Unleash the Simulacrum:
Shifting Browser Realities for Robust Extension-Fingerprinting Prevention

Soroush Karami*f, Faezeh Kalantari**, Mehrnoosh Zaeifi*,
Xavier J. Maso®*, Erik Trickel*, Panagiotis Ilia®, Yan Shoshitaishvili*, Adam Doupé*, and Jason Polakis™

TUniversity of Illinois at Chicago, { skaram3, pilia, polakis } @uic.edu
*Arizona State University, {faezeh.kalantari, mzaeifi, xmaso, erik.trickel, yans, doupe } @asu.edu

*_
Joint first authors.

Abstract

Online tracking has garnered significant attention due to the
privacy risk it poses to users. Among the various approaches,
techniques that identify which extensions are installed in a
browser can be used for fingerprinting browsers and tracking
users, but also for inferring personal and sensitive user data.
While preventing certain fingerprinting techniques is relatively
simple, mitigating behavior-based extension-fingerprinting
poses a significant challenge as it relies on hiding actions that
stem from an extension’s functionality. To that end, we intro-
duce the concept of DOM Reality Shifting, whereby we split the
reality users experience while browsing from the reality that
webpages can observe. To demonstrate our approach we de-
velop Simulacrum, a prototype extension that implements our
defense through a targeted instrumentation of core Web API
interfaces. Despite being conceptually straightforward, our im-
plementation highlights the technical challenges posed by the
complex and often idiosyncratic nature and behavior of web
applications, modern browsers, and the JavaScript language.
We experimentally evaluate our system against a state-of-the-
art DOM-based extension fingerprinting system and find that
Simulacrum readily protects 95.37% of susceptible extensions.
We then identify trivial modifications to extensions that enable
our defense for the majority of the remaining extensions.
To facilitate additional research and protect users from
privacy-invasive behaviors we will open-source our system.

1 Introduction

The modern web has permeated numerous aspects of our
everyday lives and, thus, reshaped how we conduct many
sensitive and critical operations. At the heart of users’ online
experience lie web browsers, mediating a wide range of
sensitive communications and activities. Unfortunately, while
browsers are a portal to limitless potential, their rich set of
features and complex functionality can also enable or facilitate
privacy-invasive behaviors [13, 18,28,31,36,60]. As a result,
in recent years web tracking has garnered significant attention
from researchers and practitioners alike.

Due to the stateless nature of the HTTP protocol, web track-
ing has traditionally relied on the presence of cookies. However,
with users becoming more privacy-cautious and browsers
continuing to deploy anti-tracking defenses that hinder cookie-
based tracking [22, 62, 67], trackers have also evolved accord-
ingly. In fact, a wide range of techniques have been demon-
strated by researchers or found in the wild; from “supercookies”
and “evercookies” (e.g., using HSTS policies [61], internal
storage [8], or favicons [55]) to DNS-based trickery [10,19,30],
these techniques highlight the feasibility and creativity of
tracking techniques that bypass existing defenses. While
browsers may gradually adapt and prevent such emerging tech-
niques, one of the most alarming modern approaches is that of
browser fingerprinting. Prior research has demonstrated many
browser fingerprinting vectors targeting underlying system and
hardware characteristics [9,12,16,21,23,24,32,33,41-44,65].
Additionally, a more recent line of research has focused on how
installed browser extensions can be used for fingerprinting and
tracking, as each user will install a unique set of browser ex-
tensions. To make matters worse, installed extensions carry se-
mantic information that can be used to infer sensitive user traits
such as religion, sexual orientation, and medical issues [29].

Prior studies have proposed mitigations that target different
aspects of extension fingerprinting, namely preventing
techniques that target Web Accessible Resources (WARs) [50],
stylesheets (CSS) [34], and node attributes [63]. However,
no existing defense can effectively prevent DOM-based
fingerprinting [29], since many extensions intentionally
modify pages in varied and diverse ways and these changes can
be uniquely identifiable. Essentially, the root cause of behavior-
based extension fingerprinting is that any JavaScript running
in the context of the web page can see all the changes and
modifications that the installed extensions make to the page.

In this paper, we address the root cause of this robust fin-
gerprinting technique, by approaching the problem from a
fundamentally different perspective. We propose the notion of
DOM Reality Shifting, wherein we split the reality that a user ex-
periences when browsing a page from the reality that the page
can actually observe. By separating the page’s DOM, the user

sees the changes that an extension makes to the page, while the
page’s JavaScript cannot see those changes. In more detail, we
create a Parallel DOM in addition to the User DOM, and medi-
ate access such that extensions query, edit and interact with the
User DOM while page JavaScript is limited to interacting with
the Parallel DOM. While DOM Reality Shifting is conceptu-
ally straightforward it is fundamentally effective against DOM-
based behavior fingerprinting, yet correctly implementing it
requires handling a myriad of JavaScriptidiosyncrasies, corner-
cases and real-world complexities that can undermine the secu-
rity of such a system or the functionality of web applications.
To demonstrate the feasibility of our approach we develop a pro-
totype extension called Simulacrum that implements DOM Re-
ality Shifting without the need to change the browser, through
a targeted instrumentation of Web API interfaces.

To assess the practicality of our approach we experimentally
evaluate Simulacrum across multiple dimensions. First, we
demonstrate our system’s effectiveness by deploying it against
a state-of-the-art automated DOM-based fingerprinting sys-
tem [29]. Out of 5,793 fingerprintable extensions our system
effectively hides the presence of 95.37% of the extensions. We
then measure the overhead introduced by our defense and find
that it is less than 390ms for half of the websites and ~895ms
on average. Finally, we manually assess how Simulacrum
affects extensions’ and websites’ functionality and find that
all extensions remain unaffected, while major and minor
breakage occurs in 12% and 10% of sites respectively. To avoid
breakage, our extension’s users can allowlist trusted sites.

In summary, our research contributions are:

* We introduce the concept of DOM Reality Shifting, which
fundamentally addresses the root cause of DOM-based
browser extension fingerprinting. Simulacrum, our
prototype extension, significantly limits extension
fingerprinting without modifying the browser, thus
allowing for immediate and widespread adoption.

We experimentally evaluate Simulacrum’s defensive and
performance impact, and demonstrate that our system ef-
fectively protects extensions while incurring a negligible
performance overhead and limited website breakage.
We present guidelines for extension developers that
allow them to eliminate problematic fingerprintable
behaviors without affecting the extension’s functionality.
These guidelines require straightforward changes that
are trivial to implement, and can contribute to completely
eliminating DOM-based fingerprinting.

To further reproducibility in science, we make the source
code of our system as well as the list of all domains and
extensions used in our experiments available [4].

2 Background and Threat Model

Browser fingerprinting relies on extracting unique attributes
of the user’s browser and device. Among those, the list
of installed browser extensions can be coupled with other

information to build reliable fingerprints. Browser extension
fingerprinting is indeed a real-world threat, as LinkedIn was
found trying to detect 38 different extensions [47].

Extensions rely heavily on the JavaScript language
and customize web pages by modifying the page’s DOM.
An invasive web page can observe this behavior (i.e., the
modifications made to the page’s DOM) and use it to construct
a set of behavior-based fingerprints (i.e., signatures). When a
user visits the page, the invasive page can use the fingerprints
and the changes made to determine the extensions the user
has installed. Since the extension modifies the page’s DOM,
effectively hiding the extension’s behavior from the page
without breaking the page’s functionality is a challenging
problem that prior defenses failed to truly address [29].

Threat model. We assume the attacker controls a specially
crafted web page or iframe that implements DOM-based
fingerprinting to uncover the extensions installed in the user’s
browser. In a nutshell, DOM-based fingerprinting relies on
JavaScript that leverages the Web API [38] for direct read
and write access to the DOM; by observing and interacting
with it, the attacker can deduce which extensions are installed
based on how the extensions modify the DOM. We note that
social engineering attacks that trick the user into divulging
which extensions they have installed (e.g., following a similar
strategy to [66]) and side-channel attacks (e.g., timing-based)
are considered out of scope for our defense.

Browser extensions. Users install extensions in their
browsers to expand the browser’s functionality and improve
their browsing experience [17]. Extensions offer such features
via a bundle consisting of HTML, CSS, JavaScript code, and
a configuration file called the manifest.

Security model. To reduce the threat of malicious pages
compromising browser extensions [45, 56], browsers employ
privilege separation for extensions. Specifically, extensions’
background scripts have powerful privileges but do
not have access to the DOM, and extensions use content
scripts to access the DOM, which lack the extension’s full
capabilities. Although content scripts have full access to
the DOM, they donotruninthe website scripts’ execution
environment. That is, neither website scriptsnorcontent
scripts are able to directly access one another because each
runs in its own isolated world, while sharing the same DOM.

DOM-based fingerprinting. Due to the sharing of the DOM
across the isolated worlds, invasive pages can construct DOM-
based fingerprints by observing the extension’s modifications
to the page’s DOM [59]. Prior work [29] has demonstrated
how an attacker can automatically construct an extension’s
fingerprint by capturing the extension’s DOM modifications
that alter specific fields (e.g., username, password), DOM
elements (e.g., images), or text keywords. Then, when a
victim visits a specially crafted web page that contains a
comprehensive set of elements and features, the fingerprinting
framework can compare the DOM modifications to the
previously captured fingerprints to identify the extension.

JavaScript uses prototypes to share properties (values
and functions) and define hierarchical relationships between
objects. Prototype-based languages do not use classes to
generalize the characteristics of a set of objects. Instead,
any object can share its properties with others as part of its
prototype chain [37].

Prototypal inheritance. Effectively, the prototype chain de-
scribes the inheritance hierarchy of an object, and is used when
code tries to access an object’s attribute. During execution,
JavaScript looks for the attribute within the object itself, and
returns the attribute if found. Otherwise it recursively searches
the prototype chain until it finds (and returns) the attribute or
reaches the end of the chain (and returns undefined).

Function overriding. JavaScript can dynamically update
properties of existing objects. Programmers leverage this
behavior to wrap existing functionalities and customize their
behavior. Additionally, JavaScript can override the getter
and setter functions of a prototype’s properties to customize
prototype modifications themselves. In the Appendix we
provide code detailing how Simulacrum overrides prototype
values and functions, including getters and setters.

3 DOM Reality Shifting with Simulacrum

We present Simulacrum, a novel countermeasure against DOM-
based extension fingerprinting. Here, we provide an overview
of our design and the techniques employed by our system for
hiding the presence of extensions from malicious or invasive
webpages. The core strategy behind our defense is to create a
split reality between what a user experiences when browsing a
page and what the page can actually observe. Specifically, Sim-
ulacrum hides the artifacts created by extensions modifying the
DOM by creating an alternate reality for the page that does not
include any of the DOM modifications of installed extensions.
The user’s reality includes not only the page but also all DOM
modifications performed by extensions, thus offering users the
same browsing experience with enhanced privacy protections.

DOM reality shifting. Simulacrum places the webpage
JavaScript in a parallel reality that does not contain extensions’
DOM fingerprints by creating a simulacrum of the User DOM
that omits the extensions’ DOM-fingerprints, the Parallel
DOM, and routing all the webpage’s DOM requests to the
Parallel DOM. To isolate the altered reality, Simulacrum
prevents the webpage from accessing the User DOM, the
browser-created DOM that the user sees and that contains
all the modifications made by the webpage and the user’s
extensions. In addition, Simulacrum maintains the webpage’s
altered reality by mediating all access to and ensuring
consistency between the two DOMs.

Modification mirroring. Simulacrum replicates changes
between the User and Parallel DOMs depending on the origin
of the request. For modifications originating from the website
or user input, Simulacrum replicates the modifications in the

Parallel DOM. However, Simulacrum limits modifications
made by an extension to the User DOM.

Query routing. Simulacrum automatically routes queries
to either the User or Parallel DOMs depending on the query’s
origin. When an extension requests access to the DOM, it
automatically accesses the User DOM. However, when the
webpage accesses the DOM, our system seamlessly routes
the request to the Parallel DOM. As a result, the website is
unable to detect DOM-fingerprints left behind by extensions
because in the website’s DOM reality the extension’s changes
simply do not exist and, thus, no fingerprintable artifacts are
left behind by the extensions’ functionality.

Interception. Simulacrum controls all requests and per-
forms the necessary replication functionality by wrapping the
DOM interface with an intelligent router. We achieve this by
being the first script to execute and overriding the appropriate
DOM interfaces before the website’s JavaScript executes.

4 System Implementation

This section covers Simulacrum’s implementation details and
the technical challenges that it addresses to effectively achieve
DOM Reality Shifting. Here, we use the following notation: e
refers to a JavaScript object of type (i.e., respecting the inter-
face) Element, and n refers to a JavaScript object of type Node.

4.1 Primitives

Creating the Parallel DOM. To preserve compatibility, the
Parallel DOM created and maintained by Simulacrum must
include every aspect of the User DOM except for the DOM
modifications introduced by the user’s extensions. Simulacrum
instantiates the Parallel DOM by cloning the User DOM after
itreceives the DOMContentLoaded, which is triggered by the
browser after it finishes loading and parsing the page’s HTML
and without waiting for the stylesheets, images, and subframes
to load. Simulacrum maintains the Parallel DOM throughout
the page’s life cycle by continually (1) ensuring the Parallel
DOM’s consistency with the User DOM and (2) preventing the
propagation of extension-driven changes to the Parallel DOM.

Equivalent elements. Propagating DOM modifications
between the User and Parallel DOMs requires a method for
accurately mapping equivalent elements across them. We
create this mapping using id attributes, which are unique
within a Document [14]. That is, for an element with an id
value of "node_id" in the User DOM, Simulacrum calls
parallelDOM.getElementById ("node_1id") to access the
equivalent element in the Parallel DOM. When DOM elements
lack an id attribute, we assign them a unique random value
before creating the Parallel DOM. In addition, we handle
elements created after the Parallel DOM is instantiated. To
handle this, Simulacrum wraps functions that create new
DOM elements (e.g., document.createElement ()) with
logic that assigns them a unique 1d.

Simulacrum implements a function, getEquivalent (e),
to return the element equivalent to e from the other DOM.
First, the function checks whether the provided e originates
from the User DOM or Parallel DOM; if e does not originate
from either (i.e., e is not attached to either DOM), the
function returns e. Next, if the id of e exists in both DOMs,
then the function returns the element with the same id
(i.e., the equivalent element) from the non-originating
DOM. Otherwise, the function returns null. In practice,
websites might use the same ID for multiple elements. If the
getEquivalent () function detects non-unique IDs, it uses
querySelectorAll ("[id='node_id’ ") to get the list of
all elements with id='node_id’. Then, if the element is
the i-th element with node_id in one DOM, the equivalent
will be the i-th element with node_1id in the other DOM. For
simplicity, in the remainder of this paper we will only mention
getElementById for finding equivalent elements.

Cloning. The standard JavaScript method for making node
copies, cloneNode (), does not copy custom properties or
the source object’s event listeners. To fix the limitations of
cloneNode (), Simulacrum uses a custom deepClone () func-
tion. After making a clone with cloneNode (), deepClone ()
uses Object.keys () to get all the custom properties and
transfer them one by one to the cloned node.

Unfortunately, JavaScript does not provide an API for
accessing the list of all event listeners for each node. The
Element and HTMLElement interfaces provide APIs for setting
and getting event listeners (such as HTMLElement .onclick),
and deepClone () uses these APIs to check for and clone event
listeners on the node. However, JavaScript does not provide
a direct way for accessing the event listeners that are set using
EventTarget.addEventListener (). Simulacrum over-
rides this function to intercept all invocations of it and collect
(and, later, clone) the event listeners that are set for each node.

Referencing original functions. Simulacrum needs access
to the original versions of the functions it overrides to affect
its operations on the DOMs. Before overriding them, we store
the methods and functions of these interfaces in a hash table
(accessible only by the Simulacrum content script).

4.2 DOM-accessing APIs

The DOM APl is incredibly complex, comprised of hundreds
of interfaces and thousands of functions. However, we only
need to override APIs that have either read or write access to
the DOM; Simulacrum wraps the original functions with logic
to restrict the webpage’s access to the User DOM.

Read access. Simulacrum wraps functions to ensure that
JavaScript code run by a webpage reads from the Parallel DOM.
For example, Element .querySelector () has read access
to the DOM, and we override it to query the parallel DOM.

Write access. Simulacrum wraps functions with write
access. The write access wrappers apply the necessary DOM
modifications that originate from website scripts to both DOMs

Websites

Figure 1: Most prevalent prototypes across top 10k websites.

and ensure that they are synchronized (i.e., consistent). For ex-
ample, Element .append (<newElement>) has write access
and the wrapper appends <newElement> to both DOMs.

Identifying APIs. While Document, Element and Node are
obvious items to be added to our overriding list, an automated
and systematic approach was necessary for identifying other
commonly used interfaces to read from or write to the DOM.
We developed a Chrome extension, called Visibleds, that
records all function invocations that occur during the execu-
tion of JavaScript code on a page. VisibleJS overrides all
the functions implemented by JavaScript and logs the func-
tions each time the page’s code invokes them, using the code
shown in Listing 3 (Appendix). For each function invocation,
VisibleJS analyzes the arguments, returned value, and re-
ceiver. If at least one of those is an instance of Node or a DOM-
related object (e.g., DOMTokenList and DOMStringList),
then it records the function as one with access to the DOM.

Inspired by prior approaches on quantifying the prevalence
of browser features [54], we chose to use the 10K most popular
sites (according to the Alexa ranking) to determine commonly
used interfaces. We use Selenium, ChromeDriver, and
VisibledsS to capture the functions used by each site that ac-
cess the DOM. Figure 1 shows the number of websites that use
at least one function of the 30 most popular interfaces. Overall,
our experiment uncovered a total of 135 interfaces (and 1,532
functions) that interacted with the DOM among the top 10K
websites. However, as one might expect, not all interfaces are
equally popular, as more than half (70) of the interfaces are
used by less than 1% of the websites. Balancing the popularity
of the functions and the effort required for manually overriding
each function, we decided to override the 75 most popular
interfaces. In addition, we override all interfaces that inherit
from the Node interface (some of them are not used by the top
10K websites). In total, Simulacrum overrides 156 interfaces.

Visible]S lead us to certain interesting findings, which
shed light on the intricacies and complexities of the DOM
APD’s interfaces. For instance, we found it surprising that
XMLHt tpRequest interacts with the DOM. XMLHt tpRequest
is a commonly used interface for interacting with servers.
However, XMLHttpRequest’s responsexXML argument
returns an object that implements the Document interface and
can then be appended to the DOM.

4.3 Function Overriding

Here, we detail the processes Simulacrum employs for overrid-
ing read and write functions available through the DOM APIL.
Categorization. We first categorize functions depending on
their type of DOM interactions. Table 5 (Appendix) displays
different function examples for each category with their over-
ridden counterpart. We provide simplified versions of the ac-
tual call invocations throughout the text to improve readability.
Simple getter. This category of functions returns
static information about the DOM. For example,
document .getElementsByTagName ('div ') returns all the
div elements of the DOM, and e.hasAttribute ('src')
returns true if the object e has a src attribute. Sim-
ulacrum overrides these functions so they return the
result of their execution on the parallel DOM. Ac-
cordingly, it replaces the examples given above with
parallelDOM.getElementsByTagName ('div') and
parallelDOM.getElementById(e.id) .hasAttribute('src').

Active getter. This category of functions cannot be executed
on the Parallel DOM. For example, e. scrollTop returns the
number of pixels that the element’s content is scrolled verti-
cally. However, since the Parallel DOM is not visible to users,
this value will always be zero for any element tested. As such,
for this type of function we first check if e has an equivalent
in the Paralle]l DOM (thus ensuring that it was not the product
of an extension), and then run this function on the User DOM
to obtain the appropriate value that should be returned.

As another example, document .activeElement returns
the element in the DOM that currently has focus. Since the
Parallel DOM is not visible, its elements cannot have focus.
Thus, we run this function on the User DOM and return the
equivalent element on the Parallel DOM. If the element that
is currently focused was created by an extension, we return its
first ancestor not added by an extension (i.e., its first ancestor
that has an equivalent in the Parallel DOM).

Simple setter. Functions in this category modify the
structure of the DOM or a node’s attribute. To replicate such
DOM modifications, we run the function on both the function
receiver and the equivalent of the receiver. For instance,
when a webpage’s script invokes e.innerHTML = "text",
the wrapper checks that the id exists in the Parallel DOM.
If it does exist, then the wrapper sets the innerHTML of e
and its equivalent object. For example, if the Parallel DOM
owns e, then the wrapper runs e. innerHTML = "text" and
document.getElementById(e.id) .innerHTML="text".

Active setter. Functions in this category do not directly
modify the DOM. As such, we simply direct these to the
User DOM. For example, e.requestFullscreen () results
in the element being displayed in full-screen mode. The
wrapper for this function first checks the element’s owner
document. If the owner document is the Parallel DOM, we find
its equivalent element in the User DOM and run this function
on it. Otherwise, we simply execute the function.

Forwarding arguments. It is important to note that any of
the functions in the mentioned categories might have argu-
ments. Almost all arguments can simply be passed to the corre-
sponding functions. However, if an argument is a DOM object
(an object of type Node, Element, etc.), the wrapper might
need to invoke the function with the equivalent of arguments.

For instance, parentNode.insertBefore (newNode,
refNode) inserts the newNode before the refNode, which
is a child of parentNode. In this case, Simulacrum uses the
overriding strategy used for the simple setter category. That
is, it runs this function two times, once for parentNode and
once for its equivalent one. Unlike the simple setter category,
the insertBefore function receives two DOM objects as
arguments and, as a result, the wrapper locates and passes the ar-
guments equivalentNewNode and the equivalentRefNode.
While the wrapper uses getEquivalent (refNode) to find
the equivalent version of refNode, the newNode does not have
an equivalent node because it is not connected to a DOM yet.
Thus, the wrapper creates a deepClone () of newNode and
uses that for equivalentNewNode.

Interfaces of the DOM API. The DOM APl is structured
around different Interfaces effectively grouping JavaScript
objects with common state and behavior together. Note that
all objects in JavaScript are instances of the Object class,
which is on the top of the prototype chain. For the interested
reader, Figure 6 (Appendix) shows a partial representation of
the DOM API with some of its interfaces.

Node interface. Every node of the DOM tree is rep-
resented by an object of type Node, which also includes
any interfaces inheriting from it (notably Attr, Document,
Element [14]). The Node interface describes properties (e.g.,
nodeName, parentNode) and methods (e.g., cloneNode (),
normalize ()) that are shared amongst all DOM objects [14].
We wrapped 14 properties and 15 methods in Node’s prototype.

Document interface. This interface represents the result of
parsing the page, and grants access to the DOM. It describes
the common properties (e.g., title, bgColor) and methods
(e.g., querySelector (), createElement ()) for any kind of
document [14]. We note that this interface exposes properties
for setting event handlers (e.g., onclick,) [14]; these are in
the active setter category, and we set these event listeners in the
User DOM. In practice, the User DOM fires the events because
the Parallel DOM is in the background. During the execution
of callback functions from event handlers, as with any other
JavaScript function, Simulacrum applies modifications to both
the DOMs. The Document interface also allows the creation
of specific DOM objects [14]. In particular, Simulacrum needs
to wrap the createElement (), createElementNS (), and
createDocumentFragment () methods to forcefully assign
a value to the id attribute of new elements created through
this interface (see §4.1). Finally, createTreeWalker ()
and createNodeIterator () instantiate objects that help
JavaScript perform DOM traversal [14]; Simulacrum uses
the simple getter strategy to prevent them from reading

the User DOM. More specifically, Simulacrum’s wrapper
for document.createTreeWalker (root) converts it to
parallelDOM.createTreelalker (equivalentRoot).
This limits the webpage’s access to the Parallel DOM. In the
end, we override 264 properties and 40 methods.

Element interface. All elements in the DOM inherit a set of
methods and properties common to all types of elements from
Element. As shown in Figure 6, each element object derives
from either HTMLElement or SVGElement. Both of them
count several descendant interfaces: 72 for HTMLElement,
and 71 for SVGElement [14]. HTMLElement serves as the base
interface for HTML elements. Some elements directly derive
from this interface, while others implement this interface
using another interface that inherits it. For example, <footer>
elements directly implement HTMLElement, while <video>
elements implement HTMLVideoElement, which inherits
from HTMLMediaElement, which inherits from HTMLE lement.
Additionally, all the SVG elements of the SVG language
inherit the SVGElement interface. Simulacrum wraps all
the methods and properties of the Element interface and its
descendants with an appropriate overriding strategy. To that
end, we manually analyzed all 1,532 methods and properties,
so as to choose the correct overriding strategy for each case.

Observer interfaces. The Web APIs provide different ob-
servers allowing JavaScript executed in the browser to observe,
be notified, and react (using callback functions) to updates in
the state of DOM objects. Simulacrum needs to override three
observers: ResizeObserver, IntersectionObserver and
MutationObserver [14,15,68]. Listing 4 (Appendix) gives
examples that demonstrate the three observers.

ResizeObserver interface. Objects of this interface monitor
changes to the size of elements (size may change for various
reasons, such as changes in the size of the browser window).
The ResizeObserver’s constructor receives a callback
function. Each time the size of an observed element changes,
the browser notifies the observer by executing the provided
callback function. The observe method starts the observation
of the specified element and identifies the target of interest.
We use the active setter strategy for overriding the observe
function. That is, Simulacrum prevents a webpage from
observing an element that does not exist in the Parallel DOM.

IntersectionObserver interface. This interface provides
the ability to observe changes in the intersection of a
target element with another object called the roor. The
IntersectionObserver’s constructor receives a callback
and an optional configuration variable which, when provided,
defines the root. The root descends from a specific target
or the viewport. If the constructor does not include the
configuration argument, the observer assigns the viewport
as the root. Simulacrum wraps two functions: first, the
IntersectionObserver’s constructor to configure a proper
root for its object. To do so, the wrapper checks that the config-
uration argument contains a root and that it exists in the Parallel
DOM. If so, it uses userDOM.getElementById(root.1id)

to replace the root with the one from the User DOM. Second,
we wrap the observe function using the active setter strategy,
which prevents pages from using this API to detect extensions.

MutationObserver interface. This interface allows
scripts to observe changes made to the DOM. The
MutationObserver’s constructor receives the callback
function. The observe method receives the target node and
the observer configuration. The configuration determines the
types of DOM changes the observer will react to. For example,
by passing a configuration with childList: true and
subtree: true, the observer triggers the callback for DOM
modifications that change the list of children attached to the tar-
getnode or the nodes in its subtree. The list of children changes
through the addition or removal of nodes. The observe
wrapper uses a slightly more complicated version of the active
setter strategy. The MutationObserver invokes the callback
when it observes modifications to the target node and the target
node’s descendants. For instance, if the target is the <html> ele-
ment, the observer receives notifications for new elements that
the browser appends to any location in the page. Subsequently,
the wrapper adds functionality to avoid invoking the callback
when an extension mutates the DOM. To that end, Simulacrum
overrides MutationObserver’s constructor to modify the
incoming callback. The callback modifications cause it to skip
DOM mutations originating from an extension and only invoke
the original callback for those DOM changes that originate
from the webpage’s scripts. Listing 5 in the appendix shows the
wrapper code. The wrapper replaces the original callback with
newCallback. The argument [0] for newCallback is an ar-
ray of mutation records observed by the MutationObserver.
The wrapper uses the filterMutations () function to filter
out the mutations caused by an extension. If any mutations
remain, the wrapper invokes the original callback with the
remaining webpage-only mutations.

The filterMutations() function operates based on
the attributes of each mutation’s record. For example,
if an extension appends a new <p> element to the User
DOM, mutation.type will be "childList", the value of
mutation.target will be the reference to the parent of the
<p> element (i.e., the element that it has been appended to)
and mutation.addedNodes refers to the <p> element. The
filterMutations () function then checks the Parallel DOM
for its equivalent of <p> and mutation.target. In this exam-
ple, since <p> is injected by an extension and is not a child of the
Parallel DOM’s version of mutation.target, the function
filters out the current mutation from the mutation array.

In another example, if one of the webpage’s script modifies
the src attribute of an element, the mutation.type
will be "attributes", the mutation.target will be a ref-
erence to the element, and the att ributeName will be
"src". Based onmutation.type, the filterMutations ()
investigates the attributes by comparing the src attribute of
the element with the src of its equivalent from the
non-originating DOM. In this case, it does not filter out the

current mutation out of the mutation array because the src
value from both DOMs are equal. Thus, the wrapper invokes
the original callback with the remaining mutations.

Other interfaces. We use an element’s id to find equiv-
alents in the two DOMs. Objects that do not implement the
Element interface and lack an id require a different approach;
the key observation for these objects is that they are connected
to an element. Thus, to find their equivalent we leverage the
element they are connected to. E.g., element.classList
returns an object that implements the DOMTokenList
interface, which has functions like add () for modifying
the object. When the page calls tokenList.add ("name"),
we also call equivalentTokenList.add("name") to
propagate this to the other DOM. Since tokenList does
not implement Element, we use element to find the
equivalent, and equivalentElement.classList to set
equivalentTokenList. Accessing the connected element
differs for different non-element objects. Some non-element
objects implement properties, for example ownerElement,
parentElement, or parentNode, which provide direct
access to the connected element. However, other objects
do not provide a direct mechanism for accessing their
connected element (e.g., DOMTokenList). For indirect cases,
Simulacrum automatically adds an owner element property
to these objects the first time they are called. For example,
element.classList.add("name") modifies the object
that is returned by element.classList. Indeed, the call
results in two API calls: 1) element.classList returns
a DOMTokenList, 2) tokenList.add("name") adds the
string to the list. In the wrapper function of classList, the
wrapper sets element as the owner element of the returned
DOMTokenList object. Therefore, in the add() function,
Simulacrum can get the owner element, which it can then use
to find the owner of non-element’s equivalent.

It is important to emphasize that knowing the owner
element is not sufficient for finding the equivalent object. In
addition to the owner element, Simulacrum needs to know the
function that was called for getting this object. For example,
the Element.classList, HTMLLinkElement.rellist, and
HTMLIframeElement.sandbox properties return an object
that implements the DOMTokenList. After finding the equiv-
alent owner element, we need to run the proper function to
get the equivalent non-element object. To do this, the wrapper
function stores the API call for accessing the object, which the
wrapper later uses to get the equivalent non-element object.

4.4 Additional Security Precautions

During our design and development process we accounted for
potential attacks against Simulacrum and incorporated appro-
priate defenses to prevent circumvention of our protections.
IIFE. As mentioned in §4.1, Simulacrum stores the original
version of all the interfaces in a hash table. If attackers are able
to access the original interfaces, they can replace the overrid-

den functions with the original ones and access the User DOM.
To prevent this attack, Simulacrum leverages Immediately-
invoked Function Expressions (IIFE) for isolating functions
and variables. That is, we encapsulate our system in an anony-
mous function that the JavaScript environment executes imme-
diately. In essence, this allows us to define our logic within an-
other function while the inner functions have access to the vari-
ables in the outer function’s scope. Using this approach Sim-
ulacrum has access to the global scope of the webpage but pre-
vents the webpage’s JavaScript code to access objects like the
hash table of original interfaces that are used by Simulacrum.

Position-based attacks. Simulacrum executes active getter
functions on the User DOM. While they cannot be executed
on elements injected by extensions, they can be used to get the
position of other elements. Since injected elements can affect
other elements’ position, attackers could potentially identify
installed extensions by observing changes in the positions
of elements. To prevent this, Simulacrum adds <div> and
 elements with random sizes at different locations
throughout the User DOM. Since these do not exist in the
Parallel DOM they are not visible to the websites’ scripts and,
thus, attackers cannot infer whether changes to the positions of
elements occur due to injections by extensions or the random
noise introduced by our system. It is important to note that
these noise elements do not really impact the user’s browsing
experience as they simply introduce empty spaces around
other elements (see Figure 8 in the Appendix).

While adding noise prevents attacks against extensions that
inject elements, this might not work for extensions that remove
elements. If an extension removes an element from the User
DOM, the element will not be removed from the Parallel DOM;
however, from the changes in the location of other elements an
attacker might be able to infer that extension’s presence. There
are two categories of extensions that remove elements from
websites. The first category is extensions that block scripts
which are responsible for creating elements (e.g., ad-blockers).
The second category includes extensions that explicitly
remove elements which are already connected to the DOM.
While Simulacrum cannot observe the behavior of the first
category, the behavior of the second category is DOM-based
and can be detected by Simulacrum. To that end, when an
element is removed by an extension, Simulacrum replaces the
removed element with another element of the same size; this
prevents changes to the location of other elements. We have
experimentally found that such extensions are very rare (only
59 fingerprintable extensions from §5 remove an element). As
such, Simulacrum only activates this defensive mechanism
against element removal when the user has one of these 59
extensions installed; in our prototype, this is done through a
hard-coded list but can easily be enforced based on a list that
is fetched from a server (similarly to EasyList [2]).

Order of execution. If the attacker’s code executes before
Simulacrum, they can access the original interfaces. To
prevent this, Simulacrum injects its script into the webpage’s

,,,,,,,,,, Simulacrum
run_at: document_start

i
Content 7" ,,,,,,,,,,,,,,,,,, Other extension
Script run_at: document_start

.................................... DOMContentLoaded
User DOM Parallel DOM

Figure 2: Different stages in a webpage’s lifecycle.

time
w &
2 2
o ®
& 3

E

i

execution context prior to DOM construction and before
the browser executes any other script. Simulacrum achieves
execution priority by setting run_at: "document_start"
in the extension’s manifest, which causes the browser to
execute the extension’s content scripts at the beginning of
DOM construction and before any of the webpage’s scripts.
In this way, we guarantee that the webpage cannot recover the
originals of the functions that we override by preemptively
executing before Simulacrum’s content scripts

However, when more than one extension sets run_at:
"document_start", the execution order is decided by the
browser, based on the order of their installation time: the
extension that was installed first will be executed before
later-installed ones [46]. To ensure its prioritization, Simu-
lacrum leverages the reordering technique proposed by Picazo-
Sanchezetal. [46]. This approach uses the management permis-
sion to change the order of extensions in the execution pipeline
by disabling and re-enabling them, resulting in these extensions
being treated as if they had been installed after Simulacrum.

Figure 2 shows the different stages of loading a website
when Simulacrum is present. The content script of Simulacrum
runs at document_start. At this point, the browser has not
started to parse the HTML page or construct the DOM. Sim-
ulacrum’s content script creates a head element and appends
its script to it. This script overrides the interfaces mentioned
previously and then removes the head element from the
page to prevent any conflict with the website’s head element.
Simulacrum reorders the execution pipeline of content scripts
and will be the first script that executes in the webpage.
Moving to the next area of the diagram in Figure 2, the browser
starts to construct the DOM. Right after constructing the
DOM, it fires the DOMContent Loaded and Simulacrum clones
the DOM to generate the Parallel DOM. From this point
forward, extensions’ fingerprints remain on the User DOM and
they will not be accessible by website scripts. Simulacrum’s
event listeners also fire before the webpage’s and the other
extensions. JavaScript orders the firing of event handlers based
on when the listener was set. That is, even if multiple scripts

set a listener for the DOMContentLoaded event, the browser
invokes the Simulacrum’s callback first (creating the Parallel
DOM) because it is the first script that set a listener for the
DOMContentLoaded event. In addition, JavaScript executes as
a single thread; therefore, Simulacrum’s event handler blocks
other events from firing until Simulacrum’s event handler
completes (i.e., there is no race condition).

iframes. Simulacrum uses the "all_frames": true man-
ifest file setting to inject its content scripts into all i frames
so that it can protect against fingerprinting by code running
in these iframes. However, due to browser implementation
subtleties, i frames with a blank or undefined src attribute
are not covered by the al1_frames setting. Thus, an attacker
can append <iframe id="ifrm"></iframe> to the DOM,
retrieve the original version of getElementById through the
ifrm.contentWindow.Document.prototype.getElementById
lookup chain, and bypass Simulacrum. To inject Simulacrum’s
content scripts into such iframes (as well as i frames with
src attributes of javascript:* or about:*), Simulacrum
includes "match_about_blank": true inits manifest. This
setting successfully injects the content scripts into all 1 frames.
Interestingly, this bypass vector has been overlooked by some
previously proposed countermeasures (e.g., [34]).

Another iframe-related circumvention can occur when
fingerprinting code running in the parent page of an iframe
exploits a race condition between the time points when an
iframe is created and when Simulacrum’s scripts override its
DOM. The resulting attack is identical to the previously-stated
lookup chain, depending on quick access to the original
elements. Though this was reported in 2017 [52], it was
never fixed, and popular privacy extensions (e.g., Privacy
Badger [3]) are vulnerable to this attack. We prevent this attack
by blocking all accesses to the i frame’s contentWindow and
contentDocument from the parent page before Simulacrum
has wrapped the i frame’s functions. To that end, the wrappers
of contentWindow and contentDocument check Simu-
lacrum’s execution state inside the i frame; if it has completed,
they return the function’s result or undefined otherwise.

Overriding prototypes. The overriding approach
from [49] would allow attackers to delete functions and revert
them to the original function pointers. To prevent this and
protect objects the authors used Object.freeze after the
virtual machine layering process. In Simulacrum, as shown in
Listing | (Appendix), we override prototypes and not objects.
Our approach has two advantages; first, deleting functions will
not revert them to the original ones. Second, since functions
are not frozen, Simulacrum allows websites and extensions
to wrap functions (i.e., they can add another layer on top of
ours) which allows them to maintain their functionality.

5 Experimental Evaluation

Here we present a comprehensive evaluation that explores
multiple dimensions of Simulacrum’s performance.

Simulacrum’s effectiveness. As our main goal is to
mitigate browser extension fingerprinting that leverages
DOM-based modifications, we need a robust and accurate
fingerprinting system to evaluate our approach. To that end, we
leverage the code and dataset of Carnus [29], as it is the only
proposed system that automatically generates unique signa-
tures that identify extensions based on their DOM interactions.
While Carnus has modules for different types of extension tech-
niques (e.g., detecting Web Accessible Resources) we focus on
the DOM-based module. To account for the dynamic nature of
extension behavior and to improve robustness, Carnus requires
at least 90% of a fingerprint to match the DOM modifications
to infer that an extension is installed. In their experiments,
Karami et al. [29] reported 5,793 extensions being detected
by Carnus based on their DOM-based fingerprints. To test the
effectiveness of our proposed countermeasure, we replicate
that experiment using the exact dataset of extensions. We use
Selenium to open a fresh browser installed with Simulacrum.
We then, using each of the 5,793 extensions installed, direct
our browser to the website running Carnus’ honeypage that
will attempt to detect the extension. We find that Simulacrum
is highly effective as it successfully prevents Carnus from
detecting 5,553 (95.86%) of the extensions. In comparison,
CloakX [63] could only protect up to 751 (12.96%) of these
extensions [29] by randomizing a subset of node attributes.

Partial fingerprints. We further explore the effect of our
defense and investigate extensions that Carnus is not able
to detect, and find that certain extensions manage to inject
a subset of their fingerprints in the Parallel DOM. This can
occur due to various behaviors which we analyze over the
following paragraphs, and Carnus does not detect them as it is
not able to reach the 90% threshold required for identifying the
extensions. Nonetheless we further assess the robustness of
our defense by training Carnus on these partial fingerprints to
examine whether it is able to identify any of these extensions.

To find extensions that partially inject fingerprints into the
Parallel DOM, we modify Carnus to calculate the percentage
of fingerprints that are injected into the Parallel DOM. This
allowed us to identify 37 extensions with partial fingerprints.
Our analysis reveals that the partial fingerprints of 28
extensions are unique enough within the entire collection of
extensions fingerprints to identify those extensions. Therefore,
a total of 268 extensions remain fingerprintable against
Simulacrum, which amounts to only 4.63% of the extensions.
Next we further explore the underlying reasons that lead to
extensions not being protected by Simulacrum.

Document_start. We conducted an experiment on the 268
fingerprintable extensions to identify those that modify the
DOM before the DOMContentLoaded event, which results
in their fingerprints being included in the Parallel DOM.
To that end, we installed each extension separately and
visited the honeypage, taking a snapshot of the DOM at the
DOMContentLoaded event, which we compared to the unmod-
ified DOM. We find that 245 (4.22% overall) extensions make

modifications before DOMContentLoaded as they are config-
ured to run their content scripts at document_start, and alter
the DOM before the construction of the Parallel DOM.

Next we evaluated the necessity of running the content script
at document_start for extensions that modify the DOM be-
fore the DOMContentLoaded event. To that end, we randomly
chose 20 extensions (that are in English and have at least 1k
users) out of the 240 extensions, and modified the run_at
attribute value in their manifest file from document_start
to document_idle. We found that 19 extensions maintained
their functionality despite our modification. Only one exten-
sion did not fully operate after the modification, which we
believe was due to improper design patterns. Specifically, the
developer of this extension implemented a non-critical logic
at DOMContentLoadedEvent’s event handler and because we
inject the code at document_idle, it does not work properly.

Injected scripts. While extensions have direct and full
access to the DOM and are able to make all necessary DOM
modifications through their content scripts, developers may
decide to inject a <script> element into the page to make
DOM modifications. To further explore this, we modify the
268 extensions to prevent them from running their content
scripts at document_start. To achieve this, we replaced
document_start with document_idle in the manifest file
and background script. Second, we created another browser
extension to identify <script> elements injected into the
DOM. Third, we installed each modified extension besides
Simulacrum and the new extension for collecting injected
<script> elements and visited the Carnus honeypage; if we
observe any injected <script> element we can conclude that
it was injected by the extension. Finally, we identify if this
injected <script> makes any DOM modifications. Since
the injected <script> will not be transferred to the Parallel
DOM, any modification in the Parallel DOM are the result of
running this <script>. To find these modifications, we simply
compare the Parallel DOM with its clean version. This way we
found 40 (0.69% of the total) extensions thatinjecta <script>
element into the DOM, and among these 17 extensions make
modifications before the DOMContentLoaded event.

Effectiveness. Table 1 summarizes the Simulacrum’s
effectiveness. Overall, we find that it is highly effective at pro-
tecting extensions from DOM-based fingerprinting as it is able
to protect 95.37% of the extensions that can be fingerprinted
by Carnus. For the remaining 268 extensions that cannot be
protected, we find that the majority is due to extension mod-
ifications being made at document_start. While our system
cannot hide these extensions, we propose straightforward
strategies for addressing the underlying issues in §6.

Simulacrum’s impact. Next, we seek to measure the
extent to which our defense affects the user experience. To that
end we visit the top 1k websites and comparatively measure
the overhead introduced by the presence of our extension,
versus a browser without our extension. We focus on two key
aspects: the page loading time and impact on functionality.

Table 1: Breakdown statistics for Simulacrum’s effectiveness.

Extensions 5,793 (100%)

Protected 5,525 (95.37%)

Unprotected 268 (4.63%)
Document_start 245 (4.22%)
Script injection 40 (0.69%)
Partial fingerprints 28 (0.48%)

100
% |
80 |

— 70l

60 |

50 |

40 |

30 - 23.15%

20 |

10 b

API Calls (%,

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Website

Figure 3: DOM-interacting APIs calls in the top 10K sites.

Function overriding. JavaScript has a set of functions for
interacting with the DOM; by overriding them, Simulacrum
adds overhead to their execution time. Here we investigate
the top 10k websites to better understand the performance
penalty introduced by our defense. To that end, we first use
our VisibleJS extension to collect all the websites” API calls.
In this experiment, we just collect the API calls that are
executed after firing the DOMContentLoaded event, since only
they incur Simulacrum’s overhead. To identify which calls
interact with the DOM, we assess the type of the arguments,
receiver, and return values of all API calls. If they are a node
or any other DOM-related object, we consider the API call
to be interacting with the DOM. We exclude API calls that
are used for managing data structures, such as functions that
are implemented by the Set, Array, or Map interfaces. As
an example, while the argument of array.push (node) is a
node, we do not count it as a DOM interaction.

Figure 3 depicts the percentage of API calls that interact
with the DOM in each of the top 10K websites. We find that
for 85% of the sites, Simulacrum does not intercept half of the
JavaScript API calls, while for half of the sites almost 76.85%
of the calls are unaffected. We also plot the 20 most commonly
invoked interfaces in Figure 4. The most common interface
is String, used more than one billion times in the top 10K
websites. Among these interfaces we only override the eight
highlighted interfaces as Simulacrum does not need to modify
the rest. We find that the invocations of String are 2.5x those
of Node and 31x those of Document. Generally, we observe
that the majority of JavaScript API calls do not interact with the
DOM and are thus not affected by Simulacrum. Next, we focus
on more precisely quantifying our performance overhead.

DOM loading time. In this experiment we visit the top 1k
websites with two browser instances, one that has our exten-

Overridden ez

Invocations

& 5 Q&

@ R &S £ & & S E S
S e T $ & & & 3 W N 9
Q¥ ¢® [QAIRN 0000 &@ N 000 00\\6 \‘@q, O'Zgb é"b Q© o@@
Y &
A & S
N
&

o

Figure 4: Interface invocations in the top 10K websites.
Interfaces overridden by Simulacrum are explicitly noted.

sion installed and one without, and compare the time required
for loading the websites” DOM. To account for uncontrollable
fluctuations in the environment (network latency, OS schedul-
ing, etc.), we average the results for each website over 10 runs.
Overall, we were able to obtain both loading times for 925 out
of the 1k websites that we visited. We observed that for 19 of the
remaining 75 websites the page loaded successfully when vis-
iting with a vanilla browser but did not complete loading when
using a Simulacrum browser. The remaining 56 did not load
successfully when using a vanilla browser but, interestingly,
five of them loaded when visiting with Simulacrum installed.

In Figure 5 we present the difference in DOM loading
times for the 925 websites in both absolute and relative
measurements. We observe that 69% of those websites incur
less than a one second overhead, demonstrating the feasibility
and practicality of our approach. We also measured the delay
imposed by overriding all relevant JavaScript functions, and
the overhead of inserting noise; these amount to an average
of 14.8ms and 31ms respectively.

Regarding DOM loading times, we observe a negative differ-
ence for 63 websites (6.81%) and a positive difference for 862
websites (93.19%). In the case of negative differences, these
websites appear to complete loading faster when we visit them
with a browser that has our extension installed. We found that
half of these websites (33 out of 63) have a “speed-up” lower
than 200 milliseconds, and that only 6 of the websites appear
to surpass one second. While small, such negative differences
can be attributed to network delays. In the case of significant
differences this could be the result of our defense affecting a
website’s functionality or blocking the retrieval of content, ads,
etc., and thus complete loading faster. For the 862 websites
that have a positive difference, where our defense introduces
a delay overhead, we found that this delay is 895 milliseconds
(116% relative) on average; 563 of the websites exhibit more
than 50% relative overhead, with 254 sites between 50%-100%,
194 between 100%-200%, and 115 sites with more than 200%
of overhead, which heavily skews the overall overhead, as
can be seen in Figure 5. More specifically, we observe that the
delay for half of the websites (431 out of 862) is below 390 mil-
liseconds (38% relative) and that only 11.72% (101 out of 862)
observe delays that exceed two seconds (224 % relative). When

Overhead (sec)
Relative Overhead (%)

Relative Overhead

Absolute Overhead
n . .

100 200 300 400 500 600 700 800 900
Websites (ordered)

Figure 5: DOM loading time difference caused by Simulacrum.

extensions that remove page elements are present, Simulacrum
activates an additional protection for replacing these elements
(see position-based attacks, §4.4), and an additional overhead
of 172 milliseconds is incurred per website on average.

User experience. As the additional JavaScript code and
DOM manipulations might impact the user experience, we
experimentally quantify the impact using Google Light-
house [25]. Lighthouse is an open-source automated tool
for obtaining performance metrics and insights [25], which
provides an overall performance score based on six met-
rics; among those, we are specifically interested in the
time-to-interactive (TTI) metric as itis not affected by
network fluctuations. The TTI metric focuses on the amount of
time it takes for a web page to become fully interactive. To mea-
sure TTI, Lighthouse waits for the page to display useful con-
tent and registers event handlers for most visible page elements.

To evaluate Simulacrum on sites with heavy JavaScript us-
age we refer to BuiltWith [11], which publishes a list of popular
JavaScript technologies across the web. We select five popular
technologies and for each we randomly choose ten out of the
list of top 50 websites. We run the Google Lighthouse perfor-
mance analysis tool against each website, with and without
Simulacrum installed, and visit each website ten times in each
setup. We calculate the average TTI overhead for websites that
loaded and had a positive overhead. As can be seen in Table 2,
in most cases the overhead is less than one second, while the
largest overhead of 2.47 seconds is observed in sites built with
Bootstrap. When taking into consideration the average page
loading times recently reported for popular websites in the
US [27] (with ~60% and 18% of pages requiring more than
10 and 30 seconds respectively) we argue that the overhead
introduced by our prototype is reasonable given the privacy
enhancements offered by our approach. We believe that this
tradeoff can be significantly improved by leveraging DOM
Reality Shifting for deploying defenses against other classes
of web attacks, which we consider as part of our future work.

Furthermore, we evaluated Simulacrum using the Celtic
Kane [7] open-source benchmark for JavaScript and DOM
speed tests. The results show that Simulacrum does not influ-
ence the duration of most test cases, as shown in Figure 7 in
the Appendix. While the DOM benchmark increases from 8ms

Table 2: Average Time-To-Interactive overhead in seconds.

Technology TTI Overhead
core-js 1.44 (17.5%)
facebook-SDK 0.99 (19.35%)
react 0.65 (16.56%)
bootstrap 2.47 (24.76%)
lodash 0.58 (16.53%)

to 38ms, overall our performance tests indicate that overhead
is negligible or within acceptable ranges when compared to
the loading times and responsiveness of modern websites.
Memory overhead. We crawled the top 1k websites with
and without Simulacrum and measured the heap usage of
JavaScript (usedjsHeapSize/jsHeapSizeLimit) using the
performance.memory API (this experiment does not measure
memory consumption for same-site iframes and workers and
alsoignores garbage collection). We visited websites five times
and found an average increase in consumption of only 0.25%.
Website breakage. Next we explore how our anti-
fingerprinting extension impacts the general functionality of
web applications. To evaluate websites’ functionality, we ran-
domly selected 50 websites among the top 100 Alexa list and
interacted with each website by testing common operations
with Simulacrum installed (we provide more details on our
approach in the Appendix). We opted for popular websites
as they tend to offer rich functionality and make heavy use of a
wide range of JavaScript features, and their complexity allows
us to stress test our prototype. We also note that we followed
a continuous testing approach while developing Simulacrum,
which allowed us to identify implementation peculiarities in
websites and JavaScript frameworks/libraries, which allowed
us to refine our code for handling such cases. For instance,
we initially faced some issues in Instagram that were the
result of the shallow JavaScript node cloning API, which in
turn led us to improve our implementation of the deepClone
function. Assigning an id attribute to all page elements was
also challenging for a website such as Spotify; we handled
it by keeping a record of elements that do not require an id
attribute and tuning the corresponding getter functions.
Table 3 details the breakage caused by our system, with
major breakage in 6 sites (12%). Submitting credentials in
the Google and Amazon login pages results in a crash or an
error message. LinkedIn successfully passes authentication
and displays contents of the main page, however navigating
through the website is not smooth and contents might not show
properly. Finally, product details on the main Ebay page are
missing, but we can look up items in the website’s search bar.
We also found 5 websites (10%) with minor issues that do
not drastically impact websites’ core functionality, such as
affecting the page’s appearance or certain menu options being
disabled. While our system does not affect the majority of
websites that we tested, privacy-preserving defenses typically
introduce a trade-off between privacy and functionality.

Table 3: Breakage in 50 randomly-chosen popular websites.

Breakage Statistics Websites
Major 6 (12%)
__ Authentication 2(4%) __ google.com amazon.com
__ MissingContent 2(4%) __ linkedin.com,ebay.com
Disabled Actions 2 (4%) twitch.tv,etsy.com
Minor 5 (10%)
__ DisabledElements 1(2%) csdn.net
__ Appearance 2(4%) __ tmall.com office.com
Other 2 (4%) instagram.com, apple.com

Finally, Simulacrum supports allowlisting websites.
Extension breakage. While our experiments demonstrate
that Simulacrum is highly effective in hiding the presence of
installed extensions, we also need to verify that this protection
does not hinder extensions’ functionality. Therefore, we ran-
domly chose 50 English extensions from the list of protected
extensions to evaluate their functionality. For each extension,
we manually explore the extension to learn its functionality in
a clean Chrome browser, and then extensively re-evaluate its
functionality in the presence of Simulacrum. Our evaluation
shows that all of the extensions work properly and retain their
complete functionality, thus demonstrating that our system can
effectively protect the randomly chosen extensions without
hindering their functionality. We also experimentally verified
that Simulacrum does not interfere with other privacy exten-
sions that wrap APIs, by testing it with Privacy Badger [3],
AdBlock [1] and uBlock [6] across five popular news websites.

6 Discussion, Limitations, and Guidelines

Browser-based defense. While Simulacrum effectively
addresses the root cause of behavior-based fingerprinting,
our experimental evaluation reveals certain corner cases or
uncommon extension behaviors that lend themselves to finger-
printing. However, these idiosyncrasies are not fundamental
to the extension’s actual functionality and may even be the
result of developer oversight. As such, we provide explicit
guidelines for developers that allow them to protect their
extensions from being fingerprinted through minimal changes
that do not affect the extension’s functionality. We hope that
our work inspires browser vendors to consider incorporating
our defensive mechanism as native browser functionality, as
it would allow the browser to address cases that cannot be
handled by our solution due to the inherent limitations of an
extension-based defense, while further reducing overhead. We
note that this is theoretically feasible but might, nevertheless,
require significant effort or changes to a browser’s design.
Extension modification timing. For changes that occur
at document_start, modifications can be postponed to the
DOMContent loaded event without affecting the extensions’
functionality or the user experience in the vast majority of cases.
Unless this is absolutely necessary for functionality, develop-

ers should opt for running at document_idle or wait for the
DOMContent loaded event to be fired prior to making changes.

Injected scripts. We found 40 fingerprintable extensions
injecting scripts that modify the DOM instead of directly
modifying it from their content script. As the modifications
occur from a script being executed in the page’s execution
environment, Simulacrum does not exclude them from the
Parallel DOM. However, this approach does not offer any
additional capabilities, and we urge extension developers to
limit DOM-changing behavior to content scripts.

Breakage. Debugging popular websites and identifying the
root causes of breakage requires significant engineering effort
due to the use of advanced JavaScript libraries, obfuscation,
and code minification. The most common cause of breakage
early on was the shallow clone problem (see §4.1), which in-
troduced inconsistencies between the Parallel and User DOM.
Since Simulacrum is a research prototype that highlights the
efficacy of DOM Reality Shifting for preventing DOM-based
extension fingerprinting, we believe that our system’s effects
on JavaScript-heavy websites is acceptable, and should be
incorporated by browser vendors into the browser. That
engineering process would also likely address all breakage.

Simulacrum detectability. In practice, websites can
infer the presence of our extension (e.g., by observing the
id attributes that are added to elements). However, this
leaks minimal entropy compared to the entropy obtained by
fingerprinting multiple installed extensions (which can be
uniquely identifying [26, 29]), since the leaked information
is a binary attribute representing whether Simulacrum is
present (e.g., note the entropy of binary attributes compared
to more complex ones like the User-Agent or the list of
fonts [33]). Since the anonymity offered by privacy-enhancing
technologies (PETs) correlates with the number of users [20],
wide adoption of our defense would further decrease the
entropy leak (similar to any other PET, e.g., Tor [5]). If our
defense was incorporated into the browser this leak would be
eliminated. Moreover, Simulacrum has the additional privacy
benefit of preventing the inference attacks presented in [29].

Timing attacks. An interesting class of attacks are side-
channel timing attacks. This would involve page JavaScript
inferring if an extension added or modified an element due
to Simulacrum executing different code paths. Similarly,
Goethem and Joosen [64] exploited timing differences in
evaluating the web_accessible_resources property inside
an extension’s manifest file to infer its existence. In general
timing attacks are fairly tricky to implement, detect, and
prevent, yet history has shown that they only increase in
effectiveness. While such attacks are outside our current threat
model, they represent an exciting avenue for future work.

Manual analysis. Simulacrum uses different wrappers for
functions that are assigned to different categories. Categoriz-
ing functions relies on analyzing their behavior, which requires
assigning the correct argument(s) and receiver, and observing
the resulting behavior (which is not necessarily visible through

JavaScript). Therefore, we manually analyze functions to
ensure we override them correctly. It is also important to
note that JavaScript interfaces tend to remain stable, and any
potential changes to methods can be easily handled. Moreover,
any new DOM APIs that appear can be readily integrated
following our existing implementation templates.

7 Related Work

Numerous papers have demonstrated or leveraged browser
extension fingerprinting techniques [26,29,48,51,59,64]. Sev-
eral studies over the past few years have either implemented or
proposed a wide range of anti-fingerprinting techniques; how-
ever, all of the methods differ in scope or capability from the
complete DOM-based-fingerprinting prevention implemented
by Simulacrum. As prior defenses mostly focus on other
fingerprinting techniques, those studies are complementary to
ours and, in practice, could be combined into a more holistic
and comprehensive anti-fingerprinting defense.

Prior work has enabled users to manually disable extensions
on specific websites [50, 57]. Simulacrum differs as it
works automatically without requiring user interventions
or decision-making. Other work [58] hides user interests
by randomly visiting websites, defending against a comple-
mentary fingerprinting technique. Sanchez-Rola et al. [48]
devised a timing-based method for fingerprinting extensions
and proposed modifications to the web browser’s extension
invocation to prevent the timing-based attack.

Most related to Simulacrum is CloakX [63], a defense that
modifies publicly accessible extension identifiers to prevent
fingerprinting. The modifications randomize web-accessible
resources [26,51] as well as other identifiers. However, CloakX
does not address behavioral fingerprinting and does not
prevent the majority of fingerprints generated by Carnus [29].
Conversely, Simulacrum effectively targets the root cause of
the attack, while employing a less invasive approach that does
not require modification of the user’s extensions.

Recent work proposed a countermeasure against CSS-based
extension fingerprinting [34]. Their defense creates a
mirror copy of the DOM tree using Shadow DOM, which
automatically excludes content styles from extensions. The
defense overrides the getComputedStyle method of each
element to return the style of the Shadow DOM elements so as
not to include the content styles injected by extensions. While
this work protects against a different class of fingerprinting
than Simulacrum, its proposed CSS defense would benefit
from using our techniques. It is important to note that the
Shadow DOM API [39] is not sufficient for implementing our
defense, as it was not designed to secure or hide page elements;
instead, it encapsulates elements to prevent problems such as
variable name collisions. Using it does not prevent a malicious
script from accessing the Shadow DOM’s content (even when
attached in closed mode). Therefore, the Shadow DOM does
not satisfy our security requirements. Unlike any prior work,

Simulacrum robustly overrides 1,532 functions that isolate
DOM modifications and prevents DOM-based fingerprinting.
Simulacrum extends the concept of virtual machine
layering, which creates an abstraction layer on top of the
JavaScript VM that controls sites’ access to APIs. This was
used for instrumenting JavaScript [35], enabling replay [40],
and controlling access to APIs [49,53]. Photon [35] transforms
JavaScript (outside the browser) to create a VM layer that
developers can use to instrument and evaluate their code.
Mugshot [40] captures and replays JS events using a server-
side web proxy. This only requires a single overriding strategy,
removing the need for categorizing functions (as we do for
Simulacrum) and allowing for straightforward automated
overriding; this, however, would not be sufficient for the chal-
lenging process necessitated by our defense. Moreover, unlike
Photon and Mugshot, anyone can use Simulacrum to protect
their privacy without requiring any external operations (e.g.,
translation or a server-side web proxy) or user intervention.
Even though Chrome Zero [49] and the tool from [53] enhance
privacy by allowing users to limit sites’ access to JavaScript
APIs, their approach is inherently designed to prevent website
functionality while our system focuses on maintaining it.

8 Conclusions

As privacy-invasive tactics remain rampant on the web,
developing privacy-enhancing countermeasures that augment
the protections currently offered by browsers is of paramount
importance. We proposed DOM Reality Shifting as a strategy
for tackling a particularly robust extension-fingerprinting
method that identifies how extensions’ functionality modifies
the web page. The inner workings and implementation details
of our prototype extension highlight the technical challenges
of implementing our strategy in practice, due to the inherent
complexities and peculiarities of the web. Nonetheless, our
evaluation demonstrates Simulacrum’s effectiveness against
the state-of-the-art DOM-based fingerprinting system, while
introducing minimal performance overhead. Overall, we
envision DOM Reality Shifting as a building-block for various
advanced privacy-enhancing browser countermeasures.

Acknowledgments

We would like to thank the anonymous reviewers, and our shep-
herd Roberto Perdisci, for their valuable feedback that helped
us improve our system. This work was supported by the Office
of Naval Research (ONR) under grant NOOO14-21-1-2159, the
Defense Advanced Research Projects Agency (DARPA) under
Grant No. N66001-20-C-4020, and the National Science
Foundation (NSF) under grants CNS-1934597, CNS-1703644
and CNS-1651661. Any opinions, findings, conclusions, or
recommendations expressed herein are those of the authors,
and do not necessarily reflect those of the US Government.

References

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Adblock. https://chrome.google.com/
webstore/detail/adblock-%E2%80%94-best-ad-
blocker/gighmmpiobklfepjocnamgkkbiglidom.

EasyList - Overview. https://easylist.to/.

Privacy badger.
com/webstore/detail/privacy-badger/
pkehgijcmpdhfbdbbnkijodmdihbjlgp.

Simulacrum Code and Data Repository. https://
github.com/SimulacrumExtension/Simulacrum.

Tor project | anonymity online.
//www.torproject.org.

https:

ublock origin.
com/webstore/detail/ublock-origin/
cjpalhdlnbpafiamejdnhcphibkeiagm.

Web browser javascript benchmark.
//celtickane.com/labs/web-browser-
javascript-benchmark.

http:

Gunes Acar, Christian Eubank, Steven Englehardt, Marc
Juarez, Arvind Narayanan, and Claudia Diaz. The web

never forgets: Persistent tracking mechanisms in the
wild. In CCS, 2014.

Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz,
Seda Giirses, Frank Piessens, and Bart Preneel. Fpde-
tective: dusting the web for fingerprinters. In CCS, 2013.

Assel Aliyeva and Manuel Egele. Oversharing is not
caring: How cname cloaking can expose your session
cookies. In Asia CCS. Association for Computing
Machinery, 2021.

BuiltWith. Javascript usage distribution in the top
1 million sites. https://trends.builtwith.com/
javascript.

Yinzhi Cao, Song Li, and Erik Wijmans. (cross-)browser
fingerprinting via OS and hardware level features. In
NDSS, 2017.

Phakpoom Chinprutthiwong, Raj Vardhan, GuangLiang
Yang, Yangyong Zhang, and Guofei Gu. The service
worker hiding in your browser: The next web attack
target? In RAID, 2021.

World Wide Web Consortium. DOM Living Standard.
https://dom.spec.whatwg.org/.

World Wide Web Consortium. Intersec-
tion Observer. https://w3c.github.io/
IntersectionObserver/.

https://chrome.google.

https://chrome.google.

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

Anupam Das, Gunes Acar, Nikita Borisov, and Amogh
Pradeep. The web’s sixth sense: A study of scripts
accessing smartphone sensors. In CCS, 2018.

Louis F DeKoven, Stefan Savage, Geoffrey M Voelker,
and Nektarios Leontiadis. Malicious browser extensions
at scale: Bridging the observability gap between web
site and browser. In 10th USENIX Workshop on Cyber
Security Experimentation and Test (CSET 17), 2017.

Michalis Diamantaris, Serafeim Moustakas, Lichao
Sun, Sotiris Ioannidis, and Jason Polakis. This sneaky
piggy went to the android ad market: Misusing mobile
sensors for stealthy data exfiltration. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pages 1065-1081, 2021.

Yana Dimova, Gunes Acar, Lukasz Olejnik, Wouter
Joosen, and Tom Van Goethem. The cname of the game:
Large-scale analysis of dns-based tracking evasion.
PETS, 2021.

Roger Dingledine and Nick Mathewson. Anonymity
loves company: Usability and the network effect. In
WEIS, 2006.

Peter Eckersley. How unique is your web browser? In
PETS, 2010.

Steven Englehardt and Arthur Edelstein. Fire-
fox 85 cracks down on supercookies. https:
//blog.mozilla.org/security/2021/01/26/
supercookie-protections/, 2021.

Steven Englehardt and Arvind Narayanan. Online

tracking: A 1-million-site measurement and analysis. In
CCS, 2016.

Alejandro Gémez-Boix, Pierre Laperdrix, and Benoit
Baudry. Hiding in the crowd: an analysis of the
effectiveness of browser fingerprinting at large scale. In
WWW, 2018.

Google. Lighthouse. https://developers.google.
com/web/tools/lighthouse.

Gabor Gyorgy Gulyas, Doliere Francis Some, Nataliia
Bielova, and Claude Castelluccia. To extend or not to
extend: on the uniqueness of browser extensions and
web logins. In Proceedings of the 2018 Workshop on
Privacy in the Electronic Society, 2018.

Molly Hanson, Patrick Lawler, and Sam Macbeth. The
tracker tax: the impact of third-party trackers on website
speed in the united states. Technical report, 2018.

Soroush Karami, Panagiotis Ilia, and Jason Polakis.
Awakening the web’s sleeper agents: Misusing service
workers for privacy leakage. In NDSS, 2021.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Soroush Karami, Panagiotis Ilia, Konstantinos Solomos,
and Jason Polakis. Carnus: Exploring the privacy threats
of browser extension fingerprinting. In NDSS, 2020.

Amit Klein and Benny Pinkas. Dns cache-based user
tracking. In NDSS, 2019.

Brian Kondracki, Assel Aliyeva, Manuel Egele, Jason
Polakis, and Nick Nikiforakis. Meddling middlemen:
Empirical analysis of the risks of data-saving mobile
browsers. In IEEE Symposium on Security and Privacy,
2020.

Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and
Gildas Avoine. Browser fingerprinting: A survey. ACM
Transactions on the Web (TWEB), 2020.

Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry.
Beauty and the beast: Diverting modern web browsers to
build unique browser fingerprints. In /EEE Symposium
on Security and Privacy, 2016.

Pierre Laperdrix, Oleksii Starov, Quan Chen, Alexandros
Kapravelos, and Nick Nikiforakis. Fingerprinting in
style: Detecting browser extensions via injected style
sheets. In USENIX Security, 2021.

Erick Lavoie, Bruno Dufour, and Marc Feeley. Portable
and efficient run-time monitoring of javascript appli-
cations using virtual machine layering. In European
Conference on Object-Oriented Programming, 2014.

Xu Lin, Panagiotis Ilia, and Jason Polakis. Fill in the
blanks: Empirical analysis of the privacy threats of
browser form autofill. In CCS, 2020.

MDN. MDN Object Model.
mozilla.org/en-US/docs/Web/JavaScript/
Guide/Details_of_the_Object_Model.

MDN. MDN Web APIL
mozilla.org/en-US/docs/Web/API.

MDN. Mdn web docs - using shadow dom.
https://developer.mozilla.org/en-US/docs/
Web/Web_Components/Using_shadow_DOM.

James W Mickens, Jeremy Elson, and Jon Howell.
Mugshot: Deterministic capture and replay for javascript
applications. In NSDI, 2010.

Vikas Mishra, Pierre Laperdrix, Antoine Vastel, Walter
Rudametkin, Romain Rouvoy, and Martin Lopatka.
Don’t count me out: On the relevance of ip address in
the tracking ecosystem. In Proceedings of The Web
Conference, 2020.

https://developer.

https://developer.

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

Keaton Mowery and Hovav Shacham. Pixel perfect:
Fingerprinting canvas in HTMLS. In Proceedings of
W2SP, 2012.

Martin Mulazzani, Philipp Reschl, Markus Huber,
Manuel Leithner, Sebastian Schrittwieser, Edgar Weippl,
and FC Wien. Fast and reliable browser identification
with javascript engine fingerprinting. In Web 2.0
Workshop on Security and Privacy (W2SP), 2013.

Nick Nikiforakis, Alexandros Kapravelos, Wouter
Joosen, Christopher Kruegel, Frank Piessens, and
Giovanni Vigna. Cookieless monster: Exploring the
ecosystem of web-based device fingerprinting. In IEEE
Symposium on Security and Privacy, 2013.

Raffaello Perrotta and Feng Hao. Botnet in the browser:
Understanding threats caused by malicious browser
extensions. IEEE security & Privacy, 2018.

Pablo Picazo-Sanchez, Juan Tapiador, and Gerardo
Schneider. After you, please: browser extensions order
attacks and countermeasures. International Journal of
Information Security, 2019.

Corey Prophitt. Nefarious linkedin. https://github.
com/dandrews/nefarious-linkedin, 2017.

Iskander Sanchez-Rola, Igor Santos, and Davide
Balzarotti. Extension Breakdown: Security Analysis
of Browsers Extension Resources Control Policies. In
USENIX Security, 2017.

Michael Schwarz, Moritz Lipp, and Daniel Gruss.
Javascript zero: Real javascript and zero side-channel
attacks. In NDSS, 2018.

Alexander Sjosten, Steven Van Acker, Pablo Picazo-
Sanchez, and Andrei Sabelfeld. Latex gloves: Protecting
browser extensions from probing and revelation attacks.
In NDSS, 2019.

Alexander Sjosten, Steven Van Acker, and Andrei
Sabelfeld. Discovering browser extensions via web
accessible resources. In CODASPY, 2017.

Peter Snyder. Issue 793217: "document_start" hook
on child frames should fire before control is returned to
the parent frame. https://bugs.chromium.org/p/
chromium/issues/detail?id=793217.

Peter Snyder, Lara Ansari, Cynthia Taylor, and Chris
Kanich. Browser feature usage on the modern web. In
IMC, 2016.

Peter Snyder, Cynthia Taylor, and Chris Kanich. Most
websites don’t need to vibrate: A cost-benefit approach
to improving browser security. In CCS, 2017.

[55] Konstantinos Solomos, John Kristoff, Chris Kanich, and
Jason Polakis. Tales of favicons and caches: Persistent
tracking in modern browsers. In NDSS, 2021.

[56] Doliere Francis Somé. Empoweb: Empowering
web applications with browser extensions. In IEEE
Symposium on Security and Privacy, 2019.

[57] Oleksii Starov, Pierre Laperdrix, Alexandros Kapravelos,
and Nick Nikiforakis. Unnecessarily identifiable:
Quantifying the fingerprintability of browser extensions
due to bloat. In WWW, 2019.

[58] Oleksii Starov and Nick Nikiforakis. Extended tracking
powers: Measuring the privacy diffusion enabled by
browser extensions. In WWW, 2017.

[59] Oleksii Starov and Nick Nikiforakis. Xhound: Quan-
tifying the fingerprintability of browser extensions. In
IEEE Symposium on Security and Privacy, 2017.

[60] Karthika Subramani, Xingzi Yuan, Omid Setayeshfar,
Phani Vadrevu, Kyu Hyung Lee, and Roberto Perdisci.
When push comes to ads: Measuring the rise of
(malicious) push advertising. In IMC, 2020.

[61] Paul Syverson and Matthew Traudt. Hsts supports tar-
geted surveillance. In 8th USENIX Workshop on Free and
Open Communications on the Internet (FOCI ’18), 2018.

[62] David Temkin. Google Ads - Charting a course
towards a more privacy-first web. https:
//blog.google/products/ads-commerce/a-
more-privacy-first-web/,2021.

[63] Erik Trickel, Oleksii Starov, Alexandros Kapravelos,
Nick Nikiforakis, and Adam Doupé. Everyone is dif-
ferent: Client-side diversification for defending against
extension fingerprinting. In USENIX Security, 2019.

[64] Tom Van Goethem and Wouter Joosen. One side-channel
to bring them all and in the darkness bind them:
Associating isolated browsing sessions. In WOOT, 2017.

[65] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin,
and Romain Rouvoy. Fp-stalker: Tracking browser
fingerprint evolutions. In IEEE Symposium on Security
and Privacy, 2018.

[66] Zachary Weinberg, Eric Y Chen, Pavithra Ramesh
Jayaraman, and Collin Jackson. I still know what you
visited last summer: Leaking browsing history via user
interaction and side channel attacks. In IEEE Symposium
on Security and Privacy, 2011.

[67] John Wilander. —Webkit - intelligent tracking pre-
vention (itp). https://webkit.org/blog/9521/
intelligent-tracking-prevention-2-3/,2019.

[68] CSS Working Group World Wide Web Consortium. Re-
size Observer. https://drafts.csswg.org/resize—
observer/.

Appendix

Overriding prototype methods. We employ the following
steps: keeping a reference to the original function (Line 1);
declaring and defining the new wrapper function (Lines 2-7);
implementing the overriding logic (Lines 3, 5); executing
the original function on proper inputs (Line 4); returning the
desired value from the function (Line 6); and assigning the
wrapper function to the object’s prototype to overwrite the
original method (Line 8).

1| let originalFunction = Parent.prototype.function;
2 | let wrapperFunction = function() {

3 // [...] Custom logic
4 let returnvValue = originalFunction.apply (obj, args);
5 // [...] Custom logic
6 return returnValue

.

8

}

Parent.prototype.function = wrapperFunction;

Listing 1: Overriding function from Parent’s prototype.

Overriding object properties. Listing 2 shows how we
use Object.defineProperty() to override the setter
and getter functions for the id property of the parentObj
prototype.

1 | function overrideProperty () {
2 let propDes =

3 Object.getOwnPropertyDescriptor (parentObj.prototype, 'id");
4 let getRef = propDes.get;

5 let setRef = propDes.set;

6 Object.defineProperty (parentObj.prototype, "id", {

7 get: function() {

8 let retValue = getRef.apply(obj, args);

9 loaolc

// Overriding logic

10 return retValue;

1 b

12 set: function() {

13 let retValue = setRef.apply(obj, args);
14 // Overriding logic

15 return retValue;

16 b

17 configurable: true,

18 enumerable: true

191 1);}

Listing 2: Overriding id property from parentObj’s
prototype; obj and args values change based on our logic.

Recording function invocations. We created the extension
Visible]JS to gather information related to DOM usage by
websites. Listing 3 shows the script VisibleJS uses to wrap all
the JavaScript interfaces. While the webpage runs VisibleJS
reports the interfaces used by the website.

let orig = original [<interface.method>];
interface.prototype['method'] = function() {
let toReturn = orig.apply(this, arguments);
collect (this, arguments, toReturn);
return toReturn;

I LY S SO SO C R

Listing 3: Visible]JS general strategy.

Observer interfaces. Listing 4 shows simple examples
that demonstrate using three different types of observers.
ResizeObserver does not need a configuration parameter.
IntersectionObserver receives the configuration and call-
back parameters when it is constructed. MutationObserver
receives the callback during construction and receives the
target and the configuration details when the observe method
is invoked.

1| // Resize Observer

2 | observer = new ResizeObserver (callback)

3| observer.observe (target)

4

5| // Intersection Observer

6 | configuration = {root: element}

7| observer = new IntersectionObserver (callback, configuration)
8 | observer.observe (target)

9

10| // Mutation Observer

11 | configuration = {childList: true, subtree: true}
12 | observer = new MutationObserver (callback)

13 | observer.observe (target, configuration)

Listing 4: Observer instantiation examples.

MutationObserver. Listing 5 shows the wrapper code
used in the MutationObserver’s constructor. Simulacrum
overrides MutationObserver’s constructor to modify the
incoming callback. Before calling the original observer
method, the wrapper filters out the mutations that originate
from an extension.

1| original = MutationObserver;

2 | class newMutationObserver {

3 constructor () {

4 callback = arguments[0];

5 newCallback = function() {

6 mutations = filterMutations (arguments[0])
7 if (mutations.length>0)

8 callback (mutations);

9 }

10 return new original (newCallback);
1| }+}

12 | MutationObserver = newMutationObserver;

Listing 5: Wrapping the constructor of MutationObserver.

Overriding functions. Table 4 shows the number of overrid-
den functions. The first column lists the noteworthy interfaces.
The leftmost grouping breaks the interfaces down by properties
and methods overridden. On the right side, the table breaks the
interfaces down by the type of wrapper used, with the most
common category being the simple setter and getter categories.

Examples of overridden functions. Table 5 displays
different function examples for each category with their

| Object]

i

| ResizeObserver \

| Array | |Storage| | EventTarget |

| Node |

[HTMLElement I SVGElement |

| HTMLTableElement | SVGFEDropShadowElement

i
1

:

:

U HTMLDivElement
i ;

:

1

1

:

i

| HTMLInputElement I | SVGFECompositeElement |

i
i

:

i

| SVGPatternElement
1 .

i

i

1

i

|

Figure 6: Inheritance hierarchy in the DOM APL

[w/o Simulacra w/ Simulacra

40

30

20

Runtime (ms)

o o Q& S S NG
$F 8 O o o oF &
RPN ARV NN\ A o

s O« W o g ?@p

Test type

Figure 7: Run-time overhead when evaluating Simulacrum
with the Celtic Kane open-source benchmark speed tests.

overridden counterpart. For readability reasons we omit details
in the “Overridden Function” column. For example, we use
the “original” hash table (§4.1) for calling the functions but we
do not include them in this table for simplicity. That is, instead
of original["Element.innerHTML_setter"].call (e, "text"), W€
write e . innerHTML="text".

Inheritance hierarchy. In Figure 6 we provide a partial
representation of the inheritance hierarchy in respect to the
DOM API and some of the interfaces pertinent to our work.

Breakage tests. We manually assessed Simulacrum’s effect
on extension and website functionality by testing common
operations with Simulacrum installed. We had a user freely ex-
plore websites with and without Simulacrum installed for a few
minutes and then report any effects to the browsing experience
when Simulacrum was present. This included assessing each
website’s functionality (e.g., login and payment processes,
playing videos, interacting with website-specific tools, etc.)
and was not limited to a visual inspection. For the scenarios
testing the impact on other extensions, a user first installed the
candidate extension and learned their expected functionality
on a few target websites (either the ones advertised in the exten-
sion’s overview page in the Chrome web store or on websites
of user’s choice). Subsequently, the expected functionality

Table 4: The number of overridden functions for noteworthy interfaces.

Overridden Functions
Interface Properties Methods Total =~ Simple Setter ~ Simple Getter ~ Active Setter ~ Active Getter ~ Arguments
Node 14 15 29 7 23 0 1 8
Document 264 40 304 20 34 115 153 6
Element* 1,283 189 1,472 687 968 84 193 14

* Element interface and all other interfaces that inherit from it.

Note: Some properties have both a setter and getter, thus the sum of used strategies is more than the total.

Table 5: Examples of different functions and our strategy for wrapping them.

Category Example Overridden Function
Simple getter document .getElementsByTagName ("div") parallelDOM.getElementsByTagName ("div")
Simple getter e.hasAttribute ("src"); parallelDOM.getElementById(e.id) .hasAttribute (' src’)
. if (parallelDOM.getElementById(e.id
Active getter e.scrollTop (p i o) ()
userDOM.getElementById(e.1id) .scrollTop
.) result = userDOM.activeElement;
Active getter document .activeElement

Simple setter e.innerHTML = "text"

Simple setter ~ document.write ("text")

Active setter e.requestFullscreen ()

Arguments n.insertBefore (newNode, refNode)

return parallelDOM.getElementById(result.id);
equivalentElement = getEquivalent (e);
e.innerHTML = "text";
equivalentElement.innerHTML = "text";
document .write ("text")
parallelDOM.write ("text");
if (parallelDOM.getElementById(e.id))
userDOM. getElementById(e.id) .requestFullscreen ()
equivNewNode = deepClone (newNode) ;
equivRefNode = getEquivalent (refNode);
equivNode = getEquivalent (n);
n.insertBefore (newNode, refNode);
equivNode.insertBefore (equivNewNode, equivRefNode);

was reevaluated with Simulacrum installed. In the case of
privacy extensions (Privacy Badger [3], AdBlock [1] and
uBlock [6]) we specifically chose five popular news websites
(nytimes.com, foxnews.com, abcnews.com, cnn.com and
bbc. com) which usually involve tracking scripts and verified
that these privacy extensions continued to operate as expected
and their functionality was not affected by Simulacrum.

Benchmarking tests. In Figure 7 we present the results
from our performance test using the Celtic Kane open-source
benchmark. We find that in most cases Simulacrum does
not affect performance, while for the DOM test our system
introduces a 30 millisecond overhead.

Noise-based defense against position-based attacks. In
Figure 8 we provide an example screenshot that shows a
page’s visual appearance when Simulacrum introduces noisy
elements as a countermeasure against position-based attacks.
These elements are simply empty spaces that change the
position of other elements on the page.

& % » 0O

weT Emenv Q @ =

The disparity between pmwm
Black and White ;ﬁ-“‘s
graduates' student |

Suspect in custody after at
least 4 injured in Texas school
shooting

McConnell floats debt ceiling proposal amid
partisan stalemate

He's been on the run for 23 years. Feds say

Sheriff's office says it's been
’ he may have been spotted at Dodgers game

asked to help look for Brian
Laundrie at nature reserve
- Gabby Petto's father says he wants Brian

Laundrie founa aiive Edens

nuciear

umber of
ckpile

® Lindsey Graham gets booed by his own
supporters

Like so many others, Texas teacher Tony
Montgomery can't afford health insurance or buy a
home because he's drowning in student loan debt

Analysis: Gr
atiitude that led

foment the very
ting booed

Major changes to federal student loans announced

® Biden voter's tip to President: Take a page
from Trump playbook

Mark Zuckerberg tries to hit

Figure 8: Example of site with added noise elements.

	Introduction
	Background and Threat Model
	DOM Reality Shifting with Simulacrum
	System Implementation
	Primitives
	DOM-accessing APIs
	Function Overriding
	Additional Security Precautions

	Experimental Evaluation
	Discussion, Limitations, and Guidelines
	Related Work
	Conclusions

