

South American Hydroclimate Change on Millennial and Orbital Timescales: Insights From 70,000 Year Amazon and Andes Speleothem Records

Dylan Parmenter¹, Kaylee Valasquez², Hailey Stoltenberg², Avery Clavel², Laura Piccirillo², Francisco W. da Cruz Jr³, Hai Cheng⁴, Donald Rodbell², David Gillikin², Xianfeng Wang⁵, Augusto S. Auler⁶, Xinyuan Zheng¹, R. Lawrence Edwards¹

¹University of Minnesota, Twin Cities, USA. ²Union College, Schenectady, USA. ³University of São Paulo, São Paulo, Brazil. ⁴Xi'an Jiaotong University, Xi'an, China. ⁵Nanyang Technological University, Singapore. ⁶Brazilian Karst Research Institute, Belo Horizonte, Brazil.

The Amazon Basin is an ideal location for testing the Held and Soden hypothesis¹, which holds that wet regions should get wetter in response to global warming. In part to test this idea, we have extended the existing cave record from Paraiso Cave² (4.07°S, 55.45°W) beyond 45 ka. The full record³ now covers 70 ka, allowing us to investigate 9 additional millennial scale events, as well as events that correlate with the MIS 4/3 transition.

The new record has $\delta^{18}\text{O}$ values ranging between -3 and -6‰ and for overlapping sections replicates the old record. The most prominent events in the extended record are a pluvial anomaly between 47.0 and 48.9 ka, correlative with Heinrich Stadial 5, and a negative shift accompanying the MIS 4/3 transition between 65 to 60 ka. Our stable isotope findings record a previously observed² millennial scale anti-phased relationship between Amazon rainfall on one hand, and Asian Monsoon strength and Greenland temperature on the other. On the orbital scale, we see correlative shifts between Amazon rainfall and atmospheric CO₂, consistent with the Held and Soden idea. New trace metal data gives us a secondary proxy for local hydroclimate conditions to pair with our $\delta^{18}\text{O}$ record. Preliminary analysis shows strong co-variation between Sr/Ca and Mg/Ca ratios in our samples ($R^2=0.5427$), making them ideal⁴ for indicating prior calcite precipitation resulting from aridity. The trace metal data generally support our interpretation of the $\delta^{18}\text{O}$ record, indicating that local moisture availability varies in concert with overall rainfall patterns.

Another aim of this project is to deepen our understanding of moisture recycling and transport from the Amazon basin to the rest of tropical South America. To this end, we have extended the Huagapo Cave (11.27°S; 75.79°W) record⁵ from the Peruvian Andes to match the length of our Amazon record, and will similarly pair stable isotopes and trace metal data. Together, these robust records will shed light on phenomena such as the South American precipitation dipole.

¹Held, I. M., & Soden, B. J. (2006). *Journal of Climate*, 19, 5686–5699.

²Wang, X. F. et al. (2017). *Nature*, 541, 204–207.

³Parmenter, D. P. et al. (2020). *AGU Fall Meeting Abstracts*, PP026-03.

⁴Fairchild, I. J. et al. (2000). *Chemical Geology*, 166(3), 255–269.

⁵Kanner, L. C. et al. (2012). *Science*, 335, 570-573.

