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Abstract
We design an algorithm for finding counterfactu-
als with strong theoretical guarantees on its per-
formance. For any monotone model f : Xd →
{0, 1} and instance x?, our algorithm makes

S(f)O(∆f (x?)) · log d

queries to f and returns an optimal counterfac-
tual for x?: a nearest instance x′ to x? for which
f(x′) 6= f(x?). Here S(f) is the sensitivity of f ,
a discrete analogue of the Lipschitz constant, and
∆f (x?) is the distance from x? to its nearest coun-
terfactuals. The previous best known query com-
plexity was dO(∆f (x?)), achievable by brute-force
local search. We further prove a lower bound of
S(f)Ω(∆f (x?)) + Ω(log d) on the query complex-
ity of any algorithm, thereby showing that the
guarantees of our algorithm are essentially opti-
mal.

1. Introduction
Counterfactual reasoning is at the very heart of causal in-
ference (Pearl, 2009a;b; Morgan & Winship, 2015). Coun-
terfactuals are answers to “what would have happened if”
questions: if a person has been denied a loan, would their
application have been approved if their annual income were
$20k higher? In explainable ML, there is a growing interest
in the use of counterfactual explanations (Wachter et al.,
2017) to understand the predictions of black box models:
given a model f and an instance x?, we would like to effi-
ciently determine how a few features of x? can be changed
to obtain a similar instance x′ for which f(x′) 6= f(x?).

It is natural to seek sparse counterfactuals, meaning that x′
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differs from x? in as few features as possible. Ideally, we
would like counterfactuals that are optimally sparse:

Definition 1.1 (Sparsity and optimality). For a model
f : Xd → {0, 1} and two instances x?, x′ such that
f(x?) 6= f(x′), the sparsity of x′ as a counterfactual for x?

is the number of features on which they differ: the quantity
|∆(x?, x′)|, where

∆(x?, x′) := {i ∈ [d] : x?i 6= x′i}.

The counterfactual complexity of x? with respect to f is the
quantity:

∆f (x?) := min
x′∈Xd

{|∆(x?, x′)| : f(x?) 6= f(x′)},

and we say that x′ is an optimal counterfactual for x? if
|∆(x?, x′)| = ∆f (x?).

Another desideratum that has received significant atten-
tion, motivated by the need for actionable recourse (Ustun
et al., 2019), is that of diversity in counterfactual explana-
tions (Wachter et al., 2017; Russell, 2019; Mothilal et al.,
2020; Karimi et al., 2020): a wide range of counterfactuals
instead of just a single one.

1.1. Our contributions

Our first result is an efficient algorithm for finding all op-
timal counterfactuals for any monotone f in the setting of
binary features:

Theorem 1.2. Given queries to a monotone model f :
{0, 1}d → {0, 1} with sensitivity S(f) and an instance
x?, our algorithm makes

S(f)O(∆f (x?)) · log d

queries to f and w.h.p.1 returns all optimal counterfactuals
for x?.

We will define and discuss sensitivity in the body of the
paper (see Section 1.4), mentioning for now that it is a well-
studied discrete analogue of the Lipschitz constant, and this
quantity is often much smaller than d.

1Throughout we write “with high probability” or w.h.p. to
indicate probability at least 1− 1/poly(d).
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Next, we consider the setting of general feature spaces. In
this setting it is infeasible to return all optimal counterfactu-
als due to the sheer number of them. We are nevertheless
able to efficiently return the collection of all subsets of fea-
tures induced by these optimal counterfactuals:

Theorem 1.3. Given queries to a monotone model f :
Xd → {0, 1} with sensitivity S(f) and an instance x?,
our algorithm makes

S(f)O(∆f (x?)) · log d

queries to f and w.h.p. returns the collection Cf (x?) =
{∆(x?, x′) : x′ is an optimal counterfactual for x?}.

Theorems 1.2 and 1.3 give the first algorithms with query
complexity that evades the curse of dimensionality, and in-
deed, strongly so. We contrast our query complexity to that
of ball search, a simple and natural algorithm for finding
counterfactuals: first query f on x? and all instances that
differ from x? by a single feature. (By the monotonicity
of f , for any feature, it suffices to query f on the instance
that differs maximally from x? on that feature.) Next, query
f on the instances that differ by two features, and so on,
until a counterfactual is found. This algorithm has query
complexity dO(∆f (x?)), an exponentially worse dependence
on d than ours. Prior to our work, this was the best known
query complexity even just to return a single optimal coun-
terfactual.

Lower bounds. We complement Theorems 1.2 and 1.3
with a couple of lower bounds. All our lower bounds hold
even in the setting of binary features (X = {0, 1}), and
against randomized algorithms that are only required to
successfully return an optimal counterfactual with a small
probability (say 0.01). We first show that the query com-
plexity of our algorithm is essentially optimal:

Theorem 1.4 (Optimality of Theorems 1.2 and 1.3, see
Theorem C.1 for the formal version). For any algorithm
A and S ∈ N, there is a monotone model f : {0, 1}d →
{0, 1} with S(f) = S and an instance x? such that A must
make

S Ω(∆f (x?)) + Ω(log d)

many queries to f , even just to find a single optimal coun-
terfactual for x?.

We also establish the inherent limitations of local search al-
gorithms, a broad and natural class of algorithms for finding
counterfactuals. A local search algorithm is any algorithm
whose first query is x?, and whose every subsequent query
differs from a previous one by exactly one feature. For ex-
ample, ball search is a local search algorithm. We show that
no local search algorithm can achieve the query complexity
that our algorithm does, even for low-sensitivity monotone
functions:

Theorem 1.5 (Lower bound for local search algorithms,
see Theorem C.5 for the formal version). For any local
search algorithm A and d ∈ N, there is a monotone model
f : {0, 1}d → {0, 1} with S(f) = 1 and an instance
x? with ∆f (x?) = 1, such that A must make Ω(d) many
queries to f to find a single optimal counterfactual for x?.

1.2. Overview of our algorithm and techniques

Theorems 1.2 and 1.3 circumvent the lower bound of The-
orem 1.5 via a novel approach that is not based on local
search. The crux of our approach is a new algorithm for
understanding monotone black box models that we believe
will see further utility beyond counterfactual explanations:
using only queries to a monotone black box model f , this
algorithm allows us to navigate a decision tree representa-
tion T of f without actually building T in full. Crucially,
since we strive to handle arbitrarily complex models f , this
tree T may be too large to build efficiently in its entirety.

With this algorithm, given any instance x?, we will build
only the “necessary part” of T to find all optimal counterfac-
tuals for x?. We show that just a tiny portion of T suffices
for this purpose: it suffices to build only the root-to-leaf
path ρ in T that x? follows and the paths that are “close to”
ρ in T in a sense that we will make precise (see the begin-
ning of Section 3 for more details on this notion of “ path
distance”). Writing h to denote the depth of T , we prove
that we only have to construct hO(∆f (x?)) many nodes in
T , which is only an exponentially small part of T . Next,
by bringing together classical (Nisan, 1989) and recently-
develop results (Blanc et al., 2022) about the structure of
monotone functions, we are able to bound the depth of T
and in terms of f ’s sensitivity.

To summarize, our overall approach allows us to enjoy the
benefits of having access to a highly interpretable representa-
tion of a black box model f—a decision tree representation—
without paying the price associated with T being intractably
large for most complex models of interest.

1.3. Related work

Our work is theoretical in nature: we give an algorithm with
strong bounds on its query complexity and all the counter-
factuals that it returns are guaranteed to be optimal. We view
our main contribution as proving the curse of dimensional-
ity can be strongly evaded for a broad and natural class of
models—all monotone models.

There is a substantial body of empirical work on counterfac-
tual explanations. The algorithms in these works either do
not guarantee optimal counterfactuals or do not come with
a formal analysis of their query complexity. Many of these
works rely on classic optimization tools: the algorithms
of (Wachter et al., 2017; Mothilal et al., 2020) are based on
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gradient descent and hence are restricted to differentiable
models, whereas the algorithms of (Russell, 2019; Ustun
et al., 2019) use mixed integer programming and are limited
to linear models. (Karimi et al., 2020) encode the problem
of finding optimal counterfactuals as a satisfiability problem,
which they then solve using SMT solvers.

The importance of diversity in counterfactual explanations
has been highlighted in several works (Wachter et al., 2017;
Russell, 2019; Mothilal et al., 2020; Karimi et al., 2020).
Significant motivation comes from the need for actionable
recourse (Ustun et al., 2019): a large set of counterfactuals
is more likely to contain one that is actionable (e.g. in the
context of a loan denial, an applicant can plausibly work
towards earning a higher income but cannot change their
history of defaults).

Regarding our techniques, they are in the spirit of a recent
line of theoretical work on implicit learning algorithms:
algorithms that are able to access their hypotheses effi-
ciently without constructing them in full (Kong & Valiant,
2018; Blum & Hu, 2018; Kong et al., 2020; Backurs et al.,
2020; Blanc et al., 2021). In particular, Blanc, Lange, and
Tan (Blanc et al., 2021) show how, given queries to a model
f , one can efficiently navigate an implicit decision tree
hypothesis T that is ε-close to f under the uniform distribu-
tion. The presence of errors in the hypothesis, and the fact
that these errors are measured with respect to the uniform
distribution, are significant limitations of their result. Our
work shows how these limitations can be overcome, in a
strong sense, in the case of monotone models f : our implicit
decision tree hypothesis T computes f exactly, which is
crucial for our application to finding counterfactuals. An-
other limitation of (Blanc et al., 2021)’s analysis is that it
only applies to the setting of binary features; we do not need
this assumption.

Finally, we mention that counterfactual explanations are
part of a broader landscape of local explanations (Strumbelj
& Kononenko, 2010; Baehrens et al., 2010; Simonyan et al.,
2014; Ribeiro et al., 2016; Koh & Liang, 2017; Lundberg
& Lee, 2017; Ribeiro et al., 2018), which seek to explain a
model’s prediction for specific inputs. Global explanations,
on the other hand, approximate the entire model with a sim-
ple and interpretable one (Craven & Shavlik, 1995; Breiman
& Shang, 1996; Van Assche & Blockeel, 2007; Zhou &
Hooker, 2016; Vandewiele et al., 2017; Bastani et al., 2017;
Vidal & Schiffer, 2020; Lakkaraju et al., 2019; 2020).

1.4. Preliminaries

We rely on a few standard notions from the study of Boolean
functions.

Definition 1.6 (Sensitivity). For a function f : Xd →
{0, 1} and an instance x ∈ Xd, the sensitivity of f at x is

the quantity

Sf (x) = |{i ∈ [d] : ∃ a ∈ X s.t. f(x) 6= f(xi←a)}|,

where i← a denotes x with its i-th feature set to a. That is,
Sf (x) is the number of features i of x for which there is a
way of changing xi that flips f ’s value on x.

The sensitivity of f is the quantity S(f) = max
x∈Xd

{Sf (x)}.

The sensitivity of a function can be viewed as a discrete ana-
logue of the Lipschitz constant, with low-sensitivity discrete
functions being considered smooth. To see this analogy, we
observe that for all x ∈ Xd and δ ∈ (0, 1),

E
y∈Xd

∆(x,y)=δd

[
|f(x)− f(y)|

]
≤ δ · S(f).

See (Gopalan et al., 2016) for more on this perspective. In-
troduced by Cook, Dwork, and Reischuk (Cook et al., 1986),
the sensitivity of discrete functions is the subject of intensive
study in theoretical computer science; it is, for example, the
key notion in the recent breakthrough Sensitivity Theorem
of Huang (Huang, 2019) (see also (Knuth, 2019)), resolving
a longstanding conjecture of Nisan and Szegedy (Nisan &
Szegedy, 1994).

Monotonicity. For a model f : Xd → {0, 1}, we assume
an ordering ≤ on the elements of X which we lift coordi-
natewise to a partial ordering on Xd. That is, for x, y ∈ Xd,
x ≤ y if and only if xi ≤ yi for all i ∈ [d]. We say f is
monotone if it is monotone with respect to such an ordering.
We’ll also assume that X has a maximum and minimum
element.

Structure of the rest of this paper. We first prove Theo-
rem 1.2, which focuses on functions with Boolean features.
To do so, we will recall the notion of an implicit decision
tree from (Blanc et al., 2021) in Section 2. Then, in Sec-
tion 3, we prove Theorem 1.2 assuming a sufficiently good
implicit decision tree exists. In Section 4, we complete the
proof of Theorem 1.2 by showing how to build that implicit
decision tree.

Given Theorem 1.2, we show how to extend our algorithm to
the setting of arbitrary features by reducing to the Boolean
setting and prove Theorem 1.3 in Section 5. Finally, we
prove our lower bounds, Theorems 1.4 and 1.5, in Ap-
pendix C.

2. Implicit decision trees for monotone models
Our algorithm for finding counterfactuals will rely on having
access to a decision tree T which exactly represents the
model f : {0, 1}d → {0, 1}. At a high level, for an instance
x?, the algorithm follows a unique root-to-leaf path ρ in T
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searches all root-to-leaf paths in T that are “close to” ρ in
a sense that make precise in the next section. In general,
the size of T will be exponentially larger than the search
space of our counterfactual finding algorithm, and hence it
is advantageous to avoid computing the entire tree. Instead,
we maintain an implicit copy of the tree T . This copy allows
us to compute only the parts of the tree that we need to find
optimal counterfactuals for x?.

Restrictions. An implicit decision tree T , a notion intro-
duced in (Blanc et al., 2021), is an algorithm which given
query access to f can navigate T without building it in
full. A node in T is specified by a restriction which is a
partial function ρ : [d] ⇀ {0, 1} indicating which (if any)
features are fixed to specific values. These features and
their values correspond to those queried along a path in
the tree. We write Dom(ρ) ⊆ [d] to denote the domain
of the restriction. The size of a restriction |ρ| is |Dom(ρ)|,
the number of values on which it is defined. We write
fρ : {0, 1}d−|Dom(ρ)| → {0, 1} to denote the restriction
of f to ρ. That is, fρ(x) is f evaluated on the instance
x′ ∈ {0, 1}d which is formed by inserting features specified
by ρ into the instance x. For example, ρ = {1 7→ 1, 4 7→ 1}
is the restriction where the 1st and 4th features are fixed to
1. If f : {0, 1}4 → {0, 1}, then fρ : {0, 1}2 → {0, 1} and
e.g. fρ(00) = f(1001) under this restriction.

Definition 2.1 (Implicit decision tree). An implicit decision
tree (IDT) T for f : {0, 1}d → {0, 1} is an algorithm which
has query access to f and supports the following operations.
For a restriction ρ : [d] ⇀ {0, 1} corresponding to features
queried along a root-to-ρ path in T and auxiliary information
A ⊆ [d]:

1. ISLEAFf (ρ,A) indicates whether ρ is a leaf in T .

2. QUERYf (ρ,A), for a non-leaf ρ, returns i ∈ [d] corre-
sponding to the index queried at ρ in T and A′ ⊆ [d],
updated auxiliary information.

If each operation uses at most q queries to f with high
probability then the algorithm is a q-query implicit decision
tree for f .2

The role of auxiliary information. Our algorithm for
finding counterfactuals updates the auxiliary information
after each query and we assume that the auxiliary infor-
mation being passed to the algorithm originates from the
previous query (the auxiliary information at the root can
be arbitrary). Internally, the auxiliary information will be

2Note that the term “query” here is being used in two separate
ways. A variable being “queried” on a path simply means that
variable appears as an internal node on that path. The IDT itself
has “query access” to f meaning it may query the value of f(x)
for various x in its implementation.

a subset of features and will allow us to precompute parts
of the tree instead of node by node. This way, most calls
to QUERY(ρ,A) will simply return the appropriate feature
index from A until all such features in A are exhausted after
which a new A is computed from scratch. The example
below illustrates the reuse of auxiliary information between
IDT operations. For a more detailed illustration of an IDT
and the precomputation of parts of the tree using auxiliary
information see Figure 4.

Example. Figure 3 in Appendix D illustrates how the
IDT operations can be used to walk down a decision tree
T representing a function f . In this case, we make three
calls to QUERYf (·, ·) corresponding to the depth of this
particular root-to-leaf path. In general, if a q-query IDT has
depth at most k, then the root-to-leaf path corresponding to
an instance x? can be constructed using O(k) calls to the
IDT operations and therefore O(kq) queries to f .

Our key technical lemma. For our intended application,
it will be important that the IDT exactly represents f . The
work of (Blanc et al., 2021) design a relaxed variant of IDTs
that only approximates models f with respect to the uniform
distribution over instances. Both the presence of errors and
the uniform-distribution assumption are not ideal, and can
be seen to be inherent to the proof technique of (Blanc et al.,
2021). In this work we use recently developed structural re-
sults for monotone models (Blanc et al., 2022) to overcome
these limitations. Our key technical lemma is the following.

Lemma 2.2 (Exact IDTs for monotone models). Let f :
{0, 1}d → {0, 1} be monotone. Then there is an S(f)O(1) ·
log d-query IDT for f with depth at most S(f)O(1).

In the next section we prove Theorem 1.2 assum-
ing Lemma 2.2. We then prove Lemma 2.2 in Section 4.

3. Using IDTs to find optimal counterfactuals:
Proof of Theorem 1.2

Suppose we may access an implicit decision tree T for f
as described in Definition 2.1. We present an algorithm for
finding counterfactuals using these operations and analyze
its query complexity in terms of the depth h of T and the
query complexity of the IDT—Lemma 2.2 provides strong
bounds on both quantities in terms of the sensitivity of f .

Intuition. Given an instance x?, it follows a unique root-
to-leaf path ρ in T . We begin with a simple observation: if
there is a counterfactual x′ of distance 1 from x?, it must
belong to the set I1 of all instances that differ from x? on a
single feature queried along ρ. The size of I1 is the length
of ρ, which is at most the depth h of T . Building on this
observation, if x′′ is a counterfactual of distance 2 from x?,
there must be an instance x′ ∈ I1 such that x′′ differs from
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x′ on a single feature queried on the path π that x′ follows
in T . This reasoning leads to a bound of hO(∆f (x?)) on the
size of our search space—all paths in T of “path distance”
∆f (x?) from ρ—which stands in contrast to dO(∆f (x?)),
the size of the search space of ball search.

3.1. A helper algorithm that finds minimal
counterfactuals

Our algorithm for finding optimal countefactuals will call
on a subroutine, FINDMINIMAL (Figure 1), for finding
minimal counterfactuals:

Definition 3.1 (Minimal counterfactual). For a model f :
{0, 1}d → {0, 1} and an instance x?, a minimal counterfac-
tual for x? among I ⊆ {0, 1}d is an instance x′ ∈ I such
that:

1. f(x′) 6= f(x?), and

2. Let V ⊆ [d] denote the features that x? and x′ differ
on. Then f(x′′) = f(x?) for all instances x′′ ∈ I that
differ from x? only on the features in a strict subset
U ⊂ V .

We observe that optimal counterfactuals are minimal, but
minimal counterfactuals may not be optimal.

Our pseudocode for FINDMINIMAL uses the following
notation. Recall that a restriction is a partial function
ρ : [d] ⇀ {0, 1}, which we can equivalently represent as a
string ρ ∈ {0, 1, ∗}d. We use the notation ρi←b to denote the
restriction ρ with ρi overwritten with b. For x? ∈ {0, 1}d,
we define x? overwritten by ρ, denoted x?ρ ∈ {0, 1}d, to be
the following hybrid input: for all i ∈ [d],

(x?ρ)i =

{
x?i if ρi = ∗
ρi if ρi 6= ∗.

3.1.1. ANALYSIS OF FINDMINIMAL

Lemma 3.2 (Correctness of FINDMINIMAL).
FINDMINIMALf (ρ, x?, k, A) returns all minimal counter-
factuals x′ for x? among those that are consistent with ρ
and satisfy |∆f (x′, x?ρ)| ≤ k.

Proof. We begin by noting all instances that are consistent
with ρ differ from x? on at least the features on which x?

and x?ρ differ. Therefore, if f(x?ρ) 6= f(x?), FINDMINIMAL
correctly returns {x?ρ} in Line 1.

We therefore assume that f(x?ρ) = f(x?) and proceed by
induction on the height of the subtree of T rooted at ρ. If ρ
is a leaf, then f takes the same value on all instances x′ that
are consistent with ρ, and hence f(x′) = f(x?ρ) = f(x?).
In this case FINDMINIMAL correctly returns ∅ in Line 2.

For the inductive step, suppose ρ is an internal node. If
k = 0, the only instance that is of distance 0 from x?ρ is
x?ρ itself, so FINDMINIMAL again correctly returns ∅ in
Line 2. Otherwise, the search space of all instances x′ that
are consistent with ρ and satisfy ∆f (x′, x?ρ) ≤ k can be
partitioned into:

◦ Those that are consistent with ρi←x?
i

and satisfy
|∆f (x′, x?ρi←x?

i

)| ≤ k

◦ Those that are consistent with ρi←x?
i

and satisfy
|∆f (x′, x?ρi←x?

i

)| ≤ k − 1,

where i is the feature that is queried at ρ (Line 3a). FIND-
MINIMAL recurses on these two sets in Line 3b, and cor-
rectness follows by our induction hypothesis.

Remark 3.3 (Correctness of auxiliary information). Our
proof of Lemma 3.2 relies on the correctness of the IDT
operations, which only hold if our calls to them use the “cor-
rect” auxiliary information A. This will be the case given
the way we use FINDMINIMAL in our overall algorithm
FINDOPTIMAL. FINDOPTIMAL calls FINDMINIMAL with
ρ being the empty restriction and A = ∅. In its recursive
execution, FINDMINIMAL with auxiliary information A
recursively calls itself with A′ where A′ is the auxiliary
information returned by QUERY(ρ,A) in Line 3a: the cor-
rectness of A′ follows from the correctness of A and the
QUERY operation.

Lemma 3.4 (Query complexity of FINDMINIMAL).
FINDMINIMALf (ρ, x, k,A) makes hO(k) calls to the IDT
operations and hO(k) additional queries to f , where h is
the height of the subtree of T rooted at ρ.

Proof. We claim that both quantities are bounded by
Q(h, k) ≤ 2(h+ 1)k.The proof is by induction on h. When
h = 0 (i.e. ρ is a leaf in T ), FINDMINIMAL queries f
on x? and x?ρ, makes one call to ISLEAF, and terminates.
When h ≥ 1, there are at most two queries to f (on x? and
x?ρ), two calls to IDT operations (ISLEAF and QUERY), in
addition to those made recursively. We therefore have the
following recursive relation:

Q(h, k) ≤ 2 +Q(h− 1, k) +Q(h− 1, k − 1).

Applying the induction hypothesis, we can bound Q(h, k)
by

Q(h, k) ≤ 2 + 2hk + 2hk−1 ≤ 2(h+ 1)k.

3.2. Our algorithm for finding optimal counterfactuals

With the helper algorithm FINDMINIMAL in hand, our over-
all algorithm for finding optimal counterfactuals is simple:

Theorem 1.2 is a straightforward consequence of Lem-
mas 2.2, 3.2 and 3.4:
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FINDMINIMALf (ρ, x?, k, A):

Given: Access to f via queries and IDT operations for a tree T that represents f . Restriction ρ corresponding to a
path in T , instance x?, distance bound k, auxiliary information A.

Output: All minimal counterfactuals x′ for x? among those that are consistent with ρ and satisfy |∆f (x′, x?ρ)| ≤ k.

1. If f(x?) 6= f(x?ρ), return {x?ρ}.

2. Else if ISLEAF(ρ,A) or k = 0, return ∅.

3. Else:

(a) Let (i, A′)← QUERY(ρ,A).
(b) Return FINDMINIMALf (ρi←x?

i
, x?, k, A′) ∪ FINDMINIMALf (ρi←x?

i
, x?, k − 1, A′).

Figure 1: Helper algorithm FINDMINIMAL

FINDOPTIMALf (x?):

Given: Instance x? and queries to f .

Output: The set C of all optimal counterfactuls for
x?.

1. Initialize k ← 1, C ← ∅.

2. While C 6= ∅:

(a) Let C ← FINDMINIMALf (∗d, x?, k,∅).
(b) k ← k + 1.

3. Return C.

Figure 2: Algorithm for finding optimal counterfactu-
als, using FINDMINIMAL as its main subroutine.

Theorem 3.5 (Formal version of Theorem 1.2). Let
f : {0, 1}n → {0, 1} be a monotone function. Then
FINDOPTIMALf (x?), using the IDT operations given in
Lemma 2.2, returns all optimal counterfactuals for x? and
makes

S(f)O(∆f (x?)) · log d

queries to f .

Proof. The correctness of FINDOPTIMAL follows
from that of FINDMINIMAL: FINDOPTIMAL calls
FINDMINIMALf (∗d, x?, k,∅) for k = 1, 2, 3, . . . until a
call returns a nonempty set. This happens exactly when k
reaches ∆f (x?).

It remains to analyze the query complexity of FIND-
OPTIMAL. By Lemma 2.2, the height of T is at

most S(f)O(1). Therefore by Lemma 3.4 we have that
FINDMINIMALf (∗d, x?, k, ∅) uses at most S(f)O(k) IDT
operations and additional queries to f . By Lemma 2.2, each
IDT operation can be supported with S(f)O(1)·log d queries
to f . The overall query complexity of FINDOPTIMAL is
therefore upper bounded by

∆f (x?)∑
k=1

S(f)O(k) · S(f)O(1) · log d ≤ S(f)O(∆f (x)) · log d.

4. Building efficient implicit decision trees:
Proof of Lemma 2.2

In this section, we prove Lemma 2.2. Our implementation
of IDTs will be based on known algorithms for finding
certificates. These certificates will be stored in the auxiliary
information of the IDT and will be used to select which
features to query in the decision tree.

4.1. Certificate complexity and query-efficient
certificate finding

At a high level, a certificate of f on x? ∈ {0, 1}d is a set
of features W ⊆ [d] that “witness” f ’s value on x? in the
sense that f(y) = f(x?) for all y ∈ {0, 1}d that agree with
x? on the coordinates in W .

Definition 4.1 (Certificate complexity). For a model f :
{0, 1}d → {0, 1} and an input x?, the complexity of certi-
fying f ’s value on x?, C(f, x?), is the quantity:

min
W⊆[d]

{
|W | : f(y) = f(x?) for all y s.t. yW = x?W

}
.

The certificate complexity of f is the quantity C(f) :=
max

x∈{0,1}d
{C(f, x)}.
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Example. Because the set W = [d] is always a certificate
of f on x?, we typically want small certificates satisfying
|W | ≤ C(f). For a specific example, consider the func-
tion f : {0, 1}5 → {0, 1} defined by the decision tree
in Figure 3. Then W = {1, 3, 5} is a certificate of f on
x? = 10000 since f outputs 0 on any input y satisfying
y1 = 1, y3 = 0, and y5 = 0. Indeed, for an arbitrary in-
stance x? the indices queried along the root-to-leaf path for
x? constitute a certificate of f on x?.

In general, we say W ⊆ [d] is a certificate of f if there
exists some x ∈ {0, 1}d such that W is a certificate of f
on x. Our algorithm relies on a query-efficient procedure
CERT(f ) which takes a monotone f and returns the features
in small certificate of f . The features in this certificate
will be exactly the features we query in our IDT for f .
“Small certificate” here means having size at mostC(f)O(1).
For monotone functions, this size bound is equivalently
S(f)O(1) using the fact that certificate complexity equals
sensitivity for monotone models f :

Fact 4.2 ((Nisan, 1989)). For a monotone model f :
{0, 1}d → {0, 1}, S(f) = C(f).

The authors of (Blanc et al., 2022) recently developed a
query-efficient implementation of CERT(·) for monotone f .
We restate their result here in terms of S(f) using Fact 4.2.

Theorem 4.3 (Theorem 5 of (Blanc et al., 2022)). Let f :
{0, 1}d → {0, 1} be monotone. Then there is an algorithm
that computes a certificate of f of size S(f)O(1) with high
probability using S(f)O(1) · log d queries to f .

4.2. Overall structure of T

Figure 3 depicts the overall structure of an IDT. Conceptu-
ally, the tree can be divided into subtree “blocks”. For a
subtree rooted at ρ, this block is the complete binary tree
that exhaustively queries all features in CERT(fρ), a small
certificate for fρ. One call to CERT(fρ) yields a set of fea-
tures to query in the tree and so we store this set as auxiliary
information until we need to call CERT(·) again. The over-
all depth of the tree is the number of consecutive blocks
in a root-to-leaf path times the depth of each block. The
depth of each block is the size of the certificate returned by
CERT(·) and so Theorem 4.3 ensures that this depth is small.
In the next section, we give the implementation details of
the IDT operations which yield this IDT structure. Then,
we show how to bound the number of consecutive blocks
which provides a bound on the overall depth of the IDT.

4.3. Query-efficient implementation of IDT operations
for navigating T

QUERYf (·, ·). We assume there is some ordering on fea-
tures [d] and hence on elements of a subset A ⊆ [d]. Con-
sider the following implementation of QUERYf .

QUERYf (ρ,A):

1. if A ⊆ Dom(ρ) then let A′ = CERT(fρ) and return
the next feature of A′;

2. otherwise, return the next feature in A \ Dom(ρ) and
set A′ = A.

This procedure stores a list of features in the auxiliary infor-
mation, A, which is then queried iteratively until all features
have been exhausted after which a new set of features is
computed using CERT. The set A specifies a complete bi-
nary tree of depth |A| – the tree which exhaustively queries
all of the features in A. In this way, the entire IDT is a col-
lection of complete subtree blocks each of which originates
from a certificate output by CERT. Figure 4 illustrates the
computation path of a particular input through an IDT using
auxiliary information to store subtree blocks.

ISLEAFf (·, ·). When f is monotone, one can check
whether it’s the constant function by querying f on the
all 0s input and the all 1s input. Therefore, to check whether
ρ is a leaf, we can query fρ on these two inputs and out-
put Yes if and only if fρ is determined to be the constant
function.

4.4. Bounding the depth of T

We also use the following lemma (implicit in Theorem 6
of (Blanc et al., 2022)) which states that f quickly becomes
the constant function after being repeatedly restricted by
a certificate. Alternatively, consecutive blocks in an IDT
quickly terminate in a leaf node. More specifically, suppose
A = CERT(f) is a certificate for f . So, there is some
restriction ρ : [d] ⇀ {0, 1} with Dom(ρ) = A such that fρ
is a constant function. Equivalently, there is some way of
setting each feature in A to a value in {0, 1} such that fρ is
the constant function. In general, for an arbitrary restriction
ρ : [d] ⇀ {0, 1} with Dom(ρ) = A (an arbitrary setting
of each feature in A to {0, 1}), fρ may be nonconstant.
However, one can show fρ is “closer” to a constant than
f in the sense that fρ has smaller certificate complexity.
The following lemma captures this behavior and states more
specifically that f becomes constant after O(S(f)) many
such restrictions. For more details, see the proof of the
lemma in Appendix A.

Lemma 4.4 (Implicit in Theorem 6 of (Blanc et al., 2022)).
Let f : {0, 1}d → {0, 1} be monotone. Let ρ1, . . . , ρ` be a
series of restrictions and A1, . . . , A` ⊆ [d] be disjoint such
that for all i ∈ [`] Dom(ρi) = A1 ∪ · · · ∪Ai and each Ai+1

is a certificate for fρi . Then ` = 2 · S(f) suffices to ensure
that fρ` is constant.
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4.5. Putting it all together: Proof of Lemma 2.2

We prove that our implementations of QUERYf and
ISLEAFf suffice to prove the lemma statement. First, we
show that the implementations require at most S(f)O(1) ·
log d queries to f , then we show the depth of the IDT is at
most S(f)O(1).

The procedure ISLEAF uses O(1) queries to f . A call
to QUERY(ρ,A) returns either a feature in A or queries
CERT(f). Theorem 4.3 shows that CERT(f) requires at
most S(f)O(1) · log d to f and hence QUERY(ρ,A) requires
at most S(f)O(1) · log d queries to f .

It remains to show that the depth of the IDT is at most
S(f)O(1). Let ρ be an arbitrary leaf of the IDT. By con-
struction, Dom(ρ) can be partitioned into blocks of features
A1, . . . , A` where each Ai is a certificate of f restricted on
the features in A1 ∪ · · · ∪ Ai−1. Lemma 4.4 ensures that
f becomes constant after being restricted by ` = S(f)O(1)

many such certificates.

5. Functions over general feature spaces:
Proof of Theorem 1.3

For a monotone model f : Xd → {0, 1} and an instance
x? ∈ Xd, we reduce the problem of computing Cf (x?) to
the problem of computing Cfx? (y) where fx? : {0, 1}d →
{0, 1} is a Boolean model defined in terms of f and x? and
y ∈ {0, 1}d is a specific Boolean input to fx? .

The reduction. We assume f : Xd → {0, 1} is monotone
with respect to some total ordering on X . Write X for
the top element of X and X for the bottom element of X .
Assuming f is nonconstant, we then have f(X

d
) = 1 and

f(Xd) = 0. For x ∈ Xd and y ∈ {0, 1}d, we define
x ↑ y, x ↓ y ∈ Xd as instances satisfying

(x ↑ y)i =

{
X yi = 1

xi yi = 0
(x ↓ y)i =

{
xi yi = 1

X yi = 0

for all i ∈ [d]. That is, x ↑ y is the instance formed by “snap-
ping” a subset of features, specified by y, to their largest
possible value X . In x ↓ y, features are snapped in the
opposite direction. Note that relative to the ordering ≤ on
X , we have x ↓ y ≤ x ≤ x ↑ y for all y ∈ {0, 1}d. Given
a monotone f : Xd → {0, 1}, we write x ↑↓f y to denote
snapping x in a direction specified by f(x):

x ↑↓f y =

{
x ↓ y f(x) = 1

x ↑ y f(x) = 0.

We will just write x ↑↓ y when f is known from context.
We then define the Boolean function fx : {0, 1}d → {0, 1}
as

fx(y) = f(x ↑↓ y).

Note that fx is monotone since y ≤ y′ implies x ↑↓ y ≤
x ↑↓ y′.

Properties of fx. We establish two important properties
of the reduction fx. The first property states that the set
Cf (x) = {∆(x′, x) : x′ ∈ Xd is an optimal counterfactual
for x with respect to f} is equal to the set Cfx(f(x)d) where
f(x)d ∈ {0, 1}d is the bit f(x) repeated d times. The
second property states that the sensitivity of fx is at most
the sensitivity of f . For a proof, see Appendix B.

Lemma 5.1. Let f : Xd → {0, 1} be monotone. Then for
all x ∈ Xd,

1. Cf (x) = Cfx(f(x)d)

2. S(fx) ≤ S(f).

5.1. Proof of Theorem 1.3

Let f : Xd → {0, 1} be monotone and x? ∈ Xd. Assume
without loss of generality f(x?) = 1. Using Theorem 3.5,
we compute and return the set Cfx? (1d) which queries f
at most S(fx?)O(∆fx? (1d)) times. Lemma 5.1 states that
Cfx? (1d) = Cf (x?) which ensures we have returned the
desired set. Moreover, since these two sets are equal we
have that ∆fx? (1d) = ∆f (x?). We can then write the query
bound as

S(fx?)O(∆fx? (1d)) log d = S(fx?)O(∆f (x?)) log d

≤ S(f)O(∆f (x?)) log d
(Lemma 5.1)

which completes the proof.

6. Conclusion
We have given a query-optimal algorithm for finding coun-
terfactuals for monotone models. Our algorithm achieves
a logarithmic dependence on the dimension d, which is
exponentially smaller than the previous best known query
complexity of dO(∆f (x?)), achievable by brute-force local
search.

There are several concrete avenues for future work. The key
enabling ingredient in our overall algorithm is our implicit
decision tree algorithm for monotone models. This gives us
a way to efficiently navigate an interpretable representation
of a black box model f — a decision tree representation —
even in the case of complex models for which this repre-
sentation is intractably large. This is a potentially versatile
technique for understanding black box models — can we
use it to efficiently compute other types of explanations?
The query complexity of our algorithm scales with the sen-
sitivity of f , a discrete analogue of the Lipschitz constant.
Can our lower bounds be evaded by running our algorithm,
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or variants of it, for smoothed versions f̃ of f , obtained
from f by adding a small amount of noise? Finally, while
we have focused on sparsity as our notion of distance in this
work, it would be interesting to extend our techniques to
accommodate other distance functions.

Acknowledgments
We thank the ICML reviewers for their useful comments
and feedback.

Guy, Caleb, and Li-Yang are supported by NSF CAREER
Award 1942123. Caleb is also supported by an NDSEG
fellowship. Jane is supported by NSF Award CCF-2006664.

References
Backurs, A., Blum, A., and Gupta, N. Active local learn-

ing. In Proceedings of the 33rd Conference On Learning
Theory (COLT), pp. 363–390. Proceedings of Machine
Learning Research, 2020.

Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M.,
Hansen, K., and Müller, K.-R. How to explain individual
classification decisions. Journal of Machine Learning
Research, 11(61):1803–1831, 2010.

Bastani, O., Kim, C., and Bastani, H. Interpretability via
model extraction. In Proceedings of the 4th Workshop on
Fairness, Accountability, and Transparency in Machine
Learning (FAT/ML), 2017.

Blanc, G., Lange, J., and Tan, L. Provably efficient, succinct,
and precise explanations. In Advances in Neural Infor-
mation Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021 (NeurIPS),
2021.

Blanc, G., Koch, C., Lange, J., and Tan, L.-Y. The Query
Complexity of Certification. ArXiv, abs/2201.07736,
2022.

Blum, A. and Hu, L. Active tolerant testing. In Proceed-
ings of the 31st Conference On Learning Theory (COLT),
volume 75, pp. 474–497, 2018.

Breiman, L. and Shang, N. Born again trees. Technical
report, University of California, Berkeley, 1996.

Cook, S., Dwork, C., and Reischuk, R. Upper and lower
time bounds for parallel random access machines without
simultaneous writes. SIAM Journal on Computing, 15(1):
87–97, 1986.

Craven, M. and Shavlik, J. Extracting tree-structured rep-
resentations of trained networks. Proceedings of the 8th
Conference on Advances in Neural Information Process-
ing Systems (NeurIPS), 8:24–30, 1995.

Gopalan, P., Nisan, N., Servedio, R. A., Talwar, K., and
Wigderson, A. Smooth boolean functions are easy: Ef-
ficient algorithms for low-sensitivity functions. In Pro-
ceedings of the 2016 ACM Conference on Innovations in
Theoretical Computer Science (ITCS), pp. 59–70, 2016.

Huang, H. Induced subgraphs of hypercubes and a proof of
the sensitivity conjecture. Annals of Mathematics, 190
(3):949–955, 2019.

Karimi, A.-H., Barthe, G., Balle, B., and Valera, I. Model-
agnostic counterfactual explanations for consequential
decisions. In International Conference on Artificial In-
telligence and Statistics (AISTATS), pp. 895–905. PMLR,
2020.

Knuth, D. A computational proof of huang’s degree theorem,
2019. Available at https://www.cs.stanford.
edu/˜knuth/papers/huang.pdf.

Koh, P. W. and Liang, P. Understanding black-box predic-
tions via influence functions. In Proceedings of the 34th
International Conference on Machine Learning (ICML),
pp. 1885–1894, 2017.

Kong, W. and Valiant, G. Estimating learnability in the
sublinear data regime. In Proceedings of the 31st Annual
Conference on Neural Information Processing Systems
(NeurIPS), pp. 5460–5469, 2018.

Kong, W., Valiant, G., and Brunskill, E. Sublinear optimal
policy value estimation in contextual bandits. In Proceed-
ings of the 23rd International Conference on Artificial
Intelligence and Statistics (AISTATS), 2020.

Lakkaraju, H., Kamar, E., Caruana, R., and Leskovec, J.
Faithful and customizable explanations of black box mod-
els. In Proceedings of the 2019 AAAI/ACM Conference
on AI, Ethics, and Society (AIES), pp. 131–138, 2019.

Lakkaraju, H., Arsov, N., and Bastani, O. Robust and
stable black box explanations. In III, H. D. and Singh, A.
(eds.), Proceedings of the 37th International Conference
on Machine Learning (ICML), volume 119, pp. 5628–
5638, 2020.

Lundberg, S. M. and Lee, S.-I. A unified approach to in-
terpreting model predictions. In Proceedings of the 31st
Annunal Conference on Advances in Neural Information
Processing Systems (NeurIPS), pp. 4765–4774, 2017.

Morgan, S. L. and Winship, C. Counterfactuals and causal
inference. Cambridge University Press, 2015.

Mothilal, R. K., Sharma, A., and Tan, C. Explaining ma-
chine learning classifiers through diverse counterfactual
explanations. In Proceedings of the Conference on Fair-
ness, Accountability, and Transparency, pp. 607–617,
2020.

https://www.cs.stanford.edu/~knuth/papers/huang.pdf
https://www.cs.stanford.edu/~knuth/papers/huang.pdf


A query-optimal algorithm for finding counterfactuals

Nisan, N. CREW PRAMs and decision trees. In Proceed-
ings of the 21st Annual ACM Symposium on Theory of
Computing (STOC), pp. 327–335, 1989.

Nisan, N. and Szegedy, M. On the degree of boolean func-
tions as real polynomials. Computational complexity, 4
(4):301–313, 1994.

Pearl, J. Causal inference in statistics: An overview. Statis-
tics surveys, 3:96–146, 2009a.

Pearl, J. Causality. Cambridge university press, 2009b.

Ribeiro, M. T., Singh, S., and Guestrin, C. ”Why should I
trust you?”: Explaining the predictions of any classifier.
In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD), pp. 1135–1144, 2016.

Ribeiro, M. T., Singh, S., and Guestrin, C. Anchors: High-
precision model-agnostic explanations. In Proceedings
of the 32nd AAAI Conference on Artificial Intelligence
(AAAI), pp. 1527–1535, 2018.

Russell, C. Efficient search for diverse coherent explana-
tions. In Proceedings of the Conference on Fairness,
Accountability, and Transparency, pp. 20–28, 2019.

Simonyan, K., Vedaldi, A., and Zisserman, A. Deep inside
convolutional networks: Visualising image classification
models and saliency maps. In Workshop at International
Conference on Learning Representations (ICLR), 2014.

Strumbelj, E. and Kononenko, I. An efficient explanation
of individual classifications using game theory. Journal
of Machine Learning Research, 11:1–18, March 2010.
ISSN 1532-4435.

Ustun, B., Spangher, A., and Liu, Y. Actionable recourse in
linear classification. In Proceedings of the Conference on
Fairness, Accountability, and Transparency, pp. 10–19,
2019.

Van Assche, A. and Blockeel, H. Seeing the forest through
the trees: Learning a comprehensible model from an
ensemble. In European Conference on Machine Learning
(ECML), pp. 418–429, 2007.

Vandewiele, G., Lannoye, K., Janssens, O., Ongenae, F.,
De Turck, F., and Van Hoecke, S. A genetic algorithm for
interpretable model extraction from decision tree ensem-
bles. In Trends and Applications in Knowledge Discovery
and Data Mining, pp. 104–115, 2017.

Vidal, T. and Schiffer, M. Born-again tree ensembles. In
Proceedings of the 37th International Conference on Ma-
chine Learning (ICML), pp. 9743–9753, 2020.

Wachter, S., Mittelstadt, B., and Russell, C. Counterfactual
explanations without opening the black box: Automated
decisions and the GDPR. Harv. JL & Tech., 31:841, 2017.

Yao, A. C. C. Probabilistic computations: toward a unified
measure of complexity. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science (FOCS),
pp. 222–227, 1977.

Zhou, Y. and Hooker, G. Interpreting models via single tree
approximation, 2016.



A query-optimal algorithm for finding counterfactuals

A. Certificate-based restrictions
In this section, we prove Lemma 4.4. We say a certificate S ⊆ [n] of f on x ∈ {0, 1}d is a 0-certificate if f(x) = 0 and
likewise S is a 1-certificate if f(x) = 1. We write C0(f) = maxx∈f−1(0){C(f, x)} to denote the 0-certificate complexity
of f and C1(f) = maxx∈f−1(1){C(f, x)} for the 1-certificate complexity of f . Our proof will reference the fact that the
intersection of a 1-certificate with a 0-certificate is necessarily nonempty (since otherwise there would be some instance
x ∈ {0, 1}d having both a 0-certificate and a 1-certificate).

Fact A.1. Let S0 be a 0-certificate of f : {0, 1}d → {0, 1} and let S1 be a 1-certificate of f . Then S0 ∩ S1 6= ∅.

Proof of Lemma 4.4. Let ρ be a restriction of f : {0, 1}d → {0, 1} such that Dom(ρ) = CERT(f). We’ll show that
C0(fρ) + C1(fρ) ≤ C0(f) + C1(f) − 1. The result then follows by induction. Suppose without loss of generality that
Dom(ρ) is a 1-certificate of f . Then we claim C0(fρ) ≤ C0(f) − 1. Consider any x ∈ f−1

ρ (0). Consider the string
x′ ∈ {0, 1}d formed by inserting ρ into the string x so that f(x′) = fρ(x). Let S0 be a 0-certificate of f on x′ with
|S0| ≤ C0(f). Then S0 \ Dom(ρ) is a 0-certificate of fρ on x. Moreover, S0 ∩ Dom(ρ) 6= ∅ by Fact A.1 and so
|S0 \Dom(ρ) ≤ |S0| − 1 ≤ C0(f)− 1. Since x is any arbitrary 0-input to fρ, we have that C0(fρ) ≤ C0(f)− 1 as desired.

It follows each such restriction ρ decreases C0(f) + C1(f) by at least 1. Thus, after at most 2C(f) ≥ C0(f) + C1(f)
restrictions f becomes the constant function.

B. Proof of Lemma 5.1
For (1), fix an input x ∈ Xd. Suppose without loss of generality that f(x) = 1 (the arguments for f(x) = 0 are symmetric)
so that fx(1d) = f(x ↓ 1d) = f(x) = 1. We will show that if y ∈ {0, 1}d is a counterfactual for 1d then there exists a
counterfactual x′ ∈ Xd for x satisfying ∆(x, x′) = ∆(y, 1d) and likewise if there is a counterfactual x′ for x then there
is a counterfactual y for 1d satisfying the same ∆(x, x′) = ∆(y, 1d). It then follows that ∆f (x) = ∆fx(1d) and also
Cf (x) = Cfx(1d). Let y ∈ {0, 1}d be a counterfactual for 1d. Then,

fx(y) = f(x ↓ y) = 0

which shows that x ↓ y ∈ Xd is a counterfactual for x. Moreover, by definition,

∆(x ↓ y, x) = ∆(y, 1d).

On the other hand, suppose x′ ∈ Xd is a counterfactual for x. Let y ∈ {0, 1}d be the instance defined by

yi =

{
0 i ∈ ∆(x, x′)

1 i 6∈ ∆(x, x′)

for all i ∈ [d]. Then x ↓ y ≤ x′ which implies

fx(y) = f(x ↓ y) ≤ f(x′) = 0

by monotonicity. Hence, y is a counterfactual for 1d and again we have ∆(x ↓ y, x) = ∆(y, 1d).

For (2), let y ∈ {0, 1}d be an instance satisfying Sfx(y) = S(fx). Then fx(y) = f(x ↑↓ y). In particular,

S(fx) = Sfx(y) = Sf (x ↑↓ y) ≤ S(f)

as desired.

C. Lower bounds
C.1. Optimality of Theorem 3.5

We prove the following (slightly more general and formal) version of Theorem 1.4.
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Theorem C.1. Fix any constant c < 1 and success probability ε > 0. For any algorithm A, and S, d,∆ ∈ N such that
S ≤ d and ∆ ≤ Sc, there is a monotone model f : {0, 1}d → {0, 1} with S(f) ≤ S and instance x? with ∆f (x?) = ∆
such that A must make

q = SΩ(∆) + Ω(log d)

queries to find a single optimal counterfactual for x? with success probability ε.

We’ll allow the algorithm A to use randomness. In order to give lower bounds against randomized algorithms, we’ll use the
easy direction of Yao’s Lemma.

Lemma C.2 ((Yao, 1977)). For any q ∈ N, letRq andDq be the set of all q-query randomized and deterministic algorithms
respectively, and let I be the set all of possible pairs f : {0, 1}n → {0, 1} and x? ∈ {0, 1}n (i.e. instances of the
counterfactual problem).

For any distribution µ supported on I ,

min
R∈Rq

max
(f,x?)∈I

[errorR(f, x?)]

≥ min
D∈Dq

E
(f ,x?)∼µ

[errorD(f ,x?)]

where errorR(f, x?) is the probability that R does not return an optimal counterfactual for x?, and errorD(f, x?) =
1[D does not return an optimal counterfactual for x?].

First, we show that sΩ(∆) queries are necessary.

Lemma C.3. For any ∆, d, S, q ∈ N where S ≤ d, and A a q-query randomized algorithm, there exists some monotone
function f : {0, 1}d → {0, 1} with S(f) ≤ S and input x? ∈ {0, 1} satisfying ∆f (x?) = ∆ on which A successfully
returns an optimal counterfactual for x? with probability at most q+1

(S
∆)

.

Proof. We will apply Yao’s Lemma: To apply it, we need to define a distribution over input instances (f ,x?). That
distribution is simple. With probability 1, x? = (0, . . . , 0). Then, we sample a uniformly random z from the

(
S
∆

)
elements

of {0, 1}S with Hamming weight equal to ∆ and set f : {0, 1}d → {0, 1} as

f(x) :=


1 | ≥ ∆ + 1 of the first s coordinates of x are 1

1 | the first s coordinates of x equal z
0 | otherwise.

First, we note that it is always true that S(f) ≤ S. This is because f(x) only depends on the first S-coordinates of x, so
flipping any of the other d−S coordinates cannot change f ’s output. Second, we note that the input x′ being z concatenated
with d − S many 0s satisfies f(x?) 6= f(x′) and |x? − x′| = ∆. Therefore, ∆f (x?) ≤ ∆. Furthermore, x′ is the only
counterfactual for x? at distance ≤ ∆, and so the algorithm succeeds if and only if it outputs x′.

Consider an arbitrary q-query deterministic algorithm A′. By Yao’s Lemma, it is sufficient to prove that the probability A′
outputs x′ given the random instance (f ,x?) is at most q+1

(S
∆)

. As A′ is deterministic, the queries it makes and answer it

outputs are a deterministic function of the answers to its previous queries. Let g : {0, 1}d → {0, 1} be defined as

g(x) :=

{
1 | ≥ ∆ + 1 of the first S coordinates of x are 1

0 | otherwise.

We will consider one possible execution path of A′, when f and g give the same answer on each query A′ makes.
Specifically, the execution path of A′ when every query it makes is answered consistently with g. In that case, A′ will make
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(the deterministic) queries x(1), . . . , x(q). We compute

Pr[Any query inconsistent with g] ≤
q∑
j=1

Pr[f(x(j)) 6= g(x(j))] (Union bound)

=

q∑
j=1

Pr[The first S coordinates of x(j) equal z]

≤ q(
S
∆

) .
Lastly, if A′ follows the single execution path corresponding to every query it makes being answered consistently with g, it
will output some answer x(g). This answer is correct if and only if it equals x′, which occurs with probability at most 1

(S
∆)

for any choice of x(g). Therefore,

Pr[A′ returns an optimal counterfactual]
= Pr[A′ returns an optimal counterfactual,All queries consistent with g]

+ Pr[A′ returns an optimal counterfactual,Any query inconsistent with g]

≤ Pr[x(g) = z] + Pr[Any query inconsistent with g]

≤ 1(
S
∆

) +
q(
S
∆

) =
q + 1(
S
∆

)
The desired result follows from Yao’s Lemma.

Next we show that log d queries are necessary.
Lemma C.4. For any d, q ∈ N andA a q-query randomized algorithm, there exists a monotone model f : {0, 1}d → {0, 1}
satisfying S(f) = 1 and input x? where ∆f (x?) = 1 on which A successful returns an optimal counterfactual for x? with
probability at most 2q

d .

Proof. Once again, we will pick a distribution over input instances (f ,x?) and apply Yao’s Lemma. With probability 1, we
set x? = (0, . . . , 0). Then, we sample a uniformly random i ∈ [d] and set

f(x) = xi

First, we note that S(f) = 1, as the f is only sensitive on the ith coordinate. Furthermore, the input that is 1 on the ith

coordinate and 0 everywhere else is a counterfactual for x? of distance 1. This is the only optimal counterfactual.

All that remains is to argue that any q-query deterministic algorithm fails to return an optimal counterfactual for x?. A
q-query deterministic algorithm can only output 2q different answers. However, based on the choice of i, there are d unique
choices for the optimal counterfactual. Therefore, the probability the algorithm can output the optimal counterfactual is at
most 2q

d .

Proof of Theorem C.1. It’s sufficient to show that

q = max(SΩ(∆),Ω(log d))

where we treat ε and c as constants. By Lemma C.3, we have that

q ≥ ε ·
(
S

∆

)
− 1

≥ ε ·
(
S

∆

)∆

− 1

≥ ε ·
(
S1−c)∆ − 1 (∆ ≤ Sc)

= SΩ(∆).



A query-optimal algorithm for finding counterfactuals

Then, by Lemma C.4, 2q

d ≥ ε, and so
q ≥ log(εd) = Ω(log d).

C.2. Lower bound against local algorithms

Recall that an algorithm for finding a counterfactual for x? is local if its first query is x? and every subsequent query differs
from a previous query by exactly one feature.

Theorem C.5. For any local search algorithm A, d ∈ N, and ε > 0, there is a monotone model f : {0, 1}d → {0, 1}
with S(f) = 1 and an instance x? with ∆f (x?) such that A must make q ≥ εd queries in order to find a single optimal
counterfactual for x?.

Proof. As in the proof of Lemma C.4, we apply Yao’s Lemma with the distribution with x? = (0, . . . , 0) with probability 1
and

f(x) = xi

where i ∈ [d] is chosen uniformly at random. Once again, S(f) = 1 as f is only sensitive on the ith and there is a
counterfactual from x? of distance 1.

Since we are applying Yao’s Lemma, it is sufficient to reason about deterministic local algorithms. A′ be a q-query local
and deterministic algorithm. We will consider one execution path of A′, namely that in which all its queries return 0. In that
case, it will make the deterministic queries x(1), . . . , x(q). As A′ is local, the queries x(1), . . . , x(q) must all be adjacent,
and since x(1) = (0, . . . , 0), the number of coordinates j ∈ [d] on which x(t)

j = 1 for some t ∈ [q] is at most q − 1. The
probability that f(x(t)) = 1 for some t ∈ [q] is the probability that f(x(t))i = 1 for some t ∈ [q] which is at most q−1

d .

Therefore A′ follows a single execution path with probability at least 1− q−1
d . At the end of that execution path, it outputs a

single “guess” counterfactual y. However, y is an optimal counterfactual for x? only if yi = 1 and yj = 0 for all j 6= i,
which can occur with probability at most 1

d for any single y. Therefore, the probability A′ outputs a correct counterfactual is
at most

Pr[y is an optimal counterfactual for x?] + Pr[A′ does not output y] ≤ 1

d
+
q − 1

d
=
q

d
.

By applying Yao’s Lemma, we conclude that any randomized q-query local algorithm succeeds in finding an optimal
counterfactual with probability at most qd . Therefore, to succeed with probability ε, we must have q ≥ εd.
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D. Figures

x1

x2

x4

0 1

x5

0 1

x3

x5

0 1

x4

0 1

1. ISLEAFf ({}, {}) = No

2. QUERYf ({}, {}) = (1, A1)

3. ISLEAFf ({1 7→ 1}, A1) = No

4. QUERYf ({1 7→ 1}, A1) = (3, A2)

5. ISLEAFf ({1 7→ 1, 3 7→ 0}, A2) = No

6. QUERYf ({1 7→ 1, 3 7→ 0}, A2) = (5, A3)

7. ISLEAFf ({1 7→ 1, 3 7→ 0, 5 7→ 0}, A3) = Yes

Figure 3: Walking down a tree T representing a function f : {0, 1}5 → {0, 1} using the IDT operations. The input is
x? = 10000 and its computation path through the tree is colored in blue. The walk starts at the root with the empty restriction
{} and ends at the leaf node represented by the restriction {1 7→ 1, 3 7→ 0, 5 7→ 0}. The decision tree leaf value here is 0
indicating that T (x?) = f(x?) = 0.
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ρ1

ρ2

ρ3

ρ4

x?

Restriction corresponding to path segment

depth C(f)O(1)Certificate of f

Certificate of fρ1

Certificate of fρ1,ρ2

Certificate of fρ1,ρ2,ρ3

Figure 4: Tracing the root-to-leaf path of an input x? ∈ {0, 1}d through an implicit decision tree (IDT) separated into
blocks. The dashed triangle outline represents the entire tree. The IDT operations allow one to construct the dotted path
without constructing the entire tree. Each triangular block corresponds to the subtree exhaustively querying all the features
in a certificate of a restriction of f . The depth of each block is C(f)O(1), the number of features in a certificate of f . The
total number of blocks intersecting any root-to-leaf path is at most C(f)O(1) and so the overall depth of the IDT is at most
C(f)O(1).


