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Abstract
Browser extension fingerprinting has garnered considerable

attention recently due to the twofold privacy loss that it incurs.

Apart from facilitating tracking by augmenting browser finger-

prints, the list of installed extensions can be directly used to in-

fer sensitive user characteristics. However, prior research was

performed in a vacuum, overlooking a core dimension of ex-

tensions’ functionality: how they react to user actions. In this

paper, we present the first exploration of user-triggered exten-

sion fingerprinting. Guided by our findings from a large-scale

static analysis of browser extensions we devise a series of user

action templates that enable dynamic extension-exercising

frameworks to comprehensively uncover hidden extension

functionality that can only be triggered through user interac-

tions. Our experimental evaluation demonstrates the effective-

ness of our proposed technique, as we are able to fingerprint

4,971 unique extensions, 36% of which are not detectable by

state-of-the-art techniques. To make matters worse, we find

that ≈67% of the extensions that require mouse or keyboard

interactions lack appropriate safeguards, rendering them vul-

nerable to pages that simulate user actions through JavaScript.

To assist extension developers in protecting users from this

privacy threat, we build a tool that automatically includes

origin checks for fortifying extensions against invasive sites.

1 Introduction

Web browsers have evolved into complex software delivery

and execution platforms with an ever-expanding set of capa-

bilities, while capitalizing on technological advancements for

improving the user experience through novel functionality.

Unfortunately, the continuous deployment of new functional-

ity and features comes at a price, as new avenues for privacy

loss can be introduced. In fact, prior work has demonstrated

how browser mechanisms and features can be misused for

exfiltrating users’ personally identifiable or sensitive informa-

tion [22,27,28,33,35]) and persistently tracking users [13,45].

Accordingly, the prevalence of web tracking [34] has

heightened users’ privacy concerns, pressuring browser ven-

dors to provide better protections [40]. In fact, major browsers

continue to deploy anti-tracking defenses that aim to hinder

cookie-based tracking [21, 49, 53]. At the same time, this

paradigm-shift towards cookie-less tracking has resulted in an

increasing number of trackers adopting browser fingerprinting

techniques [41,42] that aim to identify, and by extension track,

devices based on the uniquely-identifying characteristics

of the browsers and underlying operating systems and

hardware [14, 15, 18, 20, 23, 25, 30, 31, 37–39, 52]. More

recently, researchers have explored techniques for detecting

which browser extensions are installed [32, 47, 48], which

can be used for augmenting browser fingerprints but also for

automatically inferring sensitive user characteristics [29].

Prior work on browser extension fingerprinting focused on

features that can be detected statically (e.g., unique resources

that are accessible to web pages) or dynamic behaviors that

occur automatically when an orchestrated browser with an

installed extension visited a specially crafted webpage (i.e.,

the honeypage). However, all these studies explored extension

fingerprinting in a vacuum, without considering how user (in-

ter)actions actually affect the fingerprintability of extensions.

As extensions aim to extend browsers’ functionality and offer

additional, and often specialized features, it is natural that

such actions may only occur after explicit user actions (e.g.,

highlighting some text, right-clicking it, and selecting an

action from the context menu). In other words, the threat

model considered by all prior work provides a limited view of

extension fingerprintability in realistic settings, and overlooks

how the presence of users introduces an additional dynamic.

In this paper we present the first, to the best of our knowl-

edge, exploration of how user actions can trigger unique

behaviors in browser extensions, thus allowing invasive or

malicious pages to infer that the user has installed specific

extensions. To that end, we first perform an analysis of exten-

sions’ metadata coupled with a static analysis of their code,

in order to extract information about the extensions’ behavior

and potential triggers. Specifically, we focus on extensions

that can run on any domain and include a set of permissions

and entries in their manifest that define interactive extension



components such as the extension’s browser icon and the con-

text menu items. Subsequently, we analyze the extracted data

and generate three different classes of behavioral templates.

These templates are built on top of unique and exclusive

user interactions that we categorize based on the actions

that they represent (i.e., involving the mouse, keyboard, or

browser interface). We follow a continuous testing approach

so as to achieve broad coverage and create a comprehensive

collection of interactions, which we implement as a dynamic

extension-exercising module that can be easily incorporated

into extension-analysis frameworks. Our module uses the

behavioral templates and the extensions’ metadata to exercise

each extension, and detects unique fingerprintable behaviors

that manifest as either changes to the honeypage’s DOM or

messages sent from the extension to the honeypage.

We evaluate our system’s extension fingerprinting

capabilities on three different datasets, that capture different

chronological snapshots of Chrome’s Web Store. Specifically,

we use the dataset by Karami et al. [29] and the dataset of

detected extensions by Lapperdrix et al. [32]. To enable

a more extensive longitudinal analysis we also crawl the

Chrome Web Store and collect recent versions of extensions

and new extensions that were not included in the two datasets

from prior work. The experimental evaluation of our novel

user-driven triggering techniques results in the detection of

4,971 browser extensions. When comparing to state-of-the-art

behavior-based fingerprinting [29], we find that ≈64% of

the extensions can only be detected through user-driven

interactions. For the other dataset used in our evaluation [32],

we were only able to obtain their detected extensions, so

we cannot calculate how many extensions missed by their

approach are solely detectable through user actions.

We also identify the lack of appropriate safeguards for ver-

ifying the provenance of received events in extensions. This

can be exploited by pages through JavaScript by simulating

mouse and keyboard interactions that trigger identifiable be-

haviors in vulnerable extensions. In more detail, we find that

≈67% of the extensions that require mouse or keyboard in-

teractions do not check the isTrusted attribute (a read-only

attribute generated by the browser which denotes whether an

event originates from a user action) and can thus be triggered

by the page. Moreover, our performance evaluation revealed

that this attack can be efficient, as a page can fingerprint

20 extensions using artificially crafted events in less than

400ms. Due to the severe privacy implications of this attack,

we develop a tool that can be used by extension developers to

retroactively fortify their extensions against this attack. Specif-

ically, this tool incorporates our static analysis techniques for

identifying relevant event listeners (mouse and keyboard), and

injects safeguarding code that checks the event’s provenance

and ignores events simulated by the webpage.

In summary, our research contributions are:

• We introduce a novel fingerprinting technique that offers

the first exploration of extension fingerprinting in a

real-world setting, where user actions can trigger unique

extension behaviors. Accordingly, we conduct a systematic

analysis of such behaviors in practice and develop a module

for dynamically exercising and analyzing extensions.

• We conduct an extensive evaluation of user-triggered

extension fingerprinting, and find that our approach can be

effectively used in conjunction with other state-of-the-art

fingerprinting techniques as it enables the detection of a

significant number of previously-undetectable extensions.

• We demonstrate that extensions lack the necessary security

checks to prevent web pages from issuing simulated user

events that trigger their fingerprintable behaviors. As a

countermeasure, we develop a straightforward-yet-effective

tool for extension developers that automatically incorpo-

rates safeguards into their code.Our tool is available at [10].

2 Background and Threat Model

This section provides pertinent background information on

browser extensions and technical characteristics that enable

the techniques that we present in this work.

Extension structure and components. A browser exten-

sion is a set of different components, that implement the exten-

sion’s functionalities and programmatic logic. The Manifest

file plays a crucial role as it allows developers to specify back-

ground and content scripts, external pages, and permissions

that enable extensions to achieve their desired functionality.

Listing 1 shows a simplified example manifest file.

1 { "manifest_version": 2,

2 "background": {

3 "scripts": ["my-backgrnd.js"]},

4 "browser_action": {

5 "default_icon": {

6 "19": "button/button -19.png",

7 },

8 "default_title": "My title",

9 "default_popup": "popup/popup_page.html"},

10 "content_scripts": [

11 { "matches": ["<all_urls >"],

12 "js": ["content -script.js"]

13 }],

14 "permissions":

["activeTab","contextMenus","storage"]}

Listing 1: Simplified manifest example.

Background scripts. When a background script entry is

included in the extension’s manifest file, it is automatically

recognized by the browser, and the script runs as an indi-

vidual process. The background script contains HTML and

JavaScript code that implements the extension’s functionality.

Usually, the extension’s main logic is implemented in the

background, which operates independently from the rest of

the components. The background script communicates with

the content script through the browser’s Messaging API,

where it can issue individual requests and create long-lived

connections with the content script. Moreover, if the tabs



permission is defined in the manifest, the background script

can directly inject a content script or a CSS context in the

page using the chrome.scripting.executeScript and

tabs.insertCSS() functions, respectively.

Browser action: Default popup. A browser action’s popup

is only shown when the user clicks on the extension’s action

button in the toolbar. The popup supports the typical HTML

elements and structures a webpage would support and is

automatically resized to fit its contents in the browser. The

popup is only initially set under the default_popup property

in the manifest, where its path is the relative path within the

extension’s directory. It also runs individually and communi-

cates with the content script through the Messaging API. The

popup page can also modify the website visually by injecting

a CSS context programmatically using tabs.insertCSS().

Content scripts are a crucial component since they are the

only scripts that can be injected into the webpage. Essentially,

extensions use content scripts to modify the webpage and

communicate with the background script through the built-in

APIs. Content scripts are typically declared statically in the

manifest under the dedicated entry, or are programmatically

injected. The manifest file can also define which domains

the content script will execute on, either by explicitly listing

them or defining a pattern that is matched to the visited

domain. In more detail, content scripts use DOM requests

to control the rendered page and can also inject custom event

listeners in the page to listen for specific events. Listing 2,

shows an example of a content script listening for specific

user-driven events and then performing a series of DOM

modifications. This provides flexibility to developers as it

allows them to include additional extension functionality

which can be triggered by various user behaviors.

1 //click event listener

2 element.addEventListener

("click" , function (event) {

3 //change the style of the element

4 element.style.color = "red";

5 });

6 //key event listener

7 document.addEventListener

("keydown" ,function (event) {

8 //check if the keycode matches

9 if (event.keyCode ==65) {

10 //modify the page

11 document.style.color = "black";

12 }});

Listing 2: Mouse and key event listeners in a content script.

Permissions. An extension’s ability to access websites and

browser APIs is controlled through the “permissions”manifest

entry. In general, permissions are restricted to those that the

extension needs, and a subset of entries is shared between ex-

tensions. For example, the contextMenu allows the extension

to include a context menu item (the menu that appears when

the user right-clicks with the mouse) and to listen for these

specific events in their content script. Finally the developer

can also define the domain that an extension can run on

(using http://*/*, https://*/*, or <all_urls>) if

the content script is not present in the manifest.

Motivating example. Prior research has demonstrated var-

ious methods for fingerprinting extensions [29, 32, 44, 47, 48]

and has explored the significant privacy risks they introduce.

These techniques allow attackers to not only infer specific

information about the user’s browsing environment (which

can be used to augment the user’s browser fingerprint) but

to also infer private and sensitive information about the user

(e.g., health issues, religion, etc.). However, all prior studies

overlooked the fact that many extensions are dynamic and

reactive and may require user interactions prior to triggering

their functionality. Since extensions may only modify

the web page after receiving a specific user-driven event,

extension fingerprinting frameworks that do not incorporate

and systematically explore user actions are overlooking a

core component of browser extension functionality.

This behavior is exemplified by the popular Chrome exten-

sion for Google Translate. When installed, a user can highlight

a word on the page and the extension will automatically

render a separate window on top of the page that includes the

translation for different languages. The same functionality

is triggered when the user highlights a term and fires the

extension’s context-menu item through the right-click menu.

These behaviors are reflected in modifications and additions

to the page’s DOM, which would allow an attacker controlling

the page to detect the changes and fingerprint the extension.

Threat model. We assume that the user visits a malicious

or privacy-invasive web page that aims to infer which exten-

sions the user has installed in their browser. Furthermore, we

are interested in extensions that run on all domains and do

not restrict their functionality to a specific set of domains, as

these extensions can potentially be detected by any attacker.

Additionally, we limit our focus to extension behaviors that in-

teract with or modify web pages after being triggered by user

actions (e.g., we do not explore Web Accessible Resources

as they have been extensively explored in prior studies).

3 Methodology

Here we present our methodology for identifying extensions

that exhibit fingerprintable behavior that is triggered by

user interactions. Our approach consists of two phases: (i)

a static analysis of extensions’ source code and manifest

files for identifying the types of interactions that can activate

them, and (ii) a dynamic exercising phase that leverages our

automation templates for simulating user interactions.

3.1 Preparatory Phase

We first analyze the extensions’ manifest files to identify

those that meet the requirements outlined in §2, indicating

that they potentially expect user interactions. Subsequently,

we statically analyze the extensions’ source code so as to



identify the event listeners they implement and extract their

arguments. This allows us to understand the types of events

that extensions listen for. Based on the different types of

events that we observe, we generate appropriate behavioral

templates for automating the simulation of these interactions.

Manifest file. We are interested in extensions that (i) are

fingerprintable due to modifications to or interactions with

the visited page, and (ii) are not domain-specific (i.e., they run

on all domains). Since dynamically exercising extensions is

a time consuming process, we first parse the extension’s man-

ifest files and only select those that meet these criteria. This

will allow us to speed-up experiments by avoiding the costly

dynamic analysis phase for thousands of extensions which

will not exhibit fingerprintable behavior on arbitrary sites.

Since we want to identify extensions that can access and

modify a page’s DOM, we search for extensions that include

a content-scripts entry in their manifest. For such exten-

sions the developer also has to include a matches entry in the

manifest, specifying which domains the extension will run on.

For extensions that are not domain-specific, the values typi-

cally used are “<all_urls>” and “http://*, https://*”.

Furthermore, as described in §2, extensions can dynamically

execute a content script through their background scripts.

To identify such extensions we parse their manifest files

and select those that implement a background script and

require the “activeTabs” and “<all_urls>” permissions.

Subsequently, we statically analyze these background scripts

for identifying the ones that use the executeScript and

insertCSS APIs for dynamically running a content script

or injecting a CSS file into the web page.

Categories of user interactions. Through the preliminary

manual analysis of extensions we identified three general

categories of potential user interactions; we categorize the

different types of user actions as belonging to browser, mouse

and keyboard actions. Next, we outline how we perform an

initial selection of candidate extensions from each category

through our manifest analysis.

Browser actions. The first category includes interactions

that are initiated by the user when clicking on the extension’s

button (i.e. the extension’s icon typically shown next to the

browser’s address bar). In the simplest case, a user will click

on the extension button to activate it, which will result in the

extension executing its intended functionality. Extensions can

also include a popup page that is constructed by a separate

HTML file and appears when the extension’s button is clicked.

The popup may provide an interface that allows the user to

configure the extension, choose a mode of operation or alter

its functionality. Additionally, the popup may also require the

user to login, or even allow them to run specific functionalities

directly (e.g., play a video, control the volume). Enabling

this category of interactions requires that the extension has

a background script and implements an event listener that

captures click events on the extension’s button. Furthermore,

a browser_action entry needs to be included in the

manifest. Extensions that implement a popup also need to

define a default_popup in the manifest. As such, during the

preparatory phase we can identify which extensions support

interactions with their icon and popup, by parsing their

manifest files and looking for the aforementioned entries.

Mouse actions. For this category, an extension can specify

the contextMenus permission in its manifest to enable

“right-click” interactions. When this permission is requested,

the browser allows the extension to include additional

entries in the context menu (i.e., the menu that appears in

an overlay when pressing the mouse’s right button). These

newly included events are fired from the user’s mouse and

are processed by the respective extensions’ content scripts.

Keyboard actions. To handle keyboard-driven user

interactions the manifest can include a commands entry that

defines one or more keyboard shortcuts expected by the

extension. However, our initial exploration revealed that

extensions do not always define these commands in the

manifest; instead, it is more common to programmatically

check for keyboard events by including the appropriate event

listeners in their content scripts.

Static analysis. While analyzing the manifest files allows

us to create an initial set of candidate extensions, this provides

a limited view of extension’s user-driven capabilities. In fact,

extensions that leverage keyboard interactions are rarely evi-

dent from their manifest files. To uncover the user actions that

can potentially trigger extensions we need to statically analyze

extensions’ content scripts. Specifically, we need to identify

APIs and event handlers in the extensions’ content scripts that

expect events to be fired while the user interacts with the page.

We build upon the methodology introduced by Somé [46]

for detecting event listeners and extracting the events that

they listen for. First, we use Python’s jsbeautifier library

to deobfuscate extensions’ content scripts and obtain a

more “human readable” form of their source code. Then we

leverage Esprima [4] for parsing the content scripts’ code and

building their Abstract Syntax Trees (ASTs).

When the AST is created, we log the assignments to object

properties and the function definitions and calls. This gives us

detailed information regarding the type and value of each vari-

able and function, which we use for locating the functions that

expect events from the application (i.e., event listeners) and ex-

tracting their arguments. An event listener can exist as a stan-

dalone function or as a method for global objects and HTML

elements, while there are also various ways that an event

listener can be registered (e.g., window.addEventListener,

window[’addEventListener’]). As such, we take into

consideration all types of event listeners in each content

script (i.e., for the global object names of document, window,

top, self, this). Furthermore, the addEventListener API

has two arguments: (i) the message, which denotes the actual

event, and (ii) the function that is invoked when the event is

fired. We are only interested in the first argument, which is

a Literal specifying the type of the expected event.



Table 1: List of mouse and keyboard events compiled based

on the findings of our static analysis.

Event Action Event Action

Keyboard Mouse

Keydown Scroll

Keyup Mousewheel

Keypress

Key Press

Wheel

Scroll

Mouse Cut

Right Click
Doubleclick

Doubleclick
Copy

Select Paste

Click ContextMenu

Mousedown Mouseenter

Mouseup Mouseout

Blur Mousemove

Focus

Click

Mouseover

Movement

After identifying all the events expected by our extensions,

we manually sorted through the list of expected events and

determined which ones can be triggered via user interactions

and which actions can generate these events. For a more

complete and accurate mapping, we also cross-referenced

our findings with official documentation [7,8]. This was done

once, after our preliminary analysis, and is a one-time cost as

the generated list covers all relevant event listeners. Table 1

presents the list of interaction types that we compiled and the

mapping between the various events and type of interactions

(i.e., behaviors) that can trigger them. For instance, events

like mousedown, click, blur and focus can all be triggered

when the user clicks on the page and the included elements.

In the following subsections we present how we design our

user interaction automation templates that include actions

that aim to trigger all the aforementioned events.

3.2 User Interaction Templates

The previous stage provides information about the extensions’

structure (i.e., whether they include a clickable button, a

popup page and a content menu) and the type of events they

listen for. We leverage that information for designing and

generating behavioral user interaction templates that reflect

human-driven user actions. Each template includes various

types of actions that correspond to coarse or fine-grained inter-

action activities, aiming to fire relevant events that can trigger

extension functionality. Based on our aforementioned cate-

gorization, we define three general templates that encompass

actions related to the browser, mouse and keyboard.

Browser actions. This template includes event-driven

actions related to the browser interface. In the simplest case

we have extensions that include a clickable browser button

(i.e., they are activated when a user clicks on their icon).

Upon activation these extensions might exhibit behavior

that would allow us to detect their presence, such as altering

the page or exchanging messages with the page; a popular

extension that exhibits this behavior is Mercury Reader. As

such, the simplest interaction that is defined in this template is

to locate and click on the extensions’ button. Next, extensions

that include a popup page will typically include elements

such as buttons and checkboxes, and provide an interface

for the user to initialize, configure or control the extension’s

functionalities. Indicative examples are Ublock and Ghostery,

where users interact with the popup pages to specify their

preferences and enable/disable them. For such extensions, our

template first defines the action of clicking on the extension’s

browser icon, so that the popup page will appear, and then

it interacts with the page’s element by clicking, selecting

elements, activating buttons, and navigating its content.

Mouse actions. Moving beyond the browser’s interface, we

define a template that covers the user’s interactions with the

visited page through mouse actions. To that end, we leverage

the findings from the static analysis of content scripts regard-

ing events that are fired by actions associated with the mouse.

In this template we model behaviors as sequences of mouse

actions that can trigger the aforementioned mouse event listen-

ers. In the simplest case, the click and doubleclick events are

fired when the user clicks or doubleclicks the mouse, respec-

tively. We also include the mousedown and mouseup events in

the click category, since these two events are fired when the

mouse button is pressed and released during a click. The focus

and blur events are content-related and can also be triggered

with a click action (e.g., the user clicks on a text input area

to focus or blur its content). Furthermore, the select event is

fired when text in the page is selected. Since text selection can

also be achieved by doubleclicking text, a doubleclick action

allows us to trigger both the select and doubleclick events.

In a similar way, we categorize all the mouse events

that can be triggered when mouse movement is involved.

Although events such as mouseenter and mouseover have

differences in how they are fired, in the general case they

are both fired at an element when the mouse cursor moves

over that element (e.g., one difference is that mouseover is

also fired when the cursor moves over the element’s children

nodes). The interactions in this template are designed to

trigger all movement events. Finally, the scroll, mousewheel,

and wheel events can be triggered by a mouse scroll using

the mouse wheel as well as the browser’s scroll buttons.

The last type of mouse event covers all the events that are

related to a context menu and are fired when a right-click

is involved. The browser offers the cut, copy and paste

functionalities in the context menu, and an extension can

include the respective event listeners to detect these actions.

Finally, the contextmenu event is fired when the user clicks

on the context menu entry set by an extension.

Keyboard actions. These actions focus on events that are

triggered when the user presses a keyboard key during the

page’s navigation. Our static analysis process uncovered three

event listeners defined in extensions’ source code that are

related to keyboard actions, all of which can be enabled by a

single action, as pressing and releasing a key triggers all three

events that they listen for. We define key actions that vary

from single keystrokes to combinations of multiple keys.





on the popup page and click all elements (e.g., radio buttons,

checkboxes, and panels). Even without prior knowledge of

the page’s structure, we are able to interact with its elements

and components. For completeness we also include a text-

selection action in this template interaction i.e., we select a

term in the page and then interact with the popup’s elements.

As the popup page may include extension configuration

options that either enable the extension or alter its default be-

havior, interacting with its elements can trigger the extension

and lead to behavior that is observable by the page. The in-

teractions in this template are sufficient for handling the vast

majority of extensions. However, our template may not be able

to handle complex popup pages that require additional user

actions (e.g., installing other applications locally, registering

and logging into an account). We also adopt the same set of

interactions for Options Pages. The options page loads in a

separate browser page when the user installs the extension and

expect an initial configuration or modification of its current

settings. We apply the same rules to initiate the page’s behav-

ior and log all the modifications that occur in the honeypage.

Mouse interactions. Next, we detail our process for

generating actions based on the mouse-event template.

Clicks, doubleclicks & content selection. For the mouse ac-

tions template, we follow a building approach similar to that

of the browser-event template. The first building block con-

tains the simple left click (single or repetitive) that a user fires

upon visiting the page. This action is generic since it does

not interact with any page elements but fires an event to the

page itself. While extensions that contain such event listen-

ers are triggered by the fired mouse event, we have observed

that extensions may also require content-related actions,

including simple clicks or doubleclicks that select page ele-

ments and content. Following that principle, we incorporate

the selection of page elements into this template’s interactions.

Since the extension’s functionality could also rely on the lan-

guage of the content, we include terms of various languages in

our honeypage and emulate interactions with all these terms.

Copy, paste, scroll. The subsequent content-related actions

include the context menu (right-click) actions provided by

the browser interface (Copy, Cut, Paste) and the scrolling and

wheel events that reflect the user’s scrolling action. A copy

or cut event is only available if the user selects a term on

the page and then fires them through the context menu. We

expand the previous set of actions, including the selection of

a term followed by the copy and cut commands. Following

those commands, the paste action is dependent on the previ-

ous activities; as such we instruct our framework to paste the

copied content into an empty input area. We also replicate a

user’s behavior that copies information and pastes it into a spe-

cific empty area by activating and focusing on the input area.

For completeness, we also trigger a selection event by high-

light the content inside the input area, to trigger any additional

event listeners. The last action that we include is scrolling; as

before, we select a term on the page for completeness and per-

form the scrolling action, as a user would typically do. In prac-

tice, even if the term selection is not required by an extension’s

functionality it will not interfere with the scrolling action.

Context-menu items. In the last subset of mouse-related ac-

tions that our framework supports, we implement actions that

trigger context menu items added by extensions. Similar to

the left-click mouse events, the user might trigger the context-

menu item through various actions. The framework replicates

this behavior by triggering the extension element in different

parts of the page. Specifically, at first, it fires the right-click on

the page without specifying an element. Following the design

principle of the previously implemented set of actions, it se-

lects a term by highlighting it and then firing the same activity.

Our framework also replicates similar context-related events

by triggering the context-menu over a hyperlink of an anchor

element present on the honeypage and an image element.

Keyboard interactions. Finally, we detail our process for

generating actions based on the keyboard-event template.

Single, repetitive & combined keystrokes. Our framework

adheres to a similar strategy for the keyboard event templates

when simulating user interactions. The user will trigger a

keyboard event directly on the page or after selecting and

interacting with a page element. The framework performs the

following actions to replicate this set of interactions: first, it

sends a keyboard event directly on the page. Afterward, it

selects and highlights a page element (term) and then sends

the same key event again. Since we don’t know which key

event triggers the extension, we start by sending single actions

for all the available keyboard characters and symbols (e.g., al-

phabet characters, numbers, and special characters). We have

also observed that extensions may expect repetitive keyboard

events used as a “special" combination of keys. For this, we ex-

pand the initial set of interactions, and also include repetitive

keystrokes of the same character (e.g., an extension requires a

repetitive keystroke of b b to get triggered). Moving a step fur-

ther, we also include special keys (ctrl, alt, ctrl-alt,

ctrl-alt-shift) combined with the aforementioned key-

board characters and numbers. In order for our system to not

interfere with internal browser functionality we exclude short-

cut key combinations already defined and allocated by the

Chrome browser [2]. Our template is designed so as to exhaust

all potential key interactions that a typical user could trigger,

using this iterative process for creating keyboard events.

5 Experimental Setup

Interaction automation. Our framework for exercising

extensions is driven by the Chrome browser, which we

orchestrate using Selenium [11]. The most critical component

of our framework is our User Interaction Automator, which

leverages the PyAutoGUI module [9], a cross-platform GUI

automation Python module that is used to programmatically

control the mouse and keyboard. An important aspect of

this module’s functionality is that it uses the actual mouse



and keyboard devices and simulates actions similar to how

a typical user would perform them. Additionally, since the

honeypage and browser are under our control, we know a

priori the position and size of each element and can replicate

each action from the interaction templates by providing the

x-y coordinates followed by the specific action. For exam-

ple, successively calling pyautogui.moveTo(100,500) and

pyautogui.doubleClick() will move the mouse to the

specified coordinates and then perform a mouse doubleclick.

Using this approach we handle the majority of the browser,

keyboard, and mouse interactions that we have defined, by

providing the coordinates of each element that we want to

include in our interaction and firing the respective events. We

follow a different approach for browser interactions that result

in a browser-external popup page; in such cases we rely on left

mouse clicks, and tab and spacebar key events. We found

that by combining these mouse and keyboard events we can

successfully navigate the popup page without prior knowledge

of its structure or content, changing the focus of elements,

and selecting/enabling elements like buttons and radio boxes.

Fingerprint generation. To collect extensions’ behavioral

signatures we follow a similar approach to prior work [29].

We load each extension into the browser and visit the honey-

page, wait for 15 seconds for the extension to initialize, load,

and perform any initial modifications on the page, and then

capture a snapshot of the page’s state. This snapshot contains

the page’s Outer HTML (DOM), the external resources loaded,

and the messages broadcast by the extension to the page. We

use the Performance API [12] to log any external resources

fetched, and include a message event listener in the page (i.e.,

document.addEventListener(“message”)) for logging

the messages that are broadcast. Finally, we store each

snapshot into a separate JSON document for analysis.

After the initial snapshot extraction, we apply the appro-

priate interactions according to the entries in the extension’s

manifest file. For example, we start by applying the template

for browser actions if a browser_action entry is defined

in the manifest. If the extension has a popup page, we

apply the template’s interactions with the popup page. After

that, we apply the templates that describe the mouse and

keyboard interactions. These two templates are applied to

all the extensions that we exercise. This allows our system

to compensate for any event listeners missed during the static

analysis of a given extension: even if we missed a listener

for a specific type of events, our collection of actions curated

from the static analysis of all the extensions will contain it.

After performing a given action, we wait for one second to

allow for the extension to perform any modifications and our

framework to capture them, before applying the next action.

We compare the snapshot obtained after each interaction with

the initial snapshot (i.e., the page’s original DOM) and the

one collected after the initial wait time. If any modification

is detected, we store the current snapshot and kill the browser

to remove any persistent modifications. When we finish

Table 2: Number of extensions detected in each dataset.

Dataset Extensions Detectable(%)

D1 27,342 2,932 (10.72%)

D2 3,311 1,432 (43.24%)

D3 9,446 1,167 (12.35%)

Total (all extension versions) 5,531

Total (unique extensions) 4,971

exercising an extension with one of the three templates, we

continue our process with the next template and repeat the

aforementioned steps. When all templates have completed,

we start a fresh browser instance to test a new extension.

6 Experimental Evaluation

Here we assess our system’s effectiveness at triggering and

fingerprinting extensions through user-driven interactions.

Datasets. In our analysis, we use three different datasets:

• Dataset_1 (D1): This includes the dataset used in the

Carnus [29] study. Originally it contained 102,482

extensions – after applying our filtering rules (§3) we are

left with 27,342 extensions.

• Dataset_2 (D2): Includes the detected extensions from

Fingerprinting In Style [32]. Originally this dataset

contained 4,446 extensions. To avoid overlap, after our

filtering we also removed extensions with identical versions

included in D1. We ended up with 3,311 extensions, which

also includes extensions with different versions to D1.

• Dataset_3 (D3): In May and June of 2021, we conducted

a crawl of Chrome’s Web Store to collect a more recent

snapshot of the store. After applying our filtering methods

we ended up with 9,446 extensions, from which 2,736 are

newer versions of the extensions included in the other two

datasets, while the remaining 6,710 are new extensions.

We will interchangeably refer to the datasets with their

identifiers and system or study name for the rest of our paper.

System setup. Prior to performing our experiments we

first deployed our honeysite on a popular web service hosting

environment. For our framework, we used two identical

off-the-shelf desktop machines with a 6-core Intel Core

i7-8700, 32GB of RAM, connected to our university’s

network. The PyAutoGui library [9] requires a connected

monitor to perform any interactions; to bypass that limita-

tions we modified our framework and built it into a Docker

Container [1]. To reduce potential browser-configuration

failures (e.g., an extension malfunctioning on a new browser

version due to updated APIs), for each dataset we used a

browser version contemporary to that dataset [3] (versions:

73.0.3683.68, 83.0.4103.39, and 92.0.4515.43).

Overview. Table 2 lists the number of detected extensions

per dataset. For the oldest dataset (D1), our framework

detects ≈11% of the extensions. Interestingly, for D2 the

detection percentage is significantly higher at 43%. This



Table 3: Detectable extensions per behavioral template.

Browser Actions Mouse Actions Keyboard Actions

DOM MSG Total DOM MSG Total DOM MSG Total

D1 2,846 70 2,886 646 15 661 704 6 710

D2 868 29 895 506 6 512 634 - 634

D3 1,096 79 1,175 321 22 341 432 6 438

dataset is formed of extensions that inject CSS into the page;

by leveraging user interactions, we trigger the injection or

an interaction with already injected elements. Finally, in our

most recent dataset, we detect 1,167 (12.35%) extensions,

which is similar to the detection rate for D1.

To gain insights about the different types of interactions

and behaviors, in Table 3 we breakdown the different

templates and detection methods. As detailed in §5, each

fingerprint contains DOM modifications and/or internal

browser communication. However, our system did not trigger

any instances of external communication; this is expected

since extensions load necessary resources when installed or

at run-time. In regards to DOM modifications, the browser

actions have the highest detection rate demonstrating our

framework’s ability to simulate interactions expected by

extensions. Similarly, both keyboard and mouse events

trigger a large number of extensions. This supports our initial

motivation, as extensions often offer on-demand functionality

that is explicitly triggered only once users interact with them.

On the message-modification front, fingerprintable exten-

sions are significantly fewer than the other categories. Only a

small fraction require complex communications between priv-

ileged and unprivileged extension components, resulting in

only a few extensions being fingerprintable through message

exchanges. Upon analyzing the messages exchanged between

extensions and the page, we find that most include actions

that either initialize a DOM modification (e.g., showPopup,

dictionary_window:1) or include the type of interaction

(e.g., x:10,y:24) required by the extension’s functionality.

Modality. Extensions can be fingerprinted through

multiple types of interaction. We found that 80% require

one type of interaction, whereas 15% can be fingerprinted

through two different templates. The remaining 5% can be

fingerprinted by actions from all three behavioral templates.

6.1 Behavioral Templates

Browser actions. 53% of the extensions detected by browser

actions, across all datasets, are triggered by simply clicking on

the extension’s button. Moreover, 15.6% are triggered through

interactions with the extension’s popup page. This demon-

strates the importance of statically analyzing extensions’

manifests and not limiting our analysis to event listeners.

Mouse actions. A detailed breakdown of the interactions

specified in the mouse actions template is presented in Table 4.

We find that the page’s language can be an important factor,

since several extensions are only triggered when a specific

language is present. Language-specific behavior is common

Table 4: Unique set of extensions triggered per mouse action.

Mouse Action D1 D2 D3

Click/Doubleclick Page 4 6 4

Select English Term 20 9 4

Select Non-English Term 5 7 3

Copy-Paste-Scroll 8 5 6

Select Page Element 331 274 189

Right-Click Page 114 108 70

Right-Click Term/Link/Image 28 18 9

Right-Click Page Element 151 85 56

for extensions that offer, among others, dictionary-related and

translation-related functionality. At the same time, the major-

ity of extensions do not include such specializations and are

triggered whenever a user selects an arbitrary word or DOM

element. This behavior is consistent in all three datasets, with

the generic term selection fingerprinting the largest number

of extensions for “left-click” actions (90% on average).

We observe similar behavior for the context-menu function-

ality (three bottom rows of Table 4), where several extensions

are triggered only by selecting the appropriate context-menu

item without specifying any term or element on the page. This

reflects extension functionality that modifies the visited page

without any restrictions on its content. Nonetheless, 9.5%,

8.5%, and 6.6% of the extensions from the three datasets,

respectively, require a specific element to be selected on the

page (e.g., a term, link, or image) to be coupled with the

context-menu action. These are extensions whose functional-

ity is related to selected elements, and thus are not triggered

in any other way. In general, our experimental results confirm

our framework’s ability to fingerprint extensions that require

both simple as well as complex chains of user interactions.

Keyboard actions. Figure 2 shows the distribution of

different types of key events that trigger extensions. The

Hotkeys types 1,2,3 denote a combination of a key-character

with one, two, or three special keys (i.e., ctrl, alt, shift).

Our results show that single keystrokes and Hotkeys-2 have a

high frequency of occurrences across all datasets, indicating

that developers prefer the adoption of simple key shortcuts

over more complicated combinations that users are likelier

to mistype or forget. However, we detected an instance of

an extension that employs 7 different single keystrokes and

Hotkeys to provide users functionality. Finally, we also found

extensions that rely on complex triggering using 3 Hotkeys

(ctrl-alt-shift-<character>). Interestingly, the major-

ity are not triggered by actions from the other templates.

Comparison to prior work. Prior work has explored dif-

ferent ways of detecting browser extensions, using behav-

ioral modifications [29] and style modifications [32]. To

better understand the capabilities of our newly introduced

technique, we compare our detected extensions with the two

previous methods. When comparing with Carnus [29], we

only use the behavior-based detections (i.e., DOM, inter and

intra communications); we do not include WAR-based detec-
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Figure 2: Types of keyboard events that trigger extensions.

tions in our comparison, since Firefox already defends against

them [24] and Chrome recently introduced a new access-

control mechanism for limiting the exposure of resources

to specific pages [16]. Since we did not have access to the

complete dataset of Fingerprinting in Style [32] for our experi-

ment, we follow the authors’ approach and compute the upper

bound of the potentially fingerprintable extensions. Specifi-

cally, for each dataset we count the number of extensions that

inject CSS in pages, as denoted in their manifests. An exten-

sion that does not inject CSS rules cannot, by definition, be fin-

gerprinted via custom CSS properties. For the rest of our anal-

ysis we will use these subsets for any additional comparisons.

We are able to detect 2,932 extensions (2.8%) from the

entire D1 dataset compared to 6,381(6.2%) detected by Car-

nus, and 7,048 (6.8%) that could potentially be detected by

Fingerprinting In Style due to injected CSS. However, 64% of

our detected extensions are “invisible” to Carnus, and 63% to

Fingerprinting in Style, while 45% are not detectable by any

of these methods. Similarly, we compare the detection for the

D3 dataset, where we fingerprint 1,167 extensions (12.35%)

while Fingerprinting In Style can detect at most 2,933 (31%);

again, 45% of these extensions are only detected by our frame-

work. It is worth noting that the extensions that are only fin-

gerprintable by our system are highly dynamic and modify the

page only after user interaction. The other methods only detect

extensions modifications passively by observing the DOM

and, thus, these dynamic extensions are invisible to them.

In total, we are able to uniquely fingerprint 1,820 unique

extensions in datasets D1 and D3 that any of the approaches

would miss. Overall, our results demonstrate that our newly

proposed user-interaction-based fingerprinting technique is

a powerful addition to existing techniques as it significantly

expands coverage for previously-undetectable extensions.

6.2 Popularity & Longitudinal Analysis

Detected extensions types, prevalence & popularity. In

order to classify the fingerprintable extensions, we categorize

them based on their type as provided by the extension store.

For each dataset, the most popular category is “Productivity”,

which is expected since different extensions fall under this

category (e.g., translation and navigation functionalities). A

detailed overview of the extensions’ categories and popularity

can be found in the Appendix A.

To gain more insight, we also calculate their relative

popularity based on the number of installations. Specifically,

we calculate the popularity for the 2,932 detected extensions

of D1 and compare it with those fingerprinted by Carnus,

by Fingerprinting in Style, and extensions not detected by

any method. The extensions detected by our method have

been installed by 11,048 users on average, while for Carnus

and Fingerprinting in Style the popularity is 6,775 and 9,462

respectively. For the remaining undetected extensions, their

average number of downloads is 7,133. While this supports

prior findings by Karami et al. [29] that popular extensions are

likelier to offer more functionality (which can lead to being

fingerprintable), it also indicates that more popular extensions

are also more likely to include dynamic and customizable

functionality that is triggered through user interactions.

Versions. Our most recent dataset (D3) contains 2,736

extensions with newer versions of extensions included in the

older datasets D1 and D2. Of those, ≈ 9% are detected across

all datasets, i.e., remained fingerprintable over the span of

multiple years. Moreover, 5% were not detectable in the older

datasets (i.e., became fingerprintable in more recent versions),

and 6% were only detectable in older datasets (i.e., stopped

being fingerprintable). This is due to extensions modifying

their intended behavior or aspects of their functionality. We

manually inspected 50 randomly selected extensions, and

found that 32 either modified their source code or specified

the “permissions” or “externaly_connectable” entries in their

manifest so as to only run on specific domains. Also, 14

extensions offer the same functionality but without modifying

the DOM (e.g., using the browser’s popup window). Finally,

four extensions offer completely different functionality and

changed their behavior in the most recent version. In general,

whenever an extension updates, the fingerprinting-derived

signatures for that extension may also need to be updated.

This is true for the attacks presented in this paper as well

as for all prior techniques (web-accessible resources, DOM

modifications, etc.) that use some form of a side-channel to

infer the presence of an extension.

It is worth noting that 15% of the newly detected

extensions belong to the Accessibility category, which

could potentially allow the inference of sensitive user

characteristics. Our results indicate that an extension’s

fingerprintability is fairly stable over time and only a small

number of extensions modify their functionality across

versions in a way that affects that aspect of their behavior.

6.3 System and Attack Performance

Dynamic analysis. In Figure 3 we present the total time in

seconds required by each template in our framework when

dynamically exercising an extension. The mouse and browser

actions templates require the lowest number of interactions,
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Figure 3: Performance for the different interaction templates.

which is reflected in their execution times: for 90% of the ex-

tensions, triggering events can be dispatched and evaluated in

less than 10 seconds. A longer execution time is expected for

the key events since we need to trigger multiple keys which

leads to a significantly larger number of potential key combi-

nations. For the majority of extensions, keyboard interactions

require approximately 2 minutes. Overall, our framework

requires less than 200 seconds to complete testing the interac-

tions of all three templates against an extension. Note that this

is a one-time cost which only needs to be repeated whenever

an extension is updated. The increased overhead for ≈5%

of the extensions is the result of system’s overhead due to the

parallelization of docker containers, browser overhead, and

system I/O operations. In summary, our system’s performance

is suitable for large-scale extension analysis, with multiple

opportunities for further optimization via additional paral-

lelization and the data-driven removal of events that rarely

lead to DOM changes (e.g., the removal of keyboard combina-

tions that did not trigger any extensions in our experiments).

Attack: Page-simulated events. In our analysis we

detailed the different types of interactions and user behaviors

that result in the successful triggering of extensions and their

subsequent fingerprinting. Here, we draw attention to the

fact that mouse events and keyboard events can also be

simulated by the page (obviously, we cannot simulate the

right click functionality of the context-menu item from the

mouse actions template since this is a browser-controlled

interface). More specifically, left-click and keyboard inter-

actions (all key combinations including the copy and paste

functionality) can be simulated by specifically crafted events

that replicate user interaction. The JavaScript framework of

Dispatch Event can be used to initialize different types of

events that are targeted to specific event listeners [6]. For

example, a click event is created and dispatched (fired) on

a specific page element after its call. Using this API, one

can craft artificial events that replicate user interaction to

trigger extensions without the user actually interacting with

the page. In practice, we can include various simulated events
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Figure 4: Detecting different subsets of installed extensions.

in our honeypage and attempt to trigger a specific subset of

extensions requiring such interactions.

Since events that are typically initiated by users can also

be dispatched via JavaScript, browser vendors have included

a special property in the Event interface that can be used for

verifying the provenance of an event. Specifically, each event

carries with it a read-only, isTrusted property [5], indicating

whether the event resulted from a user action or whether it

was dispatched through JavaScript. The same property is also

available through jQuery’s original Event function and

similarly distinguishes user events from script events.

Extension vulnerability. We perform the following experi-

ment to identify the extensions that a page can trigger through

simulated actions. First, we include all the event listeners

related to the appropriate mouse and keyboard events in our

honeypage (i.e., events shown in Table 1). After that, we visit

our honeypage with the extensions found to be triggered by

mouse or keyboard actions, perform again the actions that

have previously triggered each one of them, and log all the

events captured by the event listeners. Since a user action

may generate multiple events, which activate different event

listeners, we need to artificially trigger and dispatch all these

events when simulating the user interaction through the page.

For instance, the user action of clicking the mouse button fires

the click, mousedown and mouseup events. While some

extensions may be triggered by one of these events, others

may be get triggered by a different one. As such, for us to

accurately simulate user actions through the page’s JavaScript,

we captured how users’ actions trigger all relevant events.

Finally, after identifying all the events that correspond

to the actions triggering each one of the extensions, we

modify our honeypage to dispatch these events automatically

from within the page. We visit the modified version of

the honeysite with a browser that has the aforementioned

extensions installed, and check whether the events dispatched

from the page trigger the extensions’ functionality.

From the 2,234 extensions that are triggered by actions that

can be simulated through JavaScript, we successfully trigger

1,513 (67%). Specifically, 88% of the extensions that require



mouse interactions and 65% of those requiring keyboard

interactions were triggered successfully. As expected, the

percentage is higher for the mouse events since the trusted

flag is more commonly used for key events. Our results

demonstrate that, for the majority of extensions, invasive

pages can simulate user actions and deterministically identify

the corresponding extensions without depending on users’

behavior. Finally, a detailed overview of the vulnerable

extensions’ categories be found in the Appendix A.

Attack performance. To assess our attack feasibility in a

realistic scenario, we measure the time that a page needs for

detecting N=1,...,20 extensions. Due to the variance of trig-

gers across extensions, we randomly select extensions that

leverage different types of interactions (mouse and keyboard).

We include a script that performs the needed type of inter-

actions in the page, which starts executing after the browser

fires the window.onload event. The fingerprinting script then

fires a user-action-simulating event and waits until there is a

DOM modification before proceeding to the next event, while

logging all times corresponding to these events. We used the

Performance API to measure the time difference, with the

starting point being before calling the dispatch function and

the end being after the comparison between the DOM snap-

shots. Since we use different subsets of extensions, we mea-

sure the total time required to detect each subset of extensions

and report it accordingly. Moreover, to collect a representative

set of measurements, we repeat this experiment 50 times.

Figure 4 shows the results for all sets of installed exten-

sions. As expected, there is a positive relationship between

the number of installed extensions and the time required to

fire all the appropriate user-simulating events and detecting

the corresponding DOM changes. Even in the extreme case of

a user having installed 20 extensions (Starov and Nikiforakis

reported that the average user installs 4.8 extensions [48]),

the entirety of the action-triggering and fingerprinting process

takes less than 0.5 seconds. As we showed in §6.1, 90% of the

mouse-triggered extensions require a generic term selection,

while 88% of the keyboard-triggered extensions require

either single keystrokes or a combination of two special keys.

In a real-world deployment, the attacker does not need

to simulate all the available interactions since many of them

do not trigger any extension, and a page would include a

substantially larger number of emulated events that target as

many extensions as possible. In our performance evaluation

where we leverage unique combinations of events, a single

combination triggers one extension in less than 6 ms.

Subsequently, to trigger all the combinations of the 1,513

extensions that we detect through page-simulated events,

the page would require less than 40 seconds for firing the

events and detecting the modifications. This is practical since

it is lower than the average time that users spend on a page

(62 seconds) [17]. Finally, an attacker can apply different

strategies to optimize the detection process and significantly

reduce detection time (e.g., sending the most common events

first or only targeting specific extensions of interest).

Attack Stealthiness. We need to consider two scenarios:

(i) users’ organic actions, and (ii) the page simulating user

interactions. In the first case, our technique is completely

stealthy as the interactions are performed by the user and we

only detect the resulting changes. In the case of simulated

interactions, keyboard events are invisible since there is no

visual effect on the page (thus, matching the stealthiness of

prior techniques). For mouse interactions, some are invisible

(e.g., clicking) while others have a small visual effect

(e.g., text highlighting). Additionally, attackers can employ

techniques like tab-nabbing [19], to detect that the user has

moved focus to a different tab before simulating these events,

in which case the user would not witness the simulated mouse

events. A demonstration of our attack is available at [10].

7 Countermeasure and Discussion

Here we present our defense and further discuss our attack.

Countermeasure. We develop a tool for extension devel-

opers that allows them to retroactively fortify their extensions

against pages that simulate user actions. Our tool introduces

appropriate safeguards in the extension’s code without

affecting its functionality or the user’s browsing experience.

Specifically, we build upon our static analysis tool (§3.1)

and the list of event listeners that can be misused by pages

(§6.3), and create an extensive list of all mouse and keyboard

event listeners. Given the extension’s content-script source

code, we inject a function at the beginning of the source

file that will be executed first. Our function overrides the

addEventListener function located in the prototype of the

EventTarget interface. Listing 3 in the Appendix B provides

an example of our strategy. We first check if the argument on

the addEventListener is one of the mouse or key events; if we

detect such an argument we subsequently verify the origin

of the event and reject events that are not generated by users.

If no such event is detected, the event listener is not affected

and execution proceeds as expected. We manually verified

that our approach works correctly on 50 randomly selected

extensions by correctly handling both user-generated and

page-simulated events without functionality being affected.

Extension obfuscation. A limitation of our static analysis

process (§3.1) is that in cases of heavily obfuscated scripts

that employ sophisticated obfuscation and minification

techniques, it might generate incomplete ASTs. However, this

does not ultimately affect our attack’s effectiveness, as during

our exercising process every extension is tested against all

mouse and keyboard action templates. These templates were

generated based on the results of the static analysis process

as well as the corresponding developer documentation for

completeness. As such, our dynamic extension exercising

provides a comprehensive assessment and is not affected by

issues during the generation of a given extension’s AST.



8 Related Work

Users’ increasing demand for online privacy, which resulted

in significant efforts by the community and browser vendors

for preventing cookie-based tracking, has also led to the emer-

gence of stateless tracking and browser fingerprinting tech-

niques. A large body of prior work has explored various as-

pects of browser fingerprinting and demonstrated the feasibil-

ity of such techniques [14,15,18,20,23,25,30,31,37–39,52].

More recently, extension fingerprinting has caught the

attention of the research community as a new fingerprinting

vector. Over the last few years, several works have explored

extension fingerprinting, proposed various extension enumer-

ation techniques and countermeasures, and demonstrated how

the users’ list of installed extensions can enable the inference

of sensitive user information [26, 29, 32, 43, 44, 47, 48, 50, 51].

In one of the first works in the area of extension finger-

printing, Sjösten et al. [44] demonstrated how websites can

detect the presence of extensions in the user’s browser based

on the Web Accessible Resources (WARs) that these expose.

Gulyas et al. [26] used the WAR-based technique from [44]

and conducted a large-scale study on the uniqueness of users

that visited their website. They found that they can uniquely

identify 54.86% of the users that have at least one extension

installed. In a different line of work, Sanchez-Rola et

al. [43], as well as Van Goethem and Joosen [51], proposed a

timing-based side-channel attack for detecting the presence of

extensions. Specifically, they issue a request for accessing an

extension’s non-existent resource and measure the time that

it takes for the browser to respond. The response takes longer

in the case where the extension is present, as the browser first

parses the manifest to determine if the resource is accessible.

The works that are most closely related to ours are those

that explore behavior-based extension fingerprinting. In

the first study in this area, Starov and Nikiforakis [48]

showed that extensions can be detected based on the

DOM modifications that they perform to the visited page.

Furthermore, by surveying 854 users, they also found that

many users tend to install unique sets of extensions, thus

becoming uniquely identifiable. Karami et al. [29] developed

Carnus, a framework that employs both static and dynamic

analysis for the generation of extensions’ behavioral-based

fingerprinting signatures in an automated fashion. Moreover,

they explored how the detection of extensions can lead to the

inference of sensitive information (e.g., ethnicity, religion).

Trickel et al. [50] proposed CloakX, a defense that

diversifies the extensions’ behavioral fingerprints to prevent

detectability. More specifically, it substitutes the injected

DOM elements’ identifiers and class names, while also insert-

ing random tags in the page as noise. However, this approach

cannot prevent detectability for the majority of extensions

that are fingerprinted by Carnus [29]. In another work, Starov

et al. [47] investigated whether the extensions’ behavior

and page modifications, that in turn make these extensions

fingerprintable, are needed for their intended functionality.

Similarly to Karami et al.’s [29], this work also accounts for

extensions that are fingerprintable due to the messages they

exchange. Finally, Laperdrix et al. [32] has recently proposed

an extension fingerprinting technique that detects extensions

based on the style sheets that these inject in the visited page.

Using this technique, the authors of [32] were able to uniquely

identify 4,446 extensions, from which 1,074 (24%) have not

been fingerprinted by any previously proposed techniques.

All prior work only considered behaviors that extensions

exhibit automatically and by default did not take into account

the dynamic of user interactions. To the best of our knowl-

edge, our work is the first that incorporates user interactions

and attempts to actively trigger extensions’ functionalities,

aiming to make them exhibit fingerprintable behaviors.

9 Conclusion

More than a decade has passed since the seminal works of

Mayer [36] and Eckersley [20], and yet browser fingerprinting

remains an open problem. The fingerprinting of browser exten-

sions is particularly concerning since, in addition to offering

bits of entropy, they also reveal sensitive personal and socioe-

conomic characteristics of the users who chose to install them.

In this paper, we drew attention to a limitation that has been

common to all prior research on the fingerprinting of browser

extensions. Namely, we showed that prior work has ignored

the aspect of users interacting with browser extensions and

how these interactions can be abused to fingerprint extensions.

Through the use of static and dynamic analyses, we were

able to take advantage of user interactions to fingerprint 4,971

extensions, including more than a thousand extensions that

remained invisible to prior fingerprinting methods. Moreover,

we demonstrated that due to developer error, the majority

(67%) of extensions that are triggered by mouse or keyboard

events can be fingerprinted via artificial user actions that the

page itself can generate, as opposed to requiring a user’s

unwitting help. Finally, to at least partially ameliorate this

common developer mistake, we proposed a tool that can add

appropriate event-provenance checks wherever they are miss-

ing. We hope that future research into browser fingerprinting

will take user-interactions into account, both in terms of an at-

tacker’s capabilities, as well as in proposed countermeasures.
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A Appendix: Extension Statistics

Here we present additional details and statistics about the

extensions detected by our system.
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Figure 5: Categories of extensions for the corresponding

datasets.

In Figure 5 we present the main category types of the

detected extensions. The most popular category is that of

“Productivity" with ≈ 40% of the extensions of each dataset.

The next most popular category is “Fun" with ≈ 15% of the

extensions. Also, ≈15% of the extensions are categorized

as “Developer Tools” and “Accessibility”.

Figure 6 reports the total number of installations for the

extensions of the three datasets in our analysis. As can be

seen, 50% of the extensions of the D1 and D2 have at least

100 downloads, while half of the extensions of D3 have

approximately 1,000 downloads. Moreover, 10% of the

extensions of all datasets are installed by 10,000 users, and

the most popular extensions have over 2 Million users.

Figure 7 reports the category types of the extensions that

are fingerprintable by our techniques. Similarly to the overall

0

0.25

0.5

0.75

1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

E
x
te

n
s
io

n
s
 (

C
D

F
)

Installations (logscale)

D1 D2 D3

Figure 6: Number of installations for all the extensions in our

datasets.
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Figure 7: Categories of extensions that are fingerprinted by

our system.

breakdown of extensions as shown Figure 5, “Productivity”

and “Fun” are the most common categories for vulnerable

extensions. Also, ≈15% of the vulnerable extensions catego-

rized as “Search Tools” and ≈10% are under the category of

“Accessibility”. Finally, the least popular category is “Social

Media”. One difference compared to the overall distribution

of extensions found in Figure 5, is that of “Developer Tools”

which are less likely to be fingerprintable.



B Appendix: Countermeasure

Listing 3 shows an example of our proposed countermeasure

tool for automatically injecting event-provenance checks in

extensions’ source code.

1 // All the mouse and key events

2 Events = new Set(['click', <...>])

3 orig = EventTarget.prototype.addEventListener;

4 EventTarget

.prototype.addEventListener = function(){

5 if ( Events.has(arguments[0]) ){

6 let handler = arguments[1]

7 arguments[1] = function(){

8 let event = arguments[0];

9 //event's origin

10 if (event.isTrusted == false)

11 return;

12 else

13 return handler.apply(this,arguments)}}

14 return orig.apply(this, arguments);}

Listing 3: Code for verifying events’ origin by overriding the

addEventListener function.
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