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Abstract

As users navigate the web they face a multitude of threats;

among them, attacks that result in account compromise can be

particularly devastating. In a world fraught with data breaches

and sophisticated phishing attacks, web services strive to

fortify user accounts by adopting new mechanisms that

identify and prevent suspicious login attempts. More recently,

browser fingerprinting techniques have been incorporated into

the authentication workflow of major services as part of their

decision-making process for triggering additional security

mechanisms (e.g., two-factor authentication).

In this paper we present the first comprehensive and in-depth

exploration of the security implications of real-world systems

relying on browser fingerprints for authentication. Guided by

our investigation, we develop a tool for automatically construct-

ing fingerprinting vectors that replicate the process of target

websites, enabling the extraction of fingerprints from users’

devices that exactly match those generated by target websites.

Subsequently, we demonstrate how phishing attackers can

replicate users’ fingerprints on different devices to deceive the

risk-based authentication systems of high-value web services

(e.g., cryptocurrency trading) to completely bypass two-factor

authentication. To gain a better understanding of whether at-

tackers can carry out such attacks, we study the evolution of

browser fingerprinting practices in phishing websites over time.

While attackers do not generally collect all the necessary fin-

gerprinting attributes, unfortunately that is not the case for

attackers targeting certain financial institutions where we ob-

serve an increasing number of phishing sites capable of pulling

off our attacks. To address the significant threat posed by our at-

tack, we have disclosed our findings to the vulnerable vendors.

1 Introduction

The web plays a pivotal role in many facets of everyday

life, and ensuring that user accounts and the sensitive data

found therein are protected is of paramount importance.

Consequently, account hijacking attacks pose a serious threat

to users. In fact, OWASP reports broken authentication as the

second biggest risk in its list of top web application risks [11].

Additionally, phishing remains the most common account

compromise vector for major web services [23, 68].

To prevent unauthorized access, online services often em-

ploy various forms of risk-based authentication mechanisms,

which attempt to identify suspicious login attempts [74] (e.g.,

based on the geolocation of the IP address [58]). When such

attempts are detected, services can take different courses of

action, with two-factor authentication (2FA) being the de facto

defense for fortifying accounts against hijacking attacks. In

most cases 2FA significantly raises the bar, as attackers will

also need to obtain the second factor. Indeed, a study of over

350K real-world hijacking attempts against Google accounts

found that device-based 2FA blocks more than 94% of the

attempts that originate from phishing attacks [30].

However, due to the usability challenges and friction [73]

introduced by 2FA [60], sites may attempt to minimize the

inconvenience by reducing the frequency of 2FA challenges so

that they are only shown when a login attempt presents some

risk. If the site determines that the user entering the credentials

is indeed the account owner, it will not trigger 2FA. To achieve

that, sites gather information about the user’s “environment”

during the authentication process. More recently, as browser

fingerprinting [46] has gained significant traction as a web

tracking vector [16], such device fingerprints have been

incorporated into the risk analysis process so as to augment

authentication. During the login workflow websites can collect

the user’s device fingerprints (e.g., installed fonts, canvas ren-

dering) and compare them to the fingerprints collected during

a previous legitimate browsing session. If the values match,

this is a strong indication that the login attempt is legitimate

and the website can refrain from showing a 2FA challenge.

Unfortunately, the inherent characteristics of browser finger-

prints that render them an attractive authentication-augmenting

factor also lend them to being used against the authentication

process itself. This dichotomy forms the key motivation be-

hind our research. Specifically, browser fingerprints can be triv-

ially generated by any website the user visits through a series



of JavaScript functions, and certain fingerprinting attributes

remain stable over time [71]. Accordingly, malicious web-

sites can collect users’ fingerprints and use them to mimic the

user’s device, thus negating the protection offered by additional

authentication mechanisms. While many attacks can lead to

account hijacking (e.g., credential stuffing [69], cookie hijack-

ing [36,62,63]) our main threat model is that of an attacker that

has deployed a phishing website, which the victim user visits.

In this paper we provide the first, to the best of our knowl-

edge, empirical real-world analysis of the security implica-

tions of leveraging browser fingerprints for augmenting the

authentication process. Specifically, we provide an in-depth

investigation of how high-value web services rely on browser

fingerprints, and detail how attackers can generate and misuse

a user’s fingerprints to completely bypass two-factor authen-

tication. First, we explore popular websites across different

high-value categories (e.g., banking, tax-related) and identify

those that leverage fingerprints during the login process, using

a combination of static and dynamic analysis. Guided by our

findings, we build a browser extension that identifies and “ex-

tracts” the fingerprinting process deployed by a website and

automatically generates the code that will calculate the exact

fingerprint that the website would create for a specific device.

This includes techniques like canvas fingerprinting, which re-

quire specific input data and parameters to produce an identical

fingerprint. We then incorporate the fingerprinting code of tar-

geted websites into a testing website; when a user visits the

website it generates the user’s fingerprint for each target web-

site. Subsequently, we visit each website from a different device

(i.e., the attacker’s device) and try to log into the user’s account

by providing the correct credentials. To mimic the user’s device,

we develop an extension that loads the user’s corresponding

fingerprints for a given website and mimics all the fingerprint-

ing attributes that the target website collects. This manipulates

the website into considering the attacker’s device to be a known

device and deciding that 2FA should not be triggered.

We experimentally evaluate our attack against popular

and highly-valuable websites across different categories and

provide an in-depth analysis and assessment of the inner

workings of risk-based authentication systems. While our

study reveals that reliance on browser fingerprints as a strong

signal during the authentication process is not yet widespread,

it is common among critical and high value services (e.g.,

financial). We are able to bypass the security offered by

risk-based authentication in ten of the 16 (62.5%) popular

services we tested (including a bank, a credit card company,

and a cryptocurrency trading service). In practice, our attack is

only ineffective against a subset of the services that require the

attacker to obtain an IP address used by the victim in the past.

Finally, we conduct an extensive exploration of the phishing

ecosystem and identify rampant deployment of browser

fingerprinting, including advanced techniques. Our analysis

reveals that phishers already collect sufficient information to

carry out our attacks in a subset of the analyzed websites.

Overall, as account hijacking remains a serious threat to

users, 2FA is a crucial component of account protection and

is typically the last line of defense. While using browser fin-

gerprints for augmenting authentication can prevent certain

attacks like credential stuffing, our research demonstrates that

it can also have the opposite effect and undermine an account’s

security by allowing attackers to completely bypass any 2FA

mechanism. Naturally, this poses a significant threat to users.

As such,we present the first comprehensive and in-depth assess-

ment of the security implications of ancillary authentication

mechanisms, and find that fingerprints must be used in conjunc-

tion with other signals (e.g., IP address, requiring the presence

of specific cookies) to prevent our attack. We hope that our

findings will kickstart additional research on the security im-

plications of browser fingerprinting and further incentivize

studies on more robust fingerprinting techniques for web au-

thentication. In summary, our research contributions are:

• We present a novel practical attack that demonstrates how

phishers can obtain and replicate users’ exact browser

fingerprints to deceive risk-based authentication mecha-

nisms and eliminate two-factor authentication. We develop

an automated pipeline for extracting and constructing

website-specific fingerprinting vectors, as well as mimicking

a target user’s browser in the targeted websites.

• We present an empirical exploration and in-depth analysis

of the use of browser fingerprinting for augmenting web

authentication in the wild. Our experimental evaluation

reveals that while this is not yet a widespread practice in

general, it is prevalent in high-value services, highlighting

the severe implications of our attack.

• We present a large-scale study on the use of browser

fingerprinting techniques by phishing sites. Our findings

reveal that this has become an increasingly common

phenomenon, with the majority of phishing sites gathering

browser fingerprints. Alarmingly, we identify a series of

sites generating all the fingerprinting attributes necessary

for bypassing 2FA in major financial institutions.

• In an effort to kickstart remediation, we have disclosed

our findings and offered remediation guidelines to affected

vendors. Additionally, we will share our code with other

researchers to foster more research in the area.

2 Background and Threat Model

Here we briefly present pertinent background information and

then define the threat model that will guide our analysis.

Browser fingerprinting. Cookie-based tracking has been

an unavoidable aspect of web browsing for more than two

decades [33, 34, 48]. However, with average users becoming

more privacy-aware and browsers deploying anti-tracking de-

fenses, cookie-less tracking techniques have come to the fore-

front [53]. In fact, browser fingerprinting has garnered signifi-

cant attention from the security community, resulting in a mul-

titude of measurement studies and fingerprinting techniques



being demonstrated [25, 32, 38, 40, 43, 45, 46, 52, 64, 66, 71].

In a nutshell, browser fingerprinting is a stateless approach

to tracking users, which identifies a series of attributes that

possess “discriminating” power, thus allowing websites to

re-identify users based on unique characteristics of their

browser and device. All these attributes, including those for

more advanced fingerprinting techniques, can be obtained

through various JavaScript APIs available in modern browsers.

Threat model. Studies have reported that phishing remains

the most common source of account hijacking, even in major

services [23, 68]. Preventing phishers and other attackers that

have obtained users’ credentials (e.g., through keyloggers)

from gaining access to users’ accounts is a significant

authentication challenge, which has contributed to the rise of

risk-based authentication mechanisms. In our main attacker

model we assume that the attacker is able to trick the user into

visiting a malicious website and divulging their credentials.

The malicious website includes JavaScript code that generates

the exact browser/device fingerprints that the target website

would generate for that specific user (we describe how we

achieve this in §3.1). To increase the attack’s coverage, the

website also generates site-specific fingerprints for a series

of additional target websites, so as to take advantage of any

instances of the password being reused [26, 57].

While our main threat model is that of a phisher, due to

the fact that risk-based checks typically occur at login time,

a large-scale study on cookie-hijacking attacks [31] reported

a website that prevented cookie hijacking by also employing

these checks on requests carrying valid authentication cookies

from pre-established sessions. As such, in our evaluation

we also include an experiment that investigates this specific

scenario. It is, however, important to note that since the attacker

needs the ability to execute JavaScript code to obtain the user’s

browser fingerprints, this attack is limited to attackers that can

execute arbitrary code and also steal the user’s cookies (e.g.,

through an XSS attack [47]), thus precluding passive network

eavesdroppers. Moreover, attacks against password managers

and autofill [49, 54, 61] could also potentially be used, but we

do not explore such attacks in this work.

We emphasize that our threat model focuses on attackers

that are able to obtain the user’s browser fingerprints by luring

them to a malicious website, and then submit them from their

own device. Our attack is not applicable to other attacks (e.g.,

brute-forcing, credential-stuffing that relies on passwords

leaked in data breaches, etc.). Similarly, if the user visits the

phishing website from a different browser or device than the

one normally used to log into their accounts, the use of browser

fingerprints as a risk-based authentication signal would prevent

the phishing attacker from compromising the user’s accounts.

3 Misusing Browser Fingerprints

We present a novel attack that allows an attacker to bypass 2FA

by deceiving web services into thinking that the attacker’s login

attempt originates from a known device, i.e., the user’s device.

In essence, our attack leverages the use of browser fingerprint-

ing techniques as a part of the risk-based authentication process.

An overview of our attack is shown in Figure 1. In this section

we give an overview of our methodology and then describe in

detail how we “extract” the fingerprinting code from vulner-

able websites (phase 1) which is incorporated into our attack

site (phase 2). Finally, we detail the spoofing process when the

attacker attempts to log into the victim’s accounts (phase 3).

Attack overview.The main observation behind our attack is

that sites that employ 2FA often “remember” users’ devices dur-

ing authentication, so as to minimize friction and skip 2FA for

legitimate login attempts. In other words, if the user has visited

these websites in the past from that specific device, they con-

sider the login attempt to be low-risk and refrain from asking

the user to solve a 2FA challenge. Through an initial manual ex-

ploration we observed that these websites often rely on HTTP

cookies but may also generate and collect browser fingerprints

(and in some cases rely on a combination of both) for deter-

mining whether they have encountered the device in the past.

However, since these fingerprints can be easily collected us-

ing JavaScript, our work explores whether we can circumvent

authentication mechanisms that rely on browser fingerprinting.

For our experiments we built a honeysite that plays the role

of the attacker’s phishing site and serves the purpose of col-

lecting users’ fingerprints. Our honeysite does not rely on a

generic fingerprinting library, such as Fingerprintjs2 but,

instead, tailors the fingerprint-generation process to match that

of a targeted website. For example, if the attacker deploys a

phishing site that aims to steal the user’s Google credentials, the

site should also replicate Google’s exact fingerprint-generation

process. To that end, in the preparatory phase of our attack (Fig-

ure 1 – phase 1) we visit the target websites and “extract” their

fingerprinting code. That specific code is then incorporated in

our honeysite. The reasoning behind this is that any differences

in the fingerprinting implementation can result in us generating

values that are different from those that the target website ex-

pects from the user. For instance, our implementation can use

different parameters when computing advanced fingerprints

(e.g., render different images with WebGL or enumerate a dif-

ferent list of fonts), which would result in different fingerprints.

By automatically analyzing and replicating the fingerprint-

ing process of target websites, we ensure that the fingerprints

we collect are generated identically to the ones expected by

the target websites. We note that an attacker can incorporate

the fingerprinting code of multiple sites in the phishing page,

including multiple variations of a fingerprinting function (e.g.,

multiple different images to be rendered through canvas).

This allows the attacker to collect fingerprints that can be

used to exploit multiple websites. Even though the credentials

collected by the phishing website correspond to the specifically

targeted website, in practice, these credentials might be useful

for accessing other websites as well, as prior work has found

that users often reuse passwords across services [26].





Enumeration of supported fonts. A common technique

for fingerprinting fonts is to include multiple <span> elements

in the page that contain the same text but use a different font

family in each element. By measuring the dimensions (i.e.,

offsetWidth and offsetHeight) of each span element, the

website can determine which fonts are supported by the user’s

system, as the dimensions of specific elements will deviate

from those that correspond to fonts that are unavailable (as

those will all use the same fallback font). For extracting the

code that fingerprints fonts, our extension detects when the

offsetWidth or offsetHeight properties of a span element

are accessed, and logs information about the textContent,

fontSize and fontFamily of the span element. In this way,

the extension obtains the list of fonts that a target website tests.

The extension then generates and exports code for creating the

respective span elements in the attacker’s website and compar-

ing their dimensions for determining which fonts are available.

3.2 Fingerprint Spoofing

For basic fingerprints that correspond to properties of the

Navigator, Window and Screen objects, our FP-Spoofer

extension uses the Object.defineProperty method to

determine when these properties are being accessed and

overrides their values according to the victim’s values. Our

extension also compares navigator properties, deleting those

that do not exist on the victim’s machine and only adding

those that the attacker’s machine lacks. Since websites can list

the properties present in the navigator object, when spoofing

a property with Object.defineProperty we also set it to be

enumerable so that it will be retrieved or looped through with

Object.keys or the for-in loop.

FP-Spoofer’s background script changes the User-Agent

request header to match the victim device’s User Agent so

that the two values are consistent, and also spoofs other

headers to make the request consistent. For example, we

need to spoof Sec-CH-UA to match the User Agent, as well

as Accept-Language if it differs from the victim’s machine.

For canvas and WebGL fingerprinting, our extension detects

when the toDataURL and getImageData methods are called

and returns the respective values recorded on the attacker’s

website. In general, for spoofing the user’s fingerprints during

the attack phase, our extension does not need to manipulate

any intermediate values. It is sufficient for our purpose to only

spoof the final values, that the website checks for determining

if the fingerprints match those of the authenticating user. In the

case of canvas fingerprinting we only need to return the Base64

value of the image data that was previously recorded on the

attacker’s website for the specific user. For WebGL finger-

printing, in addition to toDataURL, our extension also detects

when the getSupportedExtensions, getExtension and

getParameter methods of the WebGL API are called,

and returns the WebGL extensions and constants that were

recorded previously on the attacker’s website for that user.

For font fingerprinting, our extension detects when the web-

site’s code accesses the offsetWidth or offsetHeight prop-

erties of span elements. If the element that is accessed corre-

sponds to a family that is supported by the victim’s browser, as

recorded on the attacker’s website, our extension modifies the

values of offsetWidth and offsetHeight to appear differ-

ent from the default ones. On the other hand, if the span element

corresponds to a font that is not supported,our extension returns

the baseline values for this span element. The AudioContext

API can be used to extract a consistent fingerprint, by exploiting

subtle differences in the rendering of a fixed audio waveform.

Using AudioBuffer.getChannelData() for a generated

audio snippet will return an array of floating-point values

that represent the sound. We replace the array with the values

from the victim’s machine. Finally, while we did not find any

websites that use canvas fonts for their authentication process,

we describe our approach in the Appendix, for completeness.

Essentially, as the implementation of the fingerprinting

techniques is identical on the target website and the attacker’s

website (since we extracted it from there), our extension

knows exactly which methods are invoked and which values

need to be spoofed. Furthermore, it is worth noting that while

there exist browser extensions that allow users to spoof their

fingerprints, such as CyDec Security Anti-Fp [13] and User-

Agent Switcher [15], these are not suitable for carrying out

our attack as they only support spoofing for basic fingerprints

and cannot be used for advanced or non-generic techniques. A

video demonstration of our spoofing tool’s capabilities against

the AmIUnique system is available here [3].

4 Experimental Evaluation

Our experiments explore the feasibility of our attack for bypass-

ing 2FA authentication. First we identify a set of potentially

vulnerable websites that use fingerprinting and implement 2FA,

and infer whether their risk-based authentication engine lever-

ages browser fingerprints for “remembering” the user’s device.

Then, we go through a systematic and rigorous testing process

to assess whether these websites are susceptible to our attack.

Identifying potentially vulnerable websites. While our

fingerprinting extraction, generation, and spoofing pipeline

is fully automated (§3), identifying a set of candidate target

websites and uncovering the inner workings of their risk-based

authentication requires manual effort. Since a considerable

amount of manual effort is required for creating accounts

on different services and navigating the account settings to

identify and enable 2FA, we focus our efforts on a small set that

are potentially vulnerable to our attack. To that end, we first

run an exploratory process that intends to identify candidate

websites that run fingerprinting code on their login page, and

then determine which of these websites implement 2FA. While

this does not guarantee that all such websites use fingerprinting

for authentication, it reduces the set of candidate websites as

it excludes those that do not run any fingerprinting code.



Discovery of login pages. The first step in this process is

to identify websites that support account registration, and to

locate their login pages. We follow the methodology of Drakon-

akis et al. [31] for detecting pages that include login or registra-

tion forms. If no login forms are detected on the landing page,

our crawler follows all the links on the landing page that point

to pages under the same domain, and analyzes the pages’ URLs

for the presence of indicative keywords (e.g., login, sign in etc.).

With this approach we have located the login pages of 11,527

websites from the Alexa top 20K websites (5,736 and 5,791

from the top 10K and the top 10K-20K websites, respectively).

Fingerprinting detection. We use the Chrome browser

with FP-Extractor installed, and visit the landing and the

login pages of the websites that we have detected during the dis-

covery process. When visiting a page our extension logs all fin-

gerprinting calls. At this point we do not need our extension’s

code extraction functionality, but are only interested in log-

ging which fingerprinting calls are invoked; this information

is sufficient for determining if a website uses fingerprinting.

Determining 2FA support. The next step is to identify the

subset of websites that implement 2FA, out of those that use

fingerprinting on their login pages. For this, we first search

for relevant terms, such as “multi”, “factor”, “authenticator”,

“remember device” etc., in the login pages’ source code using

regular expressions. We also expand our set of websites to

include websites that we know through personal use that they

support 2FA. We manually inspect the websites’ source code to

identify which scripts are responsible for authentication, 2FA

and fingerprinting. While using our extension helped us create

an initial set of candidates for our experiment, this does not

provide information about the techniques used at a script-level

granularity. Our manual analysis reveals that websites com-

monly include multiple scripts that implement fingerprinting,

and our extension-based approach cannot differentiate which

functionality was the result of each script. For a more fine-

grained analysis we use VisibleV8 [42] on the login pages

of the websites that use fingerprinting, which allows us to log

all native functions and property accesses during JavaScript

execution, at the granularity of individual scripts. This process

provides useful contextual information for our analysis.

4.1 Experimental Methodology

In the previous step we described our process for identifying

websites that are potentially vulnerable to our attack. Here we

describe our methodology for testing the candidate websites in

order to determine (i) whether they use fingerprints for authenti-

cation and (ii) if they are indeed susceptible to our attack. Over-

all we tested 300 websites; our findings are presented in §4.2.

Account registration. To be able to test these websites,

we first need to register an account on them and manually log

into these accounts to enable 2FA if there is such an option

available in the settings. We also provide a valid phone number

during the account registration or when 2FA is enabled.

Testing devices. For our experiments we use two devices

with different operating systems and browsers. Our pri-

mary device is a MacOS laptop running Chrome (version

85.0.4183.83), and our secondary device is a Windows laptop

running Edge (version 85.0.564.44). The primary device

plays the role of the victim’s device, and is the device used for

registering the accounts and enabling 2FA. For websites where

we test existing personal accounts, this is the device that has

been used to access these accounts in the past. In general, our

primary device is the one that these websites remember and

consider as known. On the other hand, the secondary device,

which represents the attacker’s device, has never been used to

access these accounts in the past. We expect websites that use

2FA to consider this device as new and, therefore, to trigger

a 2FA challenge when the user logs in using this device. Fur-

thermore, to avoid “polluting” subsequent experiments from

the secondary device, we never solve a 2FA challenge when

presented, so websites will not consider this device as known

in any future attempts since the authentication process fails.

Testing procedure. We follow a systematic approach for

testing the candidate websites. We have devised a series of

specific steps to be followed, and rely on differential testing to

understand how each website’s authentication system behaves,

how 2FA is triggered, and how our attack can bypass 2FA.

More specifically, our methodology tests if a website (i) uses

2FA during authentication, (ii) uses cookies or fingerprints to

remember devices, and (iii) imposes restrictions based on the

device’s IP address. Furthermore, we follow this procedure

twice, once for testing each website’s default settings, and once

after explicitly enabling 2FA, if such an option is available.

For every website to be tested, we first log into our account

using our primary device and select the “remember this device”

option, if available. Then we logout and re-login, to check

if the website does indeed remember the device (i.e., does

not present a 2FA challenge). At this point we also log into

the website using our secondary device, which has never

been used to access this account in the past, and check if a

2FA challenge is presented. Since the secondary device is

not known to the website, we expect 2FA to be triggered in

this case. For websites that present a 2FA challenge when

using the secondary device, while at the same time they

appear to remember the primary one, we explore whether

this happens due to the use of fingerprinting. Specifically, we

clear all browsing data (e.g., cookies, local storage) on the

primary device and log into the account again. If the website

still remembers the device, this is an indication that it uses

fingerprinting to determine if the device is known.

Bypassing 2FA. For the websites that use fingerprinting

to remember the user’s device and trigger 2FA when logging

in from a new device, we use our extension to test if they

are susceptible to our attack. We first visit the login page of

target websites using a browser with FP-Extractor to export

JavaScript code that generates the same fingerprint as the

target website. Then, we mount this code in our honeysite (i.e.,



attacker’s website) and visit the honeysite with our primary

device (i.e., victim device) to obtain the device’s fingerprint.

After acquiring the fingerprint of the victim’s device we log

into the target website using the secondary device, where

FP-Spoofer will modify the device’s fingerprints to match

those of the primary device. Our attack is deemed successful

if the secondary device does not receive a 2FA challenge.

IP address/Geolocation. We observe that certain websites

consider the device’s IP address/geolocation information as

a signal for determining whether 2FA should be triggered or

not. Specifically these websites check whether the IP address

or IP-based geolocation information (e.g., country, city etc.)

of the device that is currently logging into the account matches

those from previous user logins. Depending on how restric-

tive this check is, it can raise the bar for the attacker or even

prevent our attack; checks that require IP addresses to match

the user’s country or city can be easily bypassed using proxies

and VPN services. Onaolapo et al. [55] found that attackers

actually employ such strategies in the wild. However, websites

that only accept IP addresses that have been used by the user

before can pose a significant challenge to the attacker. During

our experiments, we systematically assess this aspect of the

authentication process and use a VPN to test IP addresses from

different ISPs, cities, and countries. We have also devised a

technique that attempts to bypass such IP-based restrictions;

we modify our network requests when running our attack and

include the victim’s IP address (collected when they visited the

phishing page) in an X-Forwarded-For header. This header

is typically used for specifying the originating IP address when

traffic goes through a proxy [8]. This allows the attacker to pre-

tend that they are actually behind the victim’s IP address and are

using a proxy when attempting to log into the user’s account.

Inferring fingerprinting-based authentication checks.

In practice, the attacker does not need to know which

fingerprinting attributes collected by a target website are

actually used for the authentication process, as our attack

pipeline extracts and replicates all fingerprinting techniques.

However, for our analysis we are interested in obtaining a

more fine-grained and in-depth understanding of risk-based

authentication systems that use fingerprints. As such, for

websites that are vulnerable to our attack, we systematically

evaluate whether each fingerprinting vector actually affects the

authentication process. Due to the prohibitively large number

of potential combinations, we follow a strategy based on the

process of elimination. In more detail, we repeat our attack

multiple times, where in each attempt we remove one of the

fingerprinting attributes contained in the user’s fingerprint pro-

file. Depending on whether each attack instance results in 2FA

being triggered or not, we can infer whether that specific finger-

printing vector is part of the risk-based authentication checks.

By repeating this process for all the fingerprints collected

by that web service, we can identify the absolutely minimum

set of fingerprints required to manipulate the authentication

process. It is important to note that we repeat our experiments

Table 1: Fingerprinting attributes used by websites with a

detectable login page (within the Alexa Top-20K).

Top 10K Top 10K-20K

Technique Home Login Home Login

Navigator 5,510 5,403 5,587 5,371

Window 5,261 5,104 5,272 4,968

Screen 5,209 4,682 5,231 4,473

Timezone 5,035 4,617 4,934 4,282

Canvas 1,224 1,254 1,077 879

Canvas Fonts 179 380 142 237

WebRTC 221 313 192 210

AudioContext 290 351 223 234

numerous times over the course of multiple months, to ensure

the validity of our findings and avoid false positive (i.e.,

labeling an attribute as necessary even though it is not) due

to some other mechanism being triggered (e.g., multiple

consecutive logins triggering a rate-limiting mechanism).

4.2 Experimental Results

Here we present our experiments exploring the feasibility and

effectiveness of our attack in the wild.

First, in Table 1 we provide statistics on the prevalence of

fingerprinting techniques for websites in the Alexa top 20K

for which we were able to identify their login page (i.e., 5,736

and 5,791 websites in the top 10K and top 10K-20K datasets,

respectively). We observe that the majority of websites, in both

datasets, collect basic fingerprints. Furthermore, we observe

a clear trend of websites in the top 10K dataset employing

more advanced fingerprinting techniques on the login pages

compared to their home page. The websites in the 10k-20k

dataset exhibit a more uniform deployment of advanced tech-

niques. Notably, while we observe widespread deployment of

fingerprinting vectors, these are not often incorporated into the

websites’ authentication process, as we will detail next. We hy-

pothesize that these are more likely used for tracking purposes.

We select a subset of 300 popular websites from our

discovery process that implement fingerprinting and support

2FA for manual exploration and testing. These were selected

based on our experiment on websites with fingerprinting code

on their login pages and being listed on [1]. Our experiments

reveal that only 16 out of the 300 websites use fingerprints for

remembering the user’s device, while the rest rely on browser

cookies for this. Interestingly, the tested websites included

four banking and eight tax-preparation websites, of which

two and four respectively use fingerprinting for authentication.

As such, our experiments indicate that (i) high-value and

financial services tend to adopt security mechanisms such

as 2FA in order to better protect their users’ accounts, and

(ii) augmenting the authentication process with fingerprints is

disproportionately used among such high-value services, sig-

nifying the severe ramifications of our attack. As 2FA becomes

more prevalent [14], we expect that risk-based authentication

that uses fingerprints will also become more common.



Table 2: Risk-based authentication mechanisms in popular web services we evaluated against our attack. For IP address restrictions

we explicitly note if using the X-Forwarded-For header (7→) or IP addresses from the same city (⊗) is effective.

Fingerprinting Technique IP Address Restrictions

Website Basic FP Canvas/WebGL Fonts Audio IP Check Bypass
Vulnerable

Bank-A 3 7 7 7 7 - 3

Bank-B 7 7 7 7 3 7 7

CreditCard 3 7 7 7 3 7→ 3

Trading-A 3 7 7 7 7 - 3

Trading-B 7 7 7 7 3 7→ 3

Tax-A 3 3 7 7 3 7 7

Tax-B 3 3 3 7 7 - 3

Tax-C 3 3 3 3 7 - 3

Tax-D 3 3 3 3 3 7 7

eCommerce-A 3 3 7 7 7 - 3

eCommerce-B 3 7 7 7 3 7 7

RideSharing 3 3 3 7 3 7→ 3

Food&Beverage-A 3 7 7 7 3 ⊗ 3

Food&Beverage-B 3 7 7 7 3 7 7

AdBlocking 3 7 7 7 3 ⊗ 3

WebInfrastructure 3 7 7 7 3 7 7

Table 2 details the findings from our attack evaluation on

the authentication mechanisms of these 16 websites. Our main

focus here is on the first 14 services which trigger 2FA when

a new device is used to access an account. We also include two

services (WebInfrastructure, AdBlocking) that highlight

additional dimensions of risk-based authentication. Due to the

severity of our attacks and the fact that accounts on certain ser-

vices are extremely valuable and highly-targeted, we present

them in an anonymized form that denotes their category.

As can be seen in Table 2, our attack can successfully bypass

2FA in 9 out of the 14 websites. The five websites that are not

vulnerable to our attack require the device’s IP address to match

one of the IP addresses previously used to access that account,

and are not deceived by our X-Forwarded-For ploy. Further-

more, we found that 12 of the 14 websites use fingerprinting to

determine if the authenticating device is known and whether

2FA should be triggered or not. From the total of 14 websites

that use fingerprinting, eight rely on basic fingerprints (e.g.,

properties of navigator, window, etc.), and six of the tested

websites use more advanced fingerprints for authentication like

canvas/WebGL and fonts. Finally, two of those also use audio

fingerprinting for the purpose of authentication. We provide

additional details for interesting use cases in the Appendix.

Our exploration revealed another dimension of the use of

fingerprinting for authentication. Basic fingerprints remain the

same across different sites, since they correspond to the user’s

system characteristics and properties and do not change as long

as the environment remains the same. For advanced fingerprint-

ing techniques, however, a site is able to make its users generate

fingerprints that are different from those generated when vis-

iting other sites (e.g., by rendering a unique image). While this

may prevent the attacker from creating “generic” fingerprints

that can be used on multiple websites, our attack is still effec-

tive since we extract the fingerprinting code from each target

website and generate appropriate site-specific fingerprints.

Our analysis shows that only six of the 16 websites employ

advanced fingerprinting techniques. To make matters worse,

three of the tax-related websites use the default implementa-

tion of Fingerprintjs2 for the advanced fingerprints. This

results in these three websites rendering the same images

for canvas fingerprinting and loading the same list of fonts

for fonts enumeration. We also found that Tax-C and Tax-D

use the same audio snippet for audio fingerprinting (Tax-B

employs an earlier version of Fingerprintjs2 that does not

support audio fingerprinting). As a result, an attacker who uses

Fingerprintjs2 (or the code extracted from one of these

websites) can obtain the fingerprinting values required for

bypassing 2FA in all three websites. To further explore this

issue, we visited the websites of 10 additional popular banks

to check whether they use advanced fingerprinting techniques,

and observed significant overlap across the images and fonts

lists they use. Even though each website renders between 1-5

images, there are only nine images and two random images in

total across the ten websites. Two websites with JS font finger-

printing use identical font lists, and five websites with canvas

font fingerprinting use one of two font lists. The two sites with

audio fingerprinting render the same audio wave form.

IP constraints. While Bank-B and Trading-B do not use

any JavaScript-based fingerprinting attributes but only rely on

the UserAgent HTTP header, which can be trivially spoofed,

we include them in our analysis to illustrate the challenge

posed by IP address checks as well as the dangers of trust-

ing X-Forwarded-For. In more detail, regarding IP-based

constraints, we found that only 11 websites perform such

checks for determining if the login attempt is suspicious. Our

attack can bypass the IP address restrictions in three web-

sites using the X-Forwarded-For header in outgoing requests

(CreditCard, Trading-B, RideSharing). Moreover, we

found two websites that do not trigger 2FA if the authenticating

IP address matches the user’s city. With the wide availability



of VPN and proxy services, we consider such coarse-grained

checks to be inadequate for protecting valuable accounts.

Cookie hijacking. Up to this point we have focused on

attackers that have the account credentials (e.g., obtained

through phishing), as that is the most common account

hijacking vector according to prior research [23]. Nonetheless,

recent work by Drakonakis et al. [31] demonstrated the fea-

sibility of cookie-hijacking attacks at scale. More importantly,

the authors noted the lack of additional fraud-detection checks

(which occur during the log in process) when attackers use

stolen cookies as those belong to sessions that have already

been “validated”. In fact, the authors found only one instance

where they were not able to access the victim’s account due

to such checks. To that end, we include WebInfrastructure

to test whether our attack can also be leveraged by cookie

hijackers. For this experiment we visit WebInfrastructure

using our primary device, log into our account, and export

WebInfrastructure’s cookies from the browser. Then, we

import these cookies into a different browser on our secondary

device, and visit WebInfrastructure. Initially we found

that we were, indeed, unable to access our account using the

“stolen” cookies. Upon a more in-depth analysis we found

that the site uses the device’s User Agent (obtained through

JavaScript and the HTTP header) to detect suspicious logins,

but also checks the IP address. As such, when attempting to

access the account using the stolen cookies and FP-Spoofer,

we could only gain access if the secondary device’s IP

address was one previously used by the victim. As such, while

fingerprint-spoofing allowed us to pass the corresponding

checks, the IP address check effectively prevents the attack.

Email alerts. While our experiments focus on bypassing

2FA, we include our analysis of AdBlocking, as it highlights

an additional dimension of risk-based authentication. In more

detail, AdBlocking accounts have 2FA disabled by default,

but the service alerts users about successful logins that occur

from new devices or from IP addresses that are not from the

same city. However, we found that by spoofing the fingerprints

we can trick the service into not sending the email alert.

Behavioral evolution over time. We re-tested affected

services at least 20 times over a period of six months (04/2021 -

09/2021), even after our disclosure. Interestingly, we observed

cases where the risk-based authentication behavior changed

over time. In our initial experiments with Trading-A, their

system required the user to solve a 2FA challenge every time, if

2FA was explicitly enabled by the user. For the default setting,

however, the system used basic fingerprints to determine if

a 2FA challenge should be presented. When re-analyzing

Trading-A some time after our disclosure, we observed that

Trading-A now requires the user to provide a phone number

when registering a new account and that 2FA is enabled by

default for new accounts. We cannot tell, however, if this

change happened organically, or due to our disclosure and

recommendations. Surprisingly, 2FA has not been retroac-

tively enabled for existing accounts, resulting in different

Table 3: Phishing website datasets. JS denotes the websites

for which we have JavaScript execution traces, and FP denotes

the phishing sites that collect browser fingerprints.

Dataset Time Period Sites JS FP

Phish-A 31/05/2018 - 19/06/2019 71,343 39,618 29,312

Phish-B 31/10/2018 - 05/05/2020 82,431 40,777 36,733

APWG 05/05/2020 - 12/04/2021 173,269 93,568 85,491

default levels of protection for accounts. Another example

is Tax-B; in our initial experiments it used fingerprinting to

remember the device but now relies on the presence of cookies

to determine if the device is known. Again, we cannot tell if

this change was the result of our recommendations. Our final

example is that of WebInfrastructure, which matched the

device’s IP address and User Agent in our initial experiments.

However, prior to our disclosure we observed that these checks

were removed and we can now successfully access the account

using “stolen” cookies, regardless of the device or IP address

we connect from. We do not know what led to the removal

of these additional security checks, but have disclosed our

findings to them and they are currently investigating the issue.

5 Phishing and Fingerprinting

In this section we focus on the phishing ecosystem and present

a large-scale exploration of the phishing sites obtaining

users’ browser fingerprints. We correlate the information that

phishers currently collect with the findings from our empirical

analysis in §4 to assess whether attackers are already collecting

sufficient fingerprinting attributes for carrying out our attack.

Datasets. Table 3 details the datasets used for our analysis.

We obtained the two datasets (Phish-A, Phish-B) from the

authors of [76], which include more than 153K phishing

sites that appeared over a two-year period. They also include

the corresponding JavaScript for 80,395 of the sites. While

Phish-B does not include labels for the target website (e.g.,

if the phishing site is masquerading as Paypal) we cross-

referenced that dataset with information made available by the

Anti-Phishing Working Group’s (APWG) eCrime Exchange

(eCX) repository, allowing us to obtain the missing labels.

Finally, we obtained the APWG dataset directly from the eCX

repository [12], which provides a more recent and extensive

snapshot of the phishing ecosystem over an 11-month period.

Together, these datasets provide a broad and representative

view of the phishing ecosystem over a three year period.

JavaScript execution traces. To better understand if phish-

ing websites are using fingerprinting and whether they are

collecting fingerprints that would allow the attacker to carry

out our attack, we use VisibleV8 to dynamically analyze the

JavaScript code of the phishing sites in our datasets. For the

Phish-A and Phish-B datasets we were provided with the

HTML files of the phishing websites as well as the JavaScript



Table 4: Phishing sites that implement fingerprinting.

Phishing Datasets

Technique Phish-A Phish-B APWG

Navigator 27,578 34,650 84,239

Window 24,848 23,650 73,258

Screen 10,244 26,856 57,633

Timezone 22,636 28,549 59,251

Canvas 3,508 5,395 11,650

Canvas Fonts 56 91 399

WebRTC 536 165 1,938

AudioContext 275 363 1,795

files they load. To that end, we deploy them on our own local

server and re-write the origin URL of the JavaScript files loaded

to point to the corresponding JavaScript files in our datasets.

This allowed us to analyze phishing sites that are not available

anymore due to the sites being taken down or the original ver-

sions of their JavaScript files not being available anymore. For

the more recent APWG dataset we visit the actual phishing sites,

as this dataset does not include a snapshot of their code. We use

VisibleV8 to load each phishing site and log all the JavaScript

calls along with their arguments. To ensure that websites’

JavaScript code is executed, we interact with the pages in an

automated way to emulate simple user behavior (e.g., scrolling,

making random mouse movements and clicks). Based on the

JavaScript execution traces that we extract from VisibleV8’s

logs we determine which fingerprinting techniques each phish-

ing website implements and which attributes are collected.

Table 3 presents the phishing datasets we used in our analy-

sis, the number of websites in each dataset that run JavaScript,

and how many of them are collecting fingerprints. A general

observation is that the percentage of phishing websites that

appear to run JavaScript is lower than what we would have

expected, across all 3 datasets (i.e., between 49.46% and

55.53%). We manually checked 25 random phishing sites from

the APWG dataset that did not produce a JavaScript execution

trace (recall that for this dataset we visited the actual phishing

sites) and found that 14 and three return a 404 and 403 error

respectively, while three other sites show a static page with an

“account suspended” message. From the remaining websites

one is a shortened URL that has been flagged by Bitly as

potentially harmful, and another uses a shortened URL for

a Google Forms site, but has been suspended by Google for

violating their terms of service. Finally, one site has no content,

one includes an empty local JavaScript file, and one shows a

popup window asking for a username and password. As such,

apart from the unavailability of resources or sites being taken

down, we believe that client-side cloaking techniques [76]

have likely affected the collection of JavaScript across all

three datasets. Interestingly, for the phishing websites with

JavaScript execution traces, we find that the majority collect

fingerprints, with 73.98%, 90.08% and 91.36% across the

3 datasets respectively. We also observe an increase in the

number of websites collecting browser fingerprints over time.

Table 5: Phishing sites that obtain all the necessary browser

fingerprints for bypassing 2FA in the target sites. “*” indicates

a mismatch in fingerprinting function arguments.

Phish-A Phish-B APWG

Target Sites Bypass Sites Bypass Sites Bypass

Bank-A 83 1 685 14 330 74

Bank-B 1,549 - 2,683 - 327 -

CreditCard 89 61 0 0 12 0

Trading-A 0 0 0 0 6 6

RideSharing 7 0 363 1* 1378 5*

WebInfrastructure 0 0 1 1 220 219

Table 4 presents the number of phishing sites that collect

various types of fingerprints. The study by Zhang et al. [76] on

phishing sites’ cloaking strategies reported checks for simple

browser attributes (specifically, the User Agent and whether

cookies are disabled) on approximately 23% of the phishing

sites. Our analysis provides a more comprehensive picture of

the three datasets as we detect all common fingerprinting tech-

niques, while also revealing the widespread use of advanced

fingerprinting techniques across the phishing ecosystem.

Specifically, we find that in total 28,526, 35,653 and 85,461

(i.e., 39.98%, 43.25% and 49.32%) websites from the three

datasets collect basic fingerprints with the majority of them be-

ing properties of the Navigator, and that between 5% and 7%

collect advanced fingerprints, with canvas fingerprinting being

the most prevalent technique among them. We also explore

whether and how phishing sites send fingerprinting values

back to their servers; we provide more details in Appendix E.

Bypassing 2FA. Next, we analyze the subset of phishing

sites that target one of the services from Table 2 and for which

we have their JavaScript execution traces. Specifically, we

cross-reference the fingerprinting attributes that each phishing

site collects with those necessary for manipulating the target’s

risk-based authentication mechanisms to bypass 2FA. As can

be seen in Table 5, Bank-B is an extremely popular target for

phishing websites. Since Bank-B only relies on the User Agent

HTTP header and does not check navigator.userAgent,

essentially every phishing site has sufficient information to

pass the device-based check. Nonetheless we include it here

as a point of comparison. Additionally, since we do not have

historical information of when the IP-address-based check

was deployed by Bank-B we cannot conclude how many

phishing sites would have been able to bypass 2FA in practice.

On the other hand, we find that Bank-A is not only a popular

target, but that the number of phishing sites that collect the

appropriate fingerprints is significantly larger in our most

recent dataset; while 8.1% of the phishing sites are capable

of bypassing 2FA in Bank-A across all datasets, in the most

recent dataset the ratio climbs to 22.42%. This indicates that

phishers are adapting over time to the risk-based mechanisms

employed by high-value websites like Bank-A. Interestingly,

while we find that six phishing sites collect all the necessary

fingerprinting attributes used by RideSharing, the actual

arguments passed to two dynamic fingerprinting functions
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Figure 2: Phishing websites targeting Bank-A and Bank-B.

(for canvas and font fingerprinting) are not the same as those

used by RideSharing, thus rendering their overall fingerprint

a mismatch. Further inspection reveals that in five cases

the mismatch is due to the phishing sites using the default

values used by popular fingerprinting libraries, while the final

instance is using a library by an anti-bot service.

Longitudinal trends. To get a broader view of phish-

ing sites potentially adapting their targets over time, we use

APWG’s eCX service to obtain the phishing domains that tar-

geted Bank-A and Bank-B between 2016-2020, as shown in

Figure 2. While in 2016 and 2017 the two banks were targeted

by a comparable number of phishing sites, Bank-B phishing

sites aggressively increased in 2018 and continued to increase

in 2019, but had a sharp decline in 2020. On the other hand, the

number of phishing sites targeting Bank-A steadily increase

from year to year. While we cannot conclusively infer the root

cause of this trend without detailed knowledge of the risk-based

authentication checks the banks enforced throughout this entire

period, Figure 2 and Table 5 indicate that phishing sites may

be adapting their targets based on the obstacles presented by

risk-based authentication. In other words, since bypassing 2FA

in Bank-A currently only requires spoofing certain fingerprints

while Bank-B also requires exactly matching the user’s IP

address, Bank-A presents a more attractive target to phishers.

Summary. Overall, while our analysis is limited to phishing

sites for which we were able to obtain their JavaScript code, our

findings show that phishing sites are not yet widely replicating

the fingerprint-generation process of targeted websites.

Nonetheless, the cases of Bank-A and CreditCard highlight

the risks that users face and the need to improve existing

risk-based authentication deployments, as we discuss in §6.

6 Discussion, Limitations and Defenses

In this section we further discuss our experiments and findings.

Ethics and disclosure. The severity of our attack necessi-

tates the responsible disclosure of our findings to the affected

vendors. As such, we disclosed our methodology and findings

to every vulnerable website through their bug bounty programs

or security contact points when those were available. When

we could not find contact points dedicated to security issues

we reached out over their general contact email address. At

the time of writing, six vendors have responded. Bank-A,

Tax-A and WebInfrastructure requested additional details

and proof-of-concept demonstrations, which we provided.

Bank-A, subsequently, verified our attack and is currently

working towards a fix. eCommerce-A informed us that they

were aware of the issue. It is important to emphasize that all

of our experiments were conducted using test accounts or our

personal accounts. We did not interact with or affect other

users, nor did we collect browser fingerprints from any users.

Fingerprinting and authentication prevalence. While

using fingerprints for augmenting the authentication process

is not a new concept [17], our experiments reveal that this has

yet to become widespread practice. However, as fingerprinting

has gained significant traction in recent years, and third-party

libraries have started supporting the use of fingerprints for

authentication (e.g., [6, 9]), it is likely that such mechanisms

will become far more common in the near future. Additionally,

our research shows that while in many cases fingerprints

may be used for augmenting the authentication process, other

signals carry more “weight” (e.g., the presence of cookies and

the device’s IP address). Unfortunately, our experiments show

that high-value services (e.g., banks, tax services) are most

commonly vulnerable to our attack. As such, while the attack

that we demonstrate may not yet be a widespread threat, the

severity of the affected web services and the overall implica-

tions of their user accounts being compromised, highlight the

need for alerting developers about the security implications of

leveraging device fingerprints for the authentication process.

We also hope that our work kickstarts a wider discussion

within the research community and incentivizes additional

research on fingerprinting schemes that are robust to spoofing.

Attributes. Our extensions target the fingerprinting vectors

used by popular libraries and websites. If a website uses custom

techniques or those libraries incorporate additional techniques,

our extensions would need to be expanded for handling them.

2FA mechanisms. While SMS is the most commonly de-

ployed 2FA technique, despite its well-documented shortcom-

ings [29,41,51], our attack is not limited to a specific 2FA mech-

anism but instead provides a method for deceiving the risk-

assessment engine that decides whether a 2FA challenge should

be triggered. For instance, eCommerce-A supports the use of

authenticator apps for 2FA, and our attack bypasses that as well.

MITM phishing toolkits like Evilginx [4] allow attackers

to deploy phishing websites with man-in-the-middle capabil-

ities for using phished credentials to log into target websites

in real time (i.e., when the victim is interacting with the

phishing site) and then also trick the victims into divulging

a 2FA code, thus allowing the attacker to log into the victim

account. However, the major limitation of this attack is that in

high-value services that only use short-lived session cookies

the attacker can only access the victim’s account that one time

and would fail in future attempts due to the 2FA challenges.

Guidelines for vendors. As we demonstrate, certain

techniques for augmenting authentication may actually

undermine the overall security posture of a given service.



Two-factor authentication. In our experiments we found

that only 8 of the vulnerable services we have identified offer

an option to mandate that a 2FA challenge has to be passed

for every login attempt (one more site offers that option

only for transactions). Moreover, in all cases, that option is

optional and users have to explicitly enable it. As such, we

argue that all websites should provide such options, as that

would allow users to fortify their account against our attack,

while also significantly raising the bar for attackers in general.

We believe that this option should be opt-out instead of

opt-in, especially in high-value or highly-sensitive services,

to further nudge users towards improving their security

hygiene; indicatively, Google recently automatically enrolled

150 million users in 2FA [7]. We do note, however, the friction

that additional authentication requests and factors can cause.

This tradeoff between usability and security has been studied

extensively [27], and recent reports found that users are in

favor of strengthening security in high-value services through

2FA [59]. Finally, while this is not pertinent to our attack,

since it is not affected by the actual form of 2FA mechanism

selected by the user, vendors should strive to adopt and offer

more secure 2FA options (e.g., U2F, authenticator apps).

Risk signals. Our experiments revealed that certain vendors

incorporate fingerprints into the authentication process, but

other signals play an important role and can affect the feasibil-

ity of our attack. We have identified two signals that vendors

should use for identifying suspicious logins and triggering

2FA. First, we found that certain sites will always trigger 2FA if

the request doesn’t include certain HTTP cookies. While there

are legitimate scenarios where this occurs (e.g., the user has

cleared the browser’s browsing data), it can also indicate that

the login attempt is from a new/unknown device. Obviously,

using this signal would not be effective against cookie hijack-

ers. Second, we found that certain sites have more stringent

IP-based checks. While attackers can easily use proxies or

VPN services to “obtain” an IP address with a similar geoloca-

tion to the victim [55] (e.g., same city) stricter IP requirements

(e.g., belonging to the same ISP or having been used to access

that account before) present additional obstacles to attackers.

Overall, as noted by OWASP [56], when alternative defenses

are “implemented in a layered approach, they can provide

a reasonable degree of protection”. As such, a careful use of

browser fingerprints in conjunction with other signals like

IP address checking and mandating the presence of specific

cookies, can lead to a more robust authentication process.

Best practices for users. Our main threat model assumes

that the attacker knows the user’s password. As such, the attack

can be mitigated by “best practices” commonly highlighted in

guides for safer Internet browsing, such as the use of password

managers. Additionally, users should enable 2FA in sites that

support it, and further enable options that require solving a

2FA challenge in every login if such an option is available (e.g.,

Tax-A offers this). Finally, users can adopt tools or browsers

that affect browser fingerprinting, which we discuss next.

Anti-fingerprinting defenses. Our attack relies on our

ability to accurately obtain and replicate, the user’s browser

fingerprints. As such, defenses [21] offered by browser

extensions or privacy-oriented browsers that alter the user’s

fingerprints can potentially mitigate or prevent our attacks.

However, this depends on the specific fingerprinting attributes

covered by each defense and whether they are used by a

given website. We also note that such defenses may affect

or break websites’ functionality. In our experiments we also

visited target websites using Brave as our primary browser,

which randomizes canvas fingerprints for tracking prevention,

and observed that sites that use canvas fingerprinting for

authentication always prompted us to solve 2FA.

Future directions. Recent research proposed using finger-

prints to augment authentication [44] by “chaining” sessions,

with a random canvas fingerprint being generated in each ses-

sion and used for verification in the following session. While

this approach can effectively mitigate the phishing attack we

present, it is vulnerable to other attacks. Nonetheless, we con-

sider this an important proposal and hope that our work further

incentivizes additional research in the area. While an ideal

countermeasure would remove the need for chaining sessions,

any approach that does not rely on memory of prior sessions

must solve an inherent challenge: generating a fingerprint in

a manner that cannot be spoofed. Since this is a client-side

process, such an approach would necessitate leveraging some

form of Trusted Execution Environment (e.g., a system like

TrustJS [37]). We consider this an interesting future direction.

7 Related Work

To the best of our knowledge, this paper presents the first

comprehensive security analysis of real risk-based authenti-

cation systems that leverage browser fingerprints, and the first

demonstration of a practical attack for bypassing 2FA. Here we

discuss prior work and studies around data breaches, account

hijacking and authentication-augmenting mechanisms.

Van Acker et al. [70] conducted a large scale study on the

security of login pages, by evaluating the presence of mixed

content and the use of mechanisms like HSTS, HPKP and SRI.

To detect breaches in popular services, DeBlasio et al. [28]

proposed an approach that leverages honey accounts and pass-

word reuse as a method for detecting sites being compro-

mised. Prior work has also proposed strategies for deploy-

ing risk-based authentication systems, or have studied certain

characteristics of real-world deployments. In an earlier study,

Hurkala and Hurkala [39] proposed a system that relies on

the IP address, device profiling (i.e., User-Agent and Accept-

Language in HTTP headers), presence of cookies, access time

and failed login attempts. Freeman et al. [35] used a real-user

dataset of login attempts from Linkedin, and classified them

into benign and suspicious based on the IP address and User

Agent. Steinegger et al. [67] implemented an authentication

system that checks the browser fingerprint (calculated using the



Fingerprintjs2 library), geolocation (i.e., country) based on

the IP address, and the number of failed login attempts. Alaca

and van Oorschot [17] identified several fingerprinting vectors

that can be used for authentication and classified them based on

the distinguishability they provide and their resistance to spoof-

ing. Spooren et al. [65] explored the effectiveness of mobile fin-

gerprints for risk-based authentication and found that they are

considerably less unique than the fingerprints of personal com-

puters. In a different line of work, Bonneau et al. [22] explored

the privacy concerns that arise due to the permanence and

simulatability of such features when used for authentication.

Wiefling et al. [74] explored the authentication systems of

eight popular services to identify which features contribute

to the computation of the risk score. To that end, they created

a number of personas and corresponding accounts, and built

a framework that uses virtual machines and emulates user

activities. However, their experiments only focus on the User

Agent string, language, and screen resolution, and as such

do not provide in-depth or detailed insights on how browser

fingerprints are actually being used for risk analysis in the

wild. In a subsequent work [72], they performed a study with

780 users, in which they collected 247 fingerprinting features

during login and assessed their suitability for risk-based

authentication. In [73], they explored users’ perceptions on the

usability and security of risk-based authentication, and in [75]

they assessed link-based and code-based re-authentication.

Previous work [19, 20] has focused on identifying finger-

printing attributes that are suitable for authentication (e.g.,

with high entropy, low usability cost, stability). In [20]

Andriamilanto et al. proposed FPSelect, a tool for selecting

fingerprinting attributes for authentication systems that

satisfy a service’s security requirements while minimizing

the usability cost. In a follow up work [19], they conducted a

large-scale study on the properties of browser fingerprints for

authentication. They found that at least 90% of the inspected

fingerprinting attributes are stable (i.e., identical values for

almost six months) and can be used for authentication. In [18],

Andriamilanto and Allard present BrFAST, a framework that

incorporates FPSelect, for the selection of fingerprinting

attributes. These studies assumed an attacker with knowledge

of the distribution of fingerprints who performs a dictionary-

style attack by submitting common fingerprinting values. We

explore an entirely different attack where the attacker extracts

a user’s exact fingerprints and spoofs their own device’s

fingerprints to match these values when impersonating the user

and, importantly, demonstrate the implications of this attack

in the wild. Moreover, our attack can spoof all the attributes

these studies proposed for augmenting authentication.

In an independent concurrent study, Liu et al. [50] explore

a similar attack and demonstrate that users’ fingerprints can be

spoofed by an attacker. However, their approach does not detect

which fingerprinting attributes are needed for different target

websites,nor does it provide a method for automatically extract-

ing and generating per-target-website fingerprinting code. It

also overlooks various advanced attributes handled by our sys-

tem (e.g., canvas fonts). More importantly, their attack requires

significant manual effort for several attributes, including paus-

ing execution with breakpoints and manually changing object

values through the browser’s debugging tools, and changing

browser and operating system settings. Finally, this study does

not present an in-depth exploration and evaluation of the attack

against risk-based authentication systems in the wild.

Furthermore, Campobasso and Allodi [24] recently re-

ported on an underground marketplace that sells resources for

bypassing risk-based authentication. This marketplace relies

on malware that infects victims computers for collecting a vast

amount of information, which includes browser fingerprints

for some users. The paper provides an interesting economic

analysis on the impact of various resources on the pricing

of account profiles. However the authors did not analyze

any profiles/resources or the software used for obtaining and

generating those resources, which could provide additional

insight on the exact nature of the fingerprints being collected,

the services being targeted, and the actual effectiveness of

the attack resources offered by the marketplace for bypassing

risk-based authentication mechanisms. As such, this study is

complementary to our work as it indicates that attackers are

indeed exploring techniques for impersonating user devices.

8 Conclusions

Critical and high-value web services have introduced

additional security mechanisms and checks into their authen-

tication workflows to prevent attackers from compromising

accounts even if they are able to obtain or guess users’ creden-

tials. We presented the first empirical analysis of the operation

and effectiveness of such systems in real-world high-value web

services. Accordingly, we demonstrated how attackers can

automatically extract and misuse users’ browser fingerprints

for deceiving risk-based authentication systems into trusting

the attacker’s device and bypass two-factor authentication. Our

real-world experiments highlight the severity of our attack, as

we show that major financial services and e-commerce services

are vulnerable. We also found major services being targeted

by phishers that obtain sufficient fingerprinting attributes

to completely bypass 2FA. As such, our research highlights

the danger of incorporating additional security mechanisms

without first conducting a comprehensive and in-depth

assessment of potential pitfalls. To get the remediation process

under way, we have notified the affected vendors and proposed

guidelines for a more robust authentication process.
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A Use Cases

We provide additional details about select cases of websites

susceptible to our attack. Our comprehensive manual analysis

helped us understand how risk-based authentication systems

behave and revealed shortcomings in their implementation.

Tax-B does not enable 2FA by default. Instead, the user can

opt in through the website’s settings by selecting email, SMS,

or the Google Authenticator app as their second factor. Tax-B

also records the user’s IP address for each login. Users can find

information about their trusted devices and past logins in the

account preferences, including sign-in timestamps as well as

the devices’ IP addresses. Interestingly, while Tax-B records

the IP addresses used in past logins, we found that it does not

use this information to determine if a new login is suspicious.

Our experiments reveal that Tax-B uses a fingerprinting

script on its login page that is highly similar to the popular

fingerprinting library FingerprintJS. A notable difference,

however, is that Tax-B’s script does not implement audio

fingerprinting. Furthermore, by inspecting outgoing network

traffic when logging into the website using our primary device,

we observed that a JSON string that includes 33 fingerprinting

values is sent to Tax-B’s server. To fingerprint JavaScript

fonts, Tax-B uses “monospace” as the base font and checks

against a list of 495 different font families. After embedding

Tax-B’s code and fonts list into our phishing site and visiting

it with our primary device, we found that our device supports

88 font families. Then, to spoof the font fingerprint during

the attack phase, our extension changes the offsetWidth and

offsetHeight properties of the span elements that load these

88 fonts to deviate from their default values.

eCommerce-A also does not use 2FA by default and

users need to explicitly enable it. Their site has multiple

fingerprinting scripts on the login page that implement both

basic and advanced fingerprinting techniques, such as canvas,

WebGL, fonts and audio fingerprinting. Our analysis revealed

that eCommerce-A does not actually use fonts and audio finger-

prints for authentication, but only relies on basic fingerprints,

canvas, and WebGL. Regarding their basic fingerprints, we

observed that eCommerce-A collects 46 attributes, such as

Navigator.plugins and Window.devicePixelRatio. For

canvas and WebGL fingerprinting, eCommerce-A uses two

different scripts and draws 7 images in total. In two of the

images it draws a string of a random integer number between 0

and 999. As described previously, our phishing site records the

Base64 values of the images and then, during the attack, our

extension manipulates the toDataURL() method to return the

Base64 strings (in the correct order). For fingerprinting fonts,

eCommerce-A uses “"monospace”, “sans-serif” and “serif” as

base fonts and compares against 485 font families. In compari-

son to Tax-B that uses one base font and loads each font family

to be tested in a single span element, eCommerce-A uses three

different base fonts as a fallback, loading each font family to

be tested in three different span elements, and checking for

changes in the dimensions of any of these elements.

RideSharing exhibits a unique idiosyncrasy as it

exposes two login URLs, which actually behave differently.

Specifically, any login attempts made from the landing page

that do not include the necessary cookies will always result

in 2FA being triggered. Surprisingly, the login attempts from

the other page will only trigger 2FA when a new device is used.

As such, attackers can impersonate the user’s device and log

in from this second page to bypass 2FA. We also found that

if we explicitly enable 2FA through RideSharing’s mobile

app, 2FA is triggered for every login attempt regardless of

which login URL is used. RideSharing collects a total of

379 fingerprinting attributes from the user’s device. More

interestingly, it employs a fingerprinting strategy that we have

not come across in other sites. Specifically, it catches errors



during each step of the fingerprinting process and pushes

those errors into an array which is used to calculate one of the

fingerprinting values. For example, the script tries to create

an element for obtaining a list of fonts that are available in

Internet Explorer but not supported by other browsers.

B Inconsistency Checks

Tax-A uses toString() to detect if any native functions have

been tampered with. When toString() is called on a func-

tion, it returns a string representation of the function’s code.

In the case of native functions, the returned value shows that

the function uses native code. When a function is overridden

(by our extension) to return a spoofed value, its string repre-

sentation returned by toString() would reveal this change.

For bypassing such checks, we also override the toString()

method to make it return the expected value for native methods.

Tax-B checks whether the browser’s languages have

been tampered with by comparing the Navigator.language

attribute with Navigator.languages. It also compares the

screen’s size with the available size. Finally, it determines the

browser type based on the user-agent and looks for contradic-

tions between the browser type and Navigator.productSub

or eval.toString().length. Similarly to Bank-A’s case,

our attack is not affected by these inconsistency checks as we

spoof these attributes according to the primary device’s values.

RideSharing catches JavaScript runtime exceptions

and uses the error messages as fingerprints. If the attacker’s

browser is different from the victim’s, these error messages

will differ. However, the attacker can hook the specific APIs in

relation to these errors, and change them to show custom error

messages. For example, RideSharing’s code creates an ele-

ment that throws an exception in modern browsers By hooking

document.createElement(), the attacker can make it throw

a custom error message that looks like the one shown by the

victim’s browser when such an element is created.

C Properties of JavaScript Objects

In Table 6 we present the fingerprintable properties of the

Navigator, Window, Screen, Plugin, and MimeType objects

that our extensions can obtain and spoof. We decided on this set

of properties as these are used by Fingeprintjs2 [5], the ex-

tended version of OpenWPM presented in [40], and also in finger-

printing scripts we found during our exploration of high-value

services. Properties marked with ‘*’ are only supported in Inter-

net Explorer, but they are still widely used in phishing websites.

D Canvas Fonts Fingerprinting

TheCanvasRenderingContext2D.measureText()method

returns a TextMetrics object that contains information about

the measured text (such as its width) that is rendered on the

Table 6: Fingerprintable properties of JavaScript objects. Prop-

erties marked with ‘*’ are only supported in Internet Explorer.

JavaScript Object Fingerprintable Properties

Navigator userAgent, platform vendor, vendorSub, product,

productSub, oscpu, cpuClass*, buildID, hard-

wareConcurrency, appName, appCodeName,

appVersion, appMinorVersion*, languages,

language, browserLanguage*, userLanguage*,

systemLanguage*, permissions, onLine, connec-

tion, cookieEnabled, doNotTrack, deviceMemory,

getBattery, geolocation, getGamepads, max-

TouchPoints, msMaxTouchPoints* mediaDevices,

mimeTypes, javaEnabled, plugins, sendBeacon,

vibrate, bluetooth, webdriver

Window innerWidth, innerHeight, outerWidth, outer-

Height, screenLeftm screenTop, screenX, screenY,

devicePixelRatio, ontouchstart, swfobject, Ac-

tiveXObject*, locationbar, menubar, toolbar,

statusbar, personalbar, scrollbar, pageXOff-

set, scrollX, speechSynthesis, sessionStorage,

localStorage, indexedDB, openDatabase

Screen width, height availWidth, availHeight, availLeft,

availTop, colorDepth, pixelDepth, deviceXDPI*,

systemXDPI*, logicalXDPI*, deviceYDPI*,

logicalYDPI*, updateInterval*, orientation

Plugin name, version, description, filename

mimeType type, description, enabledPlugin, suffixes

canvas. If a tested font is not supported, the default fallback

font is used instead. The fingerprinting script loops through a

list of fonts and measures their rendered width. If the baseline

width and the tested font’s width are equal, it means that the

particular font is not supported by the browser. On our primary

device, we hook the measureText() method and collected all

the TextMetrics objects. Then, on our secondary device, our

extension modifies the measureText() method to replace the

returned values with those collected from the primary device.

E Phishing Sites: Fingerprint Exfiltration

We manually examined our VisibleV8 logs for 500,

500, and 200 sites targeting Bank-A, RideSharing, and

WebInfrastructure respectively. We found that phishing

sites use APIs like XMLHttpRequest and WebSocket for

sending fingerprinting values back to the server. Some sites

also include fingerprinting values in the URLs of GET requests.

We found 197, 109, and 4 phishing sites respectively exfil-

trating fingerprinting values. Additionally, 164, 128, and 126

sites send back obfuscated data. While this likely includes fin-

gerprinting values in certain cases, the costly manual process

required to verify this falls outside the scope of our work.
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