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Abstract—With the advent of the connected healthcare systems,
the contemporary healthcare system is going through a swift
transformation to handle the ever-growing healthcare needs. The
internet of medical things (IoMT) network and implantable med-
ical devices (IMDs) are progressively being adopted in healthcare
facilities for increasing efficiency and reducing treatment latency,
thus giving rise to a smart healthcare system (SHS). Moreover,
the acquisition of the personalized healthcare concept with SHS
is boosting precise medication in real-time. However, the open
network communication of IoMT sensor measurements collected
from body sensor devices (BSDs) is vulnerable to measurement
manipulation attacks since they are primarily encrypted or enci-
phered with lightweight cryptographic algorithms due to compu-
tational constraints. Hence, it is crucial to analyze the robustness
of the SHS and real-time sensor measurements’ vulnerability
analysis to prevent mistreatment. This paper presents PHASE,
a novel real-time security analysis framework for personalized
rule-based SHS. Our framework can synthesize optimal attack
vectors for measurement alteration attacks, each representing
minimal required alterations to misinform the SHS controller
with wrong patients’ health status. The identified attack vectors
can assess the vulnerability of the measurements in real-time
with variable attacker’s capability. We verify the effectiveness of
the proposed framework using Pima Indians Diabetes, AIM-94,
and Harvard Dataverse datasets.

Index Terms—Healthcare security, internet of medical things,
personalized smart healthcare system.

I. INTRODUCTION

Healthcare is one of the prime human rights which controls
the livelihood and quality of human lives. The healthcare mar-
ket accounts for almost 20% expenditure for most countries of
the world [1]. Recent statistics forecast the global healthcare
market to reach $6.2 trillion by 2028. Such a massive cost
for hospitalization, nursing, and treatment, along with huge
latency in healthcare delivery, which often costs human lives,
are mostly associated conventional healthcare system. The rise
of the digital healthcare system (DHS) has cut a significant
amount of cost, nursing, and treatment delay [2]. However,
the ongoing pandemic period has drawn light to the fact that
contemporary telehealth and mHealth services of DHS require
more automation to deal with a transient increase in treatment
demand [3]. During the pandemic, a substantial number of
patients were delayed or denied healthcare services due to
a significant disparity between hospital accommodations and
demands [4]. The avoidance or delay in getting medical
support contributed notably to the rise in COVID-19-related
deaths. [5]. In this pandemic, nearly 48% of Americans af-
fected with COVID-19 were either delayed or denied medical

treatment. [6]. Treatment latency caused 11% of them to have
worsening health conditions.

Global acceptance of automated smart healthcare systems
(SHS) would have reduced such unexpected events by adopt-
ing and enabling automated remote patient monitoring and
treatment [7]. The SHS concept redefines the modern health-
care system by merging an internet of medical things (IoMT)-
enabled network and an automated control decision system to
make it more personalized, automated, and effective [8]. In a
typical SHS, patients are treated automatically via implantable
medical devices (IMDs) or similar automated medical delivery
systems [9]. A control signal, which is often generated by
a cloud-based controller through patient’s vital measurement
processing, is used to trigger medical actuators (such as
IMDs). The controllers employ knowledge derived from do-
main experts’ years of expertise to identify the patient’s status
based on vital sign measurements obtained from the patient’s
body sensor devices (BSDs). Through the IoMT network, BSD
measurements are relayed to the controller. Figure 1 shows
such a system, where patients are being monitored and treated
with an automated medicare delivery system accounting for
minimal involvement of care providers.

Although the IoMT-enabled SHS can be a game-changer
for an ameliorated healthcare system, the open IoMT network
communication is growingly increasing the possible cyberat-
tacks in a safety-critical SHS [10]. A recent study highlighted
the viability of attacking healthcare sensor equipment, stating
that more than two-thirds of IoMT devices are vulnerable to
several hacks [11]. Moreover, the SHS is susceptible to many
attacks, as found in recent literature including man-in-the-
middle (MITM) attacks [12], malware (e.g., Medjack [13]),
hardware Trojan [14], denial of service attack [15], Sybil
attacks (using either hijacked IoMT [16] and so on. Between
October 2018 and October 2019, adversarial attacks hit more
than 50% of healthcare institutions [17]. According to a
source, the University of Vermont Medical Center was cut off
from the internet owing to a cyberattack, which caused a $64
million loss [18]. Statistics have identified the susceptibility
of ToMT-enabled SHS, with 6.2 (out of 10) cybersecurity
vulnerabilities in 15-20 connected/IoMT devices [19]. In light
of these events, a measurement manipulation attack is not too
far to take action. Hence, building robust SHS with preventive
and reactive measures is mandatory.

The SHS is mostly augmented with personalized healthcare
for improving patient treatment through obtaining knowledge
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Fig. 1. An IoMT-enabled Personalized SHS.

about the individuals [20]. Personalized healthcare, also known
as personalized medicine or precision medicine, is a rapidly
developing area where doctors employ diagnostic tests to
determine which medical treatments are appropriate for each
patient. Despite treatment benefits, incorporating personalized
healthcare can enhance the security of the SHS. In this
work, we aim to demonstrate how adopting personalized
healthcare along with an SHS can build a robust healthcare
system. We propose Personalized Health Analyzer for Secutity
Enhancement (PHASE) framework that can perform real-time
security analysis of a personalized SHS. Our considered SHS
incorporates a rule-based knowledge base (KB), where the
rules related to the patient status identification, medication
decisions, and healthcare policies are acquired through years
of experience with the healthcare providers and healthcare data
analysts. We consider a sophisticated attacker with access to
a massive amount of healthcare data that can partially or fully
learn the data distribution of the healthcare rules. The proposed
framework uses a satisfiability modulo theorem (SMT)-based
optimizer to produce optimal attack vectors (i.e., required mea-
surements to be injected into actual measurements for altering
the patient’s label) with the intent to evade the controller
verification. However, using the knowledge acquired from
personalized patient data analysis, our proposed framework
can reveal several attacks. A knowledgeable attacker having
complete knowledge of the SHS architecture and measure-
ment verification process can still launch stealthy attacks by
misinforming the SHS controller. Thus, the patient will be mis-
treated. We consider the critical measurements that can result
from measurement manipulation attacks as vulnerable sensor
measurements. The PHASE framework can identify vulnerable
sensor measurements in real-time and notify the healthcare
provider. Accordingly, our framework employs robustness and
reliability while reducing treatment latency, cost, and the need
for direct involvement of healthcare providers. We will use the
term SHS to refer to a personalized SHS throughout the paper
for brevity.

Cyber threat detection and threat analysis have received a

growing interest in the recent researches [21]-[26]. However,
unlike traditional efforts, the PHASE framework does not
require learning attack patterns through a learning algorithm.
There is no anomaly dataset that can detect all possible anoma-
lies due to the constant emergence of various novel attacks. We
use three different datasets - PIMA Indians diabetes dataset,
AIM-94 dataset [27], and Harvard Dataverse [28] blood pres-
sure datasets for the experimentation and framework evalua-
tion. The framework overview and comprehensive discussion
are provided in Sections IIl and IV respectively. Section V
presents the experimental and data processing overview. The
concluding remarks are provided in Section VI

II. RELATED WORK

The security analysis of the healthcare system, particularly
next-generation SHS, has grown significant interest recently.
The security of the IoMT sensor measurements cannot be
hardened with a strong cryptographic algorithm due to their
computation and power constraints. However, one group of
research focuses on strengthening the security of SHS through
lightweight encryption tehniques [29]-[31]. Nevertheless, the
proposed solutions are susceptible to several threats. Hence,
there is a dire requirement to analyze the security and propose
defense of the SHS prior to and post-deployment.

The security analysis of SHS or similar domains has been
mostly researched through formal analysis tools [32], [33].
One of the mentionable works for SHS threat analysis is
proposed by Haque et al. [34]. They have developed an
efficient algorithm for analyzing the machine-learning-based
SHS against measurement manipulation attacks. However, the
proposed comprehensive framework is responsible for pre-
deployment attack vector and attack impact identification,
whereas the PHASE framework can identify vulnerable mea-
surements in real time. Another pre-deployment vulnerability
assessment tool of a similar domain for a rule-based system
is analyzed in BIoTA framework [35]. Several works consider
threat analysis using or on an machine learning (ML)-based
model [36], [37]. Nevertheless, the ML-based SHS control
model is out of scope for this work. Moreover, several



regulations-based security analysis techniques [38]-[40] and
graph-based security analysis has also been explored with
recent researches [41]-[44]. However, none of these works
are capable of identifying vulnerable measurements at real-
time for measurement manipulation attacks.

Our proposed PHASE framework can make the SHS ro-
bustness against stealthy measurement manipulation attacks.
Hence it can be considered a defense tool as well. Different
types of anomaly detection systems or intrusion detection
systems have been developed in the prior works for SHS or
similar domains [45]-[47]. The proposed anomaly detection
systems have experimented with efficient ensembling of state-
of-the-art ML algorithms and proposed novel solutions using
bio-inspired optimization approaches to defend (i.e., detection
based defense) against zero-day attacks. However, knowledge-
able attackers can still exploit the proposed anomaly detection
systems with novel zero-day attacks. We will explore the
vulnerability of those research in our future works.

III. FRAMEWORK

This section provides an overview of the proposed frame-
work. The working principle of the PHASE framework is
shown in Fig. 2. The framework has three main components -
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Fig. 2. The workflow of PHASE framework.

KB, optimizer, and checker. The KB is the core component of
the PHASE framework. Two types of rules are stored in the
KB - patient status inference rules and time-series verification
rules. The patient status inference rules are obtained from
the healthcare domain experts and scientific research reports
to map the patients’ vital signs with particular health status.
On the other hand, the time-series verification rules contain
temporal relationships of the vital signs measurements. The
latter helps identify abnormal sensor measurements due to
fault or malicious intent. The optimizer takes patient status
rules from the KB and patient’s vital sign measurements
as input and produces an attack vector. The attack vector
is represented by a minimal set of measurements to be
added with the actual vital sign measurements for altering
the patient’s status. The generated optimal attack vectors
are passed to the checker for assessing the vulnerability of
current patient vital sign measurements. The checker also takes
the attacker’s capability, patient vital status inference rules,
time-series verification current vital sign measurements into
account to report whether the current set of measurements are
vulnerable or not. The healthcare and cloud service providers

TABLE I
MODELING NOTATIONS

Symbol Description Type
M Set of patient vital sign measurements. Set
M, a-th patient vital sign measurement. Real
L Set of patient statuses. Set
[z Set of patient status inference rules of the KB. | Set
K™ | i-th KB inference rules represented by a tuple | Tuple

that maps inference rules, IC;"f " with corre-

sponding label, K/™/!

Krer Set of time-series verification rules of the KB. | Set
K" | j-th KB verification rules represented by a tu- | Tuple
ple that maps patient vital sign measurements,

K™ with minimum and maximum measure-
ment prediction K7™ and KC7*""™** respec-
tively.
A Attack vector. Vector
Aga a-th measurement of attack vector at t-th time | Real
instance.
A Attacker’s accessibility vectors. Vector
A, Attacker’s accessibility to a-th measurement. Bool

will be notified immediately when the PHASE framework
reports the patient’s sensor measurement to be vulnerable. We
consider the measurements those as vulnerable measurements
from which attack vectors can be obtained. The vulnerable
measurements need special treatment to avoid hazards. Threat
Model In our security analysis framework, we are considering
measurement manipulation attacks. Because the sensors in an
SHS IoMT network mostly possess less computational power,
they can’t use robust encryption to protect data integrity. As a
result, attackers get a scope to modify measurement data. The
attacker is presumed to have access to one or more sensor
measures and the ability to manipulate them. The attacker
can change sensor measurements to cause the KB to make
a bad inference decision, causing the controller to send an
incorrect control signal, resulting in the wrong drug being
delivered. The measurement changes are thought to have been
carried out by a sophisticated attacker acquainted with KB
inference rules. Our considered measurement manipulations
are restricted to the sensor level. The attack model implies that
the SHS’s controllers and actuators are secured/protected from
direct compromise. Our attack model discovers only attack
vectors that are reachable with the attacker’s capability.

IV. TECHNICAL DETAILS

The framework introduced in section III will be thoroughly
discussed in this section. As discussed earlier, the framework
mainly consists of three different components, which are
formally described as follows. The discussion will use the
modeling notations tabulated in Table I and the procedures
shown in Algorithm 1.

A. Knowledge Base (KB)

The KB is the key element for inferring the treatment
demand through patient status identification. Moreover, the KB
module holds verification rules that help detect abnormal vital



sign measurements. The SHS knowledge is stored in the KB
in the form of rules. There are two different types of rules in
the KB.

Patient Status Inference Rules The patient status inference
rules portray the relationships between the vital sign measure-
ments and corresponding patient status. Line 2 of Algorithm 1
shows the acquisition of labels for a patient’s current vital sign
measurements using the Inference function. The Sat func-
tion is used in this process, which checks whether the current
vital sign measurements are consistent with the measurements
of the i-th inference rule from the KB, Kf”f ™ or not. The
Inference function outputs the label in the KB, Kf”f L for
which the current vital sign measurements and knowledge base
measurements comply.

Time-series Verification Rules Drastic alteration in consec-
utive time-slot measurement is unnatural and/or abnormal.
Hence, the KB also stores a possible alteration range of
measurements in succeeding time-slot. The range varies based
on the patient’s biological and disease profile. Hence the
time-series verification rules that map the possible minimum
(K5™™) and maximum (K7"**) following time-slot mea-
surements with current vital sign measurements are collected
through careful time-series data (i.e., measurements) analysis
from the patient in consideration.

B. Optimizer

The optimizer leverages patient status inference rules from
the KB to generate optimal attack vectors that can be attained
with minimal vital measurement alteration. Line 6-7 shows the
attack vector generation process through the optimizer. The
AttackVectorGeneration function takes vital sign measure-
ments (M,), KB inference rules ("), and targeted patient
status (1) as input. From the algorithm, it can be seen that
the patient’s vital measurements are labeled as [ using the
KB inference rules. The optimizer produces the optimal attack
vector by solving a minimization problem, i.e., the adversarial
sample generated with the attack vector gets labeled as the
targeted label (/). Note that the absolute value of attack vectors
is taken in the case of the optimization objective, which
assures the acquisition of attack vectors through addition
and/or subtraction from actual measurements that maintain
minimum distance.

C. Checker

After KB rules and attack vector generation, the vulner-
ability of the measurements is checked with the checker.
The checker uses both time-series verification and confi-
dence rules in the checking process. The primary task of
the checker is to generate a vulnerability report for vital
sign measurements. The patient vital sign measurements and
the KB time-series verification rules are taken as input for
vulnerability assessment of the current sensor measurements.
At first, the measurements from both the current and the
previous time-slots are passed through the In ference function
to obtain the labels for current patient status (label) (Line
11). Then the adversarial sample is generated for all target

patient status other than current status by adding the current
vital sign measurements with the attack vectors (Line 13-
14). The attack vectors are generated with the optimizer
bypassing the vital sign measurements, KB inference rules,
and target patient status. If the adversarial sample is within
the minimum-maximum range for the KB verification rules
associated with current vital measurements and the attacker
has accessibility to alter required measurements, then the
sample is labeled as a vulnerable sample (Line 15-16) for that
specific target patient status. Otherwise, the sample is labeled
as “not vulnerable” for that target patient status (Line 18)
and added to the vulnerability report accordingly. Finally, the
PHASE-generated vulnerability report is assessed for decision-
making. If there exists any vulnerability, the measurements
are further inspected by the healthcare providers and data
analysts; otherwise, control signals are generated using the
measurements to actuate the IMDs.

Algorithm 1: SHS Real-time Security Analysis with
PHASE.

1 Function Inference (M, K™*):

2 | label « KhSat(KM™, M)

3 return label;

4

s Function AttackVectorGeneration (M,, K™, I):
6 l < Inference(My,q, Kcinty,

7 A¢ + min Ay VeemInference(Ma + |Avq
8 return attackVector;

9

10 Function VulnerabilityReportGeneration (M, M

it v, confThreshold) :
11 label « Inference(M,,K™f);
12 for each [ in £ such that [!=label do

)1

13 A « AttackVectorGeneration(M, K™/, label)
14 adversarial Sample <+ M + A,
15 if "™ <adversarialSample< lC;mmm :

Sajt(lC;W’m7 M) and
VacaSat(adversarial Sample, K3°")) then

16 ‘ report.add( < “Vulnerable for target label, [”);
17 else

18 ‘ report.add(“Not Vulnerable for target label, i”);
19 end

20 end

21 return report;

V. EXPERIMENTS AND RESULTS

This section provides the experimentation to show the
analysis of the performance of PHASE using state-of-the-
art healthcare datasets for diabetes prediction. We consider
an SHS that generates the necessary insulin delivery control
signal to actuate an automated insulin pump. Suppose the
patient sensor measurements are vulnerable to measurement
manipulation attacks. In that case, the proposed framework
will also detect that and notify the healthcare provider to take
immediate steps. The data collection, experimental setup, and
experimental results are discussed followingly.



TABLE II
ATTACK VECTOR ANALYSIS FOR VARIOUS CASES

Case No Meafrl;,l:?ent Blood Pressure | Glucose | Insulin
Benign 66 114 79
Attacked 66 155 79

! Verification
(Min) 62 109 None
Verification
(Max) 82 123
Benign 70 93 0
5 Attacked 70 166.56 31
Verification
(Min) 62 3 None
Verification
(Max) 86 384
Benign 73 187 200
3 Attacked 73 110.56 200
Verification
(Min) 73 70 None
Verification
(Max) 73 310
Benign 78 154 8
Attacked 78 123.5 8
4 Verification
(Min) 73 102 None
Verification
(Max) 84 182

A. Data Collection

To evaluate the PHASE framework’s performance, we con-
sider measurements from a state-of-the-art dataset- the Pima
Indians diabetes dataset. Although the dataset is not a time-
series patient diabetic status dataset, we leverage the dataset
for rule acquisition and KB modeling. The Pima Indians
dataset contains several features that are used for medical pre-
diction (i.e., patients’ age, insulin level, BMI, blood pressure,
glucose, number of pregnancies, diabetes pedigree function)
and a target variable (i.e., diabetes status). Among the features,
blood pressure, glucose, and insulin levels are the vital sign
measurements that are considered for attack vector generation.
We gather the personalized healthcare information from two
time-series datasets - the Harvard Dataverse dataset (blood
pressure) and the AIM-94 dataset (insulin and glucose). These
datasets are used for vulnerability analysis of the measure-
ments collected from the Pima Indians diabetes datasets.

B. Environmental Setup and Experimental Tools

We conducted the experimentation on Dell Precision
7920 Tower workstation with Intel Xeon Silver 4110 CPU
@3.0GHz, 32 GB memory, 4 GB NVIDIA Quadro P1000
GPU. The attack vectors are identified using a Z3 SMT
optimizer [48]. The rules are collected using a decision tree
inference model [49] that learned the inference rule from
the PIMA Indians diabetes dataset. The verification rules are
interpolated using a linear regression model [50].

C. Attack Vector Analysis

Here, we discuss the attack vector analysis from the datasets
in consideration. Table II shows PHASE generated attack
vectors for 4 different cases. The demonstrated measurements

TABLE III
VULNERABILITY MEASUREMENT WITH DIFFERENT ATTACKER’S
CAPABILITY (ACCESSIBILITY)

Attacker’s Accessibility
Vulnerable
to Sensor Measurements
M Samples
easurements
3 Measurements BP, Glucose, Insulin 190
BP, Glucose 162
2 Measurements BP, Insulin 118
Glucose, Insulin 74
BP 57
1 Measurement Glucose 68
Insulin 29

are only vital signs measurements. We ignore the other dataset
features (e.g., patient’s age, number of pregnancies) out of
attack scope. In the 1st case (patient status: Normal) and the
4th case (patient status: diabetic), PHASE-generated attack
vectors did not pass the verification test. Hence, these attack
vectors are not considered as vulnerable. However, for the 2nd
case, the PHASE optimizer-generated attack vector bypassed
the verification module and is capable of altering the normal
patient status to a diabetic one. In the 3rd case, the attack
vectors also evaded the verification rules and altered the
diabetic patient’s status to normal. Hence, the attack vectors
from the 2nd and 3rd cases are considered to be vulnerable.
The healthcare providers will be notified to perform further
analysis of these scenarios to avoid wrong medication or
treatment.

D. Determining the number of vulnerable samples

The primary task of the PHASE framework is to identify
vulnerable sensor measurements. Based on our analysis, we
figure that 24.74% (190 out of 768) of the measurements in the
Pima Indians dataset are vulnerable measurements. However, it
does not signify that almost 1/4th of measurements of the day
require dealing with healthcare providers. For a reason, patient
status (i.e., diabetes symptoms or not) seldom varies frequently
for a regular diabetic patient. Even for the critical patient
with the considered patient profile, sensor measurements are
highly probable (i.e., 0.75) to be not vulnerable. Moreover,
the analysis of vulnerable sensor measurements can be a good
tool for the healthcare providers to schedule patient importance
based on counting the vulnerable sensor measurements with an
existing health history. Table III shows the vulnerable samples
count with different measurement accessibility.

E. Measurements Importance Analysis

The proposed framework also provides a guide to identi-
fying the most crucial measurements to protect against mea-
surement manipulation attacks. Fig. 3 shows various measure-
ments’ importance through their participation in the attack
vectors. For instance, the glucose measurement contributes
the most to the identified attack vectors. In both samples,
considered attack vectors and attack vectors associated with
vulnerable samples, the participation is above 50% for the
glucose measurement. Hence, glucose is considered the most
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Different measurement participation in PHASE generate attack

crucial measurement, protection of which will create a robust
blood pressure monitoring and treatment of SHS. The insulin
measurement is the least contributing towards the patient status
prediction as reported by the PHASE-generated attack vector
analysis. The vulnerable samples are generated considering
attackers have accessibility to all measurements.
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Fig. 4. Scalability analysis of the proposed framework.

F. Scalability Analysis

We assess the scalability of the PHASE framework through
execution time analysis varying the considered SHS size.
Although we had three vital sign measurements (i.e., blood
pressure, glucose, and insulin level), we consider three dif-
ferent sizes of SHS; where in the first one, we portray rules
only from glucose measurements, and in the second case, we
depict rules from an SHS consisting of glucose and blood
pressure measurements. In contrast, for the final case, we
contemplate rules from all three measurements. Fig. 4 shows
the execution time needed for the PHASE optimizer. The
required execution times for 1, 2, and 3 measurements SHS
were 2.21 s, 8.13 s, and 33.17 s, respectively. The vulnerability
checking time is negligible (<1 s) for all considered cases.
Although the figure shows a sharp increment in execution
time, when SHS size increases to 3 measurements from 2
measurements, the proposed framework should be able to
identify vulnerable run-time measurements for a large SHS
(i.e., containing 10 measurements). Hence, the framework
seems to be scalable in the smart healthcare concept. The
framework appears to be scalable since the sampling time of
the AIM-9 time-series dataset is 1 hour or more. However,
the sampling time for control signal generation is significantly

low (i.e., a few seconds) for some sensor measurements. In that
case, the PHASE framework will be unable to label vulnerable
vital sign measurements in real-time.

VI. CONCLUSION

We propose the PHASE framework for real-time security
analysis of personalized SHS. The framework can generate
sophisticated attack vectors with minimal alteration of mea-
surements in real-time to alter the patients’ status. Moreover,
the deployed checker that uses verification rules to detect
abnormalities can reveal the attack vectors. We evaluate the
proposed framework with several metrics. Our experimental
analysis shows that more than 75% of the PIMA INDIANS di-
abetes dataset data is robust against measurement manipulation
attacks when PHASE-generated verification rules are applied.
In this work, we acquire the KB rules through data analysis
from different state-of-the-art datasets. We plan to collaborate
with domain experts to model the KB rules in future work. The
verification rules are represented with minimum and maximum
values. The future extension will consider predicted measure-
ment confidence for reducing the vulnerable samples and thus
contribute to enhancing the robustness of the SHS. Moreover,
the verification rules used in the work will be modified in the
upcoming work for further reduction in vulnerable samples.
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