, when spoofing
a property with Object .defineProperty we also set it to be
enumerable so that it will be retrieved or looped through with
Object.keys orthe for-in loop.

FP-Spoofer’s background script changes the User-Agent
request header to match the victim device’s User Agent so
that the two values are consistent, and also spoofs other
headers to make the request consistent. For example, we
need to spoof Sec-CH-UA to match the User Agent, as well
as Accept-Language if it differs from the victim’s machine.

For canvas and WebGL fingerprinting, our extension detects
when the toDataURL and get ImageData methods are called
and returns the respective values recorded on the attacker’s
website. In general, for spoofing the user’s fingerprints during
the attack phase, our extension does not need to manipulate
any intermediate values. It is sufficient for our purpose to only
spoof the final values, that the website checks for determining
if the fingerprints match those of the authenticating user. In the
case of canvas fingerprinting we only need to return the Base64
value of the image data that was previously recorded on the
attacker’s website for the specific user. For WebGL finger-
printing, in addition to toDataURL, our extension also detects
when the getSupportedExtensions, getExtension and
getParameter methods of the WebGL API are called,
and returns the WebGL extensions and constants that were
recorded previously on the attacker’s website for that user.

For font fingerprinting, our extension detects when the web-
site’s code accesses the of fsetWidth or of fsetHeight prop-
erties of span elements. If the element that is accessed corre-
sponds to a family that is supported by the victim’s browser, as
recorded on the attacker’s website, our extension modifies the
values of offsetWidth and offsetHeight to appear differ-
ent from the default ones. On the other hand, if the span element
corresponds to a font that is not supported, our extension returns
the baseline values for this span element. The AudioContext
API can be used to extract a consistent fingerprint, by exploiting
subtle differences in the rendering of a fixed audio waveform.
Using AudioBuffer.getChannelData() for a generated
audio snippet will return an array of floating-point values
that represent the sound. We replace the array with the values
from the victim’s machine. Finally, while we did not find any
websites that use canvas fonts for their authentication process,
we describe our approach in the Appendix, for completeness.

Essentially, as the implementation of the fingerprinting
techniques is identical on the target website and the attacker’s
website (since we extracted it from there), our extension
knows exactly which methods are invoked and which values
need to be spoofed. Furthermore, it is worth noting that while
there exist browser extensions that allow users to spoof their
fingerprints, such as CyDec Security Anti-Fp [13] and User-
Agent Switcher [15], these are not suitable for carrying out
our attack as they only support spoofing for basic fingerprints
and cannot be used for advanced or non-generic techniques. A
video demonstration of our spoofing tool’s capabilities against
the AmIUnique system is available here [3].

4 Experimental Evaluation

Our experiments explore the feasibility of our attack for bypass-
ing 2FA authentication. First we identify a set of potentially
vulnerable websites that use fingerprinting and implement 2FA,
and infer whether their risk-based authentication engine lever-
ages browser fingerprints for “remembering” the user’s device.
Then, we go through a systematic and rigorous testing process
to assess whether these websites are susceptible to our attack.

Identifying potentially vulnerable websites. While our
fingerprinting extraction, generation, and spoofing pipeline
is fully automated (§3), identifying a set of candidate target
websites and uncovering the inner workings of their risk-based
authentication requires manual effort. Since a considerable
amount of manual effort is required for creating accounts
on different services and navigating the account settings to
identify and enable 2FA, we focus our efforts on a small set that
are potentially vulnerable to our attack. To that end, we first
run an exploratory process that intends to identify candidate
websites that run fingerprinting code on their login page, and
then determine which of these websites implement 2FA. While
this does not guarantee that all such websites use fingerprinting
for authentication, it reduces the set of candidate websites as
it excludes those that do not run any fingerprinting code.

Discovery of login pages. The first step in this process is
to identify websites that support account registration, and to
locate their login pages. We follow the methodology of Drakon-
akis et al. [31] for detecting pages that include login or registra-
tion forms. If no login forms are detected on the landing page,
our crawler follows all the links on the landing page that point
to pages under the same domain, and analyzes the pages’ URLs
for the presence of indicative keywords (e.g., login, signin etc.).
With this approach we have located the login pages of 11,527
websites from the Alexa top 20K websites (5,736 and 5,791
from the top 10K and the top 10K-20K websites, respectively).

Fingerprinting detection. We use the Chrome browser
with FP-Extractor installed, and visit the landing and the
login pages of the websites that we have detected during the dis-
covery process. When visiting a page our extension logs all fin-
gerprinting calls. At this point we do not need our extension’s
code extraction functionality, but are only interested in log-
ging which fingerprinting calls are invoked; this information
is sufficient for determining if a website uses fingerprinting.

Determining 2FA support. The next step is to identify the
subset of websites that implement 2FA, out of those that use
fingerprinting on their login pages. For this, we first search
for relevant terms, such as “multi”, “factor”, “authenticator”,
“remember device” etc., in the login pages’ source code using
regular expressions. We also expand our set of websites to
include websites that we know through personal use that they
support 2FA. We manually inspect the websites’ source code to
identify which scripts are responsible for authentication, 2FA
and fingerprinting. While using our extension helped us create
an initial set of candidates for our experiment, this does not
provide information about the techniques used at a script-level
granularity. Our manual analysis reveals that websites com-
monly include multiple scripts that implement fingerprinting,
and our extension-based approach cannot differentiate which
functionality was the result of each script. For a more fine-
grained analysis we use VisibleV8 [42] on the login pages
of the websites that use fingerprinting, which allows us to log
all native functions and property accesses during JavaScript
execution, at the granularity of individual scripts. This process
provides useful contextual information for our analysis.

4.1 Experimental Methodology

In the previous step we described our process for identifying
websites that are potentially vulnerable to our attack. Here we
describe our methodology for testing the candidate websites in
order to determine (i) whether they use fingerprints for authenti-
cation and (ii) if they are indeed susceptible to our attack. Over-
all we tested 300 websites; our findings are presented in §4.2.
Account registration. To be able to test these websites,
we first need to register an account on them and manually log
into these accounts to enable 2FA if there is such an option
available in the settings. We also provide a valid phone number
during the account registration or when 2FA is enabled.

Testing devices. For our experiments we use two devices
with different operating systems and browsers. Our pri-
mary device is a MacOS laptop running Chrome (version
85.0.4183.83), and our secondary device is a Windows laptop
running Edge (version 85.0.564.44). The primary device
plays the role of the victim’s device, and is the device used for
registering the accounts and enabling 2FA. For websites where
we test existing personal accounts, this is the device that has
been used to access these accounts in the past. In general, our
primary device is the one that these websites remember and
consider as known. On the other hand, the secondary device,
which represents the attacker’s device, has never been used to
access these accounts in the past. We expect websites that use
2FA to consider this device as new and, therefore, to trigger
a 2FA challenge when the user logs in using this device. Fur-
thermore, to avoid “polluting” subsequent experiments from
the secondary device, we never solve a 2FA challenge when
presented, so websites will not consider this device as known
in any future attempts since the authentication process fails.

Testing procedure. We follow a systematic approach for
testing the candidate websites. We have devised a series of
specific steps to be followed, and rely on differential testing to
understand how each website’s authentication system behaves,
how 2FA is triggered, and how our attack can bypass 2FA.
More specifically, our methodology tests if a website (i) uses
2FA during authentication, (ii) uses cookies or fingerprints to
remember devices, and (iii) imposes restrictions based on the
device’s IP address. Furthermore, we follow this procedure
twice, once for testing each website’s default settings, and once
after explicitly enabling 2FA, if such an option is available.

For every website to be tested, we first log into our account
using our primary device and select the “remember this device’
option, if available. Then we logout and re-login, to check
if the website does indeed remember the device (i.e., does
not present a 2FA challenge). At this point we also log into
the website using our secondary device, which has never
been used to access this account in the past, and check if a
2FA challenge is presented. Since the secondary device is
not known to the website, we expect 2FA to be triggered in
this case. For websites that present a 2FA challenge when
using the secondary device, while at the same time they
appear to remember the primary one, we explore whether
this happens due to the use of fingerprinting. Specifically, we
clear all browsing data (e.g., cookies, local storage) on the
primary device and log into the account again. If the website
still remembers the device, this is an indication that it uses
fingerprinting to determine if the device is known.

i

Bypassing 2FA. For the websites that use fingerprinting
to remember the user’s device and trigger 2FA when logging
in from a new device, we use our extension to test if they
are susceptible to our attack. We first visit the login page of
target websites using a browser with FP-Extractor to export
JavaScript code that generates the same fingerprint as the
target website. Then, we mount this code in our honeysite (i.e.,

attacker’s website) and visit the honeysite with our primary
device (i.e., victim device) to obtain the device’s fingerprint.
After acquiring the fingerprint of the victim’s device we log
into the target website using the secondary device, where
FP-Spoofer will modify the device’s fingerprints to match
those of the primary device. Our attack is deemed successful
if the secondary device does not receive a 2FA challenge.

IP address/Geolocation. We observe that certain websites
consider the device’s IP address/geolocation information as
a signal for determining whether 2FA should be triggered or
not. Specifically these websites check whether the IP address
or IP-based geolocation information (e.g., country, city etc.)
of the device that is currently logging into the account matches
those from previous user logins. Depending on how restric-
tive this check is, it can raise the bar for the attacker or even
prevent our attack; checks that require IP addresses to match
the user’s country or city can be easily bypassed using proxies
and VPN services. Onaolapo et al. [55] found that attackers
actually employ such strategies in the wild. However, websites
that only accept IP addresses that have been used by the user
before can pose a significant challenge to the attacker. During
our experiments, we systematically assess this aspect of the
authentication process and use a VPN to test IP addresses from
different ISPs, cities, and countries. We have also devised a
technique that attempts to bypass such IP-based restrictions;
we modify our network requests when running our attack and
include the victim’s IP address (collected when they visited the
phishing page) in an X-Forwarded-For header. This header
is typically used for specifying the originating IP address when
traffic goes through a proxy [8]. This allows the attacker to pre-
tend that they are actually behind the victim’s IP address and are
using a proxy when attempting to log into the user’s account.

Inferring fingerprinting-based authentication checks.
In practice, the attacker does not need to know which
fingerprinting attributes collected by a target website are
actually used for the authentication process, as our attack
pipeline extracts and replicates all fingerprinting techniques.
However, for our analysis we are interested in obtaining a
more fine-grained and in-depth understanding of risk-based
authentication systems that use fingerprints. As such, for
websites that are vulnerable to our attack, we systematically
evaluate whether each fingerprinting vector actually affects the
authentication process. Due to the prohibitively large number
of potential combinations, we follow a strategy based on the
process of elimination. In more detail, we repeat our attack
multiple times, where in each attempt we remove one of the
fingerprinting attributes contained in the user’s fingerprint pro-
file. Depending on whether each attack instance results in 2FA
being triggered or not, we can infer whether that specific finger-
printing vector is part of the risk-based authentication checks.
By repeating this process for all the fingerprints collected
by that web service, we can identify the absolutely minimum
set of fingerprints required to manipulate the authentication
process. It is important to note that we repeat our experiments

Table 1: Fingerprinting attributes used by websites with a
detectable login page (within the Alexa Top-20K).

Top 10K Top 10K-20K
Technique Home Login \ Home Login
Navigator 5,510 5,403 5,587 5,371
Window 5,261 5,104 | 5272 4,968
Screen 5209 4,682 | 5231 4473
Timezone 5,035 4,617 4,934 4,282
Canvas 1,224 1,254 1,077 879
Canvas Fonts 179 380 142 237
WebRTC 221 313 192 210
AudioContext 290 351 223 234

numerous times over the course of multiple months, to ensure
the validity of our findings and avoid false positive (i.e.,
labeling an attribute as necessary even though it is not) due
to some other mechanism being triggered (e.g., multiple
consecutive logins triggering a rate-limiting mechanism).

4.2 Experimental Results

Here we present our experiments exploring the feasibility and
effectiveness of our attack in the wild.

First, in Table 1 we provide statistics on the prevalence of
fingerprinting techniques for websites in the Alexa top 20K
for which we were able to identify their login page (i.e., 5,736
and 5,791 websites in the top 10K and top 10K-20K datasets,
respectively). We observe that the majority of websites, in both
datasets, collect basic fingerprints. Furthermore, we observe
a clear trend of websites in the top 10K dataset employing
more advanced fingerprinting techniques on the login pages
compared to their home page. The websites in the 10k-20k
dataset exhibit a more uniform deployment of advanced tech-
niques. Notably, while we observe widespread deployment of
fingerprinting vectors, these are not often incorporated into the
websites’ authentication process, as we will detail next. We hy-
pothesize that these are more likely used for tracking purposes.

We select a subset of 300 popular websites from our
discovery process that implement fingerprinting and support
2FA for manual exploration and testing. These were selected
based on our experiment on websites with fingerprinting code
on their login pages and being listed on [1]. Our experiments
reveal that only 16 out of the 300 websites use fingerprints for
remembering the user’s device, while the rest rely on browser
cookies for this. Interestingly, the tested websites included
four banking and eight tax-preparation websites, of which
two and four respectively use fingerprinting for authentication.
As such, our experiments indicate that (i) high-value and
financial services tend to adopt security mechanisms such
as 2FA in order to better protect their users’ accounts, and
(i) augmenting the authentication process with fingerprints is
disproportionately used among such high-value services, sig-
nifying the severe ramifications of our attack. As 2FA becomes
more prevalent [14], we expect that risk-based authentication
that uses fingerprints will also become more common.

Table 2: Risk-based authentication mechanisms in popular web services we evaluated against our attack. For IP address restrictions
we explicitly note if using the X-Forwarded-For header (—) or IP addresses from the same city (®) is effective.

Website Basic FP Canvas/WebGL

Fingerprinting Technique
Fonts

IP Address Restrictions

IP Check Bypass Vulnerable

Audio

Bank-A

Bank-B
CreditCard
Trading-A
Trading-B

Tax-A

Tax-B

Tax-C

Tax-D
eCommerce-A
eCommerce-B
RideSharing
Food&Beverage-A
Food&Beverage-B

X
—

x]

AdBlocking
WebInfrastructure

SSSNSSSNSNSSSSSI XSS xS
M} ™™ ;X UZX NSNS N XXX XX

XXX X NUZX X NN XXX XXX

3} ™™ XX :X X NN XX XXX XX
A N N N N N
RN N N N AN RN

XRX®] X1 X

Table 2 details the findings from our attack evaluation on
the authentication mechanisms of these 16 websites. Our main
focus here is on the first 14 services which trigger 2FA when
anew device is used to access an account. We also include two
services (WebInfrastructure, AdBlocking) that highlight
additional dimensions of risk-based authentication. Due to the
severity of our attacks and the fact that accounts on certain ser-
vices are extremely valuable and highly-targeted, we present
them in an anonymized form that denotes their category.

As can be seen in Table 2, our attack can successfully bypass
2FA in 9 out of the 14 websites. The five websites that are not
vulnerable to our attack require the device’s IP address to match
one of the IP addresses previously used to access that account,
and are not deceived by our X-Forwarded-For ploy. Further-
more, we found that 12 of the 14 websites use fingerprinting to
determine if the authenticating device is known and whether
2FA should be triggered or not. From the total of 14 websites
that use fingerprinting, eight rely on basic fingerprints (e.g.,
properties of navigator, window, etc.), and six of the tested
websites use more advanced fingerprints for authentication like
canvas/WebGL and fonts. Finally, two of those also use audio
fingerprinting for the purpose of authentication. We provide
additional details for interesting use cases in the Appendix.

Our exploration revealed another dimension of the use of
fingerprinting for authentication. Basic fingerprints remain the
same across different sites, since they correspond to the user’s
system characteristics and properties and do not change as long
as the environment remains the same. For advanced fingerprint-
ing techniques, however, a site is able to make its users generate
fingerprints that are different from those generated when vis-
iting other sites (e.g., by rendering a unique image). While this
may prevent the attacker from creating “generic” fingerprints
that can be used on multiple websites, our attack is still effec-
tive since we extract the fingerprinting code from each target
website and generate appropriate site-specific fingerprints.

Our analysis shows that only six of the 16 websites employ
advanced fingerprinting techniques. To make matters worse,
three of the tax-related websites use the default implementa-
tion of Fingerprint js2 for the advanced fingerprints. This
results in these three websites rendering the same images
for canvas fingerprinting and loading the same list of fonts
for fonts enumeration. We also found that Tax-C and Tax-D
use the same audio snippet for audio fingerprinting (Tax-B
employs an earlier version of Fingerprint js2 that does not
support audio fingerprinting). As a result, an attacker who uses
Fingerprintjs2 (or the code extracted from one of these
websites) can obtain the fingerprinting values required for
bypassing 2FA in all three websites. To further explore this
issue, we visited the websites of 10 additional popular banks
to check whether they use advanced fingerprinting techniques,
and observed significant overlap across the images and fonts
lists they use. Even though each website renders between 1-5
images, there are only nine images and two random images in
total across the ten websites. Two websites with JS font finger-
printing use identical font lists, and five websites with canvas
font fingerprinting use one of two font lists. The two sites with
audio fingerprinting render the same audio wave form.

IP constraints. While Bank-B and Trading-B do not use
any JavaScript-based fingerprinting attributes but only rely on
the UserAgent HTTP header, which can be trivially spoofed,
we include them in our analysis to illustrate the challenge
posed by IP address checks as well as the dangers of trust-
ing X-Forwarded-For. In more detail, regarding IP-based
constraints, we found that only 11 websites perform such
checks for determining if the login attempt is suspicious. Our
attack can bypass the IP address restrictions in three web-
sites using the X-Forwarded-For header in outgoing requests
(CreditCard, Trading-B, RideSharing). Moreover, we
found two websites that do not trigger 2FA if the authenticating
IP address matches the user’s city. With the wide availability

of VPN and proxy services, we consider such coarse-grained
checks to be inadequate for protecting valuable accounts.
Cookie hijacking. Up to this point we have focused on
attackers that have the account credentials (e.g., obtained
through phishing), as that is the most common account
hijacking vector according to prior research [23]. Nonetheless,
recent work by Drakonakis et al. [31] demonstrated the fea-
sibility of cookie-hijacking attacks at scale. More importantly,
the authors noted the lack of additional fraud-detection checks
(which occur during the log in process) when attackers use
stolen cookies as those belong to sessions that have already
been “validated”. In fact, the authors found only one instance
where they were not able to access the victim’s account due
to such checks. To that end, we include WebInfrastructure
to test whether our attack can also be leveraged by cookie
hijackers. For this experiment we visit WebInfrastructure
using our primary device, log into our account, and export
WebInfrastructure’s cookies from the browser. Then, we
import these cookies into a different browser on our secondary
device, and visit WebInfrastructure. Initially we found
that we were, indeed, unable to access our account using the
“stolen” cookies. Upon a more in-depth analysis we found
that the site uses the device’s User Agent (obtained through
JavaScript and the HTTP header) to detect suspicious logins,
but also checks the IP address. As such, when attempting to
access the account using the stolen cookies and FP-Spoofer,
we could only gain access if the secondary device’s IP
address was one previously used by the victim. As such, while
fingerprint-spoofing allowed us to pass the corresponding
checks, the IP address check effectively prevents the attack.
Email alerts. While our experiments focus on bypassing
2FA, we include our analysis of AdBlocking, as it highlights
an additional dimension of risk-based authentication. In more
detail, AdBlocking accounts have 2FA disabled by default,
but the service alerts users about successful logins that occur
from new devices or from IP addresses that are not from the
same city. However, we found that by spoofing the fingerprints
we can trick the service into not sending the email alert.
Behavioral evolution over time. We re-tested affected
services at least 20 times over a period of six months (04/2021 -
09/2021), even after our disclosure. Interestingly, we observed
cases where the risk-based authentication behavior changed
over time. In our initial experiments with Trading-A, their
system required the user to solve a 2FA challenge every time, if
2FA was explicitly enabled by the user. For the default setting,
however, the system used basic fingerprints to determine if
a 2FA challenge should be presented. When re-analyzing
Trading-A some time after our disclosure, we observed that
Trading-A now requires the user to provide a phone number
when registering a new account and that 2FA is enabled by
default for new accounts. We cannot tell, however, if this
change happened organically, or due to our disclosure and
recommendations. Surprisingly, 2FA has not been retroac-
tively enabled for existing accounts, resulting in different

Table 3: Phishing website datasets. JS denotes the websites
for which we have JavaScript execution traces, and FP denotes
the phishing sites that collect browser fingerprints.

Dataset Time Period Sites JS FP

Phish-A 31/05/2018 - 19/06/2019 71,343 39,618 29,312
Phish-B 31/10/2018 - 05/05/2020 82,431 40,777 36,733
APWG 05/05/2020 - 12/04/2021 173,269 93,568 85,491

default levels of protection for accounts. Another example
is Tax—-B; in our initial experiments it used fingerprinting to
remember the device but now relies on the presence of cookies
to determine if the device is known. Again, we cannot tell if
this change was the result of our recommendations. Our final
example is that of WebInfrastructure, which matched the
device’s IP address and User Agent in our initial experiments.
However, prior to our disclosure we observed that these checks
were removed and we can now successfully access the account
using “stolen” cookies, regardless of the device or IP address
we connect from. We do not know what led to the removal
of these additional security checks, but have disclosed our
findings to them and they are currently investigating the issue.

5 Phishing and Fingerprinting

In this section we focus on the phishing ecosystem and present
a large-scale exploration of the phishing sites obtaining
users’ browser fingerprints. We correlate the information that
phishers currently collect with the findings from our empirical
analysis in §4 to assess whether attackers are already collecting
sufficient fingerprinting attributes for carrying out our attack.
Datasets. Table 3 details the datasets used for our analysis.
We obtained the two datasets (Phish-A, Phish-B) from the
authors of [76], which include more than 153K phishing
sites that appeared over a two-year period. They also include
the corresponding JavaScript for 80,395 of the sites. While
Phish-B does not include labels for the target website (e.g.,
if the phishing site is masquerading as Paypal) we cross-
referenced that dataset with information made available by the
Anti-Phishing Working Group’s (APWG) eCrime Exchange
(eCX) repository, allowing us to obtain the missing labels.
Finally, we obtained the APWG dataset directly from the eCX
repository [12], which provides a more recent and extensive
snapshot of the phishing ecosystem over an 11-month period.
Together, these datasets provide a broad and representative
view of the phishing ecosystem over a three year period.
JavaScript execution traces. To better understand if phish-
ing websites are using fingerprinting and whether they are
collecting fingerprints that would allow the attacker to carry
out our attack, we use VisibleV8 to dynamically analyze the
JavaScript code of the phishing sites in our datasets. For the
Phish-A and Phish-B datasets we were provided with the
HTML files of the phishing websites as well as the JavaScript

Table 4: Phishing sites that implement fingerprinting.

Phishing Datasets

Technique Phish-A Phish-B APWG
Navigator 27,578 34,650 84,239
Window 24,848 23,650 73,258
Screen 10,244 26,856 57,633
Timezone 22,636 28,549 59,251
Canvas 3,508 5,395 11,650
Canvas Fonts 56 91 399
WebRTC 536 165 1,938
AudioContext 275 363 1,795

files they load. To that end, we deploy them on our own local
server and re-write the origin URL of the JavaScript files loaded
to point to the corresponding JavaScript files in our datasets.
This allowed us to analyze phishing sites that are not available
anymore due to the sites being taken down or the original ver-
sions of their JavaScript files not being available anymore. For
the more recent APWG dataset we visit the actual phishing sites,
as this dataset does not include a snapshot of their code. We use
Visiblev8 toload each phishing site and log all the JavaScript
calls along with their arguments. To ensure that websites’
JavaScript code is executed, we interact with the pages in an
automated way to emulate simple user behavior (e.g., scrolling,
making random mouse movements and clicks). Based on the
JavaScript execution traces that we extract from VisibleV8’s
logs we determine which fingerprinting techniques each phish-
ing website implements and which attributes are collected.

Table 3 presents the phishing datasets we used in our analy-
sis, the number of websites in each dataset that run JavaScript,
and how many of them are collecting fingerprints. A general
observation is that the percentage of phishing websites that
appear to run JavaScript is lower than what we would have
expected, across all 3 datasets (i.e., between 49.46% and
55.53%). We manually checked 25 random phishing sites from
the APWG dataset that did not produce a JavaScript execution
trace (recall that for this dataset we visited the actual phishing
sites) and found that 14 and three return a 404 and 403 error
respectively, while three other sites show a static page with an
“account suspended” message. From the remaining websites
one is a shortened URL that has been flagged by Bitly as
potentially harmful, and another uses a shortened URL for
a Google Forms site, but has been suspended by Google for
violating their terms of service. Finally, one site has no content,
one includes an empty local JavaScript file, and one shows a
popup window asking for a username and password. As such,
apart from the unavailability of resources or sites being taken
down, we believe that client-side cloaking techniques [76]
have likely affected the collection of JavaScript across all
three datasets. Interestingly, for the phishing websites with
JavaScript execution traces, we find that the majority collect
fingerprints, with 73.98%, 90.08% and 91.36% across the
3 datasets respectively. We also observe an increase in the
number of websites collecting browser fingerprints over time.

Table 5: Phishing sites that obtain all the necessary browser
fingerprints for bypassing 2FA in the target sites. “*” indicates
a mismatch in fingerprinting function arguments.

Phish-A Phish-B APWG

Target Sites Bypass | Sites Bypass | Sites Bypass
Bank-A 83 1 685 14 330 74
Bank-B 1,549 - ‘ 2,683 - 327 -
CreditCard 89 61 0 0 12 0
Trading-A 0 0 ‘ 0 0 6 6
RideSharing 7 0 363 5 1378 5%
WebInfrastructure 0 0 ‘ 1 1 220 219

Table 4 presents the number of phishing sites that collect
various types of fingerprints. The study by Zhang et al. [76] on
phishing sites’ cloaking strategies reported checks for simple
browser attributes (specifically, the User Agent and whether
cookies are disabled) on approximately 23% of the phishing
sites. Our analysis provides a more comprehensive picture of
the three datasets as we detect all common fingerprinting tech-
niques, while also revealing the widespread use of advanced
fingerprinting techniques across the phishing ecosystem.
Specifically, we find that in total 28,526, 35,653 and 85,461
(i.e.,39.98%, 43.25% and 49.32%) websites from the three
datasets collect basic fingerprints with the majority of them be-
ing properties of the Navigator, and that between 5% and 7%
collect advanced fingerprints, with canvas fingerprinting being
the most prevalent technique among them. We also explore
whether and how phishing sites send fingerprinting values
back to their servers; we provide more details in Appendix E.

Bypassing 2FA. Next, we analyze the subset of phishing
sites that target one of the services from Table 2 and for which
we have their JavaScript execution traces. Specifically, we
cross-reference the fingerprinting attributes that each phishing
site collects with those necessary for manipulating the target’s
risk-based authentication mechanisms to bypass 2FA. As can
be seen in Table 5, Bank-B is an extremely popular target for
phishing websites. Since Bank-B only relies on the User Agent
HTTP header and does not check navigator.userAgent,
essentially every phishing site has sufficient information to
pass the device-based check. Nonetheless we include it here
as a point of comparison. Additionally, since we do not have
historical information of when the IP-address-based check
was deployed by Bank-B we cannot conclude how many
phishing sites would have been able to bypass 2FA in practice.

On the other hand, we find that Bank-2 is not only a popular
target, but that the number of phishing sites that collect the
appropriate fingerprints is significantly larger in our most
recent dataset; while 8.1% of the phishing sites are capable
of bypassing 2FA in Bank-2 across all datasets, in the most
recent dataset the ratio climbs to 22.42%. This indicates that
phishers are adapting over time to the risk-based mechanisms
employed by high-value websites like Bank-A. Interestingly,
while we find that six phishing sites collect all the necessary
fingerprinting attributes used by RideSharing, the actual
arguments passed to two dynamic fingerprinting functions

N

Phishing Sites (log)
3 3 3

\

\

\

\

O_.

Bank-B —— |;
100 L ‘ [Bank-A — |
o gt g\® g\ g0
Figure 2: Phishing websites targeting Bank-A and Bank-B.

(for canvas and font fingerprinting) are not the same as those
used by RideSharing, thus rendering their overall fingerprint
a mismatch. Further inspection reveals that in five cases
the mismatch is due to the phishing sites using the default
values used by popular fingerprinting libraries, while the final
instance is using a library by an anti-bot service.
Longitudinal trends. To get a broader view of phish-
ing sites potentially adapting their targets over time, we use
APWG’s eCX service to obtain the phishing domains that tar-
geted Bank-A and Bank-B between 2016-2020, as shown in
Figure 2. While in 2016 and 2017 the two banks were targeted
by a comparable number of phishing sites, Bank-B phishing
sites aggressively increased in 2018 and continued to increase
in 2019, but had a sharp decline in 2020. On the other hand, the
number of phishing sites targeting Bank-A steadily increase
from year to year. While we cannot conclusively infer the root
cause of this trend without detailed knowledge of the risk-based
authentication checks the banks enforced throughout this entire
period, Figure 2 and Table 5 indicate that phishing sites may
be adapting their targets based on the obstacles presented by
risk-based authentication. In other words, since bypassing 2FA
in Bank-A currently only requires spoofing certain fingerprints
while Bank-B also requires exactly matching the user’s IP
address, Bank-A presents a more attractive target to phishers.
Summary. Overall, while our analysis is limited to phishing
sites for which we were able to obtain their JavaScript code, our
findings show that phishing sites are not yet widely replicating
the fingerprint-generation process of targeted websites.
Nonetheless, the cases of Bank-A and CreditCard highlight
the risks that users face and the need to improve existing
risk-based authentication deployments, as we discuss in §6.

6 Discussion, Limitations and Defenses

In this section we further discuss our experiments and findings.

Ethics and disclosure. The severity of our attack necessi-
tates the responsible disclosure of our findings to the affected
vendors. As such, we disclosed our methodology and findings
to every vulnerable website through their bug bounty programs
or security contact points when those were available. When
we could not find contact points dedicated to security issues
we reached out over their general contact email address. At
the time of writing, six vendors have responded. Bank-A,

Tax-A and WebInfrastructure requested additional details
and proof-of-concept demonstrations, which we provided.
Bank-A, subsequently, verified our attack and is currently
working towards a fix. eCommerce-A informed us that they
were aware of the issue. It is important to emphasize that all
of our experiments were conducted using test accounts or our
personal accounts. We did not interact with or affect other
users, nor did we collect browser fingerprints from any users.
Fingerprinting and authentication prevalence. While
using fingerprints for augmenting the authentication process
is not a new concept [17], our experiments reveal that this has
yet to become widespread practice. However, as fingerprinting
has gained significant traction in recent years, and third-party
libraries have started supporting the use of fingerprints for
authentication (e.g., [6,9]), it is likely that such mechanisms
will become far more common in the near future. Additionally,
our research shows that while in many cases fingerprints
may be used for augmenting the authentication process, other
signals carry more “weight” (e.g., the presence of cookies and
the device’s IP address). Unfortunately, our experiments show
that high-value services (e.g., banks, tax services) are most
commonly vulnerable to our attack. As such, while the attack
that we demonstrate may not yet be a widespread threat, the
severity of the affected web services and the overall implica-
tions of their user accounts being compromised, highlight the
need for alerting developers about the security implications of
leveraging device fingerprints for the authentication process.
We also hope that our work kickstarts a wider discussion
within the research community and incentivizes additional
research on fingerprinting schemes that are robust to spoofing.
Attributes. Our extensions target the fingerprinting vectors
used by popular libraries and websites. If a website uses custom
techniques or those libraries incorporate additional techniques,
our extensions would need to be expanded for handling them.
2FA mechanisms. While SMS is the most commonly de-
ployed 2FA technique, despite its well-documented shortcom-
ings [29,41,51], our attack is not limited to a specific 2FA mech-
anism but instead provides a method for deceiving the risk-
assessment engine that decides whether a 2FA challenge should
be triggered. For instance, eCommerce-A supports the use of
authenticator apps for 2FA, and our attack bypasses that as well.
MITM phishing toolkits like Evilginx [4] allow attackers
to deploy phishing websites with man-in-the-middle capabil-
ities for using phished credentials to log into target websites
in real time (i.e., when the victim is interacting with the
phishing site) and then also trick the victims into divulging
a 2FA code, thus allowing the attacker to log into the victim
account. However, the major limitation of this attack is that in
high-value services that only use short-lived session cookies
the attacker can only access the victim’s account that one time
and would fail in future attempts due to the 2FA challenges.
Guidelines for vendors. As we demonstrate, certain
techniques for augmenting authentication may actually
undermine the overall security posture of a given service.

Two-factor authentication. In our experiments we found
that only 8 of the vulnerable services we have identified offer
an option to mandate that a 2FA challenge has to be passed
for every login attempt (one more site offers that option
only for transactions). Moreover, in all cases, that option is
optional and users have to explicitly enable it. As such, we
argue that all websites should provide such options, as that
would allow users to fortify their account against our attack,
while also significantly raising the bar for attackers in general.
We believe that this option should be opt-out instead of
opt-in, especially in high-value or highly-sensitive services,
to further nudge users towards improving their security
hygiene; indicatively, Google recently automatically enrolled
150 million users in 2FA [7]. We do note, however, the friction
that additional authentication requests and factors can cause.
This tradeoff between usability and security has been studied
extensively [27], and recent reports found that users are in
favor of strengthening security in high-value services through
2FA [59]. Finally, while this is not pertinent to our attack,
since it is not affected by the actual form of 2FA mechanism
selected by the user, vendors should strive to adopt and offer
more secure 2FA options (e.g., U2F, authenticator apps).

Risk signals. Our experiments revealed that certain vendors
incorporate fingerprints into the authentication process, but
other signals play an important role and can affect the feasibil-
ity of our attack. We have identified two signals that vendors
should use for identifying suspicious logins and triggering
2FA. First, we found that certain sites will always trigger 2FA if
the request doesn’t include certain HTTP cookies. While there
are legitimate scenarios where this occurs (e.g., the user has
cleared the browser’s browsing data), it can also indicate that
the login attempt is from a new/unknown device. Obviously,
using this signal would not be effective against cookie hijack-
ers. Second, we found that certain sites have more stringent
IP-based checks. While attackers can easily use proxies or
VPN services to “obtain” an IP address with a similar geoloca-
tion to the victim [55] (e.g., same city) stricter IP requirements
(e.g., belonging to the same ISP or having been used to access
that account before) present additional obstacles to attackers.
Overall, as noted by OWASP [56], when alternative defenses
are “implemented in a layered approach, they can provide
areasonable degree of protection”. As such, a careful use of
browser fingerprints in conjunction with other signals like
IP address checking and mandating the presence of specific
cookies, can lead to a more robust authentication process.

Best practices for users. Our main threat model assumes
that the attacker knows the user’s password. As such, the attack
can be mitigated by “best practices” commonly highlighted in
guides for safer Internet browsing, such as the use of password
managers. Additionally, users should enable 2FA in sites that
support it, and further enable options that require solving a
2FA challenge in every login if such an option is available (e.g.,
Tax-A offers this). Finally, users can adopt tools or browsers
that affect browser fingerprinting, which we discuss next.

Anti-fingerprinting defenses. Our attack relies on our
ability to accurately obtain and replicate, the user’s browser
fingerprints. As such, defenses [21] offered by browser
extensions or privacy-oriented browsers that alter the user’s
fingerprints can potentially mitigate or prevent our attacks.
However, this depends on the specific fingerprinting attributes
covered by each defense and whether they are used by a
given website. We also note that such defenses may affect
or break websites’ functionality. In our experiments we also
visited target websites using Brave as our primary browser,
which randomizes canvas fingerprints for tracking prevention,
and observed that sites that use canvas fingerprinting for
authentication always prompted us to solve 2FA.

Future directions. Recent research proposed using finger-
prints to augment authentication [44] by “chaining” sessions,
with a random canvas fingerprint being generated in each ses-
sion and used for verification in the following session. While
this approach can effectively mitigate the phishing attack we
present, it is vulnerable to other attacks. Nonetheless, we con-
sider this an important proposal and hope that our work further
incentivizes additional research in the area. While an ideal
countermeasure would remove the need for chaining sessions,
any approach that does not rely on memory of prior sessions
must solve an inherent challenge: generating a fingerprint in
a manner that cannot be spoofed. Since this is a client-side
process, such an approach would necessitate leveraging some
form of Trusted Execution Environment (e.g., a system like
TrustJS [37]). We consider this an interesting future direction.

7 Related Work

To the best of our knowledge, this paper presents the first
comprehensive security analysis of real risk-based authenti-
cation systems that leverage browser fingerprints, and the first
demonstration of a practical attack for bypassing 2FA. Here we
discuss prior work and studies around data breaches, account
hijacking and authentication-augmenting mechanisms.

Van Acker et al. [70] conducted a large scale study on the
security of login pages, by evaluating the presence of mixed
content and the use of mechanisms like HSTS, HPKP and SRI.
To detect breaches in popular services, DeBlasio et al. [28]
proposed an approach that leverages honey accounts and pass-
word reuse as a method for detecting sites being compro-
mised. Prior work has also proposed strategies for deploy-
ing risk-based authentication systems, or have studied certain
characteristics of real-world deployments. In an earlier study,
Hurkala and Hurkala [39] proposed a system that relies on
the IP address, device profiling (i.e., User-Agent and Accept-
Language in HTTP headers), presence of cookies, access time
and failed login attempts. Freeman et al. [35] used a real-user
dataset of login attempts from Linkedin, and classified them
into benign and suspicious based on the IP address and User
Agent. Steinegger et al. [67] implemented an authentication
system that checks the browser fingerprint (calculated using the

Fingerprintjs2 library), geolocation (i.e., country) based on
the IP address, and the number of failed login attempts. Alaca
and van Oorschot [17] identified several fingerprinting vectors
that can be used for authentication and classified them based on
the distinguishability they provide and their resistance to spoof-
ing. Spooren et al. [65] explored the effectiveness of mobile fin-
gerprints for risk-based authentication and found that they are
considerably less unique than the fingerprints of personal com-
puters. In a different line of work, Bonneau et al. [22] explored
the privacy concerns that arise due to the permanence and
simulatability of such features when used for authentication.

Wiefling et al. [74] explored the authentication systems of
eight popular services to identify which features contribute
to the computation of the risk score. To that end, they created
a number of personas and corresponding accounts, and built
a framework that uses virtual machines and emulates user
activities. However, their experiments only focus on the User
Agent string, language, and screen resolution, and as such
do not provide in-depth or detailed insights on how browser
fingerprints are actually being used for risk analysis in the
wild. In a subsequent work [72], they performed a study with
780 users, in which they collected 247 fingerprinting features
during login and assessed their suitability for risk-based
authentication. In [73], they explored users’ perceptions on the
usability and security of risk-based authentication, and in [75]
they assessed link-based and code-based re-authentication.

Previous work [19, 20] has focused on identifying finger-
printing attributes that are suitable for authentication (e.g.,
with high entropy, low usability cost, stability). In [20]
Andriamilanto et al. proposed FPSelect, a tool for selecting
fingerprinting attributes for authentication systems that
satisfy a service’s security requirements while minimizing
the usability cost. In a follow up work [19], they conducted a
large-scale study on the properties of browser fingerprints for
authentication. They found that at least 90% of the inspected
fingerprinting attributes are stable (i.e., identical values for
almost six months) and can be used for authentication. In [18],
Andriamilanto and Allard present BrFAST, a framework that
incorporates FPSelect, for the selection of fingerprinting
attributes. These studies assumed an attacker with knowledge
of the distribution of fingerprints who performs a dictionary-
style attack by submitting common fingerprinting values. We
explore an entirely different attack where the attacker extracts
a user’s exact fingerprints and spoofs their own device’s
fingerprints to match these values when impersonating the user
and, importantly, demonstrate the implications of this attack
in the wild. Moreover, our attack can spoof all the attributes
these studies proposed for augmenting authentication.

In an independent concurrent study, Liu et al. [50] explore
a similar attack and demonstrate that users’ fingerprints can be
spoofed by an attacker. However, their approach does not detect
which fingerprinting attributes are needed for different target
websites, nor does it provide a method for automatically extract-
ing and generating per-target-website fingerprinting code. It

also overlooks various advanced attributes handled by our sys-
tem (e.g., canvas fonts). More importantly, their attack requires
significant manual effort for several attributes, including paus-
ing execution with breakpoints and manually changing object
values through the browser’s debugging tools, and changing
browser and operating system settings. Finally, this study does
not present an in-depth exploration and evaluation of the attack
against risk-based authentication systems in the wild.
Furthermore, Campobasso and Allodi [24] recently re-
ported on an underground marketplace that sells resources for
bypassing risk-based authentication. This marketplace relies
on malware that infects victims computers for collecting a vast
amount of information, which includes browser fingerprints
for some users. The paper provides an interesting economic
analysis on the impact of various resources on the pricing
of account profiles. However the authors did not analyze
any profiles/resources or the software used for obtaining and
generating those resources, which could provide additional
insight on the exact nature of the fingerprints being collected,
the services being targeted, and the actual effectiveness of
the attack resources offered by the marketplace for bypassing
risk-based authentication mechanisms. As such, this study is
complementary to our work as it indicates that attackers are
indeed exploring techniques for impersonating user devices.

8 Conclusions

Critical and high-value web services have introduced
additional security mechanisms and checks into their authen-
tication workflows to prevent attackers from compromising
accounts even if they are able to obtain or guess users’ creden-
tials. We presented the first empirical analysis of the operation
and effectiveness of such systems in real-world high-value web
services. Accordingly, we demonstrated how attackers can
automatically extract and misuse users’ browser fingerprints
for deceiving risk-based authentication systems into trusting
the attacker’s device and bypass two-factor authentication. Our
real-world experiments highlight the severity of our attack, as
we show that major financial services and e-commerce services
are vulnerable. We also found major services being targeted
by phishers that obtain sufficient fingerprinting attributes
to completely bypass 2FA. As such, our research highlights
the danger of incorporating additional security mechanisms
without first conducting a comprehensive and in-depth
assessment of potential pitfalls. To get the remediation process
under way, we have notified the affected vendors and proposed
guidelines for a more robust authentication process.

Acknowledgements: We thank the anonymous reviewers, and
our shepherd Mohammad Mannan, for their valuable feedback.
This work was supported by the National Science Foundation
(CNS-1934597). Any opinions, findings, conclusions, or
recommendations expressed herein are those of the authors,
and do not necessarily reflect those of the US Government.

References

(1]
(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

2FA Directory. https://2fa.directory/.
AmlUnique. https://amiunique.org/.

Demo of our spoofing capabilities against the AmIU-
nique fingerprinting system. https://vimeo.com/
629397823/b509389d0e.

Evilginx - Man-in-the-middle attack framework. https:
//github.com/kgretzky/evilginx2.

FingerprintJS. https://github.com/
fingerprintjs/fingerprintis.

ForgeRock - Implementing Device Fingerprints With
Intelligent Authentication Trees in AM. https:
//developer.forgerock.com/docs/platform/
how-tos/implementing-device-fingerprints-
intelligent-authentication-trees-am.

Google blog - Making you safer with 2SV.
https://blog.google/technology/safety-
security/reducing-account-hijacking/.

MDN Web Docs - X-Forwarded-For. https:
//developer.mozilla.org/en-US/docs/Web/
HTTP/Headers/X-Forwarded-For.

MiniOrange. https://www.miniorange.com/.

OpenWPM.
OpenWPM.

https://github.com/mozilla/

OWASP -Top 10 Web Application Security Risks.
https://owasp.org/www-project-top-ten/.

THE APWG ECRIME EXCHANGE (ECX). https:
//apwg.org/ecx/.

CyDec Security Anti-Fp, 2021. https://chrome.
google.com/webstore/detail/cydec-security-
anti-fp/becfjfjckdhngmmpkhakoknnkgpgfelk.

DUO - The 2021 State of the Auth Report: 2FA Climbs,
While Password Managers and Biometrics Trend, 2021.
https://duo.com/blog/the-2021-state-of-the-
auth-report-2fa-climbs-password-managers-—
biometrics-trend.

User-Agent ~ Switcher and Manager, 2021.
https://chrome.google.com/webstore/
detail/user-agent-switcher-and-m/

bhchdcejhohfmigjafbampogmaanbfkg.

Gunes Acar, Christian Eubank, Steven Englehardt, Marc
Juarez, Arvind Narayanan, and Claudia Diaz. The web
never forgets: Persistent tracking mechanisms in the wild.
In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’14.

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

Furkan Alaca and P. C. van Oorschot. Device fingerprint-
ing for augmenting web authentication: Classification
and analysis of methods. In Proceedings of the 32nd
Annual Conference on Computer Security Applications,

ACSAC’16.

Nampoina Andriamilanto and Tristan Allard. Brfast: A
tool to select browser fingerprinting attributes for web
authentication according to a usability-security trade-off.
In Companion Proceedings of the Web Conference 2021,
WWW °21, page 701-704, 2021.

Nampoina Andriamilanto, Tristan Allard, and Gaétan Le
Guelvouit. “guess who?” large-scale data-centric study
of the adequacy of browser fingerprints for web authen-
tication. In Innovative Mobile and Internet Services in
Ubiquitous Computing, pages 161-172, 2021.

Nampoina Andriamilanto, Tristan Allard, and Gaétan
Le Guelvouit. FPSelect: Low-Cost Browser Fingerprints
for Mitigating Dictionary Attacks against Web Authen-
tication Mechanisms. In Annual Computer Security
Applications Conference (ACSAC 2020), 2020.

Peter Baumann, Stefan Katzenbeisser, Martin Stopczyn-
ski, and Erik Tews. Disguised chromium browser:
Robust browser, flash and canvas fingerprinting protec-
tion. In Proceedings of the 2016 ACM on Workshop on
Privacy in the Electronic Society, 2016.

Joseph Bonneau, Edward W Felten, Prateek Mittal,
and Arvind Narayanan. Privacy concerns of implicit
secondary factors for web authentication. WAY, 14,2014.

Elie Bursztein, Borbala Benko, Daniel Margolis, Tadek
Pietraszek, Andy Archer, Allan Aquino, Andreas
Pitsillidis, and Stefan Savage. Handcrafted fraud
and extortion: Manual account hijacking in the wild.
In Proceedings of the 2014 Conference on Internet
Measurement Conference, IMC ’14.

Michele Campobasso and Luca Allodi. Impersonation-
as-a-service: Characterizing the emerging criminal
infrastructure for user impersonation at scale. In
Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, 2020.

Yinzhi Cao, Song Li, and Erik Wijmans. (cross-)browser
fingerprinting via os and hardware level features. In
Proceedings of Network & Distributed System Security
Symposium (NDSS). Internet Society, 2017.

Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita
Borisov, and XiaoFeng Wang. The tangled web of
password reuse. In NDSS, volume 14, pages 23-26,2014.

Emiliano De Cristofaro, Honglu Du, Julien Freudiger,
and Greg Norcie. A comparative usability study of
two-factor authentication. arXiv:1309.5344,2013.

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Joe DeBlasio, Stefan Savage, Geoffrey M. Voelker,
and Alex C. Snoeren. Tripwire: Inferring internet
site compromise. In Proceedings of the 2017 Internet
Measurement Conference, IMC ’17.

Alexandra Dmitrienko, Christopher Liebchen, Christian
Rossow, and Ahmad-Reza Sadeghi. On the (in) security
of mobile two-factor authentication. In International
Conference on Financial Cryptography and Data
Security. Springer, 2014.

Periwinkle Doerfler, Maija Marincenko, Juri Ranieri,
Yu Jiang, Angelika Moscicki, Damon McCoy, and Kurt
Thomas. Evaluating login challenges as a defense against
account takeover. In Proceedings of the International
Conference on World Wide Web, 2019.

Kostas Drakonakis, Sotiris Ioannidis, and Jason Polakis.
The cookie hunter: Automated black-box auditing
for web authentication and authorization flaws. In
Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, CCS *20.

Peter Eckersley. How unique is your web browser? In
Proceedings of the 10th International Conference on
Privacy Enhancing Technologies, PETS’ 10, 2010.

Steven Englehardt and Arvind Narayanan. Online
tracking: A 1-million-site measurement and analysis. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS *16,2016.

Steven Englehardt, Dillon Reisman, Christian Eubank,
Peter Zimmerman, Jonathan Mayer, Arvind Narayanan,
and Edward W. Felten. Cookies that give you away:
The surveillance implications of web tracking. In
Proceedings of the 24th International Conference on
World Wide Web, WWW ’15.

D. Freeman, Sakshi Jain, Markus Diirmuth, B. Biggio,
and G. Giacinto. Who are you? a statistical approach to
measuring user authenticity. In Proceedings of Network
& Distributed System Security Symposium (NDSS).
Internet Society, 2016.

Mohammad Ghasemisharif, Amrutha Ramesh, Stephen
Checkoway, Chris Kanich, and Jason Polakis. O single
{Sign-Off}, where art thou? an empirical analysis
of single {Sign-On} account hijacking and session
management on the web. In 27th USENIX Security
Symposium (USENIX Security 18),2018.

David Goltzsche, Colin Wulf, Divya Muthukumaran,
Konrad Rieck, Peter Pietzuch, and Riidiger Kapitza.
Trustjs: Trusted client-side execution of javascript. In
EuroSec 2017, pages 1-6, 2017.

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

Alejandro Gémez-Boix, Pierre Laperdrix, and Benoit
Baudry. Hiding in the crowd: an analysis of the
effectiveness of browser fingerprinting at large scale. In
WWW 2018.

Adam Hurkala and Jarostaw Hurkata. Architecture
of context-risk-aware authentication system for web
environments. In Proceedings of the Third International
Conference on Informatics Engineering and Information
Science (ICIEIS), 2014.

Umar Igbal, Steven Englehardt, and Zubair Shafiq.
Fingerprinting the fingerprinters: Learning to detect
browser fingerprinting behaviors. arXiv preprint
arXiv:2008.04480, 2020.

Roger Piqueras Jover. Security analysis of sms as a
second factor of authentication. Communications of the
ACM, 63(12), 2020.

Jordan Jueckstock and Alexandros Kapravelos. Vis-
ibleV8: In-browser Monitoring of JavaScript in the
Wild. In Proceedings of the ACM Internet Measurement
Conference (IMC), 2019.

Soroush Karami, Panagiotis Ilia, Konstantinos Solomos,
and Jason Polakis. Carnus: Exploring the privacy threats
of browser extension fingerprinting. In 27th Annual
Network and Distributed System Security Symposium
(NDSS). The Internet Society, 2020.

Pierre Laperdrix, Gildas Avoine, Benoit Baudry, and
Nick Nikiforakis. Morellian Analysis for Browsers:
Making Web Authentication Stronger with Canvas
Fingerprinting. In Detection of Intrusions and Malware,
and Vulnerability Assessment - 16th International
Conference, DIMVA. 2019.

Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and
Gildas Avoine. Browser fingerprinting: A survey. ACM
Transactions on the Web (TWEB), 14(2).

Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry.
Beauty and the beast: Diverting modern web browsers
to build unique browser fingerprints. In 2016 IEEE
Symposium on Security and Privacy (SP). IEEE, 2016.

Sebastian Lekies, Ben Stock, and Martin Johns. 25
million flows later: large-scale detection of dom-based
xss. In Proceedings of the 2013 ACM SIGSAC confer-
ence on Computer & communications security, pages
1193-1204, 2013.

Adam Lerner, Anna Kornfeld Simpson, Tadayoshi
Kohno, and Franziska Roesner. Internet jones and the
raiders of the lost trackers: An archaeological study
of web tracking from 1996 to 2016. In 25th USENIX
Security Symposium (USENIX Security 16).

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Xu Lin, Panagiotis Ilia, and Jason Polakis. Fill in the
blanks: Empirical analysis of the privacy threats of
browser form autofill. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications

Security (CCS).

Zengrui Liu, Prakash Shrestha, and Nitesh Saxena.
Gummy Browsers: Targeted Browser Spoofing against
State-of-the-Art Fingerprinting Techniques. In In
International Conference on Applied Cryptography and
Network Security (ACNS), 2022.

Ariana Mirian, Joe DeBlasio, Stefan Savage, Geoffrey M.
Voelker, and Kurt Thomas. Hack for hire: Exploring the
emerging market for account hijacking. In The World
Wide Web Conference, WWW 19,

Keaton Mowery and Hovav Shacham. Pixel perfect: Fin-
gerprinting canvas in html5. Proceedings of W2SP, 2012.

Nick Nikiforakis, Alexandros Kapravelos, Wouter
Joosen, Christopher Kruegel, Frank Piessens, and
Giovanni Vigna. Cookieless monster: Exploring the
ecosystem of web-based device fingerprinting. In 2073
IEEE Symposium on Security and Privacy. IEEE, 2013.

Sean Oesch and Scott Ruoti. That was then, this is now:
A security evaluation of password generation, storage,
and autofill in Browser-Based password managers. In
29th USENIX Security Symposium, 2020.

Jeremiah Onaolapo, Enrico Mariconti, and Gianluca
Stringhini. What happens after you are pwnd: Under-
standing the use of leaked webmail credentials in the
wild. In Proceedings of the 2016 Internet Measurement
Conference, IMC ’16.

OWASP. Credential stuffing prevention cheat
sheet. https://cheatsheetseries.owasp.org/
cheatsheets/Credential_Stuffing_Prevention_
Cheat_Sheet.html, 2021.

Sarah Pearman, Jeremy Thomas, Pardis Emami Naeini,
Hana Habib, Lujo Bauer, Nicolas Christin, Lorrie Faith
Cranor, Serge Egelman, and Alain Forget. Let’s go in for
a closer look: Observing passwords in their natural habi-
tat. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’17.

lasonas Polakis, Marco Lancini, Georgios Kontaxis,
Federico Maggi, Sotiris loannidis, Angelos D Keromytis,
and Stefano Zanero. All your face are belong to
us: Breaking facebook’s social authentication. In
Proceedings of the 28th Annual Computer Security
Applications Conference, 2012.

[59]

(60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Ken Reese, Trevor Smith, Jonathan Dutson, Jonathan
Armknecht, Jacob Cameron, and Kent Seamons. A
usability study of five Two-Factor authentication
methods. In SOUPS 2019.

Richard Shay, Iulia Ion, Robert W. Reeder, and Sunny
Consolvo. “my religious aunt asked why i was trying
to sell her viagra”: Experiences with account hijacking.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI *14.

David Silver, Suman Jana, Dan Boneh, Eric Chen,
and Collin Jackson. Password managers: Attacks and
defenses. In 23rd USENIX Security Symposium, 2014.

Suphannee Sivakorn, Angelos D Keromytis, and Jason
Polakis. That’s the way the cookie crumbles: Evaluating
https enforcing mechanisms. In ACM WPES, 2016.

Suphannee Sivakorn, Jason Polakis, and Angelos D.
Keromytis. The cracked cookie jar: Http cookie
hijacking and the exposure of private information. In
In Proceedings of the 37th IEEE Symposium on Security
and Privacy, S&P ’16.

Alexander Sjosten, Steven Van Acker, and Andrei
Sabelfeld. Discovering browser extensions via web
accessible resources. In Proceedings of the Seventh
ACM on Conference on Data and Application Security
and Privacy, CODASPY ’17.

Jan Spooren, Davy Preuveneers, and Wouter Joosen.
Mobile device fingerprinting considered harmful for risk-
based authentication. In Proceedings of the Eighth Euro-
pean Workshop on System Security, EuroSec ’ 15, 2015.

Oleksii Starov and Nick Nikiforakis. Xhound: Quan-
tifying the fingerprintability of browser extensions. In
2017 IEEE Symposium on Security and Privacy (SP).

Roland H. Steinegger, Daniel Deckers, Pascal Giessler,
and Sebastian Abeck. Risk-based authenticator for web
applications. In Proceedings of the 21st European Con-
ference on Pattern Languages of Programs, EuroPlop
'16.

Kurt Thomas, Frank Li, Ali Zand, Jacob Barrett,
Juri Ranieri, Luca Invernizzi, Yarik Markov, Oxana
Comanescu, Vijay Eranti, Angelika Moscicki, Daniel
Margolis, Vern Paxson, and Elie Bursztein. Data
breaches, phishing, or malware? understanding the risks
of stolen credentials. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’17.

Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth
Raghunathan, Patrick Gage Kelley, Luca Invernizzi,
Borbala Benko, Tadek Pietraszek, Sarvar Patel, Dan

Boneh, and Elie Bursztein. Protecting accounts from
credential stuffing with password breach alerting. In 28th
USENIX Security Symposium (USENIX Security 19).

[70] Steven Van Acker, Daniel Hausknecht, and Andrei
Sabelfeld. Measuring login webpage security. In SAC
2017.

[71] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin,
and Romain Rouvoy. Fp-stalker: Tracking browser
fingerprint evolutions. In 2018 IEEE Symposium on
Security and Privacy (SP). IEEE, 2018.

[72] Stephan Wiefling, Markus Diirmuth, and Luigi Lo Ia-
cono. What’s in Score for Website Users: A Data-driven
Long-term Study on Risk-based Authentication Charac-
teristics. In 25th International Conference on Financial
Cryptography and Data Security (FC °21).

[73] Stephan Wiefling, Markus Diirmuth, and Luigi Lo Iacono.
More than just good passwords? a study on usability
and security perceptions of risk-based authentication. In
ACSAC, 2020.

[74] Stephan Wiefling, Luigi Lo Iacono, and Markus Dur-
muth. Is this really you? an empirical study on risk-based
authentication applied in the wild. IFIP AICT, 2019.

[75] Stephan Wiefling, Tanvi Patil, Markus Diirmuth,
and Luigi Lo Iacono. Evaluation of Risk-Based
Re-Authentication Methods. In ICT Systems Security
and Privacy Protection, 2020.

[76] Penghui Zhang, Adam Oest, Hachyun Cho, Zhibo
Sun, RC Johnson, Brad Wardman, Shaown Sarker,
Alexandros Kapravelos, Tiffany Bao, Ruoyu Wang,
Yan Shoshitaishvili, Adam Doupé, and Gail-Joon
Ahn. CrawlPhish: Large-scale Analysis of Client-side
Cloaking Techniques in Phishing. In Proceedings of the
IEEFE Symposium on Security and Privacy, May 2021.

A Use Cases

We provide additional details about select cases of websites
susceptible to our attack. Our comprehensive manual analysis
helped us understand how risk-based authentication systems
behave and revealed shortcomings in their implementation.
Tax—B does not enable 2FA by default. Instead, the user can
opt in through the website’s settings by selecting email, SMS,
or the Google Authenticator app as their second factor. Tax-B
also records the user’s IP address for each login. Users can find
information about their trusted devices and past logins in the
account preferences, including sign-in timestamps as well as
the devices’ IP addresses. Interestingly, while Tax-B records
the IP addresses used in past logins, we found that it does not
use this information to determine if a new login is suspicious.

Our experiments reveal that Tax-B uses a fingerprinting
script on its login page that is highly similar to the popular
fingerprinting library FingerprintJS. A notable difference,
however, is that Tax-B’s script does not implement audio
fingerprinting. Furthermore, by inspecting outgoing network
traffic when logging into the website using our primary device,
we observed that a JSON string that includes 33 fingerprinting
values is sent to Tax-B’s server. To fingerprint JavaScript
fonts, Tax-B uses “monospace” as the base font and checks
against a list of 495 different font families. After embedding
Tax-B’s code and fonts list into our phishing site and visiting
it with our primary device, we found that our device supports
88 font families. Then, to spoof the font fingerprint during
the attack phase, our extension changes the of fsetWidth and
offsetHeight properties of the span elements that load these
88 fonts to deviate from their default values.

eCommerce-A also does not use 2FA by default and
users need to explicitly enable it. Their site has multiple
fingerprinting scripts on the login page that implement both
basic and advanced fingerprinting techniques, such as canvas,
WebGL, fonts and audio fingerprinting. Our analysis revealed
that eCommerce-A does not actually use fonts and audio finger-
prints for authentication, but only relies on basic fingerprints,
canvas, and WebGL. Regarding their basic fingerprints, we
observed that eCommerce-2A collects 46 attributes, such as
Navigator.plugins and Window.devicePixelRatio. For
canvas and WebGL fingerprinting, eCommerce-A uses two
different scripts and draws 7 images in total. In two of the
images it draws a string of a random integer number between 0
and 999. As described previously, our phishing site records the
Base64 values of the images and then, during the attack, our
extension manipulates the t oDataURL () method to return the
Base64 strings (in the correct order). For fingerprinting fonts,
eCommerce-A uses “"monospace”, “sans-serif” and “serif” as
base fonts and compares against 485 font families. In compari-
son to Tax~-B that uses one base font and loads each font family
to be tested in a single span element, eCommerce-A uses three
different base fonts as a fallback, loading each font family to
be tested in three different span elements, and checking for
changes in the dimensions of any of these elements.

RideSharing exhibits a unique idiosyncrasy as it
exposes two login URLs, which actually behave differently.
Specifically, any login attempts made from the landing page
that do not include the necessary cookies will always result
in 2FA being triggered. Surprisingly, the login attempts from
the other page will only trigger 2FA when a new device is used.
As such, attackers can impersonate the user’s device and log
in from this second page to bypass 2FA. We also found that
if we explicitly enable 2FA through RideSharing’s mobile
app, 2FA is triggered for every login attempt regardless of
which login URL is used. RideSharing collects a total of
379 fingerprinting attributes from the user’s device. More
interestingly, it employs a fingerprinting strategy that we have
not come across in other sites. Specifically, it catches errors

during each step of the fingerprinting process and pushes
those errors into an array which is used to calculate one of the
fingerprinting values. For example, the script tries to create
an element for obtaining a list of fonts that are available in
Internet Explorer but not supported by other browsers.

B Inconsistency Checks

Tax-Auses toString () todetectif any native functions have
been tampered with. When toString () is called on a func-
tion, it returns a string representation of the function’s code.
In the case of native functions, the returned value shows that
the function uses native code. When a function is overridden
(by our extension) to return a spoofed value, its string repre-
sentation returned by toString () would reveal this change.
For bypassing such checks, we also override the toString ()
method to make it return the expected value for native methods.

Tax-B checks whether the browser’s languages have
been tampered with by comparing the Navigator.language
attribute with Navigator.languages. It also compares the
screen’s size with the available size. Finally, it determines the
browser type based on the user-agent and looks for contradic-
tions between the browser type and Navigator.productSub
or eval.toString() .length. Similarly to Bank-A’s case,
our attack is not affected by these inconsistency checks as we
spoof these attributes according to the primary device’s values.

RideSharing catches JavaScript runtime exceptions
and uses the error messages as fingerprints. If the attacker’s
browser is different from the victim’s, these error messages
will differ. However, the attacker can hook the specific APIs in
relation to these errors, and change them to show custom error
messages. For example, RideSharing’s code creates an ele-
ment that throws an exception in modern browsers By hooking
document .createElement (), the attacker can make it throw
a custom error message that looks like the one shown by the
victim’s browser when such an element is created.

C Properties of JavaScript Objects

In Table 6 we present the fingerprintable properties of the
Navigator,Window, Screen, Plugin, and MimeType objects
that our extensions can obtain and spoof. We decided on this set
of properties as these are used by Fingeprint js2 [5], the ex-
tended version of OpenWPM presented in [40], and also in finger-
printing scripts we found during our exploration of high-value
services. Properties marked with ‘*’ are only supported in Inter-
net Explorer, but they are still widely used in phishing websites.

D Canvas Fonts Fingerprinting

The CanvasRenderingContext2D.measureText () method
returns a TextMetrics object that contains information about
the measured text (such as its width) that is rendered on the

Table 6: Fingerprintable properties of JavaScript objects. Prop-
erties marked with “*’ are only supported in Internet Explorer.

JavaScript Object Fingerprintable Properties

Navigator userAgent, platform vendor, vendorSub, product,
productSub, oscpu, cpuClass*, buildID, hard-
wareConcurrency, appName, appCodeName,
appVersion, appMinorVersion*, languages,
language, browserLanguage*, userLanguage*,
systemLanguage*, permissions, onLine, connec-
tion, cookieEnabled, doNotTrack, deviceMemory,
getBattery, geolocation, getGamepads, max-
TouchPoints, msMaxTouchPoints* mediaDevices,
mimeTypes, javaEnabled, plugins, sendBeacon,
vibrate, bluetooth, webdriver

Window innerWidth, innerHeight, outerWidth, outer-
Height, screenLeftm screenTop, screenX, screenY,
devicePixelRatio, ontouchstart, swfobject, Ac-
tiveXObject*, locationbar, menubar, toolbar,
statusbar, personalbar, scrollbar, pageXOff-
set, scrollX, speechSynthesis, sessionStorage,

localStorage, indexedDB, openDatabase

Screen width, height availWidth, availHeight, availLeft,
availTop, colorDepth, pixelDepth, deviceXDPT*,
systemXDPI*, logicalXDPI*, deviceYDPI*,

logical YDPI*, updateInterval*, orientation

Plugin name, version, description, filename

mimeType type, description, enabledPlugin, suffixes

canvas. If a tested font is not supported, the default fallback
font is used instead. The fingerprinting script loops through a
list of fonts and measures their rendered width. If the baseline
width and the tested font’s width are equal, it means that the
particular font is not supported by the browser. On our primary
device, we hook the measureText () method and collected all
the TextMetrics objects. Then, on our secondary device, our
extension modifies the measureText () method to replace the
returned values with those collected from the primary device.

E Phishing Sites: Fingerprint Exfiltration

We manually examined our Visiblev8 logs for 500,
500, and 200 sites targeting Bank-A, RideSharing, and
WebInfrastructure respectively. We found that phishing
sites use APIs like XMLHttpRequest and WebSocket for
sending fingerprinting values back to the server. Some sites
also include fingerprinting values in the URLs of GET requests.
We found 197, 109, and 4 phishing sites respectively exfil-
trating fingerprinting values. Additionally, 164, 128, and 126
sites send back obfuscated data. While this likely includes fin-
gerprinting values in certain cases, the costly manual process
required to verify this falls outside the scope of our work.

	Introduction
	Background and Threat Model
	Misusing Browser Fingerprints
	Extraction of Fingerprinting Code
	Fingerprint Spoofing

	Experimental Evaluation
	Experimental Methodology
	Experimental Results

	Phishing and Fingerprinting
	Discussion, Limitations and Defenses
	Related Work
	Conclusions
	Use Cases
	Inconsistency Checks
	Properties of JavaScript Objects
	Canvas Fonts Fingerprinting
	Phishing Sites: Fingerprint Exfiltration

