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Abstract—This paper pushes the limits of automated resource
allocation in container environments. Recent works set container
CPU and memory limits by automatically scaling containers
based on past resource usage. However, these systems are heavy
weight and run on coarse-grained time scales, resulting in
poor performance when predictions are incorrect. We propose
Escra, a container orchestrator that enables fine-grained, event-
based resource allocation for a single container and distributed
resource allocation to manage a collection of containers. We
find resource allocation can easily adapt to sub-second intervals
within and across hosts, meaning operators can cost-effectively
scale resources without performance penalty. Escra integrates
into and manages two types of containerized applications –
microservices and serverless functions. In microservice envi-
ronments, our evaluations show fine-grained and event-based
resource allocation can reduce application latency by up to 96.9%
and increase throughput by up to 3.2x when compared against
the current state-of-the-art. Escra can increase performance
while simultaneously reducing 50th and 99th%ile CPU waste
by over 10x and 3.2x, respectively. In serverless environments,
according to our evaluation, Escra can reduce an application’s
CPU reservations by over 2.1x and memory reservations by more
than 2x while maintaining similar end-to-end performance.

I. INTRODUCTION

Containerized infrastructure is quickly becoming a preferred
method of deploying applications. The light-weight nature
of containers coupled with rich orchestration systems enable
a new way to design automated operations that are inte-
grated with development workflows. In these deployments,
per-container resources limits are used to prevent interference
between containers and unchecked resource usage.

Setting container resource limits is a trade-off between
application performance and efficient use of underlying system
resources. When resource limits are set low to prioritize effi-
cient resource use, applications will experience an increased
number of CPU throttles and out-of-memory (OOM) events.
Throttles slow processing and OOMs kill containers which
results in degraded application performance. When resource
limits are set high to prioritize application performance, re-
sources are underutilized which increases deployment cost.
Developers pay the cost when cloud providers charge tenants
based on resources reserved [1]–[3]. Cloud providers pay the
cost in cases where developers are charged by usage, such as
in serverless computing [4]–[7].

Due to this trade-off, setting accurate limits is important. In
practice, it is also difficult [1], [8]–[11]1. Using profiling to

1The aggregate CPU utilization at Twitter is <20% but the reservations
reach up to 80%. Memory utilization is only slightly better at 40-50% but the
reservations still greatly exceed the usage [10].

characterize application resource requirements will only result
in accurate estimates if there is a representative workload.
As workloads are often dynamic, the resources needed will
change over long timescales (diurnal patterns, gradual changes
in application popularity, etc.) and short timescales (bursts,
failures of coupled systems, etc.). Since creating an accurate
estimate of resource requirements is so complex, developers
and operators often resort to over provisioning resources. This
results in underutilized deployments which are often observed
by datacenter operators [10], [12]–[14].

Recent work has addressed some of these challenges [1],
[9] by leveraging machine learning to predict future needs and
then automatically scaling container resource limits based on
those predictions. These works eliminate the developer burden
of setting resource limits but are constrained to using coarse-
grained intervals (e.g., several minutes) to set resource limits.
Coarse-grained intervals are required because the system has
to learn enough information to be able to predict resource
use. This is a poor fit for some workloads with short-lived
containers, such as in serverless systems [15]–[18]. Coarse-
grained intervals also increase the odds of misprediction
since the dynamics of applications can change throughout an
interval. Thus, these works still contend with the performance
and efficiency trade-off.

In this paper, we argue the performance and efficiency
trade-off can be avoided by using a fine-grained, event-based
resource allocation scheme. To this end, we introduce Escra: a
fine-grained, event-based resource allocation infrastructure for
single containers and distributed resource allocation capable of
managing containers’ resources across multiple nodes. We find
resource allocation can easily adapt to sub-second intervals
within and across hosts, allowing datacenter operators to cost-
effectively scale and assign resources without performance
penalty. This scheme has numerous benefits. Instead of a
container being killed when it reaches an OOM event, an
event-based system can catch the event and scale the container
dynamically. Instead of making conservative allocations in
order to avoid performance degradation over coarse-grained
time intervals, a fine-grained system can always aim to right-
fit allocations to current resource demands, and can quickly
react to instances of CPU throttling.

Escra’s design consists of a logically centralized controller
that administers resource allocations to containers across
servers. Each server is instrumented with kernel hooks and
runs an agent process to apply resource decisions and report
container usage to the controller. A Distributed Container ab-
straction enforces per-application resource isolation and allows



containers belonging to the same tenant to share compute
resources across hosts on the order of milliseconds. The
contributions of our work are as follows:
• We expose fine-grained telemetry data from Linux’s Com-

pletely Fair Scheduler (CFS) [19]. This allows Escra to
quickly track and react to actual resource needs, resulting
in both high performance (low latency and high throughput)
and low cost (minimal slack).

• We implement event-based memory scaling, which allows
Escra to increase a container’s memory upon an OOM event
rather than allow the container to be killed.

• We show Escra is effective by comparing slack, latency, and
throughput performance to recently proposed systems. We
reduce application latency by up to 96% while increasing
throughput up to 3.2x over a state of the art container
orchestrator. These low latency and high throughput rates
are achieved while simultaneously reducing the median CPU
and memory slack by over 10x and 2.5x, respectively. We
show the overhead from the central controller is minimal.

• We show Escra reduces slack and CPU/memory reservations
in serverless applications without increasing application
latency, potentially reducing cost to both the developer and
the infrastructure provider.

II. RELATED WORK

Current container orchestration systems (Kubernetes [20],
Borg [21], Mesos [22]) set static container resource alloca-
tions. Here we present recent works that instead dynamically
scale containers and discuss the limitations of these systems.

Vertical Pod Autoscaler (VPA) VPA is a Kubernetes
project that implements automated container scaling through
a threshold-based scaling mechanism [23]. VPA sets a target
resource utilization and an upper and lower bound on that
utilization. When the container usage hits the upper threshold,
VPA scales the container up. When the lower bound is hit,
VPA scales the container down. VPA also has the capability
to enforce per-application limits via Resource Quotas [24].
A resource quota is a hard resource limit on the aggregate
compute usage across all or a subset of deployments or
services in a Kubernetes namespace.

Limitations of VPA VPA sets the upper and lower limit
scaling bounds far apart. Since scaling a container requires a
container restart, VPA only scales a container at most once per
minute. The loose scaling-bound limit and infrequent container
scaling results in high slack which translates to decreased cost-
efficiency.

Autopilot Autopilot is a proprietary Google project that
addresses the low cost-efficiency of static container deploy-
ments [1]. Autopilot runs a control loop that collects both
per-second and five minute aggregated usage data from each
container, analyzes it, and then makes a prediction on whether
or not a container needs to be scaled. Autopilot uses machine
learning predictions to scale container limits as frequently as
every five minutes.
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Fig. 1: Escra Architecture

Limitations of Autopilot While Autopilot provides an auto-
mated mechanism to set limits, it does so at coarse-granularity
which causes cost-efficiency and performance issues for two
reasons. First, Autopilot’s heavyweight algorithm and periodic
control loop prevent it from quickly responding to changes
in workloads. As a result, resource predictions are forced to
at least match the maximum predicted usage over the next
allocation period (Autopilot uses a default 5-minute period).
This leads to unnecessary slack. Second, because Autopilot
relies solely on prediction, it is unable to correct inaccurate
predictions even when resources are available. Inaccurate
predictions can cause unnecessary OOMs and CPU throttles.

Firm Firm also uses machine learning to improve container-
ized application performance and cost-efficiency [9]. While
Firm does attempt to minimize CPU reservations, Firm’s
primary objective is to reduce service-level objective (SLO)
violations. Firm minimizes SLO violations by intelligently
multiplexing compute resources to optimize the critical path
of an application. Firm is similar to Autopilot because it does
not require a pod restart to scale container CPU resources and
can update container limits automatically.

Limitations of Firm Firm does not implement seamless or
automatic memory scaling, requiring users to set static limits.
Firm shares Autopilot’s limitations regarding performance and
cost-efficiency issues as both frameworks feature a coarse-
grained, ML-based feedback loop.

III. INTRODUCING ESCRA

Escra is a container resource allocation system that achieves
high performance, cost-efficiency, and strong isolation. Escra
automatically scales containers in a fine-grained manner, while
providing strong isolation via a new abstraction called a Dis-
tributed Container. A Distributed Container allows containers
belonging to the same tenant to dynamically share resources
across multiple compute nodes while capping the overall
aggregate resource usage for a given application or tenant.
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Fig. 2: Escra’s CPU tracking ability under a dynamic workload

Figure 1 shows a high-level view of the four key compo-
nents in the Escra architecture. The Application Deployer and
Container Watcher ( 1⃝) take a set of YAML files describing
a set of Kubernetes deployments, services, and containers.
The Application Deployer interfaces with the Kubernetes
API to deploy containers. The Container Watcher monitors
Escra containers and enables newly-deployed containers to
start streaming fine-grained telemetry to the Controller. The
logically-centralized Controller ( 2⃝) handles the unique, fine-
grained telemetry sent from the kernel via kernel hooks on
workers ( 3⃝). These kernel hooks obtain fine-grained sched-
uler data that is not available in user-space. The centralized
controller model has been shown to be scalable, as evidenced
by production systems for datacenters [25] and geo-distributed
network services [26]. The Resource Allocator ( 4⃝) ingests
telemetry from the Controller and makes per-container re-
source allocation decisions. Finally, similar to Kubernetes’s
per-node kubelet [20], an Agent is run on each host ( 5⃝).
The Agent handles resource updates sent from the controller
and can dynamically scale both CPU and memory container
limits without restart on the order of 100s of microseconds.
A complete description of Escra’s architecture follows in
Section IV. In this section, we describe Escra’s unique ability
to make scaling decisions on a fine-grained timescale and in
an event driven manner.

To illustrate the benefits of fine-grained container resource
allocation, we deployed and loaded a container with sys-
bench [27], saturating 1-4 CPUs at any one time. The trace
of the application execution with Escra is shown in Figure 2.
Escra is able to track the exact needs on a very short time-
scale by proactively adjusting resources as well as relatively
adjusting resources based on information collected during each
CPU scheduling period and at OOM events. The implication
of this fine-grained right-sizing is that Escra (1) significantly
reduces slack and (2) simultaneously improves performance as
applications are being allocated the resources they need rather
than being throttled or killed due to OOMs. The remainder of
this section provides further insights into how Escra achieves
fine-grained resource allocation.

Per-period CPU Telemetry and Dynamic Reallocation
Fine-grained telemetry data is required to minimize slack
via fine-grained resource allocation. Our initial analysis of
systems that aggregate CPU and memory data (cAdvisor [28],
Prometheus [29], and Kubectl [20], etc.) found they suffer
from inefficiencies stemming from reliance on coarse-grained

timescales. Allocating resources quickly is not useful if based
on usage data that is stale or aggregated at insufficient levels.
Our goal is to obtain near-instant usage information so Escra
never operates on stale data. In order to obtain fine-grained
CPU data, we add kernel hooks into Linux’s Completely Fair
Scheduler. Upon deployment of each container, the Agent
process creates a kernel socket for the container to use to
report its metrics to the controller. To implement fine-grained
telemetry, containers report their per-period runtime statistics
to the controller at the end of each period. The telemetry data
consists of the container’s cgroup ID, whether the container
was throttled in the last period, and the amount of unused
runtime in that period.

The Resource Allocator ingests raw container metrics and
uses two windowed statistics to track unused runtime and
the number of throttles. The Resource Allocator uses these
statistics to update per-container limits as often as every
100ms. The goal is to proactively update limits in order to keep
the container limits just above container usage at all times. We
seamlessly update a container’s CPU quota through RPCs to
the container’s host Agent Process, similar to [9].

Reactive Memory Reclamation and Reallocation upon
OOM Events Escra monitors container memory usage and
can seamlessly scale memory limits via two custom system
calls that hook into Linux’s memory cgroup structure.2 One
unique opportunity of fine-grained allocation is the ability to
react to OOM events. To achieve this, a kernel hook is added
in Linux’s memory allocation function, try_charge(), to
catch a container after it exceeds its memory limit and right
before it gets OOMed. We add this hook to combat inaccurate
predictions within autoscalers. For example, VPA [23] and
Autopilot [1] scale containers at most once a minute and once
every five minutes, respectively. There is a chance a container
will OOM in between allocation decisions. Our kernel hook
lets a container contact the controller for more memory prior to
getting killed. While this is a reactive mechanism for memory
scaling, the request lookup penalty is orders of magnitude
faster than a container crash and restart.

One exciting aspect of this OOM-preventing kernel event
is the Resource Allocator can determine how to allocate
additional memory resources depending on the state of the
node and the application. If there is available memory on
the node, the Allocator can simply scale the needy container
up. If the node is under memory pressure, the Controller
can launch an aggressive memory reclamation process that
reclaims memory from containers on the node with high
slack. Not only will this free up memory for the container
in need, but it also increases node utilization, reduces slack,
and improves cost-efficiency.

Proactive Periodic Memory Reclamation In order to reduce
memory slack, the Escra Controller periodically contacts the
Escra Agent on each worker node, asking the Agent to reduce
the memory limits of each container on the Agent’s node.

2Docker supports seamless container scaling [30], but Kubernetes does not.



Global Resource
Pool

Container
Pool

Compute
Resource
API

Resource Allocator

Global
CPU

Usage

Global
Mem

Usage

Get/Set
Resource
API

t -->

Resource
Usage &
Limits

Limit

Usage

Distributed Container

.2 .9 1.5 ... ... .4

Container
Limit Calculator

5

6

3

1 Escra Controller
Allocation decisions

sent to Agents

Container Registration,
CPU Telemetry, and

Memory Events

2

4

Fig. 3: Escra Controller, Resource Allocator, and Distributed
Container

The Agent checks the usage and the limit of each container it
manages. If the limit of a container exceeds the usage of the
container by more than ∆ bytes, then the Agent shrinks the
container’s memory limit such that the memory limit minus
the memory usage equals ∆ bytes. Each Agent then reports
back the total reclaimed memory from its containers to the
Escra Controller. The Controller can then give the reclaimed
memory to other containers experiencing memory pressure.

IV. ESCRA ARCHITECTURE

This section describes the architecture of Escra, our con-
tainer orchestrator built with Kubernetes, that implements
(i) automated container limit settings, (ii) seamless container
scaling, (iii) fine-grained resource allocation, and (iv) dynamic,
per-tenant resource sharing and collective resource limits en-
forced at runtime. Escra implements these features using fine-
grained telemetry, event-based memory scaling, aggregated
application-wide resource limits, and a centralized Controller
and Resource Allocator.

A. Application Deployer & Container Watcher

The Application Deployer ingests a Distributed Container
configuration as a set of YAML files (Figure 1, 1⃝) describing
a set of containers, and maximum CPU and memory limits.
The maximum CPU and memory limits represent the limit
on the aggregate usage of all containers in the application
(Figure 3, 2⃝). Prior to deploying the containers via Kuber-
netes, the Deployer sends the global application limits to
the Controller. This lets the Resource Allocator (Figure 1,
4⃝) know the total maximum usage of the containers in the

deployment. Once the Deployer sends the application limits
to the Controller, the Controller is ready to accept network
connections from each container.

Initial limits are set to bootstrap containers
when they first deploy but these limits will be
changed by the Controller at runtime. The Deployer
sets each container’s CPU and memory limit to:

global cpu limit

# containers
(1)

global mem limit ∗ σ
# containers

(2)

where σ is a configurable parameter representing the
percentage of the global application memory limit to be
withheld for containers that experience OOM events.

The Container Watcher integrates with Kubernetes to detect
container creation. Upon detection, the Watcher notifies the

Agent (Figure 1, 5⃝) running on the same host of the existence
of a new container.

B. Kernel Hooks

Escra uses kernel hooks to enable fine-grained telemetry and
trap OOMs. After an Agent is notified that a new container
has deployed, the Agent invokes a custom syscall that carries
out three tasks, each implemented via kernel hooks (Figure 1,
3⃝). First, the syscall creates a TCP kernel socket to message
the Controller (Figure 1, 2⃝) and informs the Controller of
the container’s existence. The per-container TCP kernel socket
will persist for the life of the container. Once the Controller
registers the new container, it updates the container’s CPU
and memory limit based on the global application limits and
current application resource use.

Next, the syscall modifies the container’s underlying Linux
CPU and memory cgroup structures to enable fine-grained
telemetry and event handling. For CPU, the syscall hooks into
Linux’s Completely Fair Scheduler to extract runtime data
to stream to the Controller. At the end of each period, the
hook writes the container’s cgroup quota, unused runtime (the
runtime variable in the CFS Bandwidth kernel structure),
and whether the container was throttled in the last period into
a shared FIFO buffer in the kernel3.

After the hook finishes writing its data into the buffer, the
cgroup’s runtime is refilled and the next period begins. Per-
container kernel threads consume statistics from the FIFO
queue and send the queued CPU statistics over UDP to the
Controller. Along with the container’s quota and runtime
remaining, the CPU statistic message also includes a tag letting
the Controller know what container the incoming statistic
refers to. The hook will report statistics once per-period for
the life of the container.

To handle OOM events, the syscall adds a kernel hook in the
memory cgroup structure (mem_cgroup) for the container. If
a container exceeds its memory limit, before it is killed this
kernel hook forwards the OOM event to the Controller over
the existing TCP kernel socket that was previously used during
container initialization. If memory is available in the global
application pool, the container can increase its memory limit
and continue running.

C. Controller

The Controller brings all of the system components together
and coordinates their interactions. Figure 3 shows a more
detailed view of the Controller, Resource Allocator, and the
Distributed Container abstraction.

When containers register themselves with the Controller
upon deployment, the Controller creates a logical container
object and adds it to a pool of the other Escra containers
within the application (Figure 3, 2⃝). The logical pool of Escra
containers is used to maintain an updated view and status
(resource usage, limit, etc) of the containers it is managing.

3Note that per-period unused runtime is not available in userspace and
while one could interpret similar data from the cpuacct cgroup subsystem,
cpuacct was never designed for accuracy and was initially designed as a
way to showcase the capabilities of cgroups [31].



Once all containers are deployed and registered with the
Controller, the Controller becomes responsible for several
additional tasks. The Controller is responsible for launching
a periodic memory reclamation process, handling fine-grained
telemetry data from all containers, and handling memory re-
quests from containers under memory pressure (Figure 3, 1⃝).
The Controller is also responsible for carrying out allocation
decisions made by the Resource Allocator (Figure 3, 4⃝).
Note, the Controller is not responsible for CPU and memory
allocation decisions.

The Controller launches a periodic reclamation loop that
reclaims excess reserved but unused memory from each con-
tainer in the cluster. Every 5 seconds, the controller sends a
request to each Escra Agent, requesting the Agent to reduce
the memory limit of each Escra container, C(i), and send
back the amount the container was resized by γ. This resized
value is the amount of memory reclaimed from that specific
container. The reclaim process is as follows. The Agent
reduces the memory limit on a container if:

C(i)l > C(i)u + δ
where C(i)l and C(i)u are the container’s memory limit and
usage, respectively, and δ is a tunable parameter that represents
the memory reclamation ”safe margin.” If the condition above
is satisfied, the container’s limit is updated via: C(i)′l ←
C(i)u + δ, otherwise, the container limit is left unchanged.
We empirically set our safe margin to 50 MiB. The amount
of reclaimed memory is measured as:

γ ← C(i)l − C(i)′l
where C(i)′l is the resized container limit and γ is the amount
of reclaimed memory. Therefore, for each container that is
resized, the Agent passes back to the controller γ bytes of
memory. The Escra Controller then adds γ bytes of memory
into the global memory pool via: global mem limit ←
global mem limit + γ. The Controller passes all CPU
telemetry data, memory requests, and reclaimed memory to
the Resource Allocator.

D. Resource Allocator

The Resource Allocator is the lightweight decision-making
component that determines the containers whose resources
should be allocated to or reclaimed from. The Resource
Allocator is composed of three key components. First, it has
a global resource pool for both CPU and memory. For CPU
and memory, it keeps track of the maximum application limit
2⃝, the total allocated resources, and the total unallocated (or

available) resources 6⃝. Second, the Allocator collects fine-
grained CPU telemetry data from the Controller and uses a
lightweight algorithm to make decisions on whether or not
to scale up or scale down individual container CPU limits 5⃝.
Third, the Allocator consumes out-of-memory events sent from
the Controller and, based on the globally available memory,
increases the memory limit of memory-pressured containers.
If a container is not using up to its allocated resource limit,
the Resource Allocator will take away those excess resources.
However, the Allocator is designed to quickly give back
resources to containers when needed.

1) Dynamic CPU Allocation

The CPU allocation algorithm consumes CPU telemetry
data sent from each container across all nodes in order to share
CPU allocations across nodes and remain under the maximum
CPU limit (Ωl). At the end of the container’s running period
t, the Resource Allocator consumes a runtime statistic from
the Controller. The runtime statistic for a container i during
period t (C(i)[t]) includes the container’s quota (C(i)q[t]) in
ms, the amount of unused runtime (C(i)q[t]−C(i)u[t]) in ms,
and whether the container was throttled (C(i)th[t]) in the last
period t.

The Resource Allocator uses two sliding windowed statistics
that track (i) the excess runtime a container has at the end of
each period and (ii) if a container was throttled during the
last period. Based on these windowed statistics, the Resource
Allocator determines whether a container needs or has excess
CPU runtime and updates container quotas. A container’s
quota (or limit) during period t is increased if C(i)th[t] = 1
and will be increased for the following period t+ 1 via:

C(i)q[t+1] = C(i)q[t]+

n∑
t=0

C(i)th[t]

n
∗(Ωl−

λ∑
i=0

C(i)q[t])∗Υ

where

n∑
t=0

C(i)th[t]

n
is the windowed statistic measuring the

average number of throttles over the last n container periods,
λ∑

i=0

C(i)q[t] is the unallocated CPU runtime for the entire

application, λ is the number of containers in the application,
and Υ is a tunable parameter that affects the rate at which a
container’s CPU quota is scaled.

A container’s quota during period t is decreased if C(i)q[t]−
C(i)u[t] > γ, where γ is a tunable parameter that adjusts
how quickly containers’ quotas should be scaled down. A
container’s quota for period t+ 1 is scaled down via:

C(i)q[t+ 1] = C(i)q[t]−

n∑
t=0

(C(i)q[t]− C(i)u[t])

n
∗ κ

where

n∑
t=0

(C(i)q[t]− C(i)u[t])

n
is the windowed statistic mea-

suring the average runtime remaining during the last n con-
tainer periods, and κ is a tunable parameter that affects the rate
at which container’s are scaled down. We empirically found
that systems with high variance in CPU usage between periods
performed better with a larger Υ and a smaller γ and κ.

2) Dynamic Memory Allocation

Here we dive into the Resource Allocator’s algorithm for
handling out-of-memory events received from containers and
ensuring the proper sharing of memory resources across an
application. The Allocator allocates additional memory to
containers under memory pressure and reclaims memory from
containers that are not using the memory allocated to them.

The Allocator consumes out-of-memory events that are
sent from a container just before the container is killed for



exceeding its memory limit. Upon receiving an out-of-memory
event from a container C(i), the Allocator checks if there is
unallocated memory available in the global resource pool. If
there is no available memory (all global memory has been
allocated to containers), the Allocator tells the Controller to
reclaim unused memory from other containers in the appli-
cation (described in Section IV-C). We implement out-of-
memory events in Escra this way to avoid killing a container
for exceeding its memory limit when available memory in the
application exists.

If the Controller is able to reclaim memory from other
containers in the application, the Allocator will allocate a fixed
number pages of memory to C(i) by invoking the Agent to
update the C(i)’s memory limit. If the Allocator is unable to
reclaim any memory from other containers, C(i) is killed by
the operating system (as is standard).

E. Integrating Escra With Serverless Frameworks

Escra’s fine-grained approach to resource allocation is well
suited to serverless environments due to the high degree of
multitenancy in serverless systems as well as the short-lived
nature of serverless functions. Since functions have short
execution times (90% execute in under 1 minute) [15], coarse-
grained resource management solutions are insufficient for
serverless workloads. Since Escra is fine-grained and designed
for use with containers, it is compatible with serverless frame-
works that use containers to isolate serverless functions.

We choose OpenWhisk [32], an open-source serverless plat-
form, as an example to illustrate how Escra may be integrated
with serverless frameworks. In our configuration, OpenWhisk
is deployed via Kubernetes and serverless functions (termed
user actions) are run in pods. Each pod is deployed as part
of the Kubernetes openwhisk namespace. Treating Open-
Whisk as a single application, one can use the openwhisk
namespace and invoker containerPool memory limit to
set global application memory in Escra. We modified pod
affinity to ensure OpenWhisk infrastructure was deployed on
dedicated infrastructure nodes so there would be no resource
contention between architectural components and user actions.
There is no global invoker CPU limit in OpenWhisk however
one can set memory and CPU to scale linearly which allows
one to indirectly set a global CPU limit. Escra does not
delay container creation in OpenWhisk because the connection
between a container and the Controller does not block the
container from beginning to execute. Escra already interfaces
with Kubernetes so no further modifications are needed for a
minimal integration that allows all user action pods to benefit
from resource sharing and reclamation.

V. IMPLEMENTATION

We implement Escra in a total of 14.1k SLOC. The
Controller and Resource Allocator are written in C++ and
utilize gRPC to communicate with the Deployer, Watcher,
and Agents (all written in Go). The Deployer sits on top
of Kubernetes and integrates with the Kubernetes deployer
API via client-go [33] to deploy Escra containers. Docker

is used as the underlying container runtime.The Container
Watcher integrates with the Kubernetes Work-queue API and
communicates with the Agent via gRPC as well.

Escra worker nodes run on a custom Linux kernel based on
the Linux kernel 4.20.16. The custom kernel includes a hook
in the CFS cgroup subsystem and in the memory management
subsystem. The kernel also includes a custom message struc-
ture used for CPU telemetry reporting and memory requests
from the Controller. The rest of the kernel modifications
include approximately 1,500 SLOC spread across six kernel
modules that implement limit resizing functionality and the
CPU telemetry implementation.

VI. EVALUATION

The goal of Escra is to automatically and seamlessly
achieve high performance, cost-efficiency, and isolation. As
fine-grained allocation is a key capability of Escra, the first
goal of our evaluation is to show how much Escra’s highly
reactive decision making process is able to improve both
performance and cost-efficiency in comparison to common
practice (static allocation) and a state-of-the-art system (Au-
topilot). Our second goal is to show how Escra can reduce
the overall reservation requirements for serverless applications,
while maintaining application performance; this has the po-
tential to reduce cost for both the application owner and the
infrastructure provider.

A. Experimental Setup

Experiment clusters are created using Cloudlab [34] re-
sources consisting of a control node and worker nodes. Along
with the default Kubernetes components, the control node
runs the Escra Deployer, Watcher, Controller, and Resource
Allocator. Each worker node runs an instance of the Escra
Agent.

Microservice Benchmark Applications We first evaluate
Escra on a set of four microservice applications running across
three worker nodes and one control node where each node
consists of two Intel Xeon Silver 4114 10-core 2.20 GHz
CPUs, 192GB of ECC DDR4-2666 memory, and a dual-port
Intel X520-DA2 10Gb NIC. We set κ to 0.8, γ to 0.2, and Υ
to 20 in the Resource Allocator for all experiments.

The microservice applications represent a set of four inter-
active, real-world benchmarks: (1) Media Microservice [35] -
32-containers - a microservice similar to IMDB where users
can search, review, rate, and add films, (2) Hipster Shop [36] -
11 containers - an online shopping microservice consisting of
standard browsing and purchasing of various items, (3) Train
Ticket [37] - 68 containers - a microservice that simulates a
train ticket booking service consisting of searching, booking,
modifying tickets, (4) Teastore [38] - 7 containers - simulates
an online teastore where users can browse and purchase
hundreds of various teas.

For each microservice experiment we load the microservice
with one of four workload distributions: an Alibaba datacenter
trace [39], a bursting request rate, an exponentially distributed
request rate, and a fixed request rate. The Fixed load sends re-



quests at a constant 400 requests per second. The Exponential
(Exp) workload sends requests in an exponential distribution
with λ = 300. The Burst workload sends a fixed 50 req/s with
an additional 10s exponential burst of requests where λ = 600
every 20 seconds. Finally, the Alibaba workload is sped up by
10x and sends requests at rates anywhere from 56-548 req/s.

Evaluation Metrics Below is a list of metrics used in this
section (derived from [1]) and their respective definitions:
• Absolute Slack - The container’s CPU or memory limit

minus the container’s CPU or memory usage.
• Application Throughput - Measured in successful re-

quests/sec.
• Application 99.9%ile Latency - Measured as the 99.9%ile

end-to-end latency.

Autopilot Implementation Autopilot is not open-source so
we implemented a recreation of Autopilot’s [1] ML recom-
mender to compare against Escra. The Autopilot ML recom-
mender is inspired by a multi-armed bandit problem in which
an agent tries to use the best set of arms to maximize the
total reward gain over time. Some parameters used in the
Autopilot algorithm are manually tuned by their engineers (wo,
wu, etc). As they did not specify what values they used for
these parameters, we tuned them to values that resulted in the
best performance.

Note that Autopilot defaults to a 5-minute update period:
deciding whether to update a container’s limits every 5 min-
utes. We tested Autopilot’s update period at 60s, 30s, 10s,
and 1s and saw finer-grained update periods achieve better
performance. Hipster-shop’s throughput with Autopilot at 1,
10, 30, and 60 second update periods degrades from 422 req/s
to 382 req/s to 279 req/s to 108 req/s, respectively. While we
don’t know how practical it is to run Autopilot’s ML at that
granularity at scale, we show comparisons against 1s intervals
as a best case for Autopilot.

B. Performance - Cost-Efficiency Trade-off

Intuitively, there exists a trade-off in performance and cost-
efficiency. One can allocate a large amount of resources
to eliminate any possible performance penalty (measured in
throughput and latency), but this leads to poor cost-efficiency
(measured in terms of slack). In contrast, we can significantly
under-allocate resources and improve the cost-efficiency, but
we pay the price in performance. We further examine this
trade-off in the context of both common practice (Static
allocations) and state-of-the-art (Autopilot), and illustrate that
Escra achieves better performance and cost-efficiency than
each system, and that each system compromised on one of
the metrics.

We estimated the resources needed for the Media Microser-
vice from the Deathstar Benchmark [35]. We profiled each
container and measured maximum CPU and memory usage.
We then ran the application in an underutilized (limits set at
0.75x the profiled max), a best-estimate (set at 1.0x), and a safe
buffer (set at 1.5x) case. For each case, we measure the end-
to-end performance (latency and throughput) and slack (CPU

App
Comp.

Avg. ∆
Latency

Avg. ∆
Tput.

Avg. ∆ 50%
CPU Slack

Avg. ∆ 99%
CPU Slack

Avg. ∆ 50%
Mem. Slack

Avg. ∆ 99%
Mem. Slack

Static vs.
Escra 38.0% 25.4% 81.3% 74.2% 55.0% 95.9%

Autopilot
vs. Escra 36.1% 54.5% 78.3% 78.6% 26.7% 68.9%

TABLE I: Average Performance increase and Average Slack
reduction for both CPU and memory between Static and Escra
and Autopilot and Escra. Escra improves performance, while
significantly reducing slack

cores allocated minus cores used, and MiBs allocated minus
MiBs used). As expected, performance increased (i.e., latency
decreased and throughput increased) with more resources
allocated; however, slack (resource wastage) also increased.
We find the 1.5x allocation level illustrates a sufficient buffer
and as such, use that setting for evaluating the trade-offs in
comparison to Autopilot and Escra.

To evaluate, we deployed each microservice and loaded
them using the workload generation-based benchmarking tool
wrk2 [40] with the four different workloads. Each application
is evaluated when managed by 1.5x Static Limits, Autopilot
and Escra. This setup allows us to measure both the latency
and throughput rate to quantify the performance in each
approach, and the slack to quantify the cost-efficiency of each
approach. Figure 4 shows the resulting change in latency
and change in throughput between Autopilot and Escra and
Static Limits and Escra for all four applications and workload
distributions. Table I summarizes our results and is broken
down in the subsequent sub-sections.

C. Static Allocation vs. Escra

We first look at the change in both latency and throughput
between a statically allocated application and an application
deployed with Escra. Table I show that on average, Es-
cra decreases latency by 38% and increases throughput by
25.4% compared to statically allocated applications. Escra can
achieve these performance numbers with an average 50%ile
and 99%ile CPU slack improvement of 81.3% and 74.2%,
respectively. Escra also decreases 50%ile and 99%ile memory
slack by 55% and 95.9%, respectively.

In an ideal world, we would not see a performance im-
provement from Escra over a statically deployed application
allocated 1.5 times the peak measured resource usage; the
static deployment would never experience any throttles or
OOMs. However, this result is a testament to how difficult it
is for developers to set resource limits on containers [1], [8]–
[11]. Not only is it hard to profile containers, since you never
know what the workload rate is truly going to be, but also the
tools to measure resource usages (especially for CPU) tend
to aggregate over seconds to minutes, smoothing out usage
spikes [28], [29], [41].

We break down Train-Ticket with Fixed and Teastore with
Alibaba experiments in the following paragraphs to help
illustrate Escra’s ability to achieve both high performance and
cost efficiency.

Train-Ticket with Fixed Workload Figure 4 shows that
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Fig. 5: CPU slack CDFs comparing Escra, Autopilot, and a statically deployed system across the Media, Hipster Shop, Train
Ticket, and Teastore Microservices with various workloads
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Train Ticket, and Teastore Microservices with various workloads. Note the x-axis is a log scale

Train-ticket with Fixed performs slightly worse with Escra
than with the Static allocation, seeing a 5.5% decrease in
throughout. Looking at the slack in Figures 5a and 6a, 50%
of the time, the Static allocation has over 2.5 cores of CPU
slack and 256MiB of memory slack. At the same time Escra
has a 50% CPU slack of 0.14 cores (a 17.9x improvement)
and memory slack of 49MiB. This experiment shows the
tradeoff the static deployment makes, sacrificing significant
cost-efficiency for a slight performance increase.

Teastore with Alibaba Workload Escra improves latency
and throughput of Teastore by 25.7% and 51.6%, respectively.
Figures 5b and 6b show while Escra is able to increase
performance, it can do so while reducing 50%ile and 99%ile
CPU slack by over 81% and 74% respectively, while also
significantly reducing memory slack.

D. Autopilot vs. Escra

Autopilot aims to reduce slack, but tries to find a balance
where it doesn’t sacrifice too much performance via an ML-
like approach. However, Table I shows on average, Escra de-
creases latency by 36.1% and increases throughput by 54.5%
compared to Autopilot. Table I also shows Escra’s average
50%ile and 99%ile CPU slack improvement over Autopilot is

78.3% and 78.6%, respectively. Escra also decreases 50%ile
and 99%ile memory slack by 26.7% and 68.9%, respectively.
Once again, we dive into two experiments below to further
detail how Escra can achieve both high performance and high
cost efficiency.

Hipster Shop with Exp Workload In a few cases, Autopilot
gets some performance improvements over Escra since it
trades for performance gains at the cost of slack. Autopilot
increases the throughput of Hipster-shop compared to Escra
by 3.16%. However, Figures 5c and 6c show Autopilot over
allocates resources, with the median slack greater than 1.43
cores and 20% of allocations over 2.38 cores. For Escra, the
median slack is 0.12 cores (an 11.6x decrease) with an 80%ile
CPU slack of 0.35 cores.

Media-Microservice with Burst Workload Figure 4 shows
Autopilot degrades Media Microservice with Burst throughput
and increases its latency. This indicates that Autopilot fails
to quickly react to rapid and significant changes in CPU
workloads and memory usages, resulting in low slack but
higher latency and lower throughput. For the same application
and workload, Escra is able to not only increase latency and
throughput performance by 16.6% and 84.3%, but also able
to reduce slack over Autopilot. Escra has a 99%ile slack less



than 66% of a core and a 99%ile memory slack of 46MiB.

E. Takeaways

Table I, Figure 4, and the four cases above show Escra rarely
performs worse than Static allocation and Autopilot, but when
it does, the performance degradation is small and the slack
savings are significant. When Escra outperforms the Static
allocation and Autopilot, Escra does so with significantly
reduced slack, proving that Escra is able to achieve both high
performance and high cost efficiency. One of the key reasons
for Escra’s high performance is that Escra is able to greatly
reduce OOMs. In all 32 experiments, Escra experienced zero
OOMs, while Autopilot had up to 8 OOMs in a single
experiment.

F. Serverless

This section shows how Escra integrates with Open-
Whisk [32] by benchmarking two applications: ImageProcess
and GridSearch. We run ImageProcess with one control node,
three worker nodes, and two nodes reserved for serverless in-
frastructure (i.e., OpenWhisk and databases). The GridSearch
application runs with one additional worker node. Each node
is composed of two Xeon E5-2650v2 8-core 2.6 Ghz CPUs,
64GB of DDR-3 memory, and a dual-port Intel X520 10Gb
NIC. We set κ to 0.8 and γ to 0.2 for both applications and Υ
to 35 for ImageProcess and 20 for GridSearch in the Resource
Allocator. For both applications OpenWhisk is configured to
create each user action pod with 1 vCPU for CPU request and
limit, and 256 MiB of memory.

Serverless Benchmark Applications ImageProcess is a
single-function application inspired by the image processing
application in [42]. The function reads an image from a
database, processes image metadata, creates a thumbnail, and
writes the thumbnail to the database. Our workload is simple:
an ImageProcess request is sent every 0.8 seconds over 10
minutes. We perform four iterations of the experiment for a
total of 3k invocations for each test case. At the beginning of
each experiment, we ensure there are no ImageProcess pods
running (to ensure initial cold starts).

GridSearch is a traditional approach for tuning hyperpa-
rameters in classifiers. This batch-like application [43] uses
˜115 serverless function pods to classify an Amazon product
review dataset using scikit-learn [44] and tunes the classi-
fier hyperparameters using the GridSearch algorithm. Each
function is charged with completing tasks until all 960 tasks
are completed. GridSearch uses the Lithops framework [45]
for orchestration. We set Lithops’s serverless backend to
use OpenWhisk and Lithop’s storage backed to use a Redis
instance.

Evaluation Metrics Below are the metrics used in the
evaluation of the serverless benchmarks:
• Aggregate Limits - Since it is common in serverless

systems to bill based on total usage, and serverless providers
have a strong incentive to pack as many functions as possible
per server, instead of CPU/memory usage per pod we focus
on the aggregate of the containers’ CPU and memory limits.
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Fig. 7: Serverless latency CDFs

• Application Latency - Measured in end-to-end latency per
request (ImageProcess) or job (GridSearch)

G. OpenWhisk vs. Escra + OpenWhisk

Performance We first consider ImageProcess performance
for OpenWhisk alone and OpenWhisk + Escra. Figure 7a
shows that, up to the 80th%ile, OpenWhisk + Escra sees
modest performance gains over OpenWhisk alone, while the
overall 99th%ile latency remains similar for both. The average
invocation latency with OpenWhisk + Escra is 1.99 seconds
as opposed to 2.12 seconds with OpenWhisk alone. Unlike
other applications tested with Escra, ImageProcess requires
Escra to handle a variable number of pods as the number of
application pods at the start of each benchmark iteration is
zero. The similarity in tail latency between OpenWhisk alone
and OpenWhisk + Escra indicates that Escra is capable of
supporting the dynamic scale-up of application pods needed
in serverless environments.

To obtain a CDF of GridSearch’s application latency, we
ran GridSearch on: (1) OpenWhisk alone, (2) OpenWhisk +
Escra with the same amount of resources allocated as in the
OpenWhisk alone experiment, and (3) OpenWhisk + Escra
with 80% of the application resource limits allocated compared
to OpenWhisk alone. We ran the application 50 times for
each setup. Interestingly, we observe the same average latency
(∼300 seconds) when we run GridSearch by allocating equal
resources to OpenWhisk and Escra + OpenWhisk (cases 1
and 2) and only 1% higher average (303 seconds) for case
3, showing Escra can allocate fewer resources to an app and
maintain similar performance. As is indicated in Figure 7b,
Escra + OpenWhisk outperforms OpenWhisk alone at 99%ile
and has lower tail latency.

Efficiency Figure 8 shows aggregate CPU and memory limits
for OpenWhisk and OpenWhisk + Escra for ImageProcess. On
average, OpenWhisk + Escra sets the limit at 7 vCPU whereas
OpenWhisk’s static allocation scheme results in a limit of 12
vCPU, resulting in a savings of approximately 5 vCPU for
identical workloads. For memory, the difference in the limit
averages around 1550 MiB.

According to Figure 9, OpenWhisk allocates 113 vCPUs
for GridSearch on average. On the other hand, Escra + Open-
Whisk was able to reduce the vCPU allocation to 53 vCPUs.
For memory, on average, OpenWhisk sets the application ag-
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Fig. 9: Aggregate Memory and CPU limits over 5 minutes of running Serverless GridSearch application. We highlight the
difference (savings) between OpenWhisk’s limits and OpenWhisk + Escra’s limits with the savings graphs.

gregate limit to 29087 MiB while Escra + OpenWhisk is able
to run the same GridSearch application with an application
limit of 22264 MiB. On average, Escra + OpenWhisk saves
60 vCPUs and roughly 7 GiB of memory space.

H. Takeaways

From the ImageProcess and GridSearch benchmark, Escra
only minimally effects function latency while providing signif-
icant resource savings on static CPU/memory limits. In sum,
Escra increased efficiency while maintaining performance.
ImageProcess in particular shows that Escra is able to handle
a dynamic and rapid increase in number of application pods.
Besides, GridSearch application statistics showcases how Es-
cra can help running batch-like, data intensive, long-running
applications with fewer resources allocated to them with no
harm in latency.

I. Escra MicroBenchmarks and Overheads

Why a 100ms Report Period? Escra uses a 100ms CPU
telemetry report frequency for two main reasons. First, 100ms
complements the default Linux CFS period. Second, we
measured the 99% end-to-end latency performance across
various report frequencies every 50ms from 50ms to 200ms.
Collecting CPU statistics at the end of every period (100ms)
and reporting them directly to the controller resulted in the
lowest application latency.

Escra Network Overhead Escra sends usage statistics over
UDP to the Controller and the Controller launches RPC calls
to the Agent Process to update container limits. The peak
network overhead measured for 32 containers is 12.06Mbps.

Since the majority of the bandwidth usage comes from the
per-container CPU telemetry, we expect the network overhead
to scale linearly with the number of containers managed.

Escra CPU Overhead The largest CPU consumers in Escra
are the Controller/Allocator and the kernel threads running on
each worker node reporting telemetry data. The Controller’s
biggest CPU consuming process is the memory reclamation
process as it relies on cAdvisor API [28], consuming up to
85% of a core. Replacing the cAdvisor functionality with
memory limit/usage system calls would greatly reduce the
overhead of reading from the cAdvisor API. Without cAdvisor,
the Controller and Resource Allocator use 5.7% of a core
with 68 containers. For a cloud-scale analysis, we assume a
separate Escra controller that manages each application (set of
containers). At 5.7% of a core per controller for 68 containers,
Escra controllers are able to manage 1,192 containers per core.
Assuming 20 cores per node, a collection of Escra controllers
can manage up to 23,859 containers/node. Note, as more
containers are registered with the Controller, the mean time
between subsequent container stats increases sublinearly.

VII. DISCUSSION AND FUTURE WORK

In this section, we discuss how Escra affects cloud ecosys-
tems and may influence future work.

Multi-tenant Building a fully-fledged cluster management
system that takes advantage of Escra remains future work. This
paper’s contribution shows fine-grained, event-driven resource
allocation is possible and performs well. While Escra can
effectively reduce slack and increase performance, it remains
an open question in how such benefits translate to a large-



scale, complex, multi-tenant system.

Serverless Our initial implementation of OpenWhisk + Escra
is naive in several ways: 1) all containers are treated as the
same application; the framework would need to modify this to
deploy pods in per-tenant namespaces, and 2) the OpenWhisk
invoker remains unaware of the actual CPU/Memory limits
being used; it would need to be modified to ingest current
usage/limits from Escra. We leave these to future work.

Beyond efficiency benefit of using Escra in serverless
systems, the Distributed Container abstraction may further
be useful for billing and accounting in serverless systems.
Many commercial frameworks set global limits on serverless
applications by setting an invocation limit (i.e., the maximum
number of concurrently running functions). With the Dis-
tributed Container abstraction, it would be possible to instead
limit based on maximum memory or CPU limits. The study
of limits and billing using Distributed Containers in serverless
systems is a subject of future work.

VIII. CONCLUSION

This work illustrates how current orchestration systems fail
to achieve both high performance and cost efficient con-
tainer deployments, typically trading performance (through-
put/latency) for cost-efficiency (slack) or vice versa. We moti-
vate the need for a fine-grained and seamless container scaling
orchestrator and propose a solution: Escra. Escra uses kernel
hooks to generate both fine-grained telemetry and OOM han-
dling events that allow a logically-centralized Escra Controller
to allocate resources within 100s of milliseconds. As a result,
Escra minimizes CPU slack by over 10x compared to our
implementation of Autopilot. Escra also reduces application
limits in serverless frameworks, saving more than 2x the CPU
and memory resources over a standard serverless deployment.
Escra’s comparison to static approaches, Autopilot, and Open-
Whisk deployments indicates fine-grained container scaling
finds the balance between performance and efficiency while
maintaining isolation.
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