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Abstract—Serverless Computing is a new cloud computing
paradigm wherein people in academia and industry are actively
proposing either interesting improvements or building excel-
lent applications on top of it. AWS, Google Cloud, Microsoft
Azure, and IBM are popular samples of public clouds that
offer Function-as-a-Service on top of their Serverless Computing
platforms. Although this paradigm has had numerous advantages
for software developers and programmers, it has introduced
new challenges to cloud providers. Factors like fine-grained
pricing and pay-as-you-go manner, eliminating the responsibility
of resource management on the developer side, promises of
elasticity and highly-available service, fault tolerance, auto-
scaling, and being able to run embarrassingly parallel jobs make
it a suitable platform for developers. On the other hand, efficient
resource management, offering low-latency service, and providing
proper security/isolation have been partly the main challenges
introduced on the cloud provider side.

This paper presents a literature review on today’s Serverless
platform optimizations and extensions that people have proposed
and implemented to further capitalize the Serverless infras-
tructure. In the end, we will provide the current Serverless
paradigm’s limitations and a few future directions and research
opportunities regarding Serverless Computing.

Index Terms—Serverless Computing, Function-as-a-Service,
Cloud Computing, Optimization, Extension

I. INTRODUCTION

In traditional cloud computing paradigm, VMs formed the
original basis for Infrastructure as a Service that enabled
developers to skip the steps of buying hardware, and simplified
the deployment of applications. Containers took that one step
further into a more efficient deployment model. But, in each
case, developers still need to develop a lot of software to
orchestrate their applications and deal with the boundaries of
a machine as a deployment unit.

Serverless was introduced more recently to solve these
problems and allow application developers to just define their
application functionality. In effect, as the name suggests, it
relieves the developers from dealing with the complexities
of setting up and maintaining servers. It has become an
interesting topic for researchers and the cloud industry that
are actively trying to either improve it or build traditional
applications atop it. Cloud providers have traditionally offered
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Fig. 1. Serverless Computing Workflow

services like IaaS, PaaS, SaaS for years, and now after the
emergence of Serverless, have started offering Function-as-a-
Service (FaaS).

FaaS has many benefits that have attracted software devel-
opers and industry, although it has some limitations as well.
Unlike the typical use cases of cloud computing wherein users
have to rent VMs or bare metal servers and manage their
clusters themselves for a specific amount of time, they only
have to upload their function code on a Serverless platform
and specify an event to trigger the function execution. Users
do not need to worry about any resource management and pay
for only the actual function execution time, which can be in
the order of seconds, as opposed to renting a VM or bare metal
server for an hour. For example, the minimum time we can
rent an AWS EC2 instance is an hour [1]. Even if we want to
run a highly-parallel function once in an hour for ten seconds,
we will have to rent the instance for the entire hour. Contrast
that to using the serverless platform AWS lambda [2] instead
and only pay for that ten seconds.



There have been several exciting applications leveraging
Serverless platforms, especially for running highly parallel
jobs. Works like ExCamera [24] and gg [23] are exciting
tools to run everyday jobs and common applications such as
video encoding atop AWS Lambda. PyWren [26] and IBM-
PyWren [31] ease building big data analysis applications using
FaaS. Cirrus [21] showed that we could have a complete
ML pipeline working atop a Serverless platform and a ton
of other exciting applications. Although these papers show
groundbreaking results and propose exciting new directions,
there are still some major gaps between the current state-
of-the-art and the potential benefits that serverless computing
can enable, and indeed there is large room for exciting new
research in this area.

On the other hand, cloud providers have been trying to
optimize Serverless infrastructure with several different goals.
These goals include reducing latency [16], [29], [35], increas-
ing resource efficiency [22], reducing the number of Cold
Start (described in section III-A) [22], [32], and customizing
Serverless platform to perform well for specific use cases [18],
[36].

In this paper, we present a survey discussing optimizations
that have been done to address different shortages in the
Serverless platform, and extensions that people have proposed
to improve the Serverless cloud further. The picture depicted
in Figure 2, roughly shows the focus of each of the key papers
in the area of Serverless cloud environment. We conclude the
paper with some future research directions that we believe will
be attractive to researchers interested in this field.

II. OVERVIEW

Serverless Computing is a recent paradigm that emerged
in cloud computing that has a general workflow, as shown in
Figure 1. Developers write their application code (function),
upload it to the Serverless platform, and define one or more
events that can trigger that function on the cloud platform. An
event can be an HTTP web request, a read/write request to a
database residing in the cloud, another Serverless function, and
so on. Developers can also start their function execution them-
selves regardless of any specific event. For each instance of
an event trigger, the Serverless platform creates and executes
an instance of the corresponding function with proper inputs
according to the event content and returns the result after the
execution completes. For example, in Figure 1, a developer
has defined three events that each can trigger his/her function,
already uploaded to the platform. Event 3 has been triggered
four times concurrently that has lead to the spawning of four
instances of the function and accordingly four results.

In the current state-of-the-art Serverless platforms that pro-
vide Function-as-a-Service, Containers play an key role. They
are considered the unit of execution in this approach. As we
mentioned above, a developer only uploads his/her function
code to the cloud platform and defines events that can trigger
the execution of their function. They do not need to worry
about the underlying VM, runtime environment, hardware, etc.
Cloud providers typically provide the runtime environment

suitable for function execution by using containers. When an
event occurs on the cloud provider side, a container is created,
and the function code is executed in that container with the
corresponding input.

Serverless computing comes with many popular inherent
features. The pricing model is pay-as-you-go, due to which
the developer only pays for the resources used for the function
execution, and there is no need to rent a VM or cluster to
run a regular short job in the cloud. FaaS providers propose
auto-scaling, as a result of which the developers do not
need to do any workload monitoring or worry about resource
management. The cloud provider will upscale and downscale
based on demands. Developers can run thousands of function
instances simultaneously; thus, they can run embarrassingly
parallel jobs (although there are some limitations that we will
address in the rest of this paper) atop this platform. Function
instances are time-limited, and basically, they are short-lived
jobs (for example, AWS lambda currently offers a 15-minute
timeout). Each function instance has limited memory and
CPU, and they are stateless. Usually, people use external
storage services like S3 [3] to maintain state or for inter-
function communication. We will go into more detail in the
following sections, and at the end of this paper, the reader
will have a better insight into Serverless platform designs and
implementations.

As it is depicted in Figure 2, Serverless platform generally
consists of a management layer that does the function place-
ment, scheduling, orchestration, etc and several server nodes
that each has multiple layers to provide the infrastructure
to run function instances. Since people have been using a
distributed message bus for inter-function communication or
persisting program state, we also included this component in
the picture. Moreover, we mentioned each project’s reference
number according to where the corresponding paper has con-
tributed. For example, [32], [34], [36] have some significant
contributions related to the management layer to achieve their
goals. Likewise, in [18], [22], [23], [26], [31], [34], [36],
we indicate contributions in both application code layer and
providing appropriate runtime, libraries, etc for that. [16],
[22], [29], [35] dug into lower levels and tried to address
some drawbacks in the containers, networking, etc, and their
optimizations will benefit the entire Serverless platform. Dis-
tributed message bus played a vital role in [16], [34] as
indicated in the picture, and [35] studied the networking
between function instances, thus we placed that on the dashed
line between container layers.

Due to the promise of Serverless computing, there has been
an increasing amount of research in the space that we discuss
partly in this paper. Generally, the research has centered on
three main topics:

o What can we do on Serverless today?

Serverless has many great benefits, but it’s an architecture
with a specific way to design applications for it. The
first area of research revolves around understanding what
applications are possible to run on current platforms.
The research has shown that embarrassingly parallel



OS/Hypervisor

OS/Hypervisor

HW

HW

OS/Hypervisor

HW

Fig. 2. Overview of the projects discussed in this survey

applications, like machine learning, are a good fit right
now.

For instance, PyWren [26] and IBM-PyWren [31] pro-
posed a new way of running distributed and big data
analytics applications on top of Serverless infrastructure
instead of using popular platforms like PySpark [4]
and Hadoop [5]. Furthermore, to offload processing and
computation to the cloud, gg [23] opened a new window
on offloading everyday jobs like program compilation
with 1000-way parallelism using the Serverless cloud.
ExCamera [24] and Sprocket [17] offered video en-
coding/decoding using Serverless platform. People have
also studied the use case of Serverless Computing in
special areas. For example, SNF [34] has provided a
Network-Function-as-a-Service infrastructure in which it
has addressed major challenges in offering VNF service
atop Serverless platforms.

« How can we improve execution?

There have been lines of research on reducing the
function start-up latency (including solving the Cold
Start problem) and proposing more efficient inter-function
communication solutions to make the Serverless platform
a viable option for a diverse range of applications.

« How can we extend the applicability of Serverless?
This research line proposes new programming language
primitives, fault tolerance mechanisms, concurrency pat-
terns, etc to enrich the Serverless computing platforms
further and make them suitable for more general-purpose
applications and easy to use.

The rest of the paper is outlined as follows: Section III
summarized the projects that optimized the Serverless plat-
forms for either cold starts and startup latency or inter-function
communication. Section IV will list a few projects that tried
to extend the Serverless platform to make it suitable for more
general-purpose applications. In the end we propose some gaps

and future directions in Section V and we conclude the paper
in Section VI.

III. SERVERLESS PLATFORM OPTIMIZATIONS

In this section we focus on the optimizations that have been
done so far to improve Serverless infrastructure categorized in
2 topics:

A. Cold Start & Startup Time Optimizations

A famous problem in the Serverless FaaS that people are
actively trying to optimize for is the containers’ cold start.
As mentioned earlier, typically, each function instance runs
in a container in the FaaS platform. Cold start refers to
when a container boots up (downloads the code and required
libraries, initializes its runtime, and bootstraps) from scratch
for the first time. When the container has already done these
steps, it is ready to run and execute the function code and
return the result. In the latter case, we call the container
warm. There is a trade-off between wasted memory and the
number of cold starts. Thus, if the cloud providers keep the
containers hosting function instances always warm, they would
have colossal memory wastage since each container’s code,
libraries, runtime, etc should permanently reside in memory.
On the other hand, if they throw the container and its related
content out of the memory immediately after the function
execution, we would encounter cold start latency at each
function invocation. Consequently, there is a sweet spot on
which we can have reasonable cold start numbers and resource
waste on balance.

In a more general context, researchers have been trying to
reduce the start up time of the function instance to make the
Serverless platform more reactive and resource efficient. We
summarize some of the related works below.

To begin with, firstly, we explain a few works wherein
reducing the number of cold starts and start up time have been
one of their major goals categorized by their methodologies.



1) Smart Algorithms: [32] is a joint work of Microsoft
Research and Microsoft Azure, in which they analyzed Azure
Functions [6] workload statistically in detail, and they pre-
sented their solution implemented on their Serverless platform,
taking the analysis into account. Accordingly, they monitored
the Azure Functions workload for two weeks [7] and analyzed
that to know how functions are accessed, what resources
they use, and how long they run. They provide a great deal
of workload characterization in their paper, although in this
survey, we focus on the Serverless platform optimization part
of their project. They found out that the Serverless workload
types are so variant (constant, bursty, Poisson distribution, etc)
and that there is no one-size-fits-all solution to determine the
memory residency interval for the functions or predict the
function start times.

They claimed current Serverless platforms incorporate the
fixed keep-alive policy (keep alive: the time during which
the container is kept warm between 2 invocations). They
added, AWS Lambda keep-alive interval is around 10 minutes
(obtained by reverse engineering), and Azure Functions is
around 20 minutes. However, it does not perform well on
a very simplistic case in which the function is called, for
instance, every 11 minutes on AWS Lambda, and the function
faces a cold start every time.

They proposed and implemented the Hybrid Histogram
Policy for predicting the container’s keep-alive time to have
a sort of dynamic policy adapting to each container work-
load. They used a combination of Histogram-based approach,
ARIMA [20] time series forecast when there are too many
out of bounds, and being conservative (specifying maximum
keep alive time) in their model instead of just using a fixed
keep-alive policy. After they observed good results applying
their solution to the workload, they implemented their system
on OpenWhisk [8], and showed that it only has less than
Ims added latency to the critical path while reducing memory
wastage, container cold starts, and function execution time.

2) Relaxing Function Isolation: Looking deeper into the
cold start problem, many researchers have figured that current
isolation between the Serverless function instances is not
necessary. Each container has its own runtime, libraries, etc,
built on top of lower layers that provide Namespace isolation
and Control Groups concept, making the typical container a
heavyweight and slow option for Serverless functions. Starting
a Serverless function instance in a separate isolated container
may cause inefficiencies in terms of resource and latency in
special cases that several projects have addressed. For exam-
ple, function instances of a single application coming from a
tenant may trust each other and share some prerequisites; thus,
they can be run in a less isolated environment than containers
which are more lightweight, quicker, and more efficient.

More Appropriate Containers - SOCK’s [29] main focus
is to reduce the startup time of the cloud function instances.
For example, they claimed, considering running a Python
function that uses “’scipy” library as a Serverless function, it
is expected to encounter a couple of seconds for runtime and
library initialization before the actual execution, which can be

by orders of magnitude more than the execution time of the
function itself.

They proposed a new serverless-optimized container as a
part of the greater project called OpenLambda [9]. Three
significant contributions that they have made in this project
include: Changing the predefined Linux isolation mechanisms
(namespaces) for containers to more lightweight approaches
like bind mount, “namespaces + chroot,” instead of using flexi-
ble, expensive union file system used in Docker [10]. Applying
the idea of Zygote process in Android OS on the Serverless
platforms, they could put common libraries in the Zygote pro-
cess. Thus, by forking new instances from the Zygote process
and adding libraries if needed, they can reduce the function
startup time and leverage kernel features like copy-on-write
mechanisms, and reduce the containers’ overhead. Finally, they
implemented a 3-tier caching mechanism to reuse initialized
runtime within a lambda, reuse initialized Zygotes between
lambdas, and reuse installed packages between lambdas using
handler cache, import cache, and install cache, respectively.

They evaluated their system for the first contribution using
initiating no-op handlers with different parallelism levels using
SOCK against Docker containers. As for the second contribu-
tion, they created and destroyed handlers’ runtime as quickly
as possible and measured the operations per second against
Docker. Furthermore, to evaluate the last contribution, they
sent two random requests per second to an OpenLambda [9]
worker machine hosting 100 distinct lambdas, all importing
django [11] library, and measured the end-to-end latency. They
could achieve 18x better performance using SOCK instead
of Docker containers as a result of their first contribution,
3x startup latency improvement using the idea of Zygote
processes and forking new instances from that, and 3 - 16x
speed up using a 3-tier caching mechanism to reuse the
runtime and libraries that are already deployed.

Application-level Sandboxing - SAND [16] starts with
explaining an image processing pipeline running on the Server-
less platform consisting of 5 functions as their motivating
example. By running this pipeline on multiple Serverless
platforms (AWS Lambda, IBM Cloud Functions, and Apache
OpenWhisk), they noticed that this application’s total execu-
tion time is around twice as much of the actual computation
time. They mentioned some of the best practices in the
existing Serverless platforms. As described earlier, if the FaaS
provider starts a new container for every function trigger, it
will encounter so many cold starts. On the other hand, if they
keep the containers warm to handle the new incoming requests,
it has too much resource inefficiency. Since they have a fixed
timeout, they still suffer from a non-optimal number of cold
starts which will add delays.

Their first key idea is proposing different levels of isolation
for applications and functions. They isolate applications in
containers, and they run application functions in the same
container as processes. Whenever a new event happens, they
fork from the corresponding process in the application con-
tainer. This way, they can leverage OS features like copy-on-
write and resource de-allocation when the function execution



is finished. Consequently, by forking, their system reduces
overhead compared to creating a container for each function
instance. We discuss their second key idea in the next section
to improve inter-function communication.

Their application-level sandboxing mechanism provided
faster startup, automatic de-allocation, and low-execution foot-
print of Serverless applications.

Share the Shareables - In Photons [22], they started
by describing a motivating example that leads to their work.
Let’s say we are running a Tensorflow for image classification
on top of the Serverless platform. Currently, each instance of
the function will have a separate execution stack, including
the container, runtime, libraries, and shared data, which is the
ImageNet model [12] and the local request data. They argued
that this level of isolation between the functions (function
execution stack) of the same application is not necessary. They
added that 70-90 percent of these functions’ memory footprint
is shareable (The first four layers in Figure 3), and only the
rest of it is private and specific to the function instance.

They used language level isolation to isolate different in-
vocations of the same application, and they ran the function
instances on the same JVM runtime. As for the shareable data,
they included a shared object store accessible by the function
instances that has GET/SET API and locking mechanism so
that functions can use for intermediate communication. Since
language level isolation is not as strong as VM/container
isolation, they only co-locate the same function instances on
the same runtime with shareable data.

Using Photons, they reduced the memory consumption of
running 100 concurrent functions up to 5x. Their project works
best if the number of concurrent functions increases in the
Serverless platform. According to the analysis that people
have done on Microsoft Azure Functions [32], 99 percent
of the invocations are coming from less than 10 percent
of the functions, which means Serverless functions typically
run concurrently. Benchmarking their system using Microsoft
Azure workload, they saved 30 percent memory space using
Photons, and they claimed if they used this memory space to
keep more containers warm, they could reduce the number of
cold starts by 52%.

Network Startup Optimization- Another issue regarding

the existing Serverless platforms is the communication be-
tween cloud functions. People used to use S3 for intermediate
communication, which is slow for a short-lived job. Elasti-
Cache [13] and Pocket [27] are faster, but sometimes they are
expensive, and since they are all storage-based mechanisms,
they are not a viable option for bursty parallel short-lived jobs.

In Particle [35], they dug into overlay networks to make
them suitable for bursty Serverless functions. According to the
paper, overlay network startup time is responsible for a huge
portion of the entire container startup latency. They proposed
Particle, that interconnects related Serverless functions with
low overhead in overlay network startup.

To give the reader an overview of overlay networks and how
they are created, there are six steps to have a fully functional
overlay network: 1- Setup network namespace 2- Setup new
host devices (create guest and local Virtual Ethernet Devices)
3- Move the guest VETH into the container 4- Move local
VETH into VTEP namespace (controller ns residing on the
host) 5- Attach local to VXLAN VNI bridge and 6- Attach
IP and MAC to guest VETH. Using eBPF, they profiled each
step’s latency, and they came up with the result that 92% of the
total network startup time is for steps 3 and 4, wherein moving
to namespaces happens. Mainly this overhead is because of
calling a kernel function named dev_change_net_namespace,
which is called in both startup and cleanup. This function
holds a lock during this move. Thus, each container’s overlay
network creation makes the kernel go through locking twice
(in both steps 3 and 4). They argued that this level of isolation
is unnecessary for hundreds of serverless threads for the same
tenant or user job (like a program compilation using gg [23]).

In Particle, they do steps 1 to 4 only once at the beginning
of starting a Serverless job and do steps 5 and 6 for every
new instance of that user job based on their assumption that
these instances do not need to be isolated strongly. Thus, they
put all the instances in the same network namespace and skip
creation and moving of network namespaces and devices steps
by using Particle. Their system has a limitation that if we
change a network rule, it will affect all the containers created
for that specific user job.

They can reduce the network startup time by up to 5x
compared to Weave, Docker Swarm, and Linux Overlay. They
also ran Sprocket [17], a Serverless video processing pipeline,
and they showed that by using Particle, they reduced the
startup time to 18% of the total runtime while 71% of the total
runtime is for the actual processing. This number for Docker
Linux Overlay is 62% and 35% for startup and processing,
respectively.

B. Inter-function Communication

One of the exciting research topics in Serverless comput-
ing is to improve the communication between the function
instances. Since the Serverless instances are not network-
addressable (although they can initiate connections with exter-
nal services), people should use storage services or distributed
message bus for function interaction, but they are not suitable,
especially for bursty Serverless workload. For example, on



AWS, using S3 adds much overhead to the function execution
time. Using in-memory k/v stores and cache may help have
less latency, but it is more expensive than external storage
services or less efficient than direct network communication.
In this section, we discuss a few projects related to this
objective, and we will discuss some further works in the next
section since the authors provided communication primitives
included in their proposed extensions for Serverless platforms.

In SAND [16] that we discussed in the previous sec-
tion, besides their first key idea of having application-level
sandboxing and leveraging application functions co-location,
they proposed a second contribution to optimize the inter-
function communication. Since function instances are not able
to usually talk to each other through a network, if functions
of the same application want to interact, they have to do it via
the distributed message bus (or distributed storage like S3 in
AWS) even if they reside on the same host which adds extra
latency to the application total runtime.

Their second key idea is implementing a hierarchical mes-
sage bus to address high communication overhead between
function instances. They implemented a local message bus on
each host, so the functions interacting on the same host do
not go all the way through the globally distributed message
bus to interact with each other. Along with their application-
level sandboxing mechanism, this hierarchical message bus
offers a notable improvement in execution time and startup
time since now the co-located functions can interact via
local message bus. They also implemented a coordination
mechanism between the global message bus and the local
message bus to keep them synchronized firstly and secondly,
the global message bust acts as a back up for the local ones,
which provides fault tolerance.

They showed their local message bus is also 3-5X faster
than the global one. Function interaction is 8.3x faster than
Apache OpenWisk and 6.3x faster than AWS Greengrass.

In Photons [22], we also mentioned that function instances
co-located on the same Java Virtual Machine could share
states with each other via shared object store by the API they
provided to write photon-friendly functions, and in this way,
they have less communication overhead than using distributed
storage service like S3.

IV. SERVERLESS PLATFORM EXTENSION

Now that we covered a few novel, exciting works in the area
related to Serverless infrastructure and runtime optimizations,
we will continue to describe some other interesting works that
extended the Serverless platform by adding new primitives and
features.

As we mentioned earlier, in the introduction and overview
sections, people have built applications atop the Serverless
platforms and for specific purposes like ExCamera [24] and
Sprocket [17] (Video Processing), PyWren [26] and Locus [30]
(Data Analytics), gg [23] (Parallel Compilation), Cirrus [21]
(Machine Learning), and NumPyWren [33] (Numerical Anal-
ysis).

Kappa [36] has focused on providing a framework for more
general-purpose applications using Serverless infrastructure
and make it more than just for event handling generally. Here
are the problems that they focused on in their general-purpose
framework:

« Lambda functions are short-lived jobs; however, the com-

putation can be long-running in general.

« cxisting FaaS offerings lack concurrency primitives and

patterns like fork-join and message passing.

To address the first challenge, Kappa, provides a checkpoint-
ing mechanism at the language level based on continuation,
which helps to resume the lambda functions from where it
timed out. As for the second challenge, they provided a con-
currency API in which they provided concurrency primitives
familiar to developers like “future” and “message passing” to
handle synchronization between lambda functions. They have
implemented fault tolerance mechanisms to ensure they do not
have non-determinism and side effects while checkpointing.
Kappa needs no modification to the Serverless platforms and
can be running on current platforms.

Kappa consists of 3 main components, Compiler, Coordina-
tor, and Library. The compiler is responsible for program trans-
formation and generates code for checkpointing. The coordina-
tor is responsible for launching and resuming Kappa tasks and
has the underlying features for implementing the concurrency
primitives, and Kappa tasks use Library for checkpointing
and synchronization. In the beginning, the application code
will be transformed by the compiler to a Kappa-friendly code
(which includes the code for checkpointing), and then it will
be enpackaged with the Kappa library at runtime and passed
to the coordinator. The coordinator will launch the Kappa
tasks that are logically considered long-lived threads. Each
Kappa task will communicate with the coordinator through
RPC for checkpointing and synchronization purposes. They
also used AWS S3 to save and retrieve the checkpoint contents
and continuation functions. Kappa has other features like
coordinator state persistence, checkpoint replication, and call
external services like storage services.

As for the evaluation, they provided Kappa’s overhead
and ran several applications to show the generality of the
framework. Checkpointing overhead is not too much (less
than 100ms upto 1000KB of checkpoint size) even if we use
S3. They showed that their checkpointing mechanism is also
scalable by testing it over up to 1000 concurrent lambdas doing
checkpointing every 100ms with the size of 0.5 KB. They ran
TPC-DS [14], word count in Map-Reduce style, Parallel grep,
which counts the occurrences of a string in a single file split
into chunks, and streaming application to calculate the average
number of hashtags per tweet in a stream of tweets, and a web
crawler based on UbiCrawler [19] which downloads web pages
starting from seed domains [15].

Crucial [18] also addressed two challenges in current
Serverless platforms: 1- The problem of shipping data to code
and high bandwidth usage for the fine-grained data access
(moving data back and forth) 2- It is hard to synchronize
concurrent cloud functions since it lacks concurrency prim-



itives. They proposed having a mutable shared state across
cloud functions and synchronization primitives so that people
can quickly run cloud functions using their system.

They provided a library in Java with the abstraction of
Cloud Threads, and with that, programmers can run their Java
thread as a Serverless cloud function. They have implemented
a Distributed Shared Object built atop infinispan [28], which
plays a role as an in-memory data store to share mutable states
across cloud functions. Since they are using object methods
and can handle some operations at the storage level, they
mitigated high bandwidth usage for shipping data to code for
fine-grained accesses. Furthermore, they have provided syn-
chronization primitives like CyclicBarriers and Semaphores
to handle concurrency issues in their code. According to
their evaluation, they handle fine-grained access, provide low
latency (as they are using in-memory space), propose concur-
rency primitives, support operations on data, have a simplified
programming model, and provide fault tolerance using object
replication.

They claimed that less than 3% changes needed to native
Java thread’s code to make it suitable for Serverless platform
using Crucial. They showed, Crucial atop Serverless will
outperform the Spark cluster running Logistic Regression, and
Crucial has a negligible overhead compared to native Java
threads atop their Distributed Shared Object store running
locally in the cloud.

V. DISCUSSION & FUTURE DIRECTIONS

There is a number of interesting research directions that we
can take the work. Here we discuss two of them:

Disaggregated Serverless Platform - According to [25]
Serverless platforms without any of the co-location/placement
mechanisms mentioned in this paper deploys Serverless func-
tion instances on the nodes non-deterministically, which leads
to inefficiency. As mentioned in works like Photons [22], and
SAND [16], we can leverage function co-location to share
common resources across the functions of an application and
also add a more efficient communication channel locally so
that an application’s functions do not have to communicate
through a globally distributed message bus. We are sharing
runtime, libraries, etc across concurrent function instances of
an application which leads to better resource utilization and
reducing cold starts because we have the shareable portion of
the function in the target node locally. Now that this function
placement and co-location has shown its benefits in the area
of Serverless computing, we can take this one step further.

Since all function instances that are potential candidates for
co-location might not fit into a node as our unit of underlying
hardware resources is the actual server node, we can lever-
age disaggregated computing to extend hardware resources
beyond a single server. Combining these two directions can
create some trade-offs. For example, suppose we implement
a memory disaggregation mechanism in order to provide the
functions with more memory using remote node’s memory to
share the shareable portions. In that case, we will certainly add
overhead to the function execution since we make functions

do paging remotely in part. However, on the other hand,
we have to initialize all those shareable portions (cold start)
if we want to start a function from scratch on some other
node. This trade-off can be analyzed in detail and lead to
efficient scheduling decisions in the management layer of the
disaggregated Serverless platform.

Serverless & Specialized Hardware - Function instances
are currently time-limited, and they are inherently short-lived
jobs. As authors said in Kappa [36], they are not suitable for
long-running jobs, and there may be some faults happening
in this situation unless we use mechanisms like checkpointing
in Kappa framework, which needs minor code modifications.
Besides, in [25], the authors argued that current Serverless
platforms do not support specialized hardware.

To persist intermediate state/data for a single function or
across functions, developers are using the distributed storage
layer like S3 or in-memory cache like Redis (which is a bit
more expensive) as they do in Kappa checkpointing.

One interesting idea could be leveraging NVM as the persis-
tence layer and provide fault tolerance and fast resumption/re-
execution of serverless functions locally on the node (no need
to reach S3) to run long-running jobs and provide Serverless
platform’s users with specialized hardware support. It should
be noted that usually, local NVM is cheaper than memory,
while it typically comes with more space for persisting data.
Besides, local NVM is faster than remote storage for fine-
grained accesses in long-running jobs.

VI. CONCLUSION

In this paper, we explained the promise of Serverless com-
puting. We presented a literature review on the optimizations
that people applied to state-of-the-art to address and improve
the existing drawbacks of Serverless infrastructure. We also
summarized the extensions that people have added to build
either a Serverless platform, especially for a purpose, or
make the Serverless platform suitable for general purpose
applications. In the end, we summarized a few limitations
and proposed several future directions to make this promising
Serverless Computing idea even more promising.
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