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Abstract
An innovations sequence of a time series is a sequence of independent and identically
distributed random variables with which the original time series has a causal representation.
The innovation at a time is statistically independent of the history of the time series. As
such, it represents the new information contained at present but not in the past. Because of
its simple probability structure, the innovations sequence is the most efficient signature of
the original. Unlike the principle or independent component representations, an innovations
sequence preserves not only the complete statistical properties but also the temporal order
of the original time series. An long-standing open problem is to find a computationally
tractable way to extract an innovations sequence of non-Gaussian processes. This paper
presents a deep learning approach, referred to as Innovations Autoencoder (IAE), that
extracts innovations sequences using a causal convolutional neural network. An application
of IAE to the one-class anomalous sequence detection problem with unknown anomaly and
anomaly-free models is also presented.
Keywords: Innovations sequence. Generative adversary networks. Autoencoder. Out-of-
distribution detection. Non-parametric anomaly detection.

1. Introduction

At the heart of modern machine learning is the notion of "signature". A data signature should
capture essential characteristics of the data and has low dimensionality for easy processing.
This work focuses on extracting signatures from a random process (time series) for real-time
machine learning applications such as anomaly detection, target tracking, control, and system
monitoring.

Assume that, at time t, we have observations Xt = {xt, xt−1, · · · } of a stationary random
process (xt), and there are infinitely many data samples to arrive, one at a time, in the future.
We are interested in real-time statistical learning problems that make inference or control
decisions based on Xt under the general framework that the underlying probability model
of (xt) is partially or entirely unknown. The real-time (or online) nature of such machine
learning problems makes it essential to generate, causally, a signature sequence (νt) from past
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samples such that it captures all statistical information of (xt) up to time t. Specifically, we
are interested in low dimensional but sufficient statistics with a simple probability structure.

A classic example of an efficient signature is the innovations process introduced by Wiener
(1958). Wiener and Kallianpur pioneered the idea of encoding and decoding of a stationary
ergodic process (xt) via an independent and identically distributed (i.i.d.) sequence (νt)
referred to as an innovations sequence by Masani (1966). In particular, the innovations
representation of (xt) is defined by an encoder G that produces an i.i.d. sequence (νt) by a
causal transform:

νt = G(xt, xt−1, · · · ), (1)

and a decoder H that recovers (xt) from (νt) also via a causal transform1:

xt = H(νt, νt−1, · · · ). (2)

Without loss of generality, the marginal distribution of νt can be assumed to take uniform
distribution on [−1, 1].

The existence of such a representation notwithstanding, the interpretation of (νt) as an
innovations sequence of (xt) is immediate: νt, being independent of Xt−1 = (xt−1, xt−2, · · · ),
represents the new information in xt but not in Xt−1. Equally important is the decoding
process, which makes the innovations sequence a sufficient statistics for all decisions made
based on Xt. From a modern machine perspective, the encoder-decoder construct of the
innovations representation is simply a causal autoencoder with innovations sequence as the
latent process.

The classical theory on innovations has a long and illustrious history, starting from the
work of Kolmogorov (1992), Wiener (1958), and Kalman (1960) on prediction, filtering, and
control, and it soon became popular in the engineering community; see Kailath (1970, 1974).
The innovations approach is particularly powerful for statistical inference and decision making
when the innovations process in (1) can be easily computed in real-time. One prominent case
is the stationary Gaussian process for which the innovations process (νt) is simply the error
sequence of the linear minimum mean-squared error (MMSE) predictor. Another case is
the continuous-time (possibly non-Gaussian) process (xt) under the additive white Gaussian
noise model, for which the innovation process is the error sequence of a nonlinear MMSE
predictor (Kailath, 1971). In general, however, there is no computationally tractable way to
extract an innovations sequence when an innovations representation exists. This paper aims
to bridge this gap using modern machine learning techniques and demonstrate the potential
of innovations representation in an open challenge of one-class anomalous sequence detection.

1.1 Summary of results

We develop a deep learning approach, referred to as Innovations Auto-Encoder (IAE),
that provides a practical way to extract innovations of discrete-time stationary random
processes with unknown probability structures, assuming the existence of an innovations
representation and the availability of historical training samples. To this end, we propose a
causal convolutional neural network, a.k.a time-delayed neural network (Waibel et al., 1989),
and a Wasserstein generative adversary network (GAN) learning algorithm for extracting

1. The stationary random process is defined for −∞ < t <∞.
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innovations sequences (Goodfellow et al., 2014; Arjovsky et al., 2017). Because the imple-
mentation of an IAE involve only a finite number of current and past samples, a convergence
property is needed that ensures a sufficiently high-dimensional implementation will lead to
a close approximation of the actual innovations representation. Under ideal training and
implementation conditions, we establish a finite-block convergence property in Theorem 1,
which ensures that a sufficiently high-dimensional implementation of an IAE produces a close
approximation of the ideal innovations representation.

Next, we apply the idea of IAE to a "one-class" anomalous sequence detection problem 2

where neither the anomaly-free nor the anomaly model is known, but anomaly-free training
samples are given. By anomaly sequence detection, we mean to distinguish the underlying
probability distributions of the anomaly-free model and that of the anomaly. Although there
are many practical machine learning techniques for outlier and out-of-distribution (OoD)
detection, to our best knowledge, the result presented here is the first one-class anomalous
sequence detection approach for time series models with unknown underlying probability
and dynamic models.

The problem of detecting anomalous sequence brings considerable computational and
learning-theoretic challenges. Although one expects that taking a large block of consecutive
samples can reasonably approximate statistical properties of a random process, applying
existing detection schemes to such high-dimensional vectors with unknown (sequential)
dependencies among its components is nontrivial. The main contribution of this work is
leveraging of the innovations representation to transform the anomaly-free time series to a
sequence of (approximately) uniform i.i.d. innovations, thus making the anomalous sequence
detection problem the classic problem of testing uniformity, for which we apply versions of
coincidence test (David, 1950; Viktorova and Chistyakov, 1964; Paninski, 2008; Goldreich,
2017). We then demonstrate, using field-collected and synthetic datasets, the effectiveness of
the proposed approach on detecting system anomalies in a microgrid (Pignati et al., 2015).

1.2 Notations

Notations used are standard. All variables and functions are real. We use Rm and N for
the m-dimension of real vector space and the set of integers, respectively. Vectors are in
boldface, and x = (x1, · · · , xm) ∈ Rm is a column vector. A time series is denoted as (xt)

with t ∈ N. Denote by x
(m)
t := (xt, · · · , xt−m+1) the column vector of current and (m− 1)

past samples of (xt).
Suppose that F is an m-variate scaler function. Let F(n) : Rm+n−1 → Rn be the n-fold

time-shifted mapping of F defined by F(n)(x
(n+m−1)
t ) := (F (x

(m)
t ), · · ·F (x

(m)
t−n+1)). We drop

the superscripts when the dimensionality is immaterial or obvious from the context.

2. Background and Related Work

2.1 Innovations representation and estimation

We refer the readers to Kailath (1970) for an exposition of historical developments of
the innovations approach. In general, an innovations representation of a stationary and

2. The terminology of one-class detection comes from the notion of "one-class classification" introduced by
Khan and Madden (2014).
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ergodic process may not exist. The existence of a causal encoder that maps (xt) to a
uniform i.i.d sequence holds quite generally for a large number of popular nonlinear time
series models (Wiener, 1958; Rosenblatt, 1959, 2009; Wu, 2005, 2011). The existence of a
causal decoder that recovers the original sequence from an innovations sequence requires
additional assumptions (Rosenblatt, 1959, 2009; Wu, 2011). Whereas general conditions for
the existence of an innovations representation are elusive, a relaxation on the requirement
for the decoder to produce a random sequence (x̂t) with the same conditional (on past
observations) distributions as that of (xt) makes the innovations representation applicable
to a significantly larger class of practical applications as shown in Wu (2005, 2011). In this
paper, we shall side-step the question of the existence of an innovations representation and
focus on learning the innovations representation (H,G) in (1-2) when such a representation
does exist.

Although there are no known ways to extract (or estimate) innovations when the un-
derlying probability model is unknown, several existing techniques can be tailored for this
purpose. One way is to estimate (νt) by the error sequence of a linear or nonlinear MMSE
predictor, which can be implemented and trained using a causal convolutional neural network
(CNN). Such an approach can be motivated by viewing (xt) as a sampled process from a
continuous-time process x̃(t) = z̃(t) + w(t) in some interval, where w(t) is a white Gaussian
noise and z(t) a possibly non-Gaussian but strictly stationary process. Under mild conditions
(Kailath, 1971), the continuous-time innovations process ν̃(t) of x̃(t) turns out to be the
MMSE prediction error process. Unfortunately, there is no guarantee that the discrete-time
version of the nonlinear MMSE predictor will be an innovation sequence for (xt).

If we ignore the requirement that the innovation process (νt) needs to be a causally
invertible transform of (xt), one can view the innovations sequence (νt) as independent
components of (xt), for which there is an extensive literature since the seminal work of Jutten
and Herault (1991) and Comon (1994) on independent component analysis (ICA). Originally
proposed for linear models, ICA is a generalization of the principal component analysis
(PCA) by enforcing statistical independence on the latent variables. A line of approaches
akin to modern machine learning is to pass xt through a nonlinear transform to obtain an
estimate of an i.i.d. sequence (νt), where the nonlinear transform can be updated based
on some objective function that enforces independence conditions. Examples of objective
functions include information-theoretic and higher-order moment based measures (Comon,
1994; Karhunen et al., 1997; Naik and Kumar, 2011).

The ICA approach most related to this paper is ANICA proposed by Brakel and Bengio
(2017), where a deep learning approach to nonlinear ICA via an autoencoder is trained
by the Wasserstein GAN (Arjovsky et al., 2017) technique. The main difference between
IAE and ANICA lies in how causality and statistical independence are enforced in the
learning process. Different from IAE, ANICA does not enforce causality in training and its
implementation. It achieves statistical independence among extracted components through
repeated re-samplings.

Also relevant is NICE (Dinh et al., 2015) where a class of bijective mappings with unity
Jacobian is proposed to transform blocks of (xt) to Gaussian i.i.d. components. The property
of unity Jacobian makes NICE a particularly attractive architecture capable of evaluating
relevant likelihood functions for real-time decisions. However, the special form of bijective
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mappings destroys the causality of the data sequence, and the requirement of i.i.d. training
samples in the maximum-likelihood-based learning is difficult to satisfy for time series models.

It is natural to cast the problem of extracting independent components as one of designing
an autoencoder where the latent variables are constrained to be statistically independent.
Several variational auto-encoder (VAE) techniques (Kingma and Welling, 2014; Kingma
et al., 2017; Tucker et al., 2018; Maaløe et al., 2019; Vahdat and Kautz, 2021) have been
proposed to produce generative models for the observation process using independent latent
variables. Without requiring that the latent variables are directly encoded from and capable
of reproducing the original process, these VAE-based techniques do not guarantee that the
latent independent components are part of an innovations sequence.

If we relax the condition of {νt} being i.i.d, the structure of IAE is similar to a class of
Koopman operator based auto-encoders (Takeishi et al., 2017; Morton et al., 2018; Omri
et al., 2020). These papers proposed auto-encoder based algorithms to learn a set of finite
observable functions that span a Koopman invariant subspace. The novelty of IAE lies in
the enforcement of independence and a parametric distribution where the latent variable
{νt} are generated from.

Unlike the non-parametric approach to obtaining innovations representations considered
in this work, there is the literature on parametric techniques to extract innovations by
assuming that (xt) is a causal transform of an innovations sequence (νt). By identifying
the transform parameters, one can construct a causal inverse of the transform (if it exists).
From this perspective, extracting innovations can be solved in two steps: estimating first the
parameter estimation of a time series model, and (ii) constructing a causal inverse of the time
series model. Under relatively general conditions, parameters of multivariate moving-average
and auto-regressive moving average models can be learned by moment methods involving
high-order statistics (Cardoso, 1989; Swami and Mendel, 1992; Tong, 1996).

2.2 One-class anomalous sequence detection

The one-class anomalous sequence detection problem3 is a special instance of semi-supervised
anomaly detection that classifies a data sequence as anomalous or anomaly-free when training
samples are given only for the anomaly-free model. To our best knowledge, there is no
machine learning techniques specifically designed for time series, although there is an extensive
literature on the related problem of detecting outlier or OoD samples.

A well-known technique for the one-class anomaly detection is the the one-class support
vector machine (OCSVM) (Schölkopf et al., 1999) and its many variants for different appli-
cations (Khan and Madden, 2014). OCSVM finds the decision region for the anomaly-free
samples by fencing in training samples with a ceratin margin that takes into account unob-
served anomaly-free samples. A related idea is to separate the anomaly and anomaly-free
model in the latent variable space of an autoencoder. One such technique is f-AnoGAN
proposed by Schlegl et al. (2019) where the OoD detection is made by fencing out all samples
that result in large decoding error by an autoencoder trained with anomaly-free samples.
Other similar techniques include (Bergmann et al., 2019; Gong et al., 2019). These discrimina-
tive methods rely, implicitly, on an assumption that the support of the anomaly distribution

3. In this paper, we do not consider the broader class of one-class anomaly detection problems where
unlabeled training data or scarcely labeled anomalous training data are also used.
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is disjoint from that of the anomaly-free, i.e., the anomaly distribution concentrates in the
region that the anomaly-free training samples do not or less likely to appear. Therefore, they
perform poorly when the domains of anomaly and anomaly-free models overlap completely.

Another set of techniques attach some kind of confidence scores on samples in the feature
space, leveraging the neural network’s ability to learn the posterior distribution of the
anomaly-free model (Hendrycks and Gimpel, 2018; Lakshminarayanan et al., 2017; Liang
et al., 2018; Lee et al., 2018b). These techniques construct confidence scores from the learned
anomaly-free model without attempting to learn or infer the anomaly model. As shown
in (Lan and Dinh, 2021), even with the perfect density estimate, OoD detection may still
perform poorly.

The third type of techniques simulate OoD samples in someway, often around the anomaly-
free models, as proposed in (Lee et al., 2018a; Hendrycks et al., 2019; Ren et al., 2019). With
simulated OoD samples, it is possible, in principle, to capture fully the difference between
the anomaly and anomaly-free distributions and derive a likelihood ratio test as proposed
by Ren et al. (2019). In practice, however, there could be uncountably many OoDs, and
simulating OoD samples are highly nontrivial. A heuristic solution is to perturb training
samples from the anomaly-free model and use them to create a proxy of OoD samples.

Existing OoD detection techniques, under the most favorable conditions when training
samples are unlimited, learning algorithm most powerful, and the complexity of neural
network unbounded, are fundamentally limited in two aspects. First, in general, there does
not exist a uniformly most power test (even asymptotically) for all possible anomaly models.
This means that, for every detection rule, there are anomaly cases for which the power of
detection is suboptimal. Second, they do not provide Chernoff consistency (Shao, 2017)
defined as the type I (false positive) and type II (false negative) errors approach to zero
as the number of observations increases. For detecting anomalies in times series, Chernoff
consistency is essential.

The source of such apparently fundamental limits arises, perhaps, from the lack of a
clear characterization of the OoD model; the standard notion of OoD being something other
than the anomaly-free distribution is simply not precise enough to provide a theoretical
guarantee. Indeed, Lan and Dinh (2021) argue that even perfect density models for the
anomaly-free data cannot guarantee reliable anomaly detection, and there are ample examples
that demonstrate OoD samples can easily fool standard OoD detectors (Goodfellow et al.,
2014). To achieve Chernoff consistency or the asymptotic uniformly most power performance,
there needs to be a positive “distance” between the distributions of the anomaly-free model
and those of the anomaly. It is the constraint on anomaly models being ε-distance away
in our formulation makes it possible, under ideal training, implementation, and sampling
conditions, to achieve Chernoff consistency. See Sec. 4 for one such approach, building on an
earlier result of universal anomaly detection (Mestav and Tong, 2020).

3. Innovations Autoencoder

3.1 Parameterization and Dimensionality of Innovations Autoencoder

A parameterized innovations autoencoder (IAE), denoted by A(θ,η) = (Gθ, Hη), is defined
by an innovations encoder Gθ and an innovations decoder Hη shown in Figure 1(left), both
implemented by causal CNNs (Waibel et al., 1989) with parameters θ and η respectively,
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as shown in Figure 1(right). Once trained, the innovations sequence (vt) is produced by
the encoder Gθ, and decoded time series (x̂t) by Hη. We note here that the causal encoder
and decoder can also be implemented using causal recurrent neural networks with suitably
defined internal states.

Delay · · ·
xt

Gθ

xt−1
Delay

xt−2
Delay

xt−m

Innovations Encoder

νt

Figure 1: Structure of IAE (left) and a causal CNN implementation (right).

In a practical implementation, at time t, only the current and a finite number of past
samples are used to generate the output. We define the dimension of an IAE by the input
dimension of its encoder. For an m-dimension IAE A(θm,ηm), or Am in abbreviation, the
input of the encoder4 Gθm is x(m)

t := (xt, · · · , xt−m+1) and the output is a scaler output νt
causally produced by Gθm . The decoder Hηm also takes a finite dimensional input vector
ν
(nd(m))
t = (νt, · · · , νt−nd(m)+1) and causally produces a scaler output x̂t as an estimate of
xt. Herein, we assume that nd(m) = kνm for some design parameter5 kν .

The structure of IAE is similar to some of the existing VAEs in modeling (causally)
sequential data (Bayer and Osendorfer, 2014; Chung et al., 2015; Goyal et al., 2017). The
main difference between IAE and these VAEs is the way IAE is trained and the objective of
training. Unlike IAE, these VAEs aims at obtaining a generative model that does not enforce
matching encoder input realizations with those of the decoder output; their objective is to
produce the underlying stochastic representations in the forms of probability distributions.

3.2 Training of IAE: Dimensionality and the Training Objective

The shaded boxes in Figure 1(left) represent algorithmic functionalities used in the training
process, and the red lines represent input variables from the data flow and output variables
used in adapting neural network coefficients. Two discriminators are used for acquiring the
encoder-decoder neural networks. The innovations discriminator is trained via a Wasserstein
GAN that evaluates the Wasserstein distance between the estimated innovations (νt) and the
standard (uniform i.i.d.) sequence. The decoding error discriminator evaluates the Euclidian
distance between input (xt) and the decoder output (x̂t). The two discriminators generate
stochastic gradients in updating the encoder and decoder neural networks.

In learning an m–dimensional IAE Am, the two discriminators can only take finite-
dimensional samples as their inputs. In practice, the two discriminators may have different

4. Note that the index m of θm is associated with the dimension of the autoencoder. The dimension of θm
can be arbitrarily large.

5. The choice of kν doesn’t affect the convergence proof.
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dimensions. For presentation convenience, we assume both discriminators have the same
sample dimension (kν = 1). We define the dimension of training as the dimension of the
training vectors used by the discriminators to derive updates of the encoder and decoder
coefficients.

For an n-dimensional training of an m-dimensional IAE, the innovations discriminator
Dγm compares a set of n-dimensional encoder output samples {ν(n)

m,t := G
(n)
θm

(x
(n+m−1)
t )} with

a set of uniformly distributed i.i.d. samples {u(n)
t } ∈ [−1, 1]n and produces the empirical

gradients of the Wasserstein distance W (ν
(n)
m,t,u

(n)
t ). The n-dimensional decoding error

discriminator takes decoder outputs x̂(n)
m,t := H

(n)
ηm (ν

(n+kνm−1)
t ) and computes the decoding

error ||x̂(n)
m,t − x

(n)
t ||2. The two discriminators compute stochastic gradients and update

encoder, decoder, and discriminator parameters (θm, ηm, γm) jointly.
The learning objective of IAE is minimizing a weighted sum of the Wasserstein distance

between the probability distributions of ν(n)
m,t and u

(n)
t and the decoding error of the autoen-

coder. By the Kantorovich-Rubinstein Duality, the training algorithm can be derived from
the min-max optimization:

min
θ,η

max
γ

(
L(n)
m (θ, η, γ) := E[Dγ(ν

(n)
m,t,u

(n)
t )] + λE[||x̂(n)

m,t − x
(n)
t ||2]

)
, (3)

where the first term measures how close the innovation estimated ν
(n)
m,t = G

(n)
θm

(x
(n+m−1)
t ) is

to a standard reference vector with a uniformly distributed i.i.d random vector u(n)
t . The

second term measures how well ν(n)
m,t serves as an innovations sequence in reproducing x

(n)
t .

A pseudo code that implements the IAE learning is shown in the Appendix.

3.3 Convergence Analysis

We will not deal with the convergence of the learning algorithms, which is more or less
standard; we shall assume that the learning algorithm converges to its global optimum. Here
we address a “structural” convergence issue of some theoretical significance.

A practical implementation of IAE can only be of a finite dimension m. So is the
dimension n of the training process. Such a finite dimensional training can only enforce
properties of a finite set of variables of the random process. Let A(n)

m = (G
θ
(n)
m
, H

θ
(n)
m

) be the
encoder and decoder output sequences of the m-dimensional autoencoder optimally trained
with an n-dimensional training process according to (3). Let A = (G,H) be the ideal IAE
with encoder G and decoder H. Let (νt) and (xt) be the output sequences of G and H,
respectively. We are interested in how A(n)

m converges to A in some fashion.
Ideally, we would like to have νm,t

d−→ νt and xm,t
L2−→ xt, which, unfortunately, is not

achievable with finite dimensional training. Our goal, therefore, is to achieve a finite-block
convergence defined as follows:

Definition 1 (Finite training-block convergence) An m-dimensional IAE A(n)
m trained

with n-dimensional training samples converges in training block size n to A = (G,H) if, for
all t,

ν
(n)
m,t

d−→ ν
(n)
t , x

(n)
m,t

L2−→ x
(n)
t , as m→∞. (4)
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Note that, even though the dimension n of the learning process can be arbitrarily large, the
finite-block convergence does not guarantee the innovations vector of block size greater than
n consists of uniform i.i.d. entries, nor does it ensure that a block of the decoder output of
size greater than n can approximate the block of encoder inputs probabilistically unless the
process (xt) has a short memory. In practice, unless there is an adaptive procedure to train
IAE with increasingly higher dimensions, one may have to be content with a weaker measure
of convergence as defined above.

Note also that, by the definition of innovations sequence, it suffices to require that the
encoded vector νm,t converges in distribution to a vector of uniform i.i.d. random variables.
A stronger mode of convergence of the decoded sequence is necessary, however. Herein, we
restrict ourselves to the L2 (mean-square) convergence.

We make the following assumptions on A(n)
m and A:

A1 Existence: The random process (xt) has an innovations representation defined in
(1-2), and there exists a causal encoder-decoder pair (G,H) satisfying (1-2) with H
being uniform continuous.

A2 Feasibility: There exists a sequence of finite-dimensional IAE encoding-decoding
functions (Gθ̃m , Hη̃m) that converges uniformly to (G,H) as m→∞.

A3 Training: The training sample sizes are infinite. The training algorithm for all finite
dimensional IAE using finite dimensional training samples converges almost surely to
the global optimal.

With these assumptions, we have the following structural convergence. See Appendix A
for a proof.

Theorem 1 Let A(n)
m = (G

θ
(n)
m
, H

θ
(n)
m

) be the m-dimensional autoencoder optimally trained

with training sample dimension n according to (3). Under (A1-A3), A(n)
m converges (in finite

block size n) to A.

We now consider the special case of an autoregressive process of finite order K to gain
insights into assumptions A1-A3 and Theorem 1. It is sufficient to demonstrate the case for
the AR(1) process defined by

xt = αxt−1 + νt, α ∈ (0, 1),

where νt ∼ U(−1, 1) is a uniformly distributed on [−1, 1] i.i.d. sequence. A natural IAE
A = (Gθ, Hη) is given by

Gθ : νt = Gθ(x
(∞)
t ) = θTx

(∞)
t , θ = (1,−α, 0, 0, · · · ), (5)

Hη : xt = Hη(ν
(∞)
t ) = ηTν

(∞)
t , η = (1, α, α2, · · · ). (6)

It is readily verified that both H and G are uniform continuous. It is also obvious that the
assumption A1 is satisfied.
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Now consider the m-dimensional IAE Ãm = (Gθ̃m , Hη̃m) defined by

Gθ̃m : ν̃m,t = Gθ̃m(x
(m)
t ) = θ̃

T

mx
(m)
t , θ̃m = (1,−α, 0, 0, · · · ). (7)

Hη̃m : x̃m,t = Hη(ν̃
(κνm)
m,t ) = η̃T

mν
(κνm)
t , η̃m = (1, α, α2, · · · , ακνm−1). (8)

It is immediate that Gθ̃m → Gθ and Hη̃m → Hη uniformly as m → ∞. Therefore the
assumption A2 is met.

From (3), we have, for all N , m > 2 and γ,

L(n)
m (θ̃m, η̃m, γ) := E[Dγ(ν̃

(n)
m,t,u

(n)
t )] + λE[||x̃(n)

m,t − x
(n)
t ||2] = λE[||x̃(n)

m,t − x
(n)
t ||2].

Since Hη̃m is the best l2 approximation of H , E(||x̃(n)
m,t − x

(n)
t ||2) = minθ,η E(||x̂(n)

m,t − x
(n)
t ||2).

Therefore, Ãm = (Gθ̃m , Hη̃m) is a global optimum of (3). Therefore, Theorem 1 is verified.

Further, with Ãm, we have strong convergence of ν̃m,t = νt for all m ≥ 2 and (x̃m,t)
L2−→ (xt)

as m→∞.

4. Anomalous Sequence Detection via Innovations Autoencoder

We develop an IAE-based approach to nonparametric anomalous sequence detection (or
simply anomaly detection for brevity) and demonstrate in Sec. 5.2 the proposed approach in
a smart power grid application using data collected in a microgrid.

4.1 A Nonparametric Anomaly Model

We consider the problem of real-time detection of anomalies in a time series (xt) modeled as
a random process with unknown temporal dependencies and probability distributions. In
particular, we assume that the anomaly-free time series is stationary whereas the anomalous
time series can be arbitrary, even non-stationary.

Let xt be a vector consisting of a finite block of current and past sensor measurements.
Under the null hypothesis H0 that models the anomaly-free measurements and the alternative
H1 for the anomalies, we consider the following hypothesis testing problem

H0 : xt ∼ f0 vs. H1 : xt ∼ f1 ∈ F1 = {f : ||f1 − f0|| ≥ ε} (9)

with unknown probability distribution f0 under the anomaly-free hypothesis and a collection
F1 of unknown anomaly distributions under H1. Parameter ε > 0 represents the degree
of separation between the anomaly and anomaly-free models where ‖ · ‖ is the l1 distance
although other measures such as the Shannon-Jensen distance and the Kullback-Leibler
divergence are equally applicable. We assume that an anomaly-free dataset X0 is available
for offline or online training.

Note thatH0 is a simple hypothesis with a single distribution f0 whereasH1 is a composite
hypothesis that captures all possible anomalies in F1. Prescribing a positive distance ε > 0
between the anomaly-free and the collections of anomaly models is crucial to establish
Chernoff consistency that drives the false positive and false negative rates to zero as the
dimension of xt increases.
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4.2 Anomaly detection via IAE and Uniformity Test

A defining feature of IAE is that, under H0, the innovations encoder transforms the mea-
surement time series with an unknown probability model to the standard uniform i.i.d.
sequence. Through an IAE trained with anomaly-free data, the anomaly detection problem
is transformed to testing whether the transformed sequence is i.i.d. uniform, for which
Chernoff-consistent detectors can be constructed. Implicitly assumed in this approach is
that an anomaly process ε-distance away from that of anomaly-free will not be mapped to a
uniform i.i.d. process which is reasonable in practice.

Figure 2: IAE Uniformity Test. Top: Implementation schematic and test statistics under H0.
Bottom left: Histogram of (xt) and (νt) under H0 and H1. Bottom right: an example of coincidence
statistics (Ti) with 30 quantization levels and 15 samples.

Fig. 2 shows a schematic of the proposed IAE anomaly detection: the sensor measurements
(xt) is passed through an innovations encoder that, under the anomaly-free hypothesis H0,
generates a uniform U(−1, 1) i.i.d. innovations sequence (νt). The innovation sequence is then
passed through a uniform quantizer that puts νt in one of the Q equal-length quantization
bins to produce a sequence of discrete random variables ν̃t ∈ {1, · · · , Q}:

ν̃t =


1, νt ≤ −1 + 2/Q,
i, −1 + 2(i− 1)/Q < ν ≤ −1 + 2i/Q, i = 2, · · · , Q− 1,
Q, ν ≥ 1− 2/Q.

Under H0, we thus have a uniform Q-ary i.i.d. sequence ν̃t, transforming the original
hypothesis testing problem to the following derived hypotheses from (9):

H′0 : ν̃t ∼ P0 = (
1

Q
, · · · , 1

Q
) vs. H′1 : ν̃t ∼ P1 ∈P1 = {(p1, · · · , pQ), ||P1−P0||1 ≥ ε′}. (10)

where P0 and P1 are Q-ary probability mass functions. Testing H′0 against H′1 is a classic
problem (David, 1950; Viktorova and Chistyakov, 1964; Paninski, 2008; Goldreich, 2017).

Consider (10) with N samples ν̃(N)
t = (ν̃t, · · · , ν̃t−N+1), a sufficient statistic equivalent

to the histogram is the coincidence statistic T = (T0, · · · , TN ) where Ti is the number of
quantization bins containing exactly i samples. See Fig. 2 (bottom right) for an example for
Q = 30 and N = 15. The coincidence statistics such as T0 and T1 characterize the uniformity
property particularly well when samples are “sparse” relative to the quantization level. For
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instance, when Q is considerably larger than N , the T1 value of a uniformly distributed ν̃t
tends to be large, and T0 tends to be small, relatively. It is shown in Paninski (2008) that
using T1 alone achieves Chernoff consistency, and the sample complexity is optimal at the
order of

√
Q.

A general form of a coincidence test is a linear test given by

N∑
i=1

ζiTi

H1

≷
H0

τε′ , (11)

where the threshold parameter, a function of ε′ (and N), controls the level of false positive
rate. Paninski gives τε for the sparse sample case when only T1 is used, whereas Viktorova
and Chistyakov (1964) showed the coefficients for the asymptotically most powerful linear
detector.

5. Performance Evaluation

We present two sets of evaluations based on a combination of field collected datasets
from actual systems and synthetic datasets designed to test specific properties. Sec. 5.1
focuses on the IAE encoder-decoder performance using the runs up and down test (Gibbons
and Chakraborti, 2003) for the independency of the encoder output sequence and the
reconstruction error of the decoded sequence. Sc. 5.2 focuses on the IAE-based anomaly
detection in a smart power grid.

5.1 Training and testing datasets

We used two field-collected datasets of continuous point-on-wave (CPOW) measurements
from two actual power systems. The BESS dataset contained direct bus voltage measurements
sampled at 50 kHz at a medium-voltage (20kV) substation collected from the EPFL campus
smart grid as described by Sossan et al. (2016). As shown in Fig. 3 (left), several circuits were
connected at a bus via a medium voltage switchgear. Also connected to the same bus was a
battery energy storage system (BESS) used to emulate physically anomaly power injections.
The BESS dataset captured anomaly-free measurements and anomaly power injections that
varied from 0 to 500 (kW). Fig. 3 (right) shows segments of anomaly and anomaly-free
measurements of a single phase CPOW voltage waveforms. The CPOW samples exhibited
narrow-band (sinusoidal-like) characteristics with strong temporal correlations. Because of
the frequency and voltage regulation mechanisms in a power system, the voltage magnitudes
and frequencies were tightly controlled such that both anomaly-free and anomaly voltage
CPOW data were very similar although a zoomed-in plots exhibited differences in high-order
harmonics, as shown in the zoom-in plot of Fig. 3 (right). The detection of anomaly in such
voltage CPOW measurements was quite challenging.

The second field-collected dataset (UTK) contained direct samples of voltage waveform
at 6 kHz collected at the University of Tennessee. The dataset contains 180,000 voltage
samples collected by a sensor in the real power system by University of Tennessee, Knoxville.
Although high-order harmonics were observed in the voltage samples, only anomaly-free
CPOW measurements were available. Similar to the BESS dataset, the UTK dataset
contained strongly correlated narrow-band samples.
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Figure 3: Battery Energy System at EPFL. See Sossan et al. (2016) for detailed description.

Besides the two field datasets (BESS and UTK), we also designed several synthetic
datasets to evaluate specific properties of IAE and IAE-based anomaly detections. These
datasets are described in Sec. 5.2 and Sec. 5.3.

5.2 IAE performance

We evaluated the performance of IAE and several of benchmarks for extracting innovations
sequences. In particular, we examined whether the estimated innovation sequences passed
the test of being statistically independent and identically distributed. We also evaluated the
mean-squared error (MSE) of the reconstructed signal.

5.2.1 Benchmarks

Since there were very few techniques specifically designed for extracting innovation sequences,
we compared IAE with four benchmarks adapted from existing techniques aimed at extracting
independent components. Among these benchmarks, three were deep learning solutions
(NLLS, ANICA, f-AnoGAN) and two of those (ANICA, f-AnoGAN) were autoencoder based.

• LLS: LLS was a linear least-squares prediction error filter that generated the one-step
prediction error sequence. For stationary Gaussian time series, a perfectly trained LLS
predictor would produce a true innovations sequence.

• NLLS: NLLS was a nonlinear least-squares prediction error filter that generated the
one-step production error time series. If the measurement time series was obtained
from a sampled (possibly) non-Gaussian process with additive Gaussian noise, the
NLLS prediction error sequence would be a good approximation of an innovations
process.

• ANICA: ANICA was an adaption of the nonlinear ICA autoencoder proposed in
(Brakel and Bengio, 2017). Aimed to extract independent components from a block of
measurements, the original design did not enforce causality and was not intended to
generate an innovations sequence.

• f-AnoGAN: f-AnoGAN proposed by Schlegl et al. (2019) was an autoencoder technique
involving convolutional neural networks. The goal was to extract low-dimensional
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latent variables as features from which the decoder could recover the original. Since the
autoencoder was trained with anomaly-free samples, the intuition was that anomaly
data would have high reconstruction errors. Such a construction could be viewed as a
nonlinear principle component analysis (PCA).

IAE was implemented by adapting the Wasserstein GAN with a few modifications 6. For
all cases in this paper, similar neural network structures were used: the encoder and decoder
both contained three hidden layers with 100, 50, 25 neurons respectively with hyperbolic
tangent activation. The discriminator contained three hidden layers with 100, 50, and 25
neurons, of which the first two used hyperbolic tangent activation and the last one the linear
activation. The tunning parameter used for each case is presented in the Appendix.

Dataset Model

Moving Average (MA): xt = 1
10

∑10
i=1 νt−i

Linear Autoregressive (LAR) xt = 0.5xt−1 + νt
Nonlinear Autoregressive (NLAR) xt = 0.5xt−1 + 0.41(xt−2 < 0.7) + νt

Table 1: Test Synthetic Datasets. νt
i.i.d∼ U [0, 1]. 1(·) is the indicator function.

5.2.2 Test datasets

Besides the two field datasets (BESS and UTK) described in Sec. 5.1, we included three
synthetic datasets shown in Table. 1 to produce different levels of temporal dependencies
and probability distributions in test data. In particular, the linear autoregressive (LAR)
dataset was chosen such that a properly trained LLS approach would produce an innovations
sequence. For the moving average (MA) and nonlinear autoregressive (NLAR) datasets,
sufficiently complex neural network implementation of NLLS and ANICA could produce
approximations of the innovations sequences.

For all the synthetic cases, we used the memory size m = 20 dimensional IAE and training
sample dimension n = 60 in the neural network training, and 100,000 samples were used for
training for all cases. The neural network memory size for real data cases were chosen to be
m = 100, n = 250, due to stronger temporal dependency.

5.2.3 Performance and discussion

In evaluating the performance of the benchmarks, we adopted the runs up and down test
that used the numbers of consecutively ascending or descending samples as test statistics of
statistical independence. Its null hypothesis assumes that the sequence of samples consists
of i.i.d samples, and the alternateive hypothesis assumes the opposite. The test was shown
(empirically) to have the best performance in (Gibbons and Chakraborti, 2003). We also
evaluated the empirical mean-squared error of the reconstruction.

Table. 2 shows the p-values of the runs up and down test. NLLS prediction method was
not implemented for LAR case because the linear least-square was sufficient for demonstration

6. https://keras.io/examples/generative/wgan_gp/
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Method MA LAR NLAR UTK BESS

IAE (p-value) 0.9492 0.8837 0.7498 0.9990 0.8757
LLS (p-value) 0.3222 0.9697 0.0186 <0.0001 <0.0001
NLLS (p-value) 0.2674 N/A 0.5116 <0.0001 <0.0001
ANICA (p-value) <0.0001 0.1502 <0.00019 <0.0001 <0.0001
F-anoGAN (p-value) <0.001 0.0106 <0.0001 <0.0001 <0.0001

IAE(MSE) 6.3849 8.5366 9.398425 14.5641 21.0144
Anica(MSE) 137.2839 274.3765 283.31250 315.6521 319.9284
F-anoGAN(MSE) 6.7421 12.4379 11.6458 11.8630 11.8821

Table 2: p-value of the runs test and the mean-squared error (MSE) of the reconstruction.

purposes. As autoencoder based methods, F-anoGAN and IAE achieved the comparable re-
construction error, with F-anoGAN performing better. ANICA failed to obtain a competitive
reconstruction error.

As for the independence test for the BESS dataset, IAE achieved the highest p-values for
all the scenarios except the synthetic LAR dataset designed specifically for the LLS algorithm.
For the synthetic datasets, LLS and NLLS produced sequences that the runs tests could not
easily reject the independence hypothesis. For the field datasets, LLS and NLLS failed the
run tests. Not specifically designed for extracting innovations, ANICA failed the run tests
for statistical independence.

5.3 Detection of anomalies in power systems

We evaluated the performances of several benchmarks in detecting system anomalies in
field-collected dataset BESS, the UTK dataset with synthetically generated anomalies, and
two synthetic time series datasets. We compared benchmark techniques using their receiver
characteristic curves (ROC) that plotted true positive rates (TPR) over a range of the false
positive rate (FPR). The area under ROC (AUROC) was also calculated for all techniques.

5.3.1 Test datasets

In addition to the BESS dataset that included both anomaly and anomaly-free measurements,
we also considered three additional datasets shown in Table 3, two synthetic datasets (SYN1,
SYN2) and one semi-synthetic dataset with anomaly waveforms added to the field-collected
anomaly-free samples (Wang et al., 2021). SYN1 and SNY2 had the identical anomaly-free
models of AR(1) Gaussian. Under the anomaly hypothesis, SYN1 was AR(2) Gaussian,
whereas SYN2 was an AR(1) with uniform innovations. Because only the anomaly-free
training samples were assumed and the anomaly waveforms and probability distributions
were arbitrary, the same anomaly detector trained based on the anomaly-free samples were
tested under SYN1 and SYN2.

5.3.2 Benchmarks

Few benchmark techniques were suitable for the anomaly sequence detection problem consid-
ered here. Most relevant prior techniques that could be applied directly were the one-class
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Test Case Anomaly Free Samples Anomaly Samples Block Size (N)

Syn1 xt = 0.5xt−1 + νt xt = 0.3xt−1 + 0.3xt−2 + νt 1000
Syn2 xt = 0.5xt−1 + νt xt = 0.5xt−1 + ν′t 1000
UTK Real Data GMM Noise 200
BESS Real Data Real Data 500

Table 3: Data Detection Test Cases. νt
i.i.d∼ N (0, 1), ν ′t

i.i.d∼ U [−1.5, 1.5]

support vector machine (OCSVM) proposed in (Schölkopf et al., 1999) and f-AnoGAN in
(Schlegl et al., 2019). OCSVM, a semisupervised classification technique, was implemented
with radial basis functions as its kernel and was trained with anomaly-free samples. Although
not designed as an anomaly detection solution, ANICA (Brakel and Bengio, 2017) was
adapted to be a preprocessing algorithm (similar to IAE) before applying a uniformity test
described in Sec. 4.

We have also included the Quenouille test (Priestley, 1981) designed to test the goodness
of fit of an AR(k) model (with SYN1 dataset.) Because of the asymptotic equivalence of the
Quenouille test and the maximum likelihood test of Whittle (1951), we used Quenouille test
as a way to calibrate how well IAE and other nonparametric tests would perform under
AR(k) time series models with dataset SYN1 for which the Quenouille test is asymptotically
optimal.

5.3.3 Performance on the BESS dataset

The BESS dataset was used to test the proposed testing technique’s ability to detect system
anomalies. As shown in Fig. 4, the anomaly and anomaly-free voltage signals were very
similar due to the voltage regulation of the bus voltage in the power system. The detection
based solely on the raw voltage signal can be very challenging. Fig. 4 (right) shows the ROC
curves obtained using 500-sample blocks. Since the anomaly and anomaly-free samples are
hard to distinguish, all the other methods apart from IAE didn’t seem to work well in this
case.

0 0.2 0.4 0.6 0.8 1

False Positive Rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
 P

o
s
it

iv
e
 R

a
te

IAE

ANICA

OCSVM

F-AnoGAN

0.71 0.72 0.73 0.74 0.75

-4

-3

-2

-1

0

1

2

3

4

Anomaly Free

Anomaly

Figure 4: Detection performance for the BESS dataset. Left: ROC curves. (AUROC: IAE:0.8354,
ANICA:0.5027 OCSVM:0.4903 F-AnoGAN:0.4993) Right: Anomaly and anomaly-free traces.
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5.3.4 Performance on the UTK dataset

We evaluated benchmark performance on the UTK dataset with synthetic anomaly test
samples. To construct the anomaly samples, we added a comparably small Gaussian Mixture
noise on the anomaly-free measurements. The signal to noise ratio of the Gaussian Mixture
noise to the anomaly free signal is roughly 40dB, and the time-domain trajectories of anomaly
and anomaly-free signals are shown in Fig. 5 (right), which demonstrate the level of similarity
between anomaly and anomaly-free samples. Seen from Fig. 5 (left), IAE was the only
detection method that was able to make reliable decisions, with ANICA performing slightly
better than the rest.
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Figure 5: Detection performance for the UTK dataset. Left: ROC curves. (AUROC: IAE:0.9135,
ANICA:0.5967, OCSMV:0.2978, F-AnoGAN:0.4393) Right: Anomaly and anomaly-free traces.

5.3.5 Performance on synthetic datasets SYN 1 and SYN 2

We also conducted anomaly detection based on synthetic data generated by auto-regressive
models (SYN1 and SYN2). For both SYN1 and SYN2, the anomaly free datasets were the same,
and the two anomaly datasets were designed to highlight the the performance of the detectors
facing different anomalies.

In SYN1, we designed the anomaly to have the same marginal distribution as the anomaly-
free data (xt ∼ N (0, 4/3)), as shown in Fig. 6 (right), intentionally making detection based
on a single sample ineffective. As shown by Fig. 6 (left), IAE performed similarly well as the
asymptotically optimal detector (Quenouille). ANICA performed better (with AUROC above
0.5) than the other two machine learning-based detection methods. Because the marginal
distributions of the measurements are the same for both hypotheses, the other two machine
learning-based techniques were not competitive under this setting.

SYN2 adopted two auto-regressive models with the same parameters in temporal dependen-
cies. The marginal distributions of the measurements, however, were slightly different under
the anomaly and anomaly-free models. See. Fig 7 (right), which made it very challenging for
OCSVM and F-AnoGAN. ANICA was also not effective in extracting independent compo-
nents, causing failures in the uniformity test. Only IAE was able to capture the difference
between the two datasets through the extraction of innovations and made reasonably reliable
decisions, as shown in Fig 7 (left).
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Figure 6: Anomaly Detection for SYN1. Left: ROC curves. (AUROC: IAE:0.9021, AN-
ICA:0.6337, OCSVM:0.4455, F-AnoGAN:0.4881, Quenouille:0.9112) Right: Anomaly and
anomaly-free histograms.
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Figure 7: Anomaly Detection for SYN1. Left: ROC curves. (AUROC: IAE:0.9635, AN-
ICA:0.6337, OCSVM:0.5407, F-AnoGAN:0.5020, Quenouille:0.5026) Right: Anomaly and
anomaly-free histograms.

6. Conclusion

IAE is a machine learning technique that extracts innovations sequence from real-time
observations. When properly trained, IAE can serve as a font-end processing unit that
transforms processes of unknown temporal dependency and probability structures to a
standard uniform i.i.d sequence. (Extension to other marginal distributions is trivial.) IAE
is, in someway, an attempt to realize Wiener’s original vision of encoding stationary random
processes with the simplest possible form, although the existence of such an autoencoder is
not guaranteed (Rosenblatt, 1959). From an engineering perspective, however, the success of
Wiener and Kalman filtering in practice is a powerful testament that many applications in
practice can be approximated by innovations representations. It is under such an assumption
that IAE serves to remove the modeling assumptions in Wiener and Kalman filtering and
pursues a data-driven machine learning solution. As an example, the IAE-based anomaly
detection is shown to be quite effective for the one-class anaomalous time series detection
problem, for which there are few solutions.
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Appendix A. Proof of Theorem 1

Proof: By A2, there exists a sequence of IAEs Ãm = (Gθ̃m , Hη̃m) of dimension m that
converges to A. Let (ν̃m,t) be the output sequences of Gθ̃m and (x̃m,t) the output sequence

of the decoder Hηm . Similarly defined are vector outputs of the encoder and decoder x̃(n)
m,t

and ν̃
(n)
m,t.

We prove Theorem 1 in two steps:

1. Finite-block convergence of Ãm: By assumption A2, the uniform convergence
of Gθ̃m → G implies that, for every ε1 > 0, there exists M1 ∈ N+ such that, for all

realizations x(∞)
t , m > M1 and t ∈ N,

|ν̃m,t − νt| < ε1 ⇒ E
(
‖ν̃(n)

m,t − ν
(n)
t ‖2

)
≤ nε1.

Therefore, for all finite n, we have the following uniform convergence as m→∞:

ν̃
(n)
m,t

L2−→ ν
(n)
t ⇒ ν̃

(n)
m,t

d−→ ν
(n)
t , ⇒ W (ν̃

(n)
m,t,ν

(n)
t )→ 0. (12)

Next we consider the decoder convergence. Fix ε2 > 0.

|xt − x̃m,t| = |H ◦G(x
(∞)
t )−Hη̃m ◦Gθ̃m(x

(m)
t )|

≤ |H ◦G(x
(∞)
t )−H ◦Gθ̃m(x

(m)
t )| + |H ◦Gθ̃m(x

(m)
t )−Hη̃m ◦Gθ̃m(x

(m)
t )|.

Because H is uniform continuous, there exists an M2(ε2) such that for all m > M2(ε2)

and x
(∞)
t ,

|H ◦G(x
(∞)
t )−H ◦Gθ̃m(x

(m)
t )| < ε2/2.

Because Hηm converges to H uniformly, there exists an M ′2(ε2) such that

|H ◦Gθ̃m(x
(m)
t )−Hη̃m ◦Gθ̃m(x

(m)
t )| < ε2/2,

for all m > M ′2(ε2) and x
(∞)
t . Therefore, for all m > max{M2(ε2),M

′
2(ε2)},

|x̃m,t − xt| < ε2 ⇒ E
(
‖x̃(n)

m,t − x
(n)
t ‖2

)
≤ nε2 ⇒ x̃

(n)
m,t

L2−→
m→∞

x
(n)
t .

The risk L̃(n)
m converges uniformly:

L̃(n)
m := W (ν̃

(n)
m,t,ν

(n)
t ) + E(‖x̃(n)

m,t − x
(n)
t ‖22)

m→∞−−−−→ 0. (13)

2. Finite-block convergence of A(n)
m : Fix the dimension of training at n. From the

finite-block convergence of Ãm, ∀ε, there exists Mε such that, for all m > Mε,

L̃(n)
m = W (ν̃

(n)
m,t − ν

(n)
t ) + E

(
‖x̃(n)

m,t − x
(n)
t ‖22

)
≤ ε. (14)

By the Kantorovich-Rubinstein duality theorem,

W (ν̃
(n)
m,t,ν

(n)
t ) = max

γ
E(Dγ(ν̃

(n)
m,t,ν

(n)
t )).

25



Wang and Tong

From (3), let (without loss of generality assuming λ = 1)

L(n)
m := min

θ,η
max
γ

(
E(Dγ(x̃

(n)
m,t,ν

(n)
t ) + E(‖x(n)

m,t − x
(n)
t ‖22)

)
.

We therefore have, for all m ≥Mε,

L(n)
m ≤ L̃(n)

m ≤ ε ⇒

{
W (ν

(n)
m,t,ν

(n)
t ) ≤ ε,

E(‖x(n)
m,t − x

(n)
t ‖22) ≤ ε,

which completes the proof. 222

Appendix B. Pseudocode

Algorithm 1 Training the Innovations Autoencoder
Input: data (xt), encoder Hη, generator Gθ, discriminator Dγ . λ is the gradient penalty
coefficient, µ the weight for auto-encoder, and α, β1, β2 hyper-parameters for Adam
optimizer.
while Not converged do
for t = 1, · · · , nc do
for i = 1, · · · , B do

Sample xi from the input matrix (xt)

Sample u= [u1, · · · , un]T
i.i.d∼ U [−1, 1]

Sample ε ∼ U [0, 1]
ν̂ ← Gθ(xi)
ν̄ ← εu + (1− ε)ν̂
L(i) ← Dγ(ν̂)−Dγ(u) + λ(‖∇γDγ(ν̄)‖2 − 1)2

end for
γ ← Adam(∇γ 1

B

∑B
i=1 L

(i), α, β1, β2)
end for
Sample a batch of {xi}Bi=1 from the input matrix (xt)

θ ← Adam

(
∇θ 1

B

∑B
i=1

[
−Dγ(Gθ(xi))+ µ‖Hη(Gθ(xi))− xi‖2

]
, α, β1, β2

)
η ← Adam

(
∇η 1

B

∑B
i=1 [µ‖Hη(Gθ(xi))− xi‖2] , α, β1, β2

)
end while

Appendix C. Neural Network Parameter

All the neural networks (encoder, decoder and discriminator) in the paper had three hidden
layers, with the 100, 50, 25 neurons respectively. The input dimension for the generator was
chosen such that n = 3m. In the paper, m = 20 was used for synthetic case, and m = 100
for real data cases. The encoder and decoder both used hyperbolic tangent activation. The
first two layers of the discriminator adopted hyperbolic tangent activation, and the last one
linear activation.
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The tuning parameter was chosen to be the same for all synthetic cases, with µ = 0.1,
λ = 5, α = 0.0002, β1 = 0.9, β2 = 0.999. For the two real data cases, the hyper-parameters
were set to be µ = 0.01, λ = 3, α = 0.001, β1 = 0.9, β2 = 0.999.
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