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Abstract

The deterministic policy gradient (DPG) method
proposed in Silver et al. [2014] has been demon-
strated to exhibit superior performance particularly
for applications with multi-dimensional and con-
tinuous action spaces. However, it remains unclear
whether DPG converges, and if so, how fast it con-
verges and whether it converges as efficiently as
other PG methods. In this paper, we provide a the-
oretical analysis of DPG to answer those questions.
We study the single timescale DPG (often the case
in practice) in both on-policy and off-policy set-
tings, and show that both algorithms attain an ϵ-
accurate stationary policy up to a system error with
a sample complexity of O(ϵ−2). Moreover, we es-
tablish the convergence rate for DPG under Gaus-
sian noise exploration, which is widely adopted in
practice to improve the performance of DPG. To
our best knowledge, this is the first non-asymptotic
convergence characterization for DPG methods.

1 INTRODUCTION

Reinforcement learning (RL) has achieved tremendous suc-
cess so far in many applications such as playing video
games [Mnih et al., 2013], bipedal walking [Castillo et al.,
2019] and online advertising [Pednault et al., 2002], to name
a few. The central aim of RL is to learn a policy that maxi-
mizes an accumulative reward for a task via the interaction
with the environment. To this end, one popular method is to
directly parameterize the policy and then optimize over the
parameter space via (stochastic) gradient descent, which is
referred to as the policy gradient (PG) algorithm [Williams,
1992]. More variants of policy gradient have been devel-
oped to further improve the performance, including natural

*Equal contribution
†Corresponding author

policy gradient (NPG) [Kakade, 2002], trust region policy
optimization (TRPO) [Schulman et al., 2015], proximal pol-
icy optimization (PPO) [Schulman et al., 2017], actor-critic
(AC) Konda and Borkar [1999], Konda and Tsitsiklis [2000],
Asynchronous Advantage Actor-Critic (A3C) [Mnih et al.,
2016], Soft Actor-Critic (SAC) [Haarnoja et al., 2018], etc.

All the aforementioned PG algorithms adopt stochastic poli-
cies where the policy is modeled as a probability distribution
over the action space. Rather, many RL applications have
multi-dimensional continuous action spaces, for which de-
terministic policy gradient (DPG) algorithms have been pro-
posed and demonstrated to significantly outperform stochas-
tic PG algorithms in Silver et al. [2014]. Motivated by this,
Lillicrap et al. [2016] combined DPG with DQN and pro-
posed Deep Deterministic Policy Gradient (DDPG), which
extends DQN in discrete action space to a continuous setting.
Later, DDPG has also gained great success in distributional
[Barth-Maron et al., 2018] and multi-agent [Lowe et al.,
2017] scenarios. Although DPG and its variants exhibit su-
perior performance in practice, the theoretical understanding
of its convergence is rather limited. In fact, the only attempt
was made in Kumar et al. [2020], which provided the con-
vergence results for a modified zeroth-order DPG algorithm.
However, what is used commonly in practice is the DPG
algorithm originally proposed in Silver et al. [2014], for
which the convergence guarantee remains open.

In fact, the convergence theory of DPG does not follow
from that for stochastic PG algorithms due to a few unique
features that DPG has. (a) The policy gradient in DPG takes
a very different form from that in PG, and admits different
compatibility for function approximation and consequently
different actors to estimate. There is thus no guarantee that
such a designed update rule must have guaranteed conver-
gence as PG. (b) Through determinism in policy, practical
implementation of DPG introduces stochastic noisy sam-
pling to improve exploration. There is no previous theory
on such a mixed deterministic policy update with noisy sam-
pling for exploration. (c) DPG takes alternative simultane-
ous updates between critic and actor with constant learning

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<xiong.309@osu.edu>?Subject=Your UAI 2022 paper


rates for both. Previous analysis for stochastic PG typically
requires sufficiently fast update for critic so that its track-
ing error can be (asymptotically) decoupled from actor’s
convergence error. Such analysis is not applicable to DPG.

Thus, the goal of this paper is to develop new tools to address
the aforementioned challenges and provide the first finite-
sample convergence guarantee for DPG algorithms in Silver
et al. [2014].

1.1 MAIN CONTRIBUTION

The main contribution of this work lies in establishing the
first finite-sample analysis for both on-policy and off-policy
DPG algorithms proposed in Silver et al. [2014].

For the on-policy setting, we study DPG-TD, which uses the
compatible approximation rule given by Silver et al. [2014]
to update actor, and adopts temporal difference (TD) learn-
ing with linear function approximation to update critic. We
show that DPG-TD finds a stationary point (up to a system
error) with a sample complexity of O(ϵ−2). In addition, we
also show that noised DPG-TD (NoiDPG-TD) which uses a
mixture of noisy exploration and the deterministic policies
can also achieve a sample complexity of O(ϵ−2). For the
off-policy setting, we study DPG-TDC, which uses TD with
gradient correction (TDC) to update critic under off-policy
data and show that DPG-TDC also achieves the convergence
with a sample complexity of O(ϵ−2).

Our results bring the following insights to the understanding
of DPG. (a) Our sample complexity of DPG matches the
best known actor-critic (AC) type PG in Xu et al. [2020b].
This implies that although the policy gradient of DPG is
more challenging to estimate, the compatible function ap-
proximation for DPG in Silver et al. [2014] is as efficient as
that for PG, which yields the same complexity for DPG. (b)
DPG achieves the same sample complexity for more chal-
lenging continuous and possibly unbounded action space
whereas the known theorems for PG typically require the
bounded action space except for Gaussian policy. (c) The
noisy exploration does not cause higher sample complexity.
(d) The simultaneous updates for actor and critic without suf-
ficient estimation accuracy for critic still yield convergence
without causing more sample complexity.

Technically, our analysis develops the following novel tech-
niques to handle the unique challenges arising due to deter-
ministic policies. (a) We develop a new analysis to bound
the estimation error of the Fisher information of determin-
istic policy arising via the compatibility property, and then
further capture how such a metric affects the convergence
via its minimum eigenvalue. (b) We develop a new tool to
analyze the coupled actor and critic’s stochastic approxima-
tion processes, due to their simultaneous updates both with
constant stepsizes (which are commonly used in practice).
Previous analysis of (stochastic) PG-type algorithms includ-

ing AC algorithms mainly decouples the critic’s error from
actor’s error either by sufficient updates of critic before each
actor’s update [Wang et al., 2020, Kumar et al., 2019, Qiu
et al., 2019, Xu et al., 2020b], or by updating critic much
faster than actor via two timescale learning rates [Wu et al.,
2020, Xu et al., 2020c]. Our analysis allows the coupling
between the two and develops the idea to cancel the critic’s
coupling error by the actor’s overall positive progress to the
stationary policy.

1.2 RELATED WORK

Convergence of DPG and its variants: Since proposed and
practically justified in Silver et al. [2014], DPG has inspired
many variants and gained great success. However, there is
almost no theoretical study of DPG with only one exception
in Kumar et al. [2020], which provided the convergence
guarantee for a zeroth-order DPG rather than the original
form of DPG used widely in practice. Our work aims to
provide the finite-sample convergence guarantee for DPG
in its original practical form [Silver et al., 2014].

Convergence of stochastic PG: The vanilla PG is a fun-
damental policy-based RL algorithm. Its asymptotic con-
vergence has been established in Williams [1992], Baxter
and Bartlett [2001], Sutton et al. [2000], Kakade [2002],
Pirotta et al. [2015], Tadić et al. [2017] via modeling PG
as stochastic approximation (SA). PG has been shown to
find the optimal policy under convex policy function ap-
proximation [Bhandari and Russo, 2019] or in some specific
applications such as LQR [Fazel et al., 2018, Malik et al.,
2019, Tu and Recht, 2019]. Convergence of (N)PG under
a more general function approximation has been also pro-
vided in Shen et al. [2019], Papini et al. [2017, 2018, 2019],
Xu et al. [2019, 2020a], Zhang et al. [2019], Agarwal et al.
[2019], Karimi et al. [2019], Wang et al. [2020], Cen et al.
[2020].

Convergence of stochastic actor-critic: The AC algorithm
was proposed in Konda and Borkar [1999], and since then
has aroused wide interest in understanding its convergence.
Konda and Tsitsiklis [2000], Konda [2002], Peters and
Schaal [2008], Bhatnagar et al. [2008, 2009], Bhatnagar
[2010], Castro and Meir [2010], Maei [2018] established
the asymptotic convergence for (natural) AC. The non-
asymptotic convergence for (N)AC has been also explored
recently. Under a double-loop setting, where critic can run
sufficiently many iterations before updating actor, the con-
vergence rate for (N)AC has been characterized in Yang et al.
[2019], Wang et al. [2020], Kumar et al. [2019], Qiu et al.
[2019], Xu et al. [2020b]. Under a two-timescale setting,
where critic and actor update simultaneously but undergo
different diminishing learning rates, the convergence rate
has been provided in Wu et al. [2020], Xu et al. [2020c],
Hong et al. [2020], Zhang et al. [2020], Shen et al. [2020].
Under the single timescale setting, where critic and actor



are simultaneously updated with constant learning rates, the
convergence rate was given in Fu et al. [2021]. Differently
from the above stochastic PG and stochastic AC, our work
studies the deterministic PG algorithms. The update struc-
ture of our work is the same as that in Fu et al. [2021], but
we adopt the more practical TD updates for critic rather
than LSTD in Fu et al. [2021], which causes substantial
difference in our analysis besides the deterministic policy.

2 PRELIMINARY

2.1 PROBLEM SETUP

We consider the standard RL settings where an agent inter-
acts with a stochastic environment. Such a system is usually
modeled as a discrete-time discounted Markov Decision Pro-
cess (MDP) which is represented by a tuple (S,A, P, r, γ).
Here, S denotes the state space, A denotes the action space,
P : S × A × S 7→ [0, 1] denotes the transition kernel for
the state transitions, e.g., P (s′|s, a) represents the proba-
bility that the system takes the next state s′ ∈ S given the
current state s and action a; r : S × A 7→ [0, Rmax] is
the reward function mapping the station-action pairs to a
bounded subset of R, and γ ∈ (0, 1) is the discount factor.

Here, we consider a deterministic policy µθ parameterized
by θ ∈ Rd, namely, given the current state s, the policy
follows a deterministic function mapping to generate an
action a = µθ(s). We also assume that the Markov chains
generated by the policies are ergodic throughout this paper.

2.2 ON-POLICY DETERMINISTIC POLICY
GRADIENT

We first consider the on-policy case where the interaction
with the environment (i.e., the sampling) can follow the
instantaneous target policy µθ.

The goal is to maximize the expected cumulative reward in
the infinite-horizon case given by

J(µθ) =

∫
S
νµθ (s)r(s, µθ(s))ds = Es∼νµθ [r(s, µθ(s))] ,

(1)

where νµ(s
′) =

∫
S
∑∞
t=0 γ

tp0(s)p(s → s′, t, µ)ds is
the (improper) discounted state visitation distribution and
p(s → s′, t, µ) denotes the density at state s′ after t steps
from state s under policy µ. In the remaining of this paper,
we denote J(θ) := J(µθ) and νθ := νµθ for brevity.

One popular method to optimize the loss function defined
in (1) is to use gradient-based algorithms such as stochastic
gradient descent (SGD). To this end, the gradient of the loss
function has been given by the so-called deterministic policy

gradient theorem [Silver et al., 2014] as follows:

∇J(θ) =

∫
S
νθ(s)∇θµθ(s)∇aQ

µθ (s, a)|a=µθ(s)ds

= Eνθ
[
∇θµθ(s)∇aQ

µθ (s, a)|a=µθ(s)
]
. (2)

The policy gradient theorem for deterministic policies sug-
gests a way to estimate the gradient via sampling, and then
model-free policy gradient algorithms can be developed by
following SGD updates for optimizing over policies. The
difficulty of estimating the policy gradient ∇J(θ) in (2) lies
in approximating ∇aQ

µθ (s, a). To address this difficulty,
the compatible function approximation was established in
Silver et al. [2014] which guarantees that ∇aQ

µθ (s, a) can
be replaced by ∇aQ

w(s, a) in the policy gradient. We state
such a property below, which is critical for designing the
deterministic policy gradient algorithms.

Proposition 1. (Compatible function approximation [Sil-
ver et al., 2014]) A function estimator Qw(s, a) com-
patible with a deterministic policy µθ, i.e., ∇J(θ) =
Eνθ

[
∇θµθ(s)∇aQ

w(s, a)|a=µθ(s)
]
, if it satisfies the fol-

lowing two conditions:

1. ∇aQ
w(s, a)|a=µθ(s) = ∇θµθ(s)

Tw;

2. w = w∗
ξθ

minimizes the mean square er-
ror Eνθ

[
ξ(s; θ, w)T ξ(s; θ, w)

]
, where ξ(s; θ, w) =

∇aQ
w(s, a)|a=µθ(s)−∇aQ

µθ (s, a)|a=µθ(s).

Following the compatibility property, the deterministic pol-
icy gradient can be rewritten as

∇J(θ) = Eνθ
[
∇θµθ(s)∇θµθ(s)

Tw∗
ξθ

]
, (3)

where w∗
ξθ

can be approximated easily by solving a regres-
sion problem.

2.3 OFF-POLICY DETERMINISTIC POLICY
GRADIENT

In practice, it is often convenient to estimate the policy
gradient via sampling under a behavior policy β, which is
different from the target policy µθ. Silver et al. [2014] has
also provided the deterministic policy gradient theorem for
such an off-policy case, which is given by

∇Jβ(θ) =

∫
S
νβ(s)∇θµθ(s)∇aQ

µθ (s, a)|a=µθ(s)ds

= Eνβ
[
∇θµθ(s)∇aQ

µθ (s, a)|a=µθ(s)
]
, (4)

where νβ is the state visitation measure of the policy β.
Correspondingly, the compatible form is given by

∇Jβ(θ) = Eνβ
[
∇θµθ(s)∇θµθ(s)

Tw∗
β,ξθ

]
, (5)

where w∗
β,ξθ

= argminw Eνβ
[
ξ(s; θ, w)T ξ(s; θ, w)

]
and

ξ(s; θ, w) holds the same form as in Proposition 1.



3 ON-POLICY DPG ALGORITHM

In this section, we first describe the on-policy DPG algo-
rithm proposed in Silver et al. [2014] and then provide the
finite-sample convergence result for this algorithm.

3.1 ALGORITHM

In Silver et al. [2014], a compatible DPG algorithm using
TD critic update was proposed, which we call as DPG-TD
and describe in Algorithm 1. This algorithm introduces a
critic parameter w to estimate the gradient of Q-function
based on the compatibility property. At each iteration, w
is updated by TD with a linear function approximator
Qw(s, a) = ϕ(s, a)Tw (line 9 of Algorithm 1). The al-
gorithm uses θ as an actor parameter to update the policy
(line 13 in Algorithm 1) based on the compatibility property.

Algorithm 1 DPG-TD

1: Input: αw, αθ, w0, θ0, batch size M .
2: for t = 0, 1, . . . , T do
3: for j = 0, 1, . . . ,M − 1 do
4: Sample st,j ∼ dθt . Generate at,j = µθt(st,j).
5: Sample st+1,j ∼ P (·|st,j , at,j) and rt,j . Generate

at+1,j = µθt(st+1,j).
6: Denote xt,j = (st,j , at,j).
7: δt,j = rt,j + γϕ(xt+1,j)

Twt − ϕ(xt,j)
Twt.

8: end for
9: wt+1 = wt +

αw
M

∑M−1
j=0 δt,jϕ(xt,j).

10: for j = 0, 1, . . . ,M − 1 do
11: Sample s′t,j ∼ νθt .
12: end for
13: θt+1 = θt+

αθ
M

∑M−1
j=0 ∇θµθt(s

′
t,j)∇θµθt(s

′
t,j)

Twt.
14: end for

3.2 TECHNICAL ASSUMPTIONS

Before providing the result, we first introduce technical
assumptions, all of which are standard or necessary mild
regularity requirements.

Assumption 1. For any θ1, θ2, θ ∈ Rd, there ex-
ist positive constants Lµ, Lψ and λΨ, such that (1)
∥µθ1(s)− µθ2(s)∥ ≤ Lµ ∥θ1 − θ2∥ , ∀s ∈ S; (2)
∥∇θµθ1(s)−∇θµθ2(s)∥ ≤ Lψ ∥θ1 − θ2∥ , ∀s ∈ S; (3)
the matrix Ψθ := Eνθ

[
∇θµθ(s)∇θµθ(s)

T
]

(which we
call as Fisher information of deterministic policy) is
non-singular with the minimal eigenvalue uniformly lower-
bounded as σmin(Ψθ) ≥ λΨ.

The first two statements can be easily satisfied for properly
parameterized policy classes such as the linear approximator
used in Silver et al. [2014] and the smooth neural network
class. The last one ensures that w∗

ξθ
defined in Proposition 1

is solvable and unique. A similar assumption has been also
used in Liu et al. [2020].

Assumption 2. For any a1, a2 ∈ A, there exist positive con-
stants LP , Lr, such that (1) the transition kernel satisfies
|P (s′|s, a1) − P (s′|s, a2)| ≤ LP ∥a1 − a2∥ , ∀s, s′ ∈ S;
(2) the reward function satisfies |r(s, a1) − r(s, a2)| ≤
Lr ∥a1 − a2∥ , ∀s, s′ ∈ S .

In Assumption 2, the first statement is standard in the theo-
retical studies of RL [Bertsekas, 1975, Chow and Tsitsiklis,
1991, Dufour and Prieto-Rumeau, 2013, 2015], where the
transition kernel is assumed to be Lipschitz continuous with
respect to (w.r.t.) both state and action. Shah and Xie [2018]
relaxes the Lipschitz continuity to be only w.r.t. state when
considering a continuous state space. In this paper, we need
the Lipschitz continuity to hold only w.r.t. action, because
DPG algorithms are commonly used for continuous action
space. The second statement can be easily satisfied for a
properly defined reward function.

Assumption 3. For any a1, a2 ∈ A, there exists a positive
constant LQ, such that ∥∇aQ

µθ (s, a1)−∇aQ
µθ (s, a2)∥ ≤

LQ ∥a1 − a2∥ , ∀θ ∈ Rd, s ∈ S .

Assumption 3 indicates that the Q-function is smooth over
action, which is a standard assumption in deterministic pol-
icy related studies [Kumar et al., 2020], and is also known
as a principle to mitigate overfitting in the value estimation
for actor-critic algorithms [Fujimoto et al., 2018].

Assumption 4. The feature function ϕ : S × A →
Rd is uniformly bounded, i.e., ∥ϕ(·, ·)∥ ≤ Cϕ for
some positive constant Cϕ. In addition, we define A =
Edθ

[
ϕ(x)(γϕ(x′)− ϕ(x))T

]
and D = Edθ

[
ϕ(x)ϕ(x)T

]
,

and assume that A and D are non-singular. We further as-
sume that the absolute value of the eigenvalues of A are
uniformly lower bounded, i.e., |σ(A)| ≥ λA for some posi-
tive constant λA.

Assumption 4 is standard in the studies of TD learning with
linear function approximation [Zou et al., 2019, Wu et al.,
2020, Xu et al., 2020b,c]. This assumption guarantees the
solvability of TD learning with linear function approxima-
tion. To be more specific, it ensures that Edθ [δϕ] = 0 has a
unique root, namely w∗

θ , which is also the global optimum
of TD learning for a fixed policy µθ.

Remark 1. We will abuse the notations a bit and assume
that Assumptions 1 and 4 also hold for the off-policy case,
with the expectations taken over the behavior stationary and
(improper) visitation distributions dβ and νβ .

3.3 CONVERGENCE RESULT

In this subsection, we provide the finite-sample convergence
analysis for DPG-TD in Algorithm 1.



Note that the deterministic policy gradient ∇J(θ) in (2)
has a different and more challenging form to analyze com-
pared with stochastic PG, which requires the development
of several new tools. First, we characterize the Lipschitz
property for the deterministic policy gradient, which serves
as a crucial step in the finite-sample analysis of DPG-TD.
The previous study of DPG in Kumar et al. [2020] takes
such a property as an assumption. Here, we formally estab-
lish such a Lipschitz property with the proof provided in
Section 1 of the appendix, and characterize the dependence
of the deterministic policy gradient on the basic parameters
of the MDP.

Lemma 1. Suppose Assumptions 1-3 hold. Then the deter-
ministic policy gradient ∇J(θ) defined in (2) is Lipschitz
continuous with the parameter LJ , i.e., ∀θ1, θ2 ∈ Rd,

∥∇J(θ1)−∇J(θ2)∥ ≤ LJ ∥θ1 − θ2∥ , (6)

where LJ =
(

1
2LPL

2
µLνCν+

Lψ
1−γ

)(
Lr+

γRmaxLP
1−γ

)
+

Lµ
1−γ

(
LQLµ+

γ
2L

2
PRmaxLµCν+

γLPLrLµ
1−γ

)
.

In the following, we provide the convergence guarantee
for DPG-TD. Our main technical novelty lies in the devel-
opment of a new framework to analyze the coupled actor
and critic’s stochastic approximation processes, due to their
simultaneous updates both with constant stepsizes. Our cen-
tral idea is to cancel the critic’s cumulative coupling error
by the overall positive progress of actor’s approach to the
stationary policy. This is different from the previous analysis
of (stochastic) PG-type algorithms which mainly decouples
or asymptotically decouples the critic’s error from actor’s
error. We provide a proof sketch in Section 3.4 with the full
proof given in Section 2 of the appendix.

Theorem 1. Suppose that Assumptions 1-4 hold. Let αw ≤
λ

2C2
A
;M ≥ 48αwC

2
A

λ ;αθ ≤ min
{

1
4LJ

, λαw
24LhLw

}
. Then the

output of DPG-TD in Algorithm 1 satisfies

min
t∈[T ]

E ∥∇J(θt)∥2 ≤ c1
T

+
c2
M

+ c3κ
2,

where c1 = 8Rmax

αθ(1−γ) +
144L2

h

λαw

∥∥w0 − w∗
θ0

∥∥2 , c2 =[
48α2

w(C
2
AC

2
w + C2

b ) +
48L2

wL
4
µC

2
wξ
α2
θ

λαw

]
· 144L2

h

λαw
+

36L4
µC

2
wξ

, c3 = 18L2
h +

24L2
wL

2
hα

2
θ

λαw
with CA = 2C2

ϕ, Cb =

RmaxCϕ, Cw =
RmaxCϕ
λA

, Cwξ =
LµCQ
λΨ(1−γ) , Lw =

LJ
λΨ

+
LµCQ
λ2
Ψ(1−γ)

(
L2
µLν +

2LµLψ
1−γ

)
, Lh = L2

µ, CQ =

Lr + LP · γRmax

1−γ , Lν = 1
2CνLPLµ, and LJ defined in

Lemma 1, and we define

κ := max
θ

∥∥w∗
θ − w∗

ξθ

∥∥ . (7)

Theorem 1 indicates that the convergence upper bound con-
sists of three parts. The first term captures the convergence

rate and vanishes sublinearly with the number of iterations.
The second term captures the variance caused by the stochas-
tic sampling and can be controlled by the batch size. The
last term captures the system error

∥∥∥w∗
θ − w∗

ξθ

∥∥∥ which is
uniformly bounded by some constant κ. Such a system error
includes two parts of the approximation errors. The first part
is introduced by the difference between the optimal output
Q-function of TD learning and the ground truth Q-function.
The second part captures the approximation error due to the
fact that none of the linear functions in this class satisfies
the compatibility property in Proposition 1. In practice, the
high capacity of the neural network class can significantly
help to reduce such an error and achieves better convergence
accuracy.

Theorem 1 also captures how the Fisher information of de-
terministic policy Ψθ := Eνθ

[
∇θµθ(s)∇θµθ(s)

T
]

affects
the convergence rate via its minimum eigenvalue bound
λΨ. Such a metric arises due to the compatible function
approximation and captures how well actor estimates the
deterministic policy gradient. Clearly, larger λΨ indicates a
better system condition (smaller Cwξ and Lw) and hence a
faster convergence.

Based on the convergence rate in Theorem 1, we provide
the sample complexity of the algorithm as follows.

Corollary 1. Suppose that the same assumptions in The-
orem 1 hold. Then the output of DPG-TD in Algorithm 1
satisfies min

t∈[T ]
E ∥∇J(θt)∥2 ≤ ϵ + c3κ

2, by using the total

number of samples 2MT = O
(
1/ϵ2

)
.

Corollary 1 shows that DPG-TD attains an ϵ-accurate sta-
tionary point (up to the system error) with a sample com-
plexity of O(ϵ−2). To our best knowledge, this is the first
finite-sample characterization for DPG.

Despite the policy gradient of DPG is more challenging
to estimate, the sample complexity of DPG in Corollary 1
matches the best known stochastic PG (with AC scheme)
in Xu et al. [2020b]. Furthermore, such a result does not
require critic’s update in DPG to accurately track the deter-
ministic policy gradient at each step and hence is practically
desired, whereas the sample complexity guarantee in Xu
et al. [2020b] for stochastic PG requires sufficient accuracy
of tracking the policy gradient at each iteration.

DPG with noisy sampling for exploration. In practice,
the deterministic policy used in Algorithm 1 usually suffers
from the inefficient exploration. To overcome such an issue,
Silver et al. [2014] proposed to use a noisy sampling for
DPG. To be specific, in lines 4-5 of Algorithm 1, a noisy
policy, e.g., πθt(s) = µθt(s) + N (0, σ2), is adopted to
generate actions at,j , at+1,j . Correspondingly, the states for
critic’s updates in lines 4-5 of Algorithm 1 are generated
by the stationary distribution dπθt associated with the noisy
policy πθt . The rest of Algorithm 1 is unchanged. We refer



to such an algorithm as noisy DPG-TD (NoiDPG-TD).

Following the same techniques for the proof of Theorem 1
and replace the stationary distribution dθt by dπθt , we read-
ily obtain the convergence result for NoiDPG-TD as follows.

Corollary 2. Suppose that the same assumptions in The-
orem 1 hold. Then the output of NoiDPG-TD satisfies
min
t∈[T ]

E ∥∇J(θt)∥2 ≤ ϵ+O
(
κ2
)
, by using the total number

of samples O
(
ϵ−2
)
.

In Corollary 2, the system error κ is determined by the
noisy policy. Corollary 2 indicates that the noisy sampling
for exploration does not cause higher sample complexity
compared to DPG-TD.

3.4 PROOF SKETCH OF THEOREM 1

In the following, we outline the proof of Theorem 1 to
highlight our new approach to analyzing the coupled actor
and critic’s stochastic approximation processes, due to their
simultaneous updates both with constant stepsizes. The cen-
tral idea is to cancel the critic’s cumulative tracking error by
the actor’s overall positive progress to the stationary policy,
which is different from the existing analysis of (stochastic)
PG-type algorithms that mainly decouples or asymptotically
decouples the critic’s error from actor’s error. Further, we
develop a new analysis to bound the estimation error of the
Fisher information of deterministic policy arising via the
compatibility theorem, and then further capture how such a
metric affects the convergence via its minimum eigenvalue.

The main proof consists of three steps. First, we characterize
the error propagation of tracking a dynamic critic target (i.e.,
dynamic tracking error) based on its coupling with actor’s
update progress. Second, we bound the critic’s cumulative
tracking error in terms of actor’s update progress via the
compatibility properties of DPG. Last, we establish the over-
all convergence by canceling out the cumulative tracking
error via the actor’s overall positive progress towards the
stationary policy.

Step I: Characterizing dynamics of critic’s error via
coupling with actor.

In the first step, we characterize the propagation of the
dynamics of critic’s dynamic tracking error based on its
coupling with actor’s updates. That is, we develop the re-

lationship between
∥∥∥wt+1 − w∗

θt+1

∥∥∥2 and
∥∥wt − w∗

θt

∥∥2 by
their coupling with actor’s updates.

Recall that w∗
θt

is the global optimum of TD given a fixed
policy µθt , or is equivalently the unique root of ḡθt(wt) :=
Edθt

[
1
M

∑M−1
j=0 δt,jϕ(xt,j)

]
= 0. We first give the follow-

ing bound on the update rule of wt in Algorithm 1 given
by the TD learning property [Tsitsiklis and Van Roy, 1997,

Bhandari et al., 2018, Xiong et al., 2020],

E
∥∥wt+1 − w∗

θt

∥∥2
≤
(
1− αwλ

2

)
E
∥∥wt − w∗

θt

∥∥2 + 24α2
w(C

2
AC

2
w + C2

b )

M
,

where αw ≤ λ
2C2

A
,M ≥ 48αwC

2
A

λ .

In the previous analysis of (stochastic) AC algorithms, suf-
ficient TD updates of critic result in a controlled small
tracking error before updating the actor, which is hence
decoupled from the actor’s progress. In contrast, DPG-TD
takes alternative updates between critic and actor, so that
the critic’s tracking error is inherent and non-vanishing.
Thus, we take a new approach to characterize the moving
dynamics of the tracking error and directly couple it with
the actor’s update as follows,

E
∥∥∥wt+1 − w∗

θt+1

∥∥∥2 ≤ 4L2
w

λαw
E ∥θt+1 − θt∥2

+

(
1− λαw

4

)
E
∥∥wt − w∗

θt

∥∥2 + 48α2
w(C

2
AC

2
w + C2

b )

M
.

Clearly, in the above bound, the two tracking errors at times
t+1 and t have different targets w∗

θt+1
and w∗

θt
due to actor’s

one update between critic’s two consecutive updates. Hence,
actor’s update is necessarily coupled into the dynamics of
the critic’s tracking error.

Step II: Bounding cumulative tracking error via com-
patibility theorem for DPG.

In this step, we bound the cumulative tracking error based
on the dynamics of the tracking error from the last step.

To this end, we first bound the difference between two con-
secutive actor parameters via DPG’s properties. By the
update rule of θt in Algorithm 1, we have θt+1 − θt =
αθ
M

∑M−1
j=0 ∇θµθt(s

′
t,j)∇θµθt(s

′
t,j)

Twt := αθhθt(wt,Bt).
Since hθt(wt,Bt) is not an unbiased estimator of the de-
terministic policy gradient ∇J(θt), we characterize such
a bias by exploiting the compatibility theorem as well as
the property of Fisher information of deterministic policy
defined in Assumption 1 and obtain the following bound
(see Lemma 6 for the proof)

E ∥hθt(wt,Bt)−∇J(θt)∥2

≤ 3L2
hE
∥∥wt − w∗

θt

∥∥2 + 3L2
hκ

2 +
6L4

µC
2
wξ

M
.

The above bound then connects the critic’s error dynamics
from Step I to the policy gradient and yields the following
result:

E
∥∥∥wt+1 − w∗

θt+1

∥∥∥2 ≤
(
1− λαw

8

)
E
∥∥wt − w∗

θt

∥∥2
+

48α2
w(C

2
AC

2
w + C2

b )

M
+

8L2
wα

2
θ

λαw
E ∥∇J(θt)∥2



+
8L2

wα
2
θ

λαw

(
3L2

hκ
2 +

6L4
µC

2
wξ

M

)
,

where it requires αθ ≤ λαw√
96LhLw

.

Thus, we obtain the cumulative dynamic tracking error as

T−1∑
t=0

E
∥∥wt − w∗

θt

∥∥2 ≤
8
∥∥w0 − w∗

θ0

∥∥2
λαw

+

[
48α2

w(C
2
AC

2
w+C2

b )

M
+
8L2

wα
2
θ

λαw

(
3L2

hκ
2+

6L4
µC

2
wξ

M

)]

· 8T

λαw
+

64L2
wα

2
θ

λ2α2
w

T−1∑
t=0

E ∥∇J(θt)∥2 .

The above bound connects the cumulative dynamic tracking
error to the convergence rate of actor’s update via policy
gradient, i.e., such an error depends on how fast actor’s
update approaches to the stationary point.

Step III: Overall convergence by canceling tracking er-
ror via actor’s positive progress.

In this step, we establish the overall convergence to a sta-
tionary policy by novel cancellation of the above cumulative
tracking error via actor’s update progress.

We first bound the cumulative policy gradient by the cumula-
tive tracking error via the relationship between the progress
of loss function and the tracking error as follows:

αθ
4

T−1∑
t=0

E ∥∇J(θt)∥2 ≤ 9αθL
2
h

4

T−1∑
t=0

E
∥∥wt − w∗

θt

∥∥2
+

Rmax

1− γ
+

3αθ
4

(
3L2

hκ
2 +

6L4
µC

2
wξ

M

)
· T.

The previous analysis of (stochastic) AC typically exploits
the fact that the above critic’s tracking error can decay suf-
ficiently fast by decoupling it from actor’s update, which
does not hold here. In contrast, we exploit the connection
of the cumulative tracking errors and the cumulative policy
gradient that we establish in Step II, and show that such a
tracking error can ultimately be canceled by the actor’s pos-
itive progress towards a stationary point. This also explains
why the critic’s inaccurate estimation does not affect the
overall convergence guarantee. Such an idea is captured as
follows:

(
αθ
4

− 144L2
hL

2
wα

3
θ

λ2α2
w

) T−1∑
t=0

E ∥∇J(θt)∥2

≤ Rmax

1− γ
+

18αθL
2
h

λαw

∥∥w0 − w∗
θ0

∥∥2
+

[
48α2

w(C
2
AC

2
w+C2
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M
+
8L2

wα
2
θ

λαw

(
3L2

hκ
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6L4
µC

2
wξ

M

)]

· 18αθL
2
hT

λαw
+

3αθ
4

(
3L2

hκ
2 +

6L4
µC

2
wξ

M

)
· T.

Finally, by letting αθ ≤ λαw
24LhLw

and rearranging the above
terms, we complete the proof.

4 OFF-POLICY DPG ALGORITHM

In this section, we consider the off-policy setting, where
the behavior policy is different from the target policy, and
provide the convergence guarantee of such an off-policy
DPG algorithm.

4.1 ALGORITHM

The design of the algorithm is based on the compatibility
property in (5). However, off-policy TD with linear function
approximation is known to not necessarily converge [Baird,
1995]. To overcome such a divergence issue, Silver et al.
[2014] adopted TD with gradient correction (TDC) to update
the critic parameter. Note that since critic in DPG estimates
the Q-function rather than the value function, there is no
need to use the importance sampling to adjust the sampling
distribution [Silver et al., 2014]. We call the compatible
DPG using TDC updates as DPG-TDC, with its details
given in Algorithm 2.

Algorithm 2 DPG-TDC

1: Input: αw, η, αθ, w0, u0, θ0, batch size M , behavior
policy β.

2: for t = 0, 1, . . . , T do
3: for j = 0, 1, . . . ,M − 1 do
4: Sample xt,j := (st,j , at,j) ∼ dβ .
5: Sample st+1,j ∼ P (·|st,j , at,j) and rt,j . Generate

at+1,j = µθt(st+1,j).
6: Denote ϕt,j = ϕ(st,j , at,j).
7: δt,j = rt,j + γϕTt+1,jwt − ϕTt,jwt.
8: end for
9: wt+1 = wt+

αw
M

∑M−1
j=0

[
δt,jϕt,j − γϕt+1,jϕ

T
t,jut

]
.

10: ut+1 = ut +
ηαw
M

∑M−1
j=0

[
δt,jϕt,j − ϕt,jϕ

T
t,jut

]
.

11: for j = 0, 1, . . . ,M − 1 do
12: Sample s′t,j ∼ νθt .
13: end for
14: θt+1 = θt+

αθ
M

∑M−1
j=0 ∇θµθt(s

′
t,j)∇θµθt(s

′
t,j)

Twt.
15: end for

As shown in Algorithm 2, while the state-action pair at
time t is sampled by the stationary distribution with the
behavior policy β, the action corresponding to state st+1

is still generated by the target policy. In addition to the
updates of wt as critic and θt as actor, a gradient correction
parameter ut is also updated in line 10 of Algorithm 2.



4.2 CONVERGENCE RESULT

In this subsection, we characterize the convergence rate and
sample complexity for DPG-TDC in Algorithm 2. Similarly
to the analysis of DPG-TD, we first show the Lipschitz
continuity property for off-policy DPG-TDC.

Lemma 2. Suppose Assumptions 1-3 hold. Then the deter-
ministic policy gradient ∇Jβ(θ) defined in (4) is Lipschitz
continuous with the parameter LJβ , i.e., ∀θ1, θ2 ∈ Rd,

∥∇Jβ(θ1)−∇Jβ(θ2)∥ ≤ LJβ ∥θ1 − θ2∥ , (8)

where LJβ =
Lµ
1−γ

(
LQLµ+

1
2γL

2
PRmaxLµCν+

γLPLrLµ
1−γ

)
+

Lψ
1−γ

(
Lr +

γRmaxLP
1−γ

)
.

Compared with Lemma 1 for the on-policy case, the Lips-
chitz parameter LJβ in Lemma 2 has the same dependence
on 1− γ as LJ , but does not have the state visitation error
term because the behavior policy does not change as actor
updates the policy.

To analyze the off-policy algorithm DPG-TDC, one of the
main challenges lies in the complication arising due to the
extra correction parameter ut. To overcome this, we treat
the update of critic as a lifted linear system with respect to
a grouped state zt = [wTt u

T
t ]
T ∈ R2d and then analyze the

key properties of such a system matrix.

We next provide the convergence guarantee for DPG-TDC
in the following theorem. The full proof of Theorem 2 can
be found in Section 4 of the appendix.

Theorem 2. Suppose that Assumptions 1-4 hold. Let αw ≤
λ′

2C2
G
;M ≥ 48αwC

2
G

λ′ ;αθ ≤ min
{

1
4LJβ

, λ′αw
24LhLw′

}
; η >

max
{
0, σmin

(
D−1 · A+AT

2

)}
where A,D are defined in

Assumption 4. Then the output of DPG-TDC in Algorithm 2
satisfies

min
t∈[T ]

E ∥∇Jβ(θt)∥2 ≤ c4
T

+
c5
M

+ c6κ
2,

where c4 = 8Rmax

αθ(1−γ) +
144L2

h

λ′αw

∥∥z0 − z∗θ0
∥∥2 , c5 =[

48α2
w(C

2
GC

2
w + C2

ℓ ) +
48L2

w′L
4
µC

2
wξ
α2
θ

λ′αw

]
· 144L2

h

λ′αw
+

36L4
µC

2
wξ

, c6 = 18L2
h +

24L2
w′L

2
hα

2
θ

λ′αw
with C2

G = 5(1 +

η2)C4
ϕ, C

2
ℓ = (1+η2)R2

maxC
2
ϕ, Lw′ =

LJβ
λΨ

+
2L2

µLψCQ

λ2
Ψ(1−γ)2 , κ

given by (7), LJβ defined in Lemma 2, and other constants
remain the same as those in Theorem 1.

Theorem 2 can readily imply the sample complexity for the
convergence of DPG-TDC as given below.

Corollary 3. Suppose the conditions in Theorem 2 still hold.
Then the output of DPG-TDC in Algorithm 2 satisfies

min
t∈[T ]

E ∥∇Jβ(θt)∥2 ≤ ϵ+ c6κ
2,

by using the total number of samples 2MT = O
(
1/ϵ2

)
.

In Corollary 3, the system error κ is determined by the
off-policy distributions, and thus differs from that of the on-
policy DPG-TD algorithm. Overall, Corollary 3 shows that
off-policy DPG-TDC achieves the same sample complex-
ity as on-policy DPG-TD in Corollary 1 (up to a different
system error). To our best knowledge, there has been no
existing study on off-policy stochastic AC, where critic uses
TDC with general nonconvex policy function approximation.
Our techniques can be extended to fill such a gap.

5 CONCLUSION

This paper provides the first finite-sample analysis for DPG
algorithms in both on-policy (DPG-TD) and off-policy
(DPG-TDC) settings. Up to the system error that neces-
sarily exists for actor-critic algorithms, we show that both
DPG-TD and DPG-TDC can find an ϵ-accurate stationary
policy with a sample complexity of O(ϵ−2). Our results
and the analysis techniques can lead to several promising
extension directions. For example, it would be important
to explore whether DPG converges to a globally optimal
policy as stochastic PG/NPG. Convergence of more popular
algorithms such as DDPG is also interesting to study.
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