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Abstract

As a popular meta-learning approach, the model-agnostic meta-learning (MAML) algo-
rithm has been widely used due to its simplicity and effectiveness. However, the conver-
gence of the general multi-step MAML still remains unexplored. In this paper, we develop a
new theoretical framework to provide such convergence guarantee for two types of objective
functions that are of interest in practice: (a) resampling case (e.g., reinforcement learning),
where loss functions take the form in expectation and new data are sampled as the algo-
rithm runs; and (b) finite-sum case (e.g., supervised learning), where loss functions take the
finite-sum form with given samples. For both cases, we characterize the convergence rate
and the computational complexity to attain an ε-accurate solution for multi-step MAML
in the general nonconvex setting. In particular, our results suggest that an inner-stage
stepsize needs to be chosen inversely proportional to the number N of inner-stage steps in
order for N -step MAML to have guaranteed convergence. From the technical perspective,
we develop novel techniques to deal with the nested structure of the meta gradient for
multi-step MAML, which can be of independent interest.

Keywords: Computational complexity, convergence rate, finite-sum, meta-learning,
multi-step MAML, nonconvex, resampling.

1. Introduction

Meta-learning or learning to learn (Thrun and Pratt, 2012; Naik and Mammone, 1992;
Bengio et al., 1991; Schmidhuber, 1987) is a powerful tool for quickly learning new tasks
by using the prior experience from related tasks. Recent works have empowered this idea
with neural networks, and their proposed meta-learning algorithms have been shown to
enable fast learning over unseen tasks using only a few samples by efficiently extracting
the knowledge from a range of observed tasks (Santoro et al., 2016; Vinyals et al., 2016;
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Finn et al., 2017a). Current meta-learning algorithms can be generally categorized into
metric-learning based (Koch et al., 2015; Snell et al., 2017), model-based (Vinyals et al.,
2016; Munkhdalai and Yu, 2017), and optimization-based (Finn et al., 2017a; Nichol and
Schulman, 2018; Rajeswaran et al., 2019) approaches. Among them, optimization-based
meta-learning is a simple and effective approach used in a wide range of domains includ-
ing classification/regression (Rajeswaran et al., 2019), reinforcement learning (Finn et al.,
2017a), robotics (Al-Shedivat et al., 2018), federated learning (Chen et al., 2018), and imi-
tation learning (Finn et al., 2017b).

Model-agnostic meta-learning (MAML) (Finn et al., 2017a) is a popular optimization-
based method, which is simple and compatible generally with models trained with gradient
descents. MAML consists of two nested stages, where the inner stage runs a few steps
of (stochastic) gradient descent for each individual task, and the outer stage updates the
meta parameter over all the sampled tasks. The goal of MAML is to find a good meta
initialization w∗ based on the observed tasks such that for a new task, starting from this w∗,
a few (stochastic) gradient steps suffice to find a good model parameter. Such an algorithm
has been demonstrated to have superior empirical performance (Antoniou et al., 2019; Grant
et al., 2018; Zintgraf et al., 2018; Nichol et al., 2018). Recently, the theoretical convergence
of MAML has also been studied. Specifically, Finn et al. (2019) extended MAML to the
online setting, and analyzed the regret for the strongly convex objective function. Fallah
et al. (2020a) provided an analysis for one-step MAML for general nonconvex functions,
where each inner stage takes a single stochastic gradient descent (SGD) step.

In practice, the MAML training often takes multiple SGD steps at the inner stage, for
example in Finn et al. (2017a); Antoniou et al. (2019) for supervised learning and in Finn
et al. (2017a); Fallah et al. (2020b) for reinforcement learning, in order to attain a higher test
accuracy (i.e., better generalization performance) even at a price of higher computational
cost. Compared to the single-step MAML, the multi-step MAML has been shown to achieve
better test performance. For example, as shown in Fig. 5 of Finn et al. (2017a) and Table
2 of Antoniou et al. (2019), the test accuracy is improved as the number of inner-loop
steps increases. In particular, in the original MAML work (Finn et al., 2017a), 5 inner-
loop steps are taken in the training of a 20-way convolutional MAML model. In addition,
some important variants of MAML also take multiple inner-loop steps, which include but
not limited to ANIL (Almost No Inner Loop) (Raghu et al., 2020) and BOIL (Body Only
update in Inner Loop) (Oh et al., 2021). For these reasons, it is important and meaningful
to analyze the convergence of multi-step MAML, and the resulting analysis can be helpful
for studying other MAML-type of variants.

However, the theoretical convergence of such multi-step MAML algorithms has not been
established yet. In fact, several mathematical challenges will arise in the theoretical analysis
if the inner stage of MAML takes multiple steps. First, the meta gradient of multi-step
MAML has a nested and recursive structure, which requires the performance analysis of
an optimization path over a nested structure. In addition, multi-step update also yields
a complicated bias error in the Hessian estimation as well as the statistical correlation
between the Hessian and gradient estimators, both of which cause further difficulty in the
analysis of the meta gradient. The main contribution of this paper lies in the development
of a new theoretical framework for analyzing the general multi-step MAML with techniques
for handling the above challenges.
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1.1 Main Contributions

We develop a new theoretical framework, under which we characterize the convergence rate
and the computational complexity to attain an ε-accurate solution for multi-step MAML
in the general nonconvex setting. Specifically, for the resampling case where each iteration
needs sampling of fresh data (e.g., in reinforcement learning), our analysis enables to de-
couple the Hessian approximation error from the gradient approximation error based on a
novel bound on the distance between two different inner optimization paths, which facili-
tates the analysis of the overall convergence of MAML. For the finite-sum case where the
objective function is based on pre-assigned samples (e.g., supervised learning), we develop
novel techniques to handle the difference between two losses over the training and test sets
in the analysis.

Our analysis provides a guideline for choosing the inner-stage stepsize at the order of
O(1/N) and shows that N -step MAML is guaranteed to converge with the gradient and
Hessian computation complexites growing only linearly with N , which is consistent with the
empirical observations in Antoniou et al. 2019. In addition, for problems where Hessians
are small, e.g., most classification/regression meta-learning problems (Finn et al., 2017a),
we show that the inner stepsize α can be set larger while still maintaining the convergence,
which explains the empirical findings for MAML training in Finn et al. 2017a; Rajeswaran
et al. 2019.

1.2 Related Work

Optimization-based meta-learning. Optimization-based meta-learning approaches have
been widely used due to its simplicity and efficiency (Li et al., 2017; Ravi and Larochelle,
2016; Finn et al., 2017a). As a pioneer along this line, MAML (Finn et al., 2017a) aims
to find an initialization such that gradient descent from it achieves fast adaptation. Many
follow-up studies (Grant et al., 2018; Finn et al., 2019; Jerfel et al., 2018; Finn and Levine,
2018; Finn et al., 2018; Mi et al., 2019; Liu et al., 2019; Rothfuss et al., 2019; Foerster
et al., 2018; Fallah et al., 2020a; Raghu et al., 2020; Collins et al., 2020) have extended
MAML from different perspectives. For example, Finn et al. (2019) provided a follow-the-
meta-leader extension of MAML for online learning. Alternatively to meta-initialization
algorithms such as MAML, meta-regularization approaches aim to learn a good bias for
a regularized empirical risk minimization problem for intra-task learning (Alquier et al.,
2017; Denevi et al., 2018b,a, 2019; Rajeswaran et al., 2019; Balcan et al., 2019; Zhou et al.,
2019). Balcan et al. (2019) formalized a connection between meta-initialization and meta-
regularization from an online learning perspective. Zhou et al. (2019) proposed an efficient
meta-learning approach based on a minibatch proximal update. Raghu et al. (2020) pro-
posed an efficient variant of MAML named ANIL (Almost No Inner Loop) by adapting only
a small subset (e.g., head) of neural network parameters in the inner loop. Ji and Liang
(2021); Ji et al. (2020b) proposed efficient bilevel optimization algorithms for meta-learning
with performance guarantee.

Various Hessian-free MAML algorithms have been proposed to avoid the costly com-
putation of second-order derivatives, which include but not limited to FOMAML (Finn
et al., 2017a), Reptile (Nichol and Schulman, 2018), ES-MAML (Song et al., 2020), and
HF-MAML (Fallah et al., 2020a). In particular, FOMAML (Finn et al., 2017a) omits all
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second-order derivatives in its meta-gradient computation, HF-MAML (Fallah et al., 2020a)
estimates the meta gradient in one-step MAML using Hessian-vector product approxima-
tion. This paper focuses on the first MAML algorithms, but the techniques here can be
extended to analyze the Hessian-free multi-step MAML.

Optimization theory for meta-learning. Theoretical property of MAML was initially
established in Finn and Levine (2018), which showed that MAML is a universal learning
algorithm approximator under certain conditions. Then MAML-type algorithms have been
studied recently from the optimization perspective, where the convergence rate and compu-
tation complexity is typically characterized. Finn et al. (2019) analyzed online MAML for
a strongly convex objective function under a bounded-gradient assumption. Fallah et al.
(2020a) developed a convergence analysis for one-step MAML for a general nonconvex ob-
jective in the resampling case. Our study here provides a new convergence analysis for
multi-step MAML in the nonconvex setting for both the resampling and finite-sum cases.

Since the initial version of this manuscript was posted in arXiv, there have been a
few studies on multi-step MAML more recently. Wang et al. (2020b,a) studied the global
optimality of MAML under the over-parameterized neural networks, while our analysis
focus on general nonconvex functions. Kim et al. (2020) proposed an efficient extension of
multi-step MAML by gradient reuse in the inner loop, while our analysis focuses on the
most basic MAML algorithm. Ji et al. (2020a) analyzed the convergence and complexity
performance of multi-step ANIL algorithm, which is an efficient simplification of MAML by
adapting only partial parameters in the inner loop. We emphasize that the study here is
the first along the line of studies on multi-step MAML.

We note that a concurrent work Fallah et al. (2020b) also studies multi-step MAML for
reinforcement learning setting, where they design an unbiased multi-step estimator. As a
comparison, our estimator is biased due to the data sampling in the inner loop, and hence
we need extra developments to control this bias, e.g., by bounding the difference between
batch-gradient and the stochastic-gradient parameter updates in the inner loop.

Another type of meta-learning algorithms has also been studied as a bi-level optimiza-
tion problem. Rajeswaran et al. (2019) proposed a meta-regularization variant of MAML
named iMAML via bilevel optimization, and analyzed its convergence by assuming that the
regularized empirical risk minimization problem in the inner optimization stage is strongly
convex. Likhosherstov et al. (2020) studied the convergence properties of a class of first-
order bilevel optimization algorithms.

Statistical theory for meta-learning. Zhou et al. (2019) statistically demonstrated the
importance of prior hypothesis in reducing the excess risk via a regularization approach.
Du et al. (2020) studied few-shot learning from a representation learning perspective, and
showed that representation learning can provide a sufficient rate improvement in both lin-
ear regression and learning neural networks. Tripuraneni et al. (2020) studied a multi-
task linear regression problem with shared low-dimensional representation, and proposed
a sample-efficient algorithm with performance guarantee. Arora et al. (2020) proposed a
representation learning approach for imitation learning via bilevel optimization, and demon-
strated the improved sample complexity brought by representation learning.
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2. Problem Setup

In this paper, we study the convergence of the multi-step MAML algorithm. We consider two
types of objective functions that are commonly used in practice: (a) resampling case (Finn
et al., 2017a; Fallah et al., 2020a), where loss functions take the form in expectation and
new data are sampled as the algorithm runs; and (b) finite-sum case (Antoniou et al.,
2019), where loss functions take the finite-sum form with given samples. The resampling
case occurs often in reinforcement learning where data are continuously sampled as the
algorithm iterates, whereas the finite-sum case typically occurs in classification problems
where the datasets are already sampled in advance. In Appendix A, we provide examples
for these two types of problems.

2.1 Resampling Case: Problem Setup and Multi-Step MAML

Suppose a set T = {Ti, i ∈ I} of tasks are available for learning and tasks are sampled
based on a probability distribution p(T ) over the task set. Assume that each task Ti is
associated with a loss li(w) : Rd → R parameterized by w.

The goal of multi-step MAML is to find a good initial parameter w∗ such that after
observing a new task, a few gradient descend steps starting from such a point w∗ can
efficiently approach the optimizer (or a stationary point) of the corresponding loss function.
Towards this end, multi-step MAML consists of two nested stages, where the inner stage
consists of multiple steps of (stochastic) gradient descent for each individual tasks, and
the outer stage updates the meta parameter over all the sampled tasks. More specifically,
at each inner stage, each Ti initializes at the meta parameter, i.e., w̃i0 := w, and runs N
gradient descent steps as

w̃ij+1 = w̃ij − α∇li(w̃ij), j = 0, 1, ..., N − 1. (1)

Thus, the loss of task Ti after the N -step inner stage iteration is given by li(w̃
i
N ), where

w̃iN depends on the meta parameter w through the iteration updates in (1), and can hence
be written as w̃iN (w). We further define Li(w) := li(w̃

i
N (w)), and hence the overall meta

objective is given by

min
w∈Rd

L(w) := Ei∼p(T )[Li(w)] := Ei∼p(T )[li(w̃
i
N (w))]. (2)

Then the outer stage of meta update is a gradient decent step to optimize the above ob-
jective function. Using the chain rule, we provide a simplified form (see Appendix B for its
derivations) of gradient ∇Li(w) by

∇Li(w) =

[N−1∏
j=0

(I − α∇2li(w̃
i
j))

]
∇li(w̃iN ), (3)

where w̃i0 = w for all tasks. Hence, the full gradient descent step of the outer stage for (2)
can be written as

wk+1 = wk − βkEi∼p(T )

[N−1∏
j=0

(I − α∇2li(w̃
i
k,j))

]
∇li(w̃ik,N ), (4)
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Algorithm 1 Multi-step MAML in the resampling case

1: Input: Initial parameter w0, inner stepsize α > 0
2: for k = 1, ...,K do
3: Sample Bk ⊂ I of i.i.d. tasks by distribution p(T )
4: for all tasks Ti in Bk do
5: for j = 0, 1, ..., N − 1 do
6: Sample a training set Sik,j

Update wik,j+1 = wik,j − α∇li(wik,j ;Sik,j)
7: end for
8: end for
9: Sample T ik and Di

k,j and compute Ĝi(wk) through (7).

10: update wk+1 = wk − βk
∑
i∈Bk

Ĝi(wk)

|Bk| .
11: end for

where the index k is added to w̃ij in (3) to denote that these parameters are at the kth

iteration of the meta parameter w.
The inner- and outer-stage updates of MAML given in (1) and (4) involve the gradi-

ent ∇li(·) and the Hessian ∇2li(·) of the loss function li(·), which takes the form of the
expectation over the distribution of data samples as given by

li(·) = Eτ li(· ; τ), (5)

where τ represents the data sample. In practice, these two quantities based on the popula-
tion loss function are estimated by samples. In specific, each task Ti samples a batch Ω of

data under the current parameter w, and uses ∇li(· ; Ω) :=
∑
τ∈Ω∇li(· ;τ)

|Ω| and ∇2li(· ; Ω) :=∑
τ∈Ω∇2li(· ;τ)

|Ω| as unbiased estimates of the gradient ∇li(·) and the Hessian ∇2li(·), respec-
tively.

For practical multi-step MAML as shown in Algorithm 1, at the kth outer stage, we
sample a set Bk of tasks. Then, at the inner stage, each task Ti ∈ Bk samples a training
set Sik,j for each iteration j in the inner stage, uses ∇li(wik,j ;Sik,j) as an estimate of ∇li(w̃ik,j)
in (1), and runs a SGD update as

wik,j+1 = wik,j − α∇li(wik,j ;Sik,j), j = 0, .., N − 1, (6)

where the initialization parameter wik,0 = wk for all i ∈ Bk.
At the kth outer stage, we draw a batch T ik and Di

k,j of data samples independent from
each other and both independent from Sik,j and use ∇li(wik,N ;T ik) and ∇2li(w

i
k,j ;D

i
k,j) to

estimate ∇li(w̃ik,N ) and ∇2li(w̃
i
k,j) in (4), respectively. Then, the meta parameter wk+1 at

the outer stage is updated by a SGD step as shown in line 10 of Algorithm 1, where the
estimated gradient Ĝi(wk) has a form of

Ĝi(wk) =

N−1∏
j=0

(
I − α∇2li

(
wik,j ;D

i
k,j

))
∇li(wik,N ;T ik). (7)

For simplicity, we suppose the sizes of Sik,j , D
i
k,j and T ik are S, D and T in this paper.
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Algorithm 2 Multi-step MAML in the finite-sum case

1: Input: Initial parameter w0, inner stepsize α > 0
2: for k = 1, ...,K do
3: Sample Bk ⊂ I of i.i.d. tasks by distribution p(T )
4: for all tasks Ti in Bk do
5: for j = 0, 1, ..., N − 1 do
6: Update wik,j+1 = wik,j − α∇lSi

(
wik,j

)
7: end for
8: end for
9: Update wk+1 = wk − βk

|Bk|
∑

i∈Bk Ĝi(wk)
10: end for

2.2 Finite-Sum Case: Problem Setup and Multi-Step MAML

In the finite-sum case, each task Ti is pre-assigned with a support/training sample set Si and
a query/test sample set Ti. Differently from the resampling case, these sample sets are fixed
and no additional fresh data are sampled as the algorithm runs. The goal here is to learn an
initial parameter w such that for each task i, after N gradient descent steps on data from Si
starting from this w, we can find a parameter wN that performs well on the test data set Ti.
Thus, each task Ti is associated with two fixed loss functions lSi(w) := 1

|Si|
∑

τ∈Si li(w; τ)

and lTi(w) := 1
|Ti|
∑

τ∈Ti li(w; τ) with a finite-sum structure, where li(w; τ) is the loss on
a single sample point τ and a parameter w. Then, the meta objective function takes the
form of

min
w∈Rd

L(w) := Ei∼p(T )[Li(w)] = Ei∼p(T )[lTi(w̃
i
N )], (8)

where w̃iN is obtained by

w̃ij+1 = w̃ij − α∇lSi(w̃ij), j = 0, 1, ..., N − 1 with w̃i0 := w. (9)

We want to emphasize that Si and Ti are both training datasets (they together form
into meta-training datasets), and (8) is the meta-training loss, i.e., the empirical loss for
estimating the test time expected loss. (8) does not involve anything correlated with test
error. During the test period, MAML will be evaluated over different meta-test datasets
that are separate from meta-training datasets Si and Ti.

Similarly to the resampling case, we define the expected losses lS(w) = EilSi(w) and
lT (w) = EilTi(w), and the meta gradient step of the outer stage for (8) can be written as

wk+1 = wk − βkEi∼p(T )

N−1∏
j=0

(I − α∇2lSi(w̃
i
k,j))∇lTi(w̃ik,N ), (10)

where the index k is added to w̃ij in (9) to denote that these parameters are at the kth

iteration of the meta parameter w.
As shown in Algorithm 2, MAML in the finite-sum case has a nested structure similar

to that in the resampling case except that it does not sample fresh data at each iteration.
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In the inner stage, MAML performs a sequence of full gradient descent steps (instead of
stochastic gradient steps as in the resampling case) for each task i ∈ Bk given by

wik,j+1 = wik,j − α∇lSi
(
wik,j

)
, for j = 0, ...., N − 1 (11)

where wik,0 = wk for all i ∈ Bk. As a result, the parameter wk,j (which denotes the
parameter due to the full gradient update) in the update step (11) is equal to w̃k,j in (10)
for all j = 0, ..., N .

At the outer-stage iteration, the meta optimization of MAML performs a SGD step as
shown in line 9 of Algorithm 2, where Ĝi(wk) is given by

Ĝi(wk) =
N−1∏
j=0

(I − α∇2lSi(w
i
k,j))∇lTi(wik,N ). (12)

Compared with the resampling case, the biggest difference for analyzing Algorithm 2 in
the finite-sum case is that the losses lSi(·) and lTi(·) used in the inner and outer stages re-
spectively are different from each other, whereas in the resampling case, they both are equal
to li(·) which takes the expectation over the corresponding samples. Thus, the convergence
analysis for the finite-sum case requires to develop different techniques. For simplicity, we
assume that the sizes of all Bk are B.

3. Convergence of Multi-Step MAML in Resampling Case

In this section, we first make some basic assumptions for the meta loss functions in Sec-
tion 3.1, and then describe several challenges in analyzing the multi-step MAML in Sec-
tion 3.2, and then present several properties of the meta gradient in Section 3.3, and finally
provide the convergence and complexity results for multi-step MAML in Section 3.4.

3.1 Basic Assumptions

We adopt the following standard assumptions (Fallah et al., 2020a; Rajeswaran et al., 2019).
Let ‖ · ‖ denote the `2-norm or spectrum norm for a vector or matrix, respectively.

Assumption 1 The loss li(·) of task Ti given by (5) satisfies

1. The loss li(·) is bounded below, i.e., infw∈Rd li(w) > −∞.

2. ∇li(·) is Li-Lipschitz, i.e., for any w, u ∈ Rd, ‖∇li(w)−∇li(u)‖ ≤ Li‖w − u‖.

3. ∇2li(·) is ρi-Lipschitz, i.e., for any w, u ∈ Rd, ‖∇2li(w)−∇2li(u)‖ ≤ ρi‖w − u‖.

By the definition of the objective function L(·) in (2), item 1 of Assumption 1 implies
that L(·) is bounded below. In addition, item 2 implies ‖∇2li(w)‖ ≤ Li for any w ∈ Rd.

For notational convenience, we take L = maxi Li and ρ = maxi ρi. The following
assumptions impose the bounded-variance conditions on ∇li(w), ∇li(w; τ) and ∇2li(w; τ).

Assumption 2 The stochastic gradient ∇li(·) (with i uniformly randomly chosen from set
I) has bounded variance, i.e., there exists a constant σ > 0 such that, for any w ∈ Rd,

Ei‖∇li(w)−∇l(w)‖2 ≤ σ2,

where the expected loss function l(w) := Eili(w).
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Assumption 3 For any w ∈ Rd and i ∈ I, there exist constants σg, σH > 0 such that

Eτ‖∇li(w; τ)−∇li(w)‖2 ≤ σ2
g and Eτ‖∇2li(w; τ)−∇2li(w)‖2 ≤ σ2

H .

Note that the above assumptions are made only on individual loss functions li(·) rather
than on the total loss L(·), because some conditions do not hold for L(·), as shown later.

3.2 Challenges of Analyzing Multi-Step MAML

Several new challenges arise when we analyze the convergence of multi-step MAML (with
N ≥ 2) compared to the one-step case (with N = 1).

First, each iteration of the meta parameter affects the overall objective function via a
nested structure of N -step SGD optimization paths over all tasks. Hence, our analysis of
the convergence of such a meta parameter needs to characterize the nested structure and
the recursive updates.

Second, the meta gradient estimator Ĝi(wk) given in (7) involves ∇2li(w
i
k,j ;D

i
k,j) for

j = 1, ..., N − 1, which are all biased estimators of ∇2li(w̃
i
k,j) in terms of the randomness

over Di
k,j . This is because wik,j is a stochastic estimator of w̃ik,j obtained via random training

sets Sik,t, t = 0, ..., j − 1 along an N -step SGD optimization path in the inner stage. In fact,
such a bias error occurs only for multi-step MAML with N ≥ 2 (which equals zero for
N = 1), and requires additional efforts to handle.

Third, both the Hessian term ∇2li(w
i
k,j ;D

i
k,j) for j = 2, ..., N − 1 and the gradient term

∇li(wik,N ;T ik) in the meta gradient estimator Ĝi(wk) given in (7) depend on the sample sets
Sik,i used for inner stage iteration to obtain wik,N , and hence they are statistically correlated
even conditioned on wk. Such complication also occurs only for multi-step MAML with
N ≥ 2 and requires new treatment (the two terms are independent for N = 1).

Solutions to address the above challenges. The first challenge is mainly caused by
the recursive structure of the meta gradient ∇L(w) in (4) and the meta gradient estimator
Ĝi(wk) given in (7). For example, when analyzing the smoothness of the meta gradient
∇L(w), we need to characterize the gap ∆p between two quantities

∏N−1
j=0 (I − α∇2li(w̃

i
j))

and
∏N−1
j=0 (I − α∇2li(ũ

i
j)), where wij and uij are the jth iterates of two different inner-

loop updating paths. Then, using the error decomposition strategy that ‖f1f2 − f ′1f ′2‖ ≤
‖f1 − f ′1‖‖f2‖ + ‖f ′1‖‖f2 − f ′2‖, we can decompose the error ∆p into N parts, where each
one corresponds to the distance ‖wij − uij‖. The remaining step is to bound the distances

‖wij −uij‖, j = 0, ..., N − 1 by finding the relationship between ‖wij+1−uij+1‖ and ‖wij −uij‖
based on the inner-loop gradient descent updates.

To address the second and third challenges, we first use the strategy we propose in
the first challenge to decompose the error into N components with each one taking the
form of ‖wik,j − w̃ik,j‖, where wik,j and w̃ik,j are the jth stochastic gradient step and true
gradient step of the inner loop at iteration k. The remaining step is to upper-bound the
first- and second-moment distances between wik,j and w̃ik,j for all j = 0, ..., N by finding the

relationship between ‖wik,j+1− w̃ik,j+1‖ and ‖wik,j − w̃ik,j‖ based on the inner-loop stochastic
gradient updates.
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3.3 Properties of Meta Gradient

Differently from the conventional gradient whose corresponding loss is evaluated directly at
the current parameter w, the meta gradient has a more complicated nested structure with
respect to w, because its loss is evaluated at the final output of the inner optimization stage,
which is N -step SGD updates. As a result, analyzing the meta gradient is very different and
more challenging compared to analyzing the conventional gradient. In this subsection, we
establish some important properties of the meta gradient which are useful for characterizing
the convergence of multi-step MAML.

Recall that ∇L(w) = Ei∼p(T )[∇Li(w)] with ∇Li(w) given by (3). The following propo-
sition characterizes the Lipschitz property of the gradient ∇L(·).

Proposition 1 Suppose that Assumptions 1, 2 and 3 hold. For any w, u ∈ Rd, we have

‖∇L(w)−∇L(u)‖ ≤
(
(1 + αL)2NL+ CLEi‖∇li(w)‖

)
‖w − u‖,

where CL is a positive constant given by

CL =
(
(1 + αL)N−1αρ+

ρ

L
(1 + αL)N ((1 + αL)N−1 − 1)

)
(1 + αL)N . (13)

The proof of Proposition 1 handles the first challenge described in Section 3.2. More specif-
ically, we bound the differences between w̃ij and ũij along two separate paths (w̃ij , j =

0, ...., N) and (ũij , j = 0, ...., N), and then connect these differences to the distance ‖w−u‖.
Proposition 1 shows that the objective L(·) has a gradient-Lipschitz parameter

Lw = (1 + αL)2NL+ CLEi‖∇li(w)‖,

which can be unbounded due to the fact that ∇li(w) may be unbounded. Similarly to Fallah
et al. (2020a), we use

L̂wk = (1 + αL)2NL+
CL
∑

i∈B′k
‖∇li(wk;Di

Lk
)‖

|B′k|
(14)

to estimate Lwk at the meta parameter wk, where we independently sample the data sets
B′k and Di

Lk
. As will be shown in Theorem 5, we set the meta stepsize βk to be inversely

proportional to L̂wk to handle the possibly unboundedness.

We next characterize several estimation properties of the meta gradient estimator Ĝi(wk)
in (7). Here, we address the second and third challenges described in Section 3.2. We first
quantify how far the stochastic gradient iterate wik,j is away from the true gradient iterate

w̃ik,j , and then provide upper bounds on the first- and second-moment distances between

wik,j and w̃ik,j for all j = 0, ..., N as below.

Proposition 2 Suppose that Assumptions 1, 2 and 3 hold. Then, for any j = 0, ..., N and
i ∈ Bk, we have

• First-moment : E(‖wik,j − w̃ik,j‖ |wk) ≤
(
(1 + αL)j − 1

) σg
L
√
S

.

• Second-moment: E(‖wik,j − w̃ik,j‖2 |wk) ≤
(
(1 + αL+ 2α2L2)j − 1

) ασ2
g

(1+αL)LS .

10
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Proposition 2 shows that we can effectively upper-bound the point-wise distance between
two paths by choosing α and S properly. Based on Proposition 2, we provide an upper
bound on the first-moment estimation error of meta gradient estimator Ĝi(wk).

Proposition 3 Suppose Assumptions 1, 2 and 3 hold, and define constants

Cerr1 = (1 + αL)2Nσg, Cerr2 =
(1 + αL)4Nρσg(

2− (1 + αL)2N
)
L2
. (15)

Let ek := E[Ĝi(wk)]−∇L(wk) be the estimation error. If the inner stepsize α < (2
1

2N −1)/L,
then conditioning on wk, we have

‖ek‖ ≤
Cerr1√
S

+
Cerr2√
S

(‖∇L(wk)‖+ σ). (16)

Note that the estimation error for the multi-step case shown in Proposition 3 involves a
term O

(‖∇L(wk)‖√
S

)
, which cannot be avoided due to the Hessian approximation error caused

by the randomness over the inner-loop samples sets Sik,j . Somewhat interestingly, our later
analysis shows that this term does not affect the final convergence rate if we choose the size
S properly. The following proposition provides an upper-bound on the second moment of
the meta gradient estimator Ĝi(wk).

Proposition 4 Suppose that Assumptions 1, 2 and 3 hold. Define constants

Csqu1
= 3
(α2σ2

H

D
+ (1 + αL)2

)N
σ2
g , Csqu3

=
2Csqu1

(1 + αL)2N

(2− (1 + αL)2N )2σ2
g

,

Csqu2
= Csqu1

(
(1 + 2αL+ 2α2L2)N − 1

)
αL(1 + αL)−1. (17)

If the inner stepsize α < (2
1

2N − 1)/L, then conditioning on wk, we have

E‖Ĝi(wk)‖2 ≤
Csqu1

T
+
Csqu2

S
+ Csqu3

(
‖∇L(wk)‖2 + σ2

)
. (18)

By choosing set sizes D,T, S and the inner stepsize α properly, the factor Csqu3
in the

second-moment error bound in (18) can be made at a constant level and the first two

error terms
Csqu1
T and

Csqu2
S can be made sufficiently small so that the variance of the meta

gradient estimator can be well controlled in the convergence analysis, as shown later.

3.4 Main Convergence Result

By using the properties of the meta gradient established in Section 3.3, we provide the
convergence rate for multi-step MAML of Algorithm 1 in the following theorem.

Theorem 5 Suppose that Assumptions 1, 2 and 3 hold. Set the meta stepsize βk = 1

CβL̂wk
,

where Cβ > 0 is a positive constant and L̂wk is the approximated smoothness parameter

11
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given by (14). For L̂wk in (14), we choose |B′k| >
4C2
Lσ

2

3(1+αL)4NL2 and |Di
Lk
| > 64σ2

gC
2
L

(1+αL)4NL2 for

all i ∈ B′k, where CL is given by (13). Define χ = (2−(1+αL)2N )(1+αL)2NL
CL

+ σ and

ξ =
6

CβL

(1

5
+

2

Cβ

)(
C2

err1
+ C2

err2
σ2
)
, φ =

2

C2
βL

(Csqu1

T
+
Csqu2

S
+ Csqu3

σ2
)

θ =
2
(
2− (1 + αL)2N

)
CβCL

(1

5
−
(3

5
+

6

Cβ

)C2
err2

S
−
Csqu3

CβB
− 2

Cβ

)
(19)

where Cerr1 , Cerr2 are given in (15) and Csqu1
, Csqu2

, Csqu3
are given in (17). Choose the

inner stepsize α < (2
1

2N −1)/L, and choose Cβ , S and B such that θ > 0. Then, Algorithm 1
finds a solution wζ such that

E‖∇L(wζ)‖ ≤
∆

θ

1

K
+
ξ

θ

1

S
+
φ

θ

1

B
+

√
χ

2

√
∆

θ

1

K
+
ξ

θ

1

S
+
φ

θ

1

B
, (20)

where ∆ = L(w0)− L∗ with L∗ = infw∈Rd L(w).

Note that for χ in Theorem 5, we replace the notation Cl by (1 + αL)2N − 1 based on its
definition. The proof of Theorem 5 (see Section 5.1 for details) consists of four main steps:
step 1 of bounding an iterative meta update by the meta-gradient smoothness established
by Proposition 1; step 2 of characterizing first-moment estimation error of the meta-gradient
estimator Ĝi(wk) by Proposition 3; step 3 of characterizing second-moment estimation error
of the meta-gradient estimator Ĝi(wk) by Proposition 4; and step 4 of combining steps 1-3,
and telescoping to yield the convergence.

In Theorem 5, the convergence rate given by (20) mainly contains three parts: the first
term ∆

θ
1
K indicates that the meta parameter converges sublinearly with the number K of

meta iterations, the second term ξ
θ

1
S captures the estimation error of ∇li(wik,j ;Sik,j) for

approximating the full gradient ∇li(wik,j) which can be made sufficiently small by choosing

a large sample size S, and the third term φ
θ

1
B captures the estimation error and variance of

the stochastic meta gradient, which can be made small by choosing large B, T and D (note
that φ is proportional to both 1

T and 1
D ).

It is worthwhile mentioning that our results here focus on our resampling case, where
fresh data are resampled as the algorithm runs. This resampling case often happens in
bandit or reinforcement learning settings, where batch sizes S,B,D, T can be chosen to
be large and the resulting convergence errors will be small. However, for the cases where
S,B,D, T are small, our results in Theorem 5 will contain large convergence errors. It is
possible to use some techniques such as variance reduction to reduce or even remove such
errors. However, this is not the focus of this paper, and require future efforts to address.

Our analysis reveals several insights for the convergence of multi-step MAML as follows.
(a) To guarantee convergence, we require αL < 2

1
2N − 1 (e.g., α = Θ( 1

NL)). Hence, if the
number N of inner gradient steps is large and L is not small (e.g., for some RL problems),
we need to choose a small inner stepsize α so that the last output of the inner stage has
a strong dependence on the initialization (i.e., meta parameter). This is also explained in
Rajeswaran et al. (2019), where they add a regularizer λ‖w′ −w‖2 to make sure the inner-
loop output w′ has a close connection to the initialization w. (b) For problems with small

12
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Hessians such as many classification/regression problems (Finn et al., 2017a), L (which is an
upper bound on the spectral norm of Hessian matrices) is small, and hence we can choose
a larger α. This explains the empirical findings in Finn et al. (2017a); Antoniou et al.
(2019), where their experiments tend to set a larger stepsize for the regression problems
with smaller Hessians.

We next specify the selection of parameters to simplify the convergence result in Theo-
rem 5 and derive the complexity of Algorithm 1 for finding an ε-accurate stationary point.

Corollary 6 Under the setting of Theorem 5, choose α = 1
8NL , Cβ = 100 and let batch

sizes S ≥ 15ρ2σ2
g

L4 and D ≥ σ2
HL

2. Then we have

E‖∇L(wζ)‖ ≤O
( 1

K
+
σ2
g(σ

2 + 1)

S
+
σ2
g + σ2

B
+

σ2
g

TB

+
√
σ + 1

√
1

K
+
σ2
g(σ

2 + 1)

S
+
σ2
g + σ2

B
+

σ2
g

TB

)
.

To achieve E‖∇L(wζ)‖ < ε, Algorithm 1 requires at most O
(

1
ε2

)
iterations, and O(N

ε4
+ 1

ε2
)

gradient computations and O
(
N
ε2

)
Hessian computations per meta iteration.

Differently from the conventional SGD that requires a gradient complexity of O( 1
ε4

),
MAML requires a higher gradient complexity by a factor of O( 1

ε2
), which is unavoidable

because MAML requires O( 1
ε2

) tasks to achieve an ε-accurate meta point, whereas SGD
runs only over one task.

Corollary 6 shows that given a properly chosen inner stepsize, e.g., α = Θ( 1
NL), MAML

is guaranteed to converge with both the gradient and the Hessian computation complexities
growing only linearly with N . These results explain some empirical findings for MAML
training in Rajeswaran et al. (2019). The above results can also be obtained by using a

larger stepsize such as α = Θ(c
1
N − 1)/L > Θ

(
1
NL

)
with a certain constant c > 1.

4. Convergence of Multi-Step MAML in Finite-Sum Case

In this section, we provide several properties of the meta gradient for the finite-sum case,
and then analyze the convergence and complexity of Algorithm 2. Differently from the
resampling case, we develop novel techniques to handle the difference between two losses
over the training and test sets (i.e., inner- and outer-loop losses) in the analysis, whereas
these two losses are the same for the resampling case.

4.1 Basic Assumptions

We state several standard assumptions for the analysis in the finite-sum case.

Assumption 4 For each task Ti, the loss functions lSi(·) and lTi(·) in (8) satisfy

1. lSi(·), lTi(·) are bounded below, i.e., infw∈Rd lSi(w) > −∞ and infw∈Rd lTi(w) > −∞.

2. Gradients ∇lSi(·) and ∇lTi(·) are L-Lipschitz continuous, i.e., for any w, u ∈ Rd

‖∇lSi(w)−∇lSi(u)‖ ≤ L‖w − u‖ and ‖∇lTi(w)−∇lTi(u)‖ ≤ L‖w − u‖.
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3. Hessians ∇2lSi(·) and ∇2lTi(·) are ρ-Lipschitz continuous, i.e., for any w, u ∈ Rd

‖∇2lSi(w)−∇2lSi(u)‖ ≤ ρ‖w − u‖ and ‖∇2lTi(w)−∇2lTi(u)‖ ≤ ρ‖w − u‖.

The following assumption provides two conditions ∇lSi(·) and ∇lTi(·).

Assumption 5 For all w ∈ Rd, gradients ∇lSi(w) and ∇lTi(w) satisfy

1. ∇lTi(·) has a bounded variance, i.e., there exists a constant σ > 0 such that

Ei‖∇lTi(w)−∇lT (w)‖2 ≤ σ2,

where ∇lT (·) = Ei [∇lTi(·)].

2. For each i ∈ I, there exists a constant bi > 0 such that ‖∇lSi(w)−∇lTi(w)‖ ≤ bi.

Instead of imposing a bounded variance condition on the stochastic gradient ∇lSi(w), we
alternatively assume the difference ‖∇lSi(w)−∇lTi(w)‖ to be upper-bounded by a constant,
which is more reasonable because sample sets Si and Ti are often sampled from the same
distribution and share certain statistical similarity. We note that the second condition also
implies ‖∇lSi(w)‖ ≤ ‖∇lTi(w)‖+bi, which is weaker than the bounded gradient assumption
made in papers such as Finn et al. (2019). It is worthwhile mentioning that the second
condition can be relaxed to ‖∇lSi(w)‖ ≤ ci‖∇lTi(w)‖ + bi for a constant ci > 0. Without
the loss of generality, we consider ci = 1 for simplicity.

4.2 Properties of Meta Gradient

We develop several important properties of the meta gradient. The following proposition
characterizes a Lipschitz property of the gradient of the objective function

∇L(w) = Ei∼p(T )

N−1∏
j=0

(I − α∇2lSi(w̃
i
j))∇lTi(w̃iN ),

where the weights w̃ij , i ∈ I, j = 0, ..., N are given by the gradient descent steps in (9).

Proposition 7 Suppose that Assumptions 4 and 5 hold. Then, for any w, u ∈ Rd, we have

‖∇L(w)−∇L(u)‖ ≤ Lw‖w − u‖, Lw = (1 + αL)2NL+ Cbb+ CLEi‖∇lTi(w)‖

where b = Ei[bi] and Cb, CL > 0 are constants given by

Cb =
(
αρ+

ρ

L
(1 + αL)N−1

)
(1 + αL)2N , CL =

(
αρ+

ρ

L
(1 + αL)N−1

)
(1 + αL)2N . (21)

Proposition 7 shows that ∇L(w) has a Lipschitz parameter Lw. Similarly to (14), we use
the following construction

L̂wk = (1 + αL)2NL+ Cbb+
CL
|B′k|

∑
i∈B′k

‖∇lTi(wk)‖, (22)

at the kth outer-stage iteration to approximate Lwk , where B′k ⊂ I is chosen independently

from Bk. It can be verified that the gradient estimator Ĝi(wk) given in (12) is an unbiased
estimate of ∇L(wk). Thus, our next step is to upper-bound the second moment of Ĝi(wk).
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Proposition 8 Suppose Assumptions 4 and 5 are hold, and define constants

Asqu1
=

4(1 + αL)4N

(2− (1 + αL)2N )2
, Asqu2

=
4(1 + αL)8N

(2− (1 + αL)2N )2
(σ + b)2 + 2(1 + α)4N (σ2 + b̃), (23)

where b̃ = Ei∼p(T )[b
2
i ]. Then, if α < (2

1
2N − 1)/L, then conditioning on wk, we have

E‖Ĝi(wk)‖2 ≤ Asqu1
‖∇L(wk)‖2 +Asqu2

.

Based on the above properties, we next characterize the convergence of multi-step MAML.

4.3 Main Convergence Results

In this subsection, we provide the convergence and complexity analysis for Algorithm 2
based on the properties established in the previous subsection.

Theorem 9 Let Assumptions 4 and 5 hold, and apply Algorithm 2 to solve the objective

function (8). Choose the meta stepsize βk = 1

CβL̂wk
with L̂wk given by (22), where Cβ > 0 is

a constant. For L̂wk in (22), we choose the batch size |B′k| such that |B′k| ≥
2C2
Lσ

2

(Cbb+(1+αL)2NL)2 ,

where Cb and CL are given by (21). Define constants

ξ =
2− (1 + αL)2N

CL
(1 + αL)2NL+

(
2− (1 + αL)2N

)
Cbb

CL
+ (1 + αL)3Nb,

θ =
2− (1 + αL)2N

CL

( 1

Cβ
− 1

C2
β

(Asqu1

B
+ 1
))
, φ =

Asqu2

LC2
β

(24)

where Cb, CL, Asqu1
and Asqu1

are given by (21) and (23). Choose α < (2
1

2N − 1)/L, and
choose Cβ and B such that θ > 0. Then, Algorithm 2 attains a solution wζ such that

E‖∇L(wζ)‖ ≤
∆

2θK
+

φ

2θB
+

√
ξ
( ∆

θK
+

φ

θB

)
+
( ∆

2θK
+

φ

2θB

)2
. (25)

The parameters θ, φ and ξ in Theorem 9 take complicate forms. The following corollary
specifies the parameters Cβ , α in Theorem 9 and provides a simplified result for Algorithm 2.

Corollary 10 Under the same setting of Theorem 9, choose α = 1
8NL , Cβ = 80. We have

E‖∇L(wζ)‖ ≤ O
( 1

K
+
σ2

B
+

√
1

K
+
σ2

B

)
.

In addition, suppose the batch size B further satisfies B ≥ CBσ
2ε−2, where CB is a suf-

ficiently large constant. Then, to achieve an ε-approximate stationary point, Algorithm 2
requires at most K = O(ε−2) iterations, and a total number O

(
(T + NS)ε−2

)
of gradient

computations and a number O
(
NSε−2

)
of Hessian computations per iteration, where T and

S correspond to the sample sizes of the pre-assigned sets Ti, i ∈ I and Si, i ∈ I.
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5. Proofs of Main Results

In this section, we provide the proofs the main results for MAML in the resampling case
and the finite-sum case, respectively. This section is organized as follows.

For the resampling case, Section 5.1 provides the proofs for the convergence proper-
ties of multi-step MAML in the resampling case, which include Propositions 1, 2, 3, 4 on
the properties of meta gradient, and Theorem 5 and Corollary 6 on the convergence and
complexity performance of multi-step MAML. The proofs of these results require several
technical lemmas, which we relegate to the Appendix C.

Next, for the finite-sum case, Section 5.2 provides the proofs for the convergence prop-
erties of multi-step MAML in the finite-sum case, which include Propositions 7, 8 on the
properties of meta gradient, and Theorem 9 and Corollary 10 on the convergence and com-
plexity of multi-step MAML. The proofs of these results rely on several technical lemmas,
which we relegate to the Appendix D.

5.1 Proofs for Section 3: Convergence of Multi-Step MAML in Resampling
Case

To simplify notations, we let S̄ij and D̄i
j denote the randomness over Sik,m, D

i
k,m,m =

0, ..., j − 1 and let S̄j and D̄j denote all randomness over S̄ij , D̄
i
j , i ∈ I, respectively.

Proof of Proposition 1

First recall that ∇Li(w) =
∏N−1
j=0 (I − α∇2li(w̃

i
j))∇li(w̃iN ). Then, we have

‖∇Li(w)−∇Li(u)‖ ≤
∥∥∥N−1∏
j=0

(I − α∇2li(w̃
i
j))−

N−1∏
j=0

(I − α∇2li(ũ
i
j))
∥∥∥∥∥∇li(w̃iN )

∥∥
+ (1 + αL)N‖∇li(w̃iN )−∇li(ũiN )‖

(i)

≤
∥∥∥N−1∏
j=0

(I − α∇2li(w̃
i
j))−

N−1∏
j=0

(I − α∇2li(ũ
i
j))
∥∥∥(1 + αL)N

∥∥∇li(w)
∥∥

+ (1 + αL)NL‖w̃iN − ũiN‖
(ii)

≤
∥∥∥N−1∏
j=0

(I − α∇2li(w̃
i
j))−

N−1∏
j=0

(I − α∇2li(ũ
i
j))
∥∥∥︸ ︷︷ ︸

V (N)

(1 + αL)N
∥∥∇li(w)

∥∥
+ (1 + αL)2NL‖w − u‖, (26)

where (i) follows from Lemma 12, and (ii) follows from Lemma 11. We next upper-bound
the term V (N) in the above inequality. Specifically, define a more general quantity V (m)
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by replacing N in V (N) with m. Then, we have

V (m) ≤
∥∥∥m−2∏
j=0

(I − α∇2li(w̃
i
j))
∥∥∥∥∥α∇2li(w̃

i
m−1)− α∇2li(ũ

i
m−1)

∥∥
+
∥∥∥m−2∏
j=0

(I − α∇2li(w̃
i
j))−

m−2∏
j=0

(I − α∇2li(ũ
i
j))
∥∥∥∥∥I − α∇2li(ũ

i
m−1)

∥∥
≤(1 + αL)m−1

∥∥α∇2li(w̃
i
m−1)− α∇2li(ũ

i
m−1)

∥∥
+ (1 + αL)

∥∥∥m−2∏
j=0

(I − α∇2li(w̃
i
j))−

m−2∏
j=0

(I − α∇2li(ũ
i
j))
∥∥∥

≤(1 + αL)m−1αρ‖w̃im−1 − ũim−1‖+ (1 + αL)V (m− 1)

≤(1 + αL)m−1αρ(1 + αL)m−1‖w − u‖+ (1 + αL)V (m− 1). (27)

Telescoping (27) over m from 1 to N and noting V (1) ≤ αρ‖w − u‖, we have

V (N) ≤ (1 + αL)N−1V (1) +

N−2∑
m=0

αρ(1 + αL)2(N−m)−2‖w − u‖(1 + αL)m

= (1 + αL)N−1αρ‖w − u‖+ αρ(1 + αL)N
N−2∑
m=0

(1 + αL)m‖w − u‖

≤
(

(1 + αL)N−1αρ+
ρ

L
(1 + αL)N ((1 + αL)N−1 − 1)

)
‖w − u‖. (28)

Recalling the definition of CL and Combining (26), (28), we have

‖∇Li(w)−∇Li(u)‖ ≤
(
CL‖∇li(w)‖+ (1 + αL)2NL

)
‖w − u‖.

Based on the above inequality, we have

‖∇L(w)−∇L(u)‖ = ‖Ei∼p(T )(∇Li(w)−∇Li(u))‖
≤ Ei∼p(T )‖(∇Li(w)−∇Li(u))‖
≤
(
CLEi∼p(T )‖∇li(w)‖+ (1 + αL)2NL

)
‖w − u‖,

which finishes the proof.
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Proof of Proposition 2

We first prove the first-moment bound. Conditioning on wk, we have

ES̄im‖w
i
k,m − w̃ik,m‖

(i)
=ES̄im

∥∥wik,m−1 − α∇li(wik,m−1;Sik,m−1)− (w̃ik,m−1 − α∇li(w̃ik,m−1))
∥∥

≤ES̄im‖w
i
k,m−1 − w̃ik,m−1‖+ αES̄im

∥∥∇li(wik,m−1;Sik,m−1)−∇li(wik,m−1)
∥∥

+ αES̄im
∥∥∇li(wik,m−1)−∇li(w̃ik,m−1)

∥∥
≤αES̄im−1

(
ESik,m−1

(
‖∇li(wik,m−1;Sik,m−1)−∇li(wik,m−1)

∥∥ ∣∣∣S̄im−2

))
+ (1 + αL)ES̄im−1

‖wik,m−1 − w̃ik,m−1‖
(ii)

≤ (1 + αL)ES̄im−1
‖wik,m−1 − w̃ik,m−1‖+ α

σg√
S
,

where (i) follows from (1) and (6), and (ii) follows from Assumption 3. Telescoping the
above inequality over m from 1 to j and using the fact that wik,0 = w̃ik,0 = wk, we have

ES̄ij‖w
i
k,j − w̃ik,j‖ ≤ ((1 + αL)j − 1)

σg

L
√
S
,

which finishes the proof of the first-moment bound. We next begin to prove the second-
moment bound. Conditioning on wk, we have

ES̄im‖w
i
k,m − w̃ik,m‖2

=ES̄im−1
‖wik,m−1 − w̃ik,m−1‖2 + α2ES̄im‖∇li(w

i
k,m−1;Sik,m−1)−∇li(w̃ik,m−1)‖2

− 2αES̄im−1

(
ESik,m−1

〈wik,m−1 − w̃ik,m−1,∇li(wik,m−1;Sik,m−1)−∇li(w̃ik,m−1)〉
∣∣S̄im−1

)
(i)

≤ES̄im−1
‖wik,m−1 − w̃ik,m−1‖2 − 2αES̄im−1

〈wik,m−1 − w̃ik,m−1,∇li(wik,m−1)−∇li(w̃ik,m−1)〉

+ α2ES̄im
(
2‖∇li(wik,m−1;Sik,m−1)−∇li(wik,m−1)‖2 + 2‖∇li(wik,m−1)−∇li(w̃ik,m−1)‖2

)
(ii)

≤ES̄im−1
‖wik,m−1 − w̃ik,m−1‖2 + 2αES̄im−1

‖wik,m−1 − w̃ik,m−1‖‖∇li(wik,m−1)−∇li(w̃ik,m−1))‖

+ α2ES̄im
(
2‖∇li(wik,m−1;Sik,m−1)−∇li(wik,m−1)‖2 + 2‖∇li(wik,m−1)−∇li(w̃ik,m−1)‖2

)
≤ES̄im−1

‖wik,m−1 − w̃ik,m−1‖2 + 2αLES̄im−1
‖wik,m−1 − w̃ik,m−1‖2

+ 2α2ES̄im−1

(σ2
g

S
+ L2‖wik,m−1 − w̃ik,m−1‖2

)
≤
(
1 + 2αL+ 2α2L2

)
ES̄im−1

‖wik,m−1 − w̃ik,m−1‖2 +
2α2σ2

g

S
,

where (i) follows from ESik,m−1
∇li(wik,m−1;Sik,m−1) = ∇li(wik,m−1) and (ii) follows from the

inequality that −〈a, b〉 ≤ ‖a‖‖b‖ for any vectors a, b. Noting that wik,0 = w̃ik,0 = wk and
telescoping the above inequality over m from 1 to j, we obtain

ES̄ij‖w
i
k,j − w̃ik,j‖2 ≤

(
(1 + 2αL+ 2α2L2)j − 1

) ασ2
g

L(1 + αL)S
.

Then,taking the expectation over wk in the above inequality finishes the proof.
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Proof of Proposition 3

Recall the definition that

Ĝi(wk) =

N−1∏
j=0

(I − α∇2li(w
i
k,j ;D

i
k,j))∇li(wik,N ;T ik).

Then, conditioning on wk, we have

EĜi(wk) =ES̄N ,i∼p(T )ED̄N
(N−1∏
j=0

(
I − α∇2li(w

i
k,j ;D

i
k,j)
)
ET ik∇li(w

i
k,N ;T ik)

∣∣S̄N , i)

=ES̄N ,i∼p(T )

N−1∏
j=0

EDik,j
(
I − α∇2li(w

i
k,j ;D

i
k,j)
∣∣S̄N , i)∇li(wik,N )

=ES̄N ,i∼p(T )

N−1∏
j=0

(
I − α∇2li(w

i
k,j)
)
∇li(wik,N ), (29)

which, combined with ∇L(wk) = Ei∼p(T )

∏N−1
j=0 (I − α∇2li(w̃

i
k,j))∇li(w̃ik,N ), yields

‖EĜi(wk)−∇L(wk)‖
(i)

≤ES̄N ,i∼p(T )

∥∥∥N−1∏
j=0

(
I − α∇2li(w

i
k,j)
)
∇li(wik,N )−

N−1∏
j=0

(I − α∇2li(w̃
i
k,j))∇li(w̃ik,N )

∥∥∥
≤ES̄N ,i∼p(T )

∥∥∥N−1∏
j=0

(
I − α∇2li(w

i
k,j)
)
∇li(wik,N )−

N−1∏
j=0

(I − α∇2li(w
i
k,j))∇li(w̃ik,N )

∥∥∥
+ ES̄N ,i∼p(T )

∥∥∥N−1∏
j=0

(
I − α∇2li(w

i
k,j)
)
∇li(w̃ik,N )−

N−1∏
j=0

(I − α∇2li(w̃
i
k,j))∇li(w̃ik,N )

∥∥∥
≤ES̄N ,i

∥∥∥N−1∏
j=0

(
I − α∇2li(w

i
k,j)
)
−
N−1∏
j=0

(I − α∇2li(w̃
i
k,j))

∥∥∥∥∥∇li(w̃ik,N )
∥∥

+ (1 + αL)NES̄N ,i
∥∥∥∇li(wik,N )−∇li(w̃ik,N )

∥∥∥
(ii)

≤ (1 + αL)NES̄N ,i
∥∥∇li(wk)∥∥∥∥∥N−1∏

j=0

(
I − α∇2li(w

i
k,j)
)
−
N−1∏
j=0

(I − α∇2li(w̃
i
k,j))

∥∥∥
+ (1 + αL)NLES̄N ,i

∥∥wik,N − w̃ik,N∥∥
(iii)

≤ (1 + αL)NEi
∥∥∇li(wk)∥∥ES̄N(∥∥∥N−1∏

j=0

(
I − α∇2li(w

i
k,j)
)
−
N−1∏
j=0

(I − α∇2li(w̃
i
k,j))

∥∥∥ ∣∣∣ i)︸ ︷︷ ︸
R(N)

+ (1 + αL)N ((1 + αL)N − 1
) σg√

S
, (30)
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where (i) follows from the Jensen’s inequality, (ii) follows from Lemma 12 that
∥∥∇li(w̃ik,N )

∥∥ ≤
(1 + αL)N‖∇li(wk)‖, and (iii) follows from item 1 in Proposition 2. Our next step is to
upper-bound the term R(N). To simplify notations, we define a general quantity R(m) by
replacing N in R(N) with m, and we use ES̄m|i(·) to denote ES̄m(·|i). Then, we have

R(m) ≤ES̄m|i
∥∥∥m−1∏
j=0

(
I − α∇2li(w

i
k,j)
)
−
m−2∏
j=0

(I − α∇2li(w
i
k,j))(I − α∇2li(w̃

i
k,m−1)

∥∥∥
+ ES̄m|i

∥∥∥m−2∏
j=0

(I − α∇2li(w
i
k,j))(I − α∇2li(w̃

i
k,m−1)−

m−1∏
j=0

(I − α∇2li(w̃
i
k,j))

∥∥∥
≤(1 + αL)m−1αρES̄m|i‖w

i
k,m−1 − w̃ik,m−1‖+ (1 + αL)R(m− 1)

(i)

≤αρ(1 + αL)m−1((1 + αL)m−1 − 1)
σg

L
√
S

+ (1 + αL)R(m− 1)

≤αρ(1 + αL)N−1
(
(1 + αL)N−1 − 1

) σg

L
√
S

+ (1 + αL)R(m− 1), (31)

where (i) follows from Proposition 2. Telescoping the above inequality over m from 2 to N
and using R(1) = 0, we have

R(N) ≤ ((1 + αL)N−1 − 1)2(1 + αL)N−1 ρσg

L2
√
S
. (32)

Thus, conditioning on wk and combining (32) and (30), we have

‖EĜi(wk)−∇L(wk)‖ ≤((1 + αL)N−1 − 1)2 ρ

L
(1 + αL)2N−1 σg

L
√
S
Ei∼p(T )

(∥∥∇li(wk)∥∥)
+

(1 + αL)N ((1 + αL)N − 1
)
σg√

S

≤((1 + αL)N−1 − 1)2 ρ

L
(1 + αL)2N−1 σg

L
√
S

(‖∇L(wk)‖
1− Cl

+
σ

1− Cl

)
+

(1 + αL)N ((1 + αL)N − 1
)
σg√

S
,

where the last inequality follows from Lemma 15. Rearranging the above inequality and
using Cerr1 and Cerr2 defined in Proposition 3 finish the proof.

Proof of Proposition 4

Recall Ĝi(wk) =
∏N−1
j=0 (I − α∇2li(w

i
k,j ;D

i
k,j))∇li(wik,N ;T ik). Conditioning on wk, we have

E‖Ĝi(wk)‖2

≤ES̄N ,i
(
ED̄N ,T ik

(∥∥∥N−1∏
j=0

(I − α∇2li(w
i
k,j ;D

i
k,j))

∥∥∥2
‖∇li(wik,N ;T ik)‖2

∣∣∣S̄N , i))

≤ES̄N ,i
(N−1∏

j=0

ED̄N
(∥∥∥I − α∇2li(w

i
k,j ;D

i
k,j)
∥∥∥2∣∣∣S̄N , i)︸ ︷︷ ︸

P

ET ik
(
‖∇li(wik,N ;T ik)‖2

∣∣∣S̄N , i)︸ ︷︷ ︸
Q

)
. (33)
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We next upper-bound P and Q in (33). Note that wik,j , j = 0, ..., N − 1 are deterministic
when conditioning on SN , i, and wk. Thus, conditioning on SN , i, and wk, we have

ED̄N
∥∥∥I − α∇2li(w

i
k,j ;D

i
k,j)
∥∥∥2

=Var
(
I − α∇2li(w

i
k,j ;D

i
k,j)
)

+
∥∥I − α∇2li(w

i
k,j)
∥∥2

≤
α2σ2

H

D
+ (1 + αL)2. (34)

We next bound Q term. Conditioning on S̄N , i and wk, we have

ET ik‖∇li(w
i
k,N ;T ik)‖2

(i)

≤3ET ik‖∇li(w
i
k,N ;T ik)−∇li(wik,N )‖2 + 3ET ik‖∇li(w

i
k,N )−∇li(w̃ik,N )‖2

+ 3ET ik‖∇li(w̃
i
k,N )‖2

(ii)

≤
3σ2

g

T
+ 3L2‖wik,N − w̃ik,N‖2 + 3(1 + αL)2N‖∇li(wk)‖2, (35)

where (i) follows from the inequality that ‖
∑n

i=1 a‖2 ≤ n
∑n

i=1 ‖a‖2, and (ii) follows from
Lemma 12. Thus, conditioning on wk and combining (33), (34) and (35), we have

E‖Ĝi(wk)‖2 ≤3
(α2σ2

H

D
+ (1 + αL)2

)N(σ2
g

T
+ L2E‖wik,N − w̃ik,N‖2 + (1 + αL)2NE‖∇li(wk)‖2

)
which, in conjunction with Proposition 2, yields

E‖Ĝi(wk)‖2 ≤3(1 + αL)2N
(α2σ2

H

D
+ (1 + αL)2

)N
(‖∇l(wk)‖2 + σ2) +

Csqu1

T
+
Csqu2

S
. (36)

Based on Lemma 15 and conditioning on wk, we have

‖∇l(wk)‖2 ≤
2

(1− Cl)2
‖∇L(wk)‖+

2C2
l

(1− Cl)2
σ2,

which, in conjunction with 2x2

(1−x)2 + 1 ≤ 2
(1−x)2 and (36), finishes the proof.

Proof of Theorem 5

The proof of Theorem 5 consists of four main steps: step 1 of bounding an iterative meta up-
date by the meta-gradient smoothness established by Proposition 1; step 2 of characterizing
first-moment error of the meta-gradient estimator Ĝi(wk) by Proposition 3; step 3 of char-
acterizing second-moment error of the meta-gradient estimator Ĝi(wk) by Proposition 4;
and step 4 of combining steps 1-3, and telescoping to yield the convergence.

To simplify notations, define the smoothness parameter of the meta-gradient as

Lwk = (1 + αL)2NL+ CLEi∼p(T )‖∇li(wk)‖,

where CL is given in (13). Based on the smoothness of the gradient ∇L(w) given by
Proposition 1, we have

L(wk+1) ≤L(wk) + 〈∇L(w), wk+1 − wk〉+
Lwk

2
‖wk+1 − wk‖2
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Note that the randomness from βk depends on B′k and Di
Lk
, i ∈ B′k, and thus is independent

of Sik,j , D
i
k,j and T ik for i ∈ Bk, j = 0, ..., N . Then, taking expectation over the above

inequality, conditioning on wk, and recalling ek := EĜi(wk)−∇L(wk), we have

E(L(wk+1)|wk) ≤ L(wk)− E(βk)〈∇L(wk),∇L(wk) + ek〉+
LwkE(β2

k)E
∥∥ 1
B

∑
i∈Bk Ĝi(wk)

∥∥2

2
.

Then, applying Lemma 16 in the above inequality yields

E(L(wk+1)|wk) ≤L(wk)−
4

5Cβ

1

Lwk
‖∇L(wk)‖2 +

4

5Cβ

1

Lwk
|〈∇L(wk), ek〉|

+
2

C2
β

1

Lwk

( 1

B
E
∥∥Ĝi(wk)∥∥2

+ ‖EĜi(wk)‖2
)
.

≤L(wk)−
4

5Cβ

1

Lwk
‖∇L(wk)‖2 +

2

5Cβ

1

Lwk
‖∇L(wk)‖2 +

2

5Cβ

1

Lwk
‖ek‖2

+
2

C2
β

1

Lwk

( 1

B
E
∥∥Ĝi(wk)∥∥2

+ ‖EĜi(wk)‖2
)
. (37)

Then, applying Propositions 3 and 4 to the above inequality yields

E(L(wk+1)|wk)

≤L(wk)−
2

5Cβ

1

Lwk
‖∇L(wk)‖2 +

2

C2
β

1

Lwk

1

B
E
∥∥Ĝi(wk)∥∥2

+
4

C2
β

1

Lwk
‖∇L(wk)‖2

+
( 6

5CβLwk
+

12

C2
βLwk

)(C2
err2

S
‖∇L(wk)‖2 +

C2
err1

S
+
C2

err2
σ2

S

)
≤L(wk)−

2

CβLwk

(
1

5
−
(

3

5
+

6

Cβ

)
C2

err2

S
−
Csqu3

CβB
− 2

Cβ

)
‖∇L(wk)‖2

+
6

CβLwkS

(1

5
+

2

Cβ

)(
C2

err1
+ C2

err2
σ2
)

+
2

C2
βLwkB

(Csqu1

T
+
Csqu2

S
+ Csqu3

σ2
)
. (38)

Recalling Lwk = (1 + αL)2NL+ CLEi‖∇li(wk)‖, we have Lwk ≥ L and

Lwk
(i)

≤(1 + αL)2NL+
CLσ

1− Cl
+

CL
1− Cl

‖∇L(wk)‖, (39)

where (i) follows from Assumption 2 and Lemma 15. Combining (38) and (39) yields

E(L(wk+1)|wk) ≤L(wk) +
6

CβL

(1

5
+

2

Cβ

)(
C2

err1
+ C2

err2
σ2
) 1

S

+
2

C2
βL

(Csqu1

T
+
Csqu2

S
+ Csqu3

σ2
) 1

B

− 2

Cβ

1
5 −

(
3
5 + 6

Cβ

)
C2

err2
S − Csqu3

CβB
− 2

Cβ

(1 + αL)2NL+ CLσ
1−Cl + CL

1−Cl ‖∇L(wk)‖
‖∇L(wk)‖2. (40)
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Based on the notations in (19), we rewrite (40) as

E(L(wk+1)|wk) ≤ L(wk) +
ξ

S
+
φ

B
− θ ‖∇L(wk)‖2

χ+ ‖∇L(wk)‖
.

Unconditioning on wk in the above inequality and telescoping the above inequality over k
from 0 to K − 1, we have

1

K

K−1∑
k=0

E
(

θ‖∇L(wk)‖2

χ+ ‖∇L(wk)‖

)
≤ ∆

K
+
ξ

S
+
φ

B
, (41)

where ∆ = L(w0) − L∗. Choosing ζ from {0, ...,K − 1} uniformly at random, we obtain
from (41) that

E
(

θ‖∇L(wζ)‖2

χ+ ‖∇L(wζ)‖

)
≤ ∆

K
+
ξ

S
+
φ

B
. (42)

Consider a function f(x) = x2

c+x , x > 0, where c > 0 is a constant. Simple computation

shows that f ′′(x) = 2c2

(x+c)3 > 0. Thus, using Jensen’s inequality in (42), we have

θ(E‖∇L(wζ)‖)2

χ+ E‖∇L(wζ)‖
≤ ∆

K
+
ξ

S
+
φ

B
. (43)

Rearranging the above inequality yields

E‖∇L(wζ)‖ ≤
∆

2θ

1

K
+

ξ

2θ

1

S
+

φ

2θ

1

B
+

√
χ
(∆

2θ

1

K
+

ξ

2θ

1

S
+

φ

2θ

1

B

)
+
(∆

2θ

1

K
+

ξ

2θ

1

S
+

φ

2θ

1

B

)2

≤∆

θ

1

K
+
ξ

θ

1

S
+
φ

θ

1

B
+

√
χ

2

√
∆

θ

1

K
+
ξ

θ

1

S
+
φ

θ

1

B
, (44)

which finishes the proof.

Proof of Corollary 6

Since α = 1
8NL , we have

(1 + αL)N =
(
1 +

1

8N

)N
= eN log(1+ 1

8N
) ≤ e1/8 <

5

4
, (1 + αL)2N < e1/4 <

3

2
,

which, in conjunction with (15), implies that

Cerr1 <
5σg
16

, Cerr2 <
3ρσg
4L2

. (45)

Furthermore, noting that D ≥ σ2
H/L

2, we have

Csqu1
≤3(1 + 2αL+ 2α2L2)Nσ2

g < 3e9/32σ2
g < 4σ2

g , Csqu2
<

1.3σ2
g

8
<
σ2
g

5
, Csqu3

≤ 11. (46)

23



Ji, Yang, and Liang

Based on (13), we have

CL <
75

128

ρ

L
<

3

5

ρ

L
and CL

(i)
>
ρ

L
((N − 1)αL) >

1

16

ρ

L
, (47)

where (i) follows from the inequality that (1+a)n > 1+an. Then, using (45), (46) and (47),
we obtain from (19) that

ξ <
7

500L

( 1

10
+

9ρσ2

16L4

)
σ2
g , φ ≤ 1

5000L

(3σ2
g

T
+
σ2
g

5S
+ 11σ2

)
<

1

1000L
(σ2
g + 3σ2)

θ ≥ L

60ρ

(1

5
− 4

5

9

16

ρ2σ2
g

L4

1

S
− 11

100B
− 1

50

)
=

L

1500ρ
, χ ≤ 24L2

ρ
+ σ. (48)

Then, treating ∆, ρ, L as constants and using (20), we obtain

E‖∇L(wζ)‖ ≤ O
( 1

K
+
σ2
g(σ2 + 1)

S
+
σ2
g + σ2

B
+

σ2
g

TB
+
√
σ + 1

√
1

K
+
σ2
g(σ2 + 1)

S
+
σ2
g + σ2

B
+

σ2
g

TB

)
.

Then, choosing batch sizes S ≥ CSσ
2
g(σ

2 + 1) max(σ, 1)ε−2, B ≥ CB(σ2
g + σ2) max(σ, 1)ε−2

and TB > CTσ
2
g max(σ, 1)ε−2, we have

E‖∇L(wζ)‖ ≤ O
(

1

K
+

1

ε2

( 1

CS
+

1

CB
+

1

CT

)
+
√
σ

√
1

K
+

1

σε2

( 1

CS
+

1

CB
+

1

CT

))

After at most K = CK max(σ, 1)ε−2 iterations, the above inequality implies, for constants

CS , CB, CT and CK large enough, E‖∇L(wζ)‖ ≤ ε. Recall that we need |B′k| >
4C2
Lσ

2

3(1+αL)4NL2

and |Di
Lk
| > 64σ2

gC
2
L

(1+αL)4NL2 for building stepsize βk at each iteration k. Based on the selected

parameters, we have

4C2
Lσ

2

3(1 + αL)4NL2
≤ 4σ2

3L2

3ρ

5L
≤ Θ(σ2),

64σ2
gC

2
L

(1 + αL)4NL2
< Θ(σ2

g),

which implies |B′k| = Θ(σ2) and |Di
Lk
| = Θ(σ2

g). Then, since the batch size D = Θ(σ2
H/L

2),
the total number of gradient computations at each meta iteration k is given by B(NS +
T ) + |B′k||Di

Lk
| ≤ O(Nε−4 + ε−2). Furthermore, the total number of Hessian computations

at each meta iteration is given by BND ≤ O(Nε−2). This completes the proof.

5.2 Proofs for Section 4: Convergence of Multi-Step MAML in Finite-Sum
Case

In this subsection, we provide proofs for the convergence properties of multi-step MAML
in the finite-sum case.
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Proof of Proposition 7

By the definition of ∇Li(·), we have

‖∇Li(w)−∇Li(u)‖ ≤
∥∥∥N−1∏
j=0

(I − α∇2lSi(w̃
i
j))∇lTi(w̃iN )−

N−1∏
j=0

(I − α∇2lSi(ũ
i
j))∇lTi(w̃iN )

∥∥∥
+
∥∥∥N−1∏
j=0

(I − α∇2lSi(ũ
i
j))∇lTi(w̃iN )−

N−1∏
j=0

(I − α∇2lSi(ũ
i
j))∇lTi(ũiN )

∥∥∥
≤
∥∥∥N−1∏
j=0

(I − α∇2lSi(w̃
i
j))−

N−1∏
j=0

(I − α∇2lSi(ũ
i
j))
∥∥∥︸ ︷︷ ︸

A

‖∇lTi(w̃iN )‖

+ (1 + αL)N‖∇lTi(w̃iN )−∇lTi(ũiN )‖. (49)

We next upper-bound A in the above inequality. Specifically, we have

A ≤
∥∥∥N−1∏
j=0

(I − α∇2lSi(w̃
i
j))−

N−2∏
j=0

(I − α∇2lSi(w̃
i
j))(I − α∇2lSi(ũ

i
N−1))

∥∥∥
+
∥∥∥N−2∏
j=0

(I − α∇2lSi(w̃
i
j))(I − α∇2lSi(ũ

i
N−1))−

N−1∏
j=0

(I − α∇2lSi(ũ
i
j))
∥∥∥

≤
(

(1 + αL)N−1αρ+
ρ

L
(1 + αL)N

(
(1 + αL)N−1 − 1

))
‖w − u‖, (50)

where the last inequality uses an approach similar to (28). Combining (49) and (50) yields

‖∇Li(w)−∇Li(u)‖

≤
(
(1 + αL)N−1αρ+

ρ

L
(1 + αL)N

(
(1 + αL)N−1 − 1

))
‖w − u‖‖∇lTi(w̃iN )‖

+ (1 + αL)NL‖w̃iN − ũiN‖. (51)

To upper-bound ‖∇lTi(w̃iN )‖ in (51), using the mean value theorem, we have

‖∇lTi(w̃iN )‖ =
∥∥∥∇lTi(w − N−1∑

j=0

α∇lSi(w̃ij))
∥∥∥

(i)

≤‖∇lTi(w)‖+ αL
N−1∑
j=0

(1 + αL)j
∥∥∇lSi(w)

∥∥
(ii)

≤ (1 + αL)N‖∇lTi(w)‖+
(
(1 + αL)N − 1

)
bi, (52)

where (i) follows from Lemma 17, and (ii) follows from Assumption 5. In addition, using
an approach similar to Lemma 11, we have

‖w̃iN − ũiN‖ ≤ (1 + αL)N‖w − u‖. (53)
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Combining (51), (52) and (53) yields

‖∇Li(w)−∇Li(u)‖

≤
(

(1 + αL)N−1αρ+
ρ

L
(1 + αL)N

(
(1 + αL)N−1 − 1

))
(1 + αL)N‖∇lTi(w)‖‖w − u‖

+
(

(1 + αL)N−1αρ+
ρ

L
(1 + αL)N

(
(1 + αL)N−1 − 1

))(
(1 + αL)N − 1

)
bi‖w − u‖

+ (1 + αL)2NL‖w − u‖,

which, in conjunction with Cb and CL given in (21), yields

‖∇Li(w)−∇Li(u)‖ ≤
(
(1 + αL)2NL+ Cbbi + CL‖∇lTi(w)‖

)
‖w − u‖.

Based on the above inequality and Jensen’s inequality, we finish the proof.

Proof of Proposition 8

Conditioning on wk, we have

E‖Ĝi(wk)‖2 =E
∥∥∥N−1∏
j=0

(I − α∇2lSi(w
i
k,j))∇lTi(wik,N )

∥∥∥2
≤ (1 + αL)2NE‖∇lTi(wik,N )‖2,

which, using an approach similar to (52), yields

E‖Ĝi(wk)‖2 ≤(1 + αL)2N2(1 + αL)2NE‖∇lTi(wk)‖2 + 2(1 + αL)2N
(
(1 + αL)N − 1

)2Eib2i
≤2(1 + αL)4N (‖∇lT (wk)‖2 + σ2) + 2(1 + αL)2N

(
(1 + αL)N − 1

)2
b̃

(i)

≤2(1 + αL)4N
( 2

C2
1

‖∇lT (wk)‖2 +
2C2

2

C2
1

+ σ2
)

+ 2(1 + αL)2N
(
(1 + αL)N − 1

)2
b̃

≤4(1 + αL)4N

C2
1

‖∇lT (wk)‖2 +
4(1 + αL)4NC2

2

C2
1

+ 2(1 + αL)4N (σ2 + b̃), (54)

where (i) follows from Lemma 19, and constants C1 and C2 are given by (74). Noting that
C2 =

(
(1 +αL)2N − 1

)
σ+ (1 +αL)N

(
(1 +αL)N − 1

)
b <

(
(1 +αL)2N − 1

)
(σ+ b) and using

the definitions of Asqu1
, Asqu2

in (23), we finish the proof.

Proof of Theorem 9

Based on the smoothness of ∇L(·) established in Proposition 7, we have

L(wk+1) ≤L(wk)− βk
〈
∇L(wk),

1

B

∑
i∈Bk

Ĝi(wk)
〉

+
Lwkβ

2
k

2

∥∥∥ 1

B

∑
i∈Bk

Ĝi(wk)
∥∥∥2

Taking the conditional expectation given wk over the above inequality and noting that the

randomness over βk is independent of the randomness over Ĝi(wk), we have

E(L(wk+1)|wk)

≤L(wk)− 1

Cβ
E
( 1

L̂wk

∣∣∣wk)‖∇L(wk)‖2 +
Lwk
2C2

β

E
( 1

L̂2
wk

∣∣∣wk)E(∥∥∥ 1

B

∑
i∈Bk

Ĝi(wk)
∥∥∥2∣∣∣wk). (55)
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Note that, conditioning on wk,

E
∥∥∥ 1

B

∑
i∈Bk

Ĝi(wk)
∥∥∥2
≤ 1

B

(
Asqu1

‖∇L(wk)‖2 +Asqu2

)
+ ‖∇L(wk)‖2 (56)

where the inequality follows from Proposition 8. Then, combining (56), (55) and applying
Lemma 20, we have

E(L(wk+1)|wk) ≤L(wk)−
( 1

LwkCβ
− 1

LwkC
2
β

(Asqu1

B
+ 1
))
‖∇L(wk)‖2 +

Asqu2

LwkC
2
βb
. (57)

Recalling that Lwk = (1 + αL)2NL + Cbb + CLEi∼p(T )‖∇lTi(wk)‖ and conditioning on wk,
we have Lwk ≥ L and

Lwk ≤(1 + αL)2NL+ Cbb+ CL(‖∇lT (wk)‖+ σ)

(i)

≤(1 + αL)2NL+ Cbb+ CL

(C2

C1
+ σ

)
+
CL
C1
‖∇L(wk)‖, (58)

where (i) follows from Lemma 19. Combining (58) and (57) yields

E(L(wk+1)|wk)

≤L(wk)−

(
1
Cβ
− 1

C2
β

(
Asqu1

B + 1
))
‖∇L(wk)‖2

(1 + αL)2NL+ Cbb+ CL

(
C2

C1
+ σ

)
+ CL

C1
‖∇L(wk)‖

+
1

LC2
β

Asqu2

B

=L(wk)−
C1

CL

(
1
Cβ
− 1

C2
β

(
Asqu1

B + 1
))
‖∇L(wk)‖2

C1

CL
(1 + αL)2NL+ bC1Cb

CL
+ C2 + C1σ + ‖∇L(wk)‖

+
1

LC2
β

Asqu2

B

=L(wk)−
C1

CL

(
1
Cβ
− 1

C2
β

(
Asqu1

B + 1
))
‖∇L(wk)‖2

C1

CL
(1 + αL)2NL+ bC1Cb

CL
+ (1 + αL)N ((1 + αL)2N − 1)b+ ‖∇L(wk)‖

+
Asqu2

LC2
βB

, (59)

where the last equality follows from the definitions of C1, C2 in (74). Combining the defi-
nitions in (24) with (59) and taking the expectation over wk, we have

E
θ‖∇L(wk)‖2

ξ + ‖∇L(wk)‖
≤ E(L(wk)− L(wk+1)) +

φ

B
.

Telescoping the above bound over k from 0 to K − 1 and choosing ζ from {0, ...,K − 1}
uniformly at random, we have

E
θ‖∇L(wζ)‖2

ξ + ‖∇L(wζ)‖
≤ ∆

K
+
φ

B
. (60)

Using an approach similar to (43), we obtain from (60) that

(E‖∇L(wζ)‖)2

ξ + E‖∇L(wζ)‖
≤ ∆

θK
+

φ

θB
,

which further implies that

E‖∇L(wζ)‖ ≤
∆

2θK
+

φ

2θB
+

√
ξ
( ∆

θK
+

φ

θB

)
+
( ∆

2θK
+

φ

2θB

)2
, (61)

which finishes the proof.
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Proof of Corollary 10

Since α = 1
8NL , we have (1 + αL)4N < e0.5 < 2, and thus

Asqu1
< 32, Asqu2

< 8(σ + b)2 + 4(σ2 + b̃),

CL <
( 5ρ

32NL
+
ρ

L

5

16

)5

4
<

5ρ

8L
, CL >

ρ

L

(
(1 + αL)N−1 − 1

)
>
ρ

L
αL(N − 1) >

ρ

16L
,

Cb <
15

32

ρ

L

1

4
<

ρ

8L
, (62)

which, in conjunction with (24), yields

θ ≥ 1

80

4L

5ρ

(
1− 33

80

)
≥ L

200ρ
, φ ≤ 2(σ + b)2 + (σ2 + b̃)

1600L
, ξ ≤ 24L2

ρ
+

37b

16
. (63)

Combining (63) and (25) yields

E‖∇L(wζ)‖ ≤
∆

2θK
+

φ

2θB
+

√
ξ
( ∆

θK
+

φ

θB

)
+
( ∆

2θK
+

φ

2θB

)2

≤O
( 1

K
+
σ2

B
+

√
1

K
+
σ2

B

)
.

Then, based on the parameter selection that B ≥ CBσ
2ε−2 and after at most K = Ckε

−2

iterations, we have

E‖∇L(wζ)‖ ≤ O
(( 1

CB
+

1

Ck

) 1

ε2
+

1

ε

√( 1

CB
+

1

Ck

))
.

Then, for CB, CK large enough, we obtain from the above inequality that E‖∇L(wζ)‖ ≤ ε.
Thus, the total number of gradient computations is given by B(T+NS) = O(ε−2(T+NS)).
Furthermore, the total number of Hessian computations is given by BNS = O(NSε−2) at
each iteration. Then, the proof is complete.

6. Conclusion and Future Work

In this paper, we provide a new theoretical framework for analyzing the convergence of
multi-step MAML algorithm for both the resampling case and the finite-sum case. Our
analysis covers most applications including reinforcement learning and supervised learning of
interest. Our analysis reveals that a properly chosen inner stepsize is crucial for guaranteeing
MAML to converge with the complexity increasing only linearly with N (the number of
the inner-stage gradient updates). Moreover, for problems with small Hessians, the inner
stepsize can be set larger while maintaining the convergence. Our results also provide
justifications for the empirical findings in training MAML.

We expect that our analysis framework can be applied to understand the convergence of
MAML in other scenarios such as various RL problems and Hessian-free MAML algorithms.

Acknowledgments

The work was supported in part by the U.S. National Science Foundation under Grants
CCF-1761506, ECCS-1818904, and CCF-1900145.

28



Theoretical Convergence of Multi-Step Model-Agnostic Meta-Learning

Appendices

Appendix A. Examples for Two Types of Objective Functions

A.1 RL Example for Resampling Case

RL problems are often captured by objective functions in the expectation form. Consider
a RL meta learning problem, where each task corresponds to a Markov decision process
(MDP) with horizon H. Each RL task Ti corresponds to an initial state distribution ρi,
a policy πw parameterized by w that denotes a distribution over the action set given each
state, and a transition distribution kernel qi(xt+1|xt, at) at time steps t = 0, ...,H−1. Then,
the loss li(w) is defined as negative total reward, i.e.,

(RL example) : li(w) := −Eτ∼pi(·|w)[R(τ)],

where τ = (s0, a0, s1, a1, ..., sH−1, aH−1) is a trajectory following the distribution pi(·|w),
and the reward

R(τ) :=

H−1∑
t=0

γtR(st, at)

with R(·) given as a reward function. The estimated gradient here is

∇li(w; Ω) :=
1

|Ω|
∑
τ∈Ω

gi(w; τ),

where gi(w; τ) is an unbiased policy gradient estimator s.t. Eτ∼pi(·|w)gi(w; τ) = ∇li(w), e.g,
REINFORCE (Williams, 1992) or G(PO)MDP (Baxter and Bartlett, 2001). In addition,
the estimated Hessian is

∇2li(w; Ω) :=
1

|Ω|
∑
τ∈Ω

Hi(w; τ)

, where Hi(w; τ) is an unbiased policy Hessian estimator, e.g., DiCE (Foerster et al., 2018)
or LVC (Rothfuss et al., 2019).

A.2 Classification Example for Finite-Sum Case

The risk minimization problem in classification often has a finite-sum objective function.
For example, the mean-squared error (MSE) loss takes the form of

(Classification example) : lSi(w) :=
1

|Si|
∑

(xj ,yj)∈Si

‖yj − φ(w;xi)‖2 (similarly for lTi(w)),

where xj , yj are a feature-label pair and φ(w; ·) can be a deep neural network parameterized
by w.

Appendix B. Derivation of Simplified Form of Gradient ∇Li(w) in (3)

First note that Li(wk) = li(w̃
i
k,N ) and w̃ik,N is obtained by the following gradient descent

updates

w̃ik,j+1 = w̃ik,j − α∇li(w̃ik,j), j = 0, 1, ..., N − 1 with w̃ik,0 := wk. (64)
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Then, by the chain rule, we have

∇Li(wk) = ∇wk li(w̃
i
k,N ) =

N−1∏
j=0

∇w̃ik,j
(
w̃ik,j+1

)
∇li(w̃ik,N ),

which, in conjunction with (64), implies that

∇Li(wk) =
N−1∏
j=0

∇w̃ik,j
(
w̃ik,j − α∇li(w̃ik,j)

)
∇li(w̃ik,N ) =

N−1∏
j=0

(
I − α∇2li(w̃

i
k,j)
)
∇li(w̃ik,N ),

which finishes the proof.

Appendix C. Auxiliary Lemmas for MAML in Resampling Case

In this section, we derive some useful lemmas to prove the propositions given in Section 3.3
on the properties of the meta gradient and the main results Theorem 5 and Corollary 6.

The first lemma provides a bound on the difference between ‖w̃ij−ũij‖ for j = 0, ..., N, i ∈
I, where w̃ij , j = 0, ..., N, i ∈ I are given through the gradient descent updates in (1) and

ũij , j = 0, ..., N are defined in the same way.

Lemma 11 For any i ∈ I, j = 0, ..., N and w, u ∈ Rd, we have∥∥w̃ij − ũij∥∥ ≤ (1 + αL)j‖w − u‖.

Proof Based on the updates that w̃im = w̃im−1−α∇li(w̃im−1) and ũim = ũim−1−α∇li(ũim−1),
we obtain, for any i ∈ I,

‖w̃im − ũim‖ =‖w̃im−1 − α∇li(w̃im−1)− ũim−1 + α∇li(ũim−1)‖
(i)

≤‖w̃im−1 − ũim−1‖+ αL‖w̃im−1 − ũim−1‖
≤(1 + αL)‖w̃im−1 − ũim−1‖,

where (i) follows from the triangle inequality. Telescoping the above inequality over m from
1 to j, we obtain ∥∥w̃ij − ũij∥∥ ≤ (1 + αL)j‖w̃i0 − ũi0‖,

which, in conjunction with the fact that w̃i0 = w and ũi0 = u, finishes the proof.

The following lemma provides an upper bound on ‖∇li(w̃ij)‖ for all i ∈ I and j = 0, ..., N ,

where w̃ij is defined in the same way as in Lemma 11.

Lemma 12 For any i ∈ I, j = 0, ..., N and w ∈ Rd, we have

‖∇li(w̃ij)‖ ≤ (1 + αL)j‖∇li(w)‖.
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Proof For m ≥ 1, we have

‖∇li(w̃im)‖ =‖∇li(w̃im)−∇li(w̃im−1) +∇li(w̃im−1)‖
≤‖∇li(w̃im)−∇li(w̃im−1)‖+ ‖∇li(w̃im−1)‖
≤L‖w̃im − w̃im−1‖+ ‖∇li(w̃im−1)‖ ≤ (1 + αL)‖∇li(w̃im−1)‖,

where the last inequality follows from the update w̃im = w̃im−1 − α∇li(w̃im−1). Then, tele-
scoping the above inequality over m from 1 to j yields

‖∇li(w̃ij)‖ ≤ (1 + αL)j‖∇li(w̃i0)‖,

which, combined with the fact that w̃i0 = w, finishes the proof.

The following lemma gives an upper bound on the quantity
∥∥I −∏m

j=0(I − αVj)
∥∥ for all

matrices Vj ∈ Rd×d, j = 0, ...,m that satisfy ‖Vj‖ ≤ L.

Lemma 13 For all matrices Vj ∈ Rd×d, j = 0, ...,m that satisfy ‖Vj‖ ≤ L, we have∥∥∥I − m∏
j=0

(I − αVj)
∥∥∥ ≤ (1 + αL)m+1 − 1.

Proof First note that the product
∏m
j=0(I − αVj) can be expanded as

m∏
j=0

(I − αVj) = I −
m∑
j=0

αVj +
∑

0≤p<q≤m
α2VpVq + · · ·+ (−1)m+1αm+1

m∏
j=0

Vj .

Then, by using ‖Vj‖ ≤ L for j = 0, ...,m, we have∥∥∥I − m∏
j=0

(I − αVj)
∥∥∥ ≤∥∥∥ m∑

j=0

αVj

∥∥∥+
∥∥∥ ∑

0≤p<q≤m
α2VpVq

∥∥∥+ · · ·+
∥∥∥αm+1

m∏
j=0

Vj

∥∥∥
≤C1

m+1αL+ C2
m+1(αL)2 + · · ·+ Cm+1

m+1(αL)m+1

=(1 + αL)m+1 − 1,

where the notion Ckn denotes the number of k-element subsets of a set of size n. Then, the
proof is complete.

Recall the gradient ∇Li(w) =
∏N−1
j=0 (I −α∇2li(w̃

i
j))∇li(w̃iN ), where w̃ij , i ∈ I, j = 0, ..., N

are given by the gradient descent steps in (1) and w̃i0 = w for all tasks i ∈ I. Next, we
provide an upper bound on the difference ‖∇li(w)−∇Li(w)‖.

Lemma 14 For any i ∈ I and w ∈ Rd, we have

‖∇li(w)−∇Li(w)‖ ≤ Cl‖∇li(w)‖,

where Cl is a positive constant given by

Cl = (1 + αL)2N − 1 > 0. (65)
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Proof First note that w̃iN can be rewritten as w̃iN = w − α
∑N−1

j=0 ∇li
(
w̃ij
)
. Then, based

on the mean value theorem (MVT) for vector-valued functions (McLeod, 1965), we have,
there exist constants rt, t = 1, ..., d satisfying

∑d
t=1 rt = 1 and vectors w′t ∈ Rd, t = 1, ..., d

such that

∇li(w̃iN ) =∇li
(
w − α

N−1∑
j=0

∇li
(
w̃ij
))

= ∇li(w) +
( d∑
t=1

rt∇2li(w
′
t)
)(
− α

N−1∑
j=0

∇li
(
w̃ij
))

=
(
I − α

d∑
t=1

rt∇2li(w
′
t)
)
∇li(w)− α

d∑
t=1

rt∇2li(w
′
t)
N−1∑
j=1

∇li
(
w̃ij
)
. (66)

For simplicity, we define K(N) :=
∏N−1
j=0 (I − α∇2li(w̃

i
j)). Then, using (66), we write

‖∇li(w)−∇Li(w)‖ as

‖∇li(w)−∇Li(w)‖ = ‖∇li(w)−K(N)∇li(w̃iN )‖

=
∥∥∥∇li(w)−K(N)

(
I − α

d∑
t=1

rt∇2li(w
′
t)
)
∇li(w) + αK(N)

d∑
t=1

rt∇2li(w
′
t)

N−1∑
j=1

∇li
(
w̃ij
)∥∥∥

≤
∥∥∥(I −K(N)

(
I − α

d∑
t=1

rt∇2li(w
′
t)
))
∇li(w)

∥∥∥+
∥∥∥αK(N)

d∑
t=1

rt∇2li(w
′
t)

N−1∑
j=1

∇li
(
w̃ij
)∥∥∥

(i)

≤
∥∥∥(I −K(N)

(
I − α

d∑
t=1

rt∇2li(w
′
t)
))
∇li(w)

∥∥∥+ αL(1 + αL)N
N−1∑
j=1

∥∥∥∇li(w̃ij)∥∥∥
(ii)

≤
∥∥∥I −K(N)

(
I − α

d∑
t=1

rt∇2li(w
′
t)
)∥∥∥‖∇li(w)‖+ αL(1 + αL)N

N−1∑
j=1

(1 + αL)j‖∇li(w)‖

≤
∥∥∥I −K(N)

(
I − α

d∑
t=1

rt∇2li(w
′
t)
)∥∥∥‖∇li(w)‖+ (1 + αL)N+1((1 + αL)N−1 − 1)‖∇li(w)‖

(iii)

≤ ((1 + αL)N+1 − 1)‖∇li(w)‖+ (1 + αL)N+1((1 + αL)N−1 − 1)‖∇li(w)‖
=((1 + αL)2N − 1)‖∇li(w)‖,

where (i) follows from the fact that ‖∇2li(u)‖ ≤ L for any u ∈ Rd and
∑d

t=1 rt = 1, and
the inequality that ‖

∑n
j=1 aj‖ ≤

∑n
j=1 ‖aj‖, (ii) follows from Lemma 12, and (iii) follows

from Lemma 13.

Recall that the expected value of the gradient of the loss ∇l(w) := Ei∼p(T )∇li(w) and
the objective function ∇L(w) := ∇Li(w). Based on the above lemmas, we next provide an
upper bound on ‖∇l(w)‖ using ‖∇L(w)‖.

Lemma 15 For any w ∈ Rd, we have

‖∇l(w)‖ ≤ 1

1− Cl
‖∇L(w)‖+

Cl
1− Cl

σ,
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where the constant Cl is given by

Cl = (1 + αL)2N − 1.

Proof Based on the definition of ∇l(w), we have

‖∇l(w)‖ =‖Ei∼p(T )(∇li(w)−∇Li(w) +∇Li(w))‖
≤‖Ei∼p(T )∇Li(w)‖+ ‖Ei∼p(T )(∇li(w)−∇Li(w))‖
≤‖∇L(w)‖+ Ei∼p(T )‖∇li(w)−∇Li(w)‖
(i)

≤‖∇L(w)‖+ ClEi∼p(T )‖∇li(w)‖
(ii)

≤‖∇L(w)‖+ Cl(‖∇l(w)‖+ σ),

where (i) follows from Lemma 14, and (ii) follows from Assumption 2. Then, rearranging
the above inequality completes the proof.

Recall from (14) that we choose the meta stepsize βk = 1

CβL̂wk
, where Cβ is a positive

constant and L̂wk = (1 + αL)2NL + CL
1
|B′k|

∑
i∈B′k
‖∇li(wk;Di

Lk
)‖. Using an approach

similar to Lemma 4.11 in Fallah et al. (2020a), we establish the following lemma to provide
the first- and second-moment bounds for βk.

Lemma 16 Suppose that Assumptions 1, 2 and 3 hold. Set the meta stepsize βk = 1

CβL̂wk

with L̂wk given by (14), where |B′k| >
4C2
Lσ

2

3(1+αL)4NL2 and |Di
Lk
| > 64σ2

gC
2
L

(1+αL)4NL2 for all i ∈ B′k.

Then, conditioning on wk, we have

Eβk ≥
4

Cβ

1

5Lwk
, Eβ2

k ≤
4

C2
β

1

L2
wk

,

where Lwk = (1 + αL)2NL+ CLEi∼p(T )‖∇li(wk)‖ with CL given in (13).

Proof Let L̃wk = 4L+ 4CL
(1+αL)2N

1
|B′k|

∑
i∈B′k
‖∇li(wk;Di

Lk
)‖. Note that |B′k| >

4C2
Lσ

2

3(1+αL)4NL2

and |Di
Lk
| > 64σ2

gC
2
L

(1+αL)4NL2 , i ∈ B′k. Then, using an approach similar to (61) in Fallah et al.

(2020a) and conditioning on wk, we have

E
( 1

L̃2
wk

)
≤
σ2
β/(4L)2 + µ2

β/(µβ)2

σ2
β + µ2

β

, (67)

where σ2
β and µβ are the variance and mean of variable 4CL

(1+αL)2N
1
|B′k|

∑
i∈B′k
‖∇li(wk;Di

Lk
)‖.

Using an approach similar to (62) in Fallah et al. (2020a), conditioning on wk and using

|Di
Lk
| > 64σ2

gC
2
L

(1+αL)4NL2 , we have

CL
(1 + αL)2N

Ei‖∇li(wk)‖ − L ≤ µβ ≤
CL

(1 + αL)2N
Ei‖∇li(wk)‖+ L, (68)
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which implies that µβ + 5L ≥ 4
(1+αL)2N Lwk , and thus using (67) yields

16

(1 + αL)4N
L2
wk

E
( 1

L̃2
wk

)
≤
µ2
β(25/16 + σ2

β/(8L
2)) + 25σ2

β/8

σ2
β + µ2

β

. (69)

Furthermore, conditioning on wk, σβ is bounded by

σ2
β =

16C2
L

(1 + αL)4N |B′k|
Var(‖∇li(wk;Di

Lk
)‖)

≤
16C2

L
(1 + αL)4N |B′k|

(
σ2 +

σ2
g

|Di
Lk
|

)
(i)

≤
16C2

Lσ
2

(1 + αL)4N |B′k|
+

L2

4|B′k|
(ii)

≤ 12L2 +
1

4
L2 <

25

2
L2, (70)

where (i) follows from |Di
Lk
| > 64σ2

gC
2
L

(1+αL)4NL2 , i ∈ B′k and (ii) follows from |B′k| >
4C2
Lσ

2

3(1+αL)4NL2

and |B′k| ≥ 1. Then, plugging (70) in (69) yields 16
(1+αL)4N L

2
wk

E
(

1

L̃2
wk

)
≤ 25

8 . Then, noting

that βk = 4

Cβ(1+αL)2N L̃wk
, using the above inequality and conditioning on wk, we have

Eβ2
k =

16

C2
β(1 + αL)4N

E

(
1

L̃2
wk

)
≤ 25

8C2
β

1

L2
wk

<
4

C2
β

1

L2
wk

. (71)

In addition, by Jensen’s inequality and conditioning on wk, we have

Eβk =
4

Cβ(1 + αL)2N
E
( 1

L̃wk

)
≥ 4

Cβ(1 + αL)2N

1

EL̃wk
=

4

Cβ(1 + αL)2N

1

4L+ µβ

(i)

≥ 4

Cβ

1

4L(1 + αL)2N + Lwk

(ii)

≥ 4

Cβ

1

5Lwk
, (72)

where (i) follows from (68) and (ii) follows from the fact Lwk > (1 + αL)2NL.

Appendix D. Auxiliary Lemmas for MAML in Finite-Sum Case

In this section, we provide some useful lemmas to prove the propositions in Section 4.2 on
properties of the meta gradient and the main results Theorem 9 and Corollary 10.

The following lemma provides an upper bound on ‖lSi(w̃ij)‖ for all i ∈ I and j = 0, ..., N ,

where w̃ij is defined by (9) with w̃i0 = w.

Lemma 17 For any i ∈ I, j = 0, ..., N and w ∈ Rd, we have

‖∇lSi(w̃ij)‖ ≤ (1 + αL)j‖∇lSi(w)‖.

Proof The proof is similar to that of Lemma 12, and thus omitted.
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We next provide a bound on ‖∇lTi(w)−∇Li(w)‖, where

∇Li(w) =

N−1∏
j=0

(I − α∇2lSi(w
i
j))∇lTi(wiN ).

Lemma 18 For any i ∈ I and w ∈ Rd, we have

‖∇lTi(w)−∇Li(w)‖ ≤
(
(1 + αL)N − 1

)
‖∇lTi(w)‖+ (1 + αL)N

(
(1 + αL)N − 1

)
‖∇lSi(w)‖.

Proof Using the mean value theorem (MVT), we have, there exist constants rt, t = 1, ..., d
satisfying

∑d
t=1 rt = 1 and vectors w′t ∈ Rd, t = 1, ..., d such that

∇lTi(w̃iN ) =∇lTi
(
w − α

N−1∑
j=0

∇lSi(w̃ij)
)

= ∇lTi(w) +
d∑
t=1

rt∇2lTi(w
′
t)
(
− α

N−1∑
j=0

∇lSi(w̃ij)
)

=∇lTi(w)− α
d∑
t=1

rt∇2lTi(w
′
t)
N−1∑
j=0

∇lSi(w̃ij).

Based on the above equality, we have

‖∇lTi(w)−∇Li(w)‖

=
∥∥∥∇lTi(w)−

N−1∏
j=0

(I − α∇2lSi(w̃
i
j))∇lTi(w̃iN )

∥∥∥
=
∥∥∥∇lTi(w)−

N−1∏
j=0

(I − α∇2lSi(w̃
i
j))∇lTi(w) +

N−1∏
j=0

(I − α∇2lSi(w̃
i
j))α

d∑
t=1

rt∇2lTi(w
′
t)
N−1∑
j=0

∇lSi(w̃ij)
∥∥∥

=
∥∥∥I − N−1∏

j=0

(I − α∇2lSi(w̃
i
j))
∥∥∥‖∇lTi(w)‖+

∥∥∥N−1∏
j=0

(I − α∇2lSi(w̃
i
j))α

d∑
t=1

rt∇2lTi(w
′
t)
N−1∑
j=0

∇lSi(w̃ij)
∥∥∥

(i)

≤
(
(1 + αL)N − 1

)
‖∇lTi(w)‖+ αL(1 + αL)N

N−1∑
j=0

‖∇lSi(w̃ij)‖

(ii)

≤
(
(1 + αL)N − 1

)
‖∇lTi(w)‖+ αL(1 + αL)N

N−1∑
j=0

(1 + αL)j‖∇lSi(w)‖

=
(
(1 + αL)N − 1

)
‖∇lTi(w)‖+ (1 + αL)N

(
(1 + αL)N − 1

)
‖∇lSi(w)‖,

where (i) follows from Lemma 13 and ‖
∑d

t=1 rt∇2lTi(w
′
t)‖ ≤

∑d
t=1 rt‖∇2lTi(w

′
t)‖ ≤ L, and

(ii) follows from Lemma 17. Then, the proof is complete.

Recall that ∇lT (w) = Ei∼p(T )∇lTi(w), ∇L(w) = Ei∼p(T )∇Li(w) and b = Ei∼p(T )[bi]. The
following lemma provides an upper bound on ‖∇lT (w)‖.

Lemma 19 For any i ∈ I and w ∈ Rd, we have

‖∇lT (w)‖ ≤ 1

C1
‖∇L(w)‖+

C2

C1
, (73)
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where constants C1, C2 > 0 are give by

C1 =2− (1 + αL)2N ,

C2 =
(
(1 + αL)2N − 1

)
σ + (1 + αL)N

(
(1 + αL)N − 1

)
b. (74)

Proof First note that

‖∇lT (w)‖ =‖Ei(∇lTi(w)−∇Li(w)) +∇L(w)‖
≤‖∇L(w)‖+ Ei‖∇lTi(w)−∇Li(w)‖
(i)

≤‖∇L(w)‖+ Ei
((

(1 + αL)N − 1
)
‖∇lTi(w)‖+ (1 + αL)N

(
(1 + αL)N − 1

)
‖∇lSi(w)‖

)
(ii)

≤‖∇L(w)‖+
(
(1 + αL)N − 1

)(
‖∇lT (w)‖+ σ

)
+ (1 + αL)N

(
(1 + αL)N − 1

)
(Ei‖∇lTi(w)‖+ Eibi)

≤‖∇L(w)‖+
(
(1 + αL)N − 1 + (1 + αL)N ((1 + αL)N − 1)

)
‖∇lT (w)‖

+ ((1 + αL)N − 1)σ + (1 + αL)N ((1 + αL)N − 1)(σ + b)

≤‖∇L(w)‖+
(
(1 + αL)2N − 1

)
‖∇lT (w)‖

+ ((1 + αL)2N − 1)σ + (1 + αL)N ((1 + αL)N − 1)b

where (i) follows from Lemma 18, (ii) follows from Assumption 5. Based on the definitions
of C1 and C2 in (74), the proof is complete.

The following lemma provides the first- and second-moment bounds on 1/L̂wk , where

L̂wk = (1 + αL)2NL+ Cbb+ CL

∑
i∈B′k
‖∇lTi(wk)‖
|B′k|

.

Lemma 20 If the batch size |B′k| ≥
2C2
Lσ

2

(Cbb+(1+αL)2NL)2 , then conditioning on wk, we have

E
( 1

L̂wk

)
≥ 1

Lwk
, E

( 1

L̂2
wk

)
≤ 2

L2
wk

where Lwk is given by

Lwk = (1 + αL)2NL+ Cbb+ CLEi∼p(T )‖∇lTi(wk)‖.

Proof Conditioning on wk and using an approach similar to (67), we have

E
( 1

L̂2
wk

)
≤
σ2
β/
(
Cbb+ (1 + αL)2NL

)2
+ µ2

β/(µβ + Cbb+ (1 + αL)2NL)2

σ2
β + µ2

β

, (75)

where µβ and σ2
β are the mean and variance of variable CL

|B′k|
∑

i∈B′k
‖∇lTi(wk)‖. Noting that

µβ = CLEi∼p(T )‖∇lTi(wk)‖, we have Lwk = (1 + αL)2NL+ Cbb+ µβ , and thus

L2
wk

E
( 1

L̂2
wk

)
≤
σ2
β

((1+αL)2NL+Cbb+µβ)2(
Cbb+(1+αL)2NL

)2 + µ2
β

σ2
β + µ2

β

≤
2σ2

β + µ2
β +

2σ2
βµ

2
β(

Cbb+(1+αL)2NL
)2

σ2
β + µ2

β

, (76)
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where the last inequality follows from (a+ b)2 ≤ 2a2 + 2b2. Note that, conditioning on wk,

σ2
β =

C2
L
|B′k|

Var‖∇lTi(wk)‖ ≤
C2
L
|B′k|

σ2,

which, in conjunction with |B′k| ≥
2C2
Lσ

2

(Cbb+(1+αL)2NL)2 , yields

2σ2
β(

Cbb+ (1 + αL)2NL
)2 ≤ 1. (77)

Combining (77) and (76) yields

E
( 1

L̂2
wk

)
≤ 2

L2
wk

.

In addition, conditioning on wk, we have

E
( 1

L̂wk

) (i)

≥ 1

EL̂wk
=

1

Lwk
, (78)

where (i) follows from Jensen’s inequality. Then, the proof is complete.
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