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Abstract

Answering questions about why events happen001
in narratives requires commonsense knowledge002
that is external to the narrative. What aspects of003
this knowledge is accessible to large models?004
What aspects can be made accessible via exter-005
nal commonsense resources? We study these in006
the context of answering Why questions in the007
TellMeWhy dataset using COMET as a source008
of relevant commonsense relations. We ana-009
lyze the relative improvements over a base T5010
model when (a) increasing the model size, (b)011
injecting knowledge from COMET as part of012
the task input, and (c) asking the model to gen-013
erate COMET relation type as an explanation014
in addition to its answer. Results show that the015
larger model, as expected, yields substantial016
improvements over the base. Interestingly, we017
find that the question specific COMET relations018
can provide substantial improvements for both019
base and large models, with additional possible020
gains when asking the model to also generate021
COMET relation type. So, we augment a large022
model with noisy hints from COMET and find023
that this improves performance on the TellMe-024
Why task. We also develop a simple ontology of025
knowledge types and analyze the relative cover-026
age of the different models on these categories.027
Together, these findings suggest potential for028
methods that can automatically select and inject029
commonsense from relevant sources.030

1 Introduction031

Humans reason about events in narratives by mak-032

ing inferences about why those events happen. The033

recently introduced TellMeWhy dataset tests for034

this capability by posing why questions over events035

in simple narratives (Lal et al., 2021). Answer-036

ing these often requires commonsense knowledge037

(CSK) that is not explicitly stated as part of the038

narratives. Indeed, QA models built over standard039

base sized language models fare poorly, especially040

on questions where the answer is not directly avail-041

able in the narrative.042

There are two broad avenues for incorporating 043

the necessary commonsense knowledge for this 044

task. One is to look at even larger language models 045

(e.g. T5-11B (Raffel et al., 2020)) and another is to 046

leverage external knowledge resources. The former 047

can be seen as an implicit approach where we tap 048

knowledge that is acquired via language modeling 049

and general QA task pretraining. The latter is an 050

explicit approach where we inject knowledge from 051

a resource as part of the context. Specifically, we 052

ask three follow-up questions that can inform fur- 053

ther research along these avenues: (1) What aspects 054

of commonsense knowledge are already accessible 055

to larger language models? (2) What aspects can 056

be made accessible by injecting information from 057

relevant knowledge sources? (3) What kinds of 058

knowledge remains inaccessible? 059

For the TellMeWhy task, we explore the util- 060

ity of COMET1 (Bosselut et al., 2019; Hwang 061

et al., 2021) as a knowledge source. COMET 062

is a transformer-based model that can generate 063

commonsense inferences about events that it has 064

learned from ATOMIC (Sap et al., 2019; Hwang 065

et al., 2021) and ConceptNet (Speer et al., 2017). 066

The automatically generated knowledge may some- 067

times contain incorrect or irrelevant inferences. 068

Here, we aim to understand how much COMET 069

can contribute to our task. Hence we conduct ora- 070

cle experiments where we choose the best possible 071

inference from COMET and use it as an additional 072

signal to integrate into the QA model. 073

We explore multiple ways of integrating this 074

kind of external knowledge into a QA model for 075

this task. In the first, we provide the model with 076

some of the best possible relations as part of the 077

input. This model is only required to generate 078

the answer to the question. Next, we provide the 079

model with the same input but also ask it to gener- 080

ate the best relation type along with the answer. In 081

doing so, the model gives away the kind of knowl- 082

1We use COMET2020 for our experiments.
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edge it attends to in order to answer the question.083

Motivated by the gains resulting from integrating084

inferences from external sources, we finally build085

a model augmented by 5 COMET relations cho-086

sen according to the scores that COMET assigns087

it. This model, without access to any oracle infor-088

mation, shows improvement over previous models089

that do not cheat.090

To analyze the relative merits of all these ap-091

proaches, we first manually categorize the Why092

questions according to the types of knowledge that093

are needed to answer them. We find that most094

of the questions target Consequence, Goal seek-095

ing, Desire, and Reactionary types of knowledge.096

We use an Other category for the rest. We ana-097

lyze the performance of different models across098

these knowledge categories. We compare the base099

and larger versions of T5 and its corresponding100

knowledge injected versions, where we use oracle101

relational inference from COMET.102

We make the following observations: (1) per-103

formance improves dramatically when using the104

largest available model, (2) incorporating external105

knowledge shows substantial increases for smaller106

models but also provides significant increases even107

for a larger model, (3) external knowledge particu-108

larly helps on “implicit answer” questions where109

the answer is not explicitly stated in the story, (4)110

models seem to particularly lack the ability to uti-111

lize Consequence knowledge, and (5) a large model112

trained to jointly generate an answer as well as the113

type of relation needed to answer also performs114

well.115

2 Related Work116

2.1 Knowledge Bases117

Knowledge bases (KBs) such as ConceptNet (Speer118

et al., 2017), WebChild (Tandon et al., 2017),119

Quasimodo (Romero et al., 2019) are examples of120

large knowledge bases constructed through semi-121

automated extraction over text, and contain world122

facts and informal relationships between common123

concepts that convey some prior knowledge. KBs124

that are compiled using crowdsourcing generally125

have a higher quality, e.g., ATOMIC (Sap et al.,126

2019) is an atlas of everyday commonsense knowl-127

edge and contains 880k triples about causes and128

effects of human activities and annotated by crowd-129

sourced workers. ATOMIC is organized as if-then130

relations and can be categorized based on causal131

relations (Sap et al., 2019; Hwang et al., 2021).132

Petroni et al. (2019) show that rather than ex- 133

tracting knowledge from text or compiling using 134

crowdsourcing, pretraining language models on 135

text already endows them with certain types of fac- 136

tual knowledge that helps them do well on QA 137

tasks. More recently, a popular approach is to 138

fine-tune a language model on existing KBs, to 139

generalize their knowledge and pays attention to 140

the context, e.g., COMET (Bosselut et al., 2019; 141

Hwang et al., 2021) generates context relevant com- 142

monsense knowledge. It is a fine-tuned language 143

model over ATOMIC and ConceptNet KBs. Sim- 144

ilarly, ParaCOMET (Gabriel et al., 2021) is a lan- 145

guage model fine-tuned for discourse knowledge by 146

fine-tuning over ROCStories, thus it generates rela- 147

tions consistent with an input narrative. We employ 148

COMET as a source of commonsense knowledge 149

in this paper. 150

2.2 Incorporating External Knowledge 151

Model outputs have been improved through 152

commonsense injection during post-processing 153

(Nag Chowdhury et al., 2018), using regulariza- 154

tion at training time (Guan et al., 2020; Razniewski 155

et al., 2021) and more recently by appending to the 156

input (Lewis et al., 2020; Talmor et al., 2020) as 157

recent models are judicious about the input context. 158

Building upon the recent success of injecting com- 159

monsense in the input (Lewis et al., 2020; Talmor 160

et al., 2020), our approach is to inject knowledge 161

in the input by querying the knowledge source for 162

task relevant knowledge. The semantic, contex- 163

tual representation of the current commonsense 164

sources helps alleviate past problems with search- 165

ing for task specific knowledge in a static knowl- 166

edge graph. There are two key challenges in us- 167

ing external sources. One is in figuring out what 168

knowledge to use and the second lies in effectively 169

integrating this into the end task. 170

Examples of recent research that inject triples 171

into sentences in order to create domain-specific 172

knowledge (Liu et al., 2020; Wang et al., 2020). 173

Huang et al. (2019) incorporate commonsense 174

knowledge directly into training data. Feng et al. 175

(2020) leverage relations from ConceptNet using 176

structured relational attention to perform multi-hop 177

question answering. However, there is still un- 178

certainty about the best way to represent external 179

knowledge in order to solve commonsense reason- 180

ing problems (Zhang et al., 2020). 181

ERNIE (Zhang et al., 2019) is an enhanced lan- 182
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Figure 1: Example inputs and outputs for different models. The first four rows are used for both base and 11B sized
models, while the last two are used only with 11B models.

guage representation model trained using large-183

scale text corpora and knowledge graphs that shows184

significant improvements on various knowledge-185

driven tasks. Xiong et al. (2020) propose a weakly186

supervised pretraining objective, which explic-187

itly forces the model to incorporate knowledge188

about real-world entities in order to perform entity-189

related question answering tasks. KGLM (Logan190

et al., 2019) is a neural language model with mecha-191

nisms for selecting and copying facts from a knowl-192

edge graph that are relevant to the context.193

KagNet (Lin et al., 2019) grounds a question-194

answer pair in CommonsenseQA (Talmor et al.,195

2019) from the semantic space to the knowledge-196

based symbolic space as a schema graph, uses a197

KG-aware module to focus on it and scores an-198

swers with graph representations. Lv et al. (2020)199

propose a graph-based contextual representation200

learning module and a graph-based inference mod-201

ule to make better use of the graph information202

for commonsense question answering. DEKCOR203

retrieves information from ConceptNet and uses it204

to train an ALBERT model (Lan et al., 2020) for205

CommonsenseQA (Talmor et al., 2019) and Open-206

BookQA (Mihaylov et al., 2018). Shwartz et al.207

(2020) generate and integrate background knowl-208

edge from pretrained LMs to present an unsuper- 209

vised framework for multiple-choice commonsense 210

tasks. Generated knowledge prompting elicits and 211

integrates knowledge from language models using 212

task-specific, human-written, few-shot demonstra- 213

tions so as to improve performance on common- 214

sense reasoning tasks (Liu et al., 2021). 215

3 Analyzing Commonsense in Models 216

Our goal is to analyze two sources of knowledge for 217

reasoning about Why questions: (1) Large general- 218

purpose LMs, effective models of distributional 219

information which are shown to encode different 220

kinds of knowledge, and (2) COMET, a common- 221

sense specific knowledge (CSK) language model 222

that contains many relations that are relevant to 223

Why questions. 224

3.1 CSK in Pretrained LMs 225

Pretraining language models on text already en- 226

dows them with certain types of knowledge 227

(Petroni et al., 2019). So, we use three different 228

versions of T5 to explore the capacity of large lan- 229

guage models. In addition to the base T5 model 230

(T5-Base) with 220M parameters, we use the 11 231

Billion parameters version (T5-11B) as a large 232
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model. Both of these versions are trained on a233

variety of tasks in addition to standard language234

modeling pretraining. Last, we also use the Uni-235

fiedQA checkpoint of the T5-11B model (T5-11B-236

UQA), which can be seen as a large model that is237

further fine-tuned for QA.238

3.2 CSK in Finetuned LMs (COMET)239

COMET is a transformer-based model that can gen-240

erate commonsense inferences about events that241

it has learned from ATOMIC (Sap et al., 2019;242

Hwang et al., 2021) and ConceptNet (Speer et al.,243

2017). It provides commonsense knowledge across244

various dimensions for standalone events. It has245

been proven that such knowledge is helpful for var-246

ious tasks. We try two methods of incorporating247

COMET knowledge into our models.248

3.2.1 COMET Relations as Hints249

One way to inject relevant knowledge into the250

model is to add the relevant COMET relations to251

the model’s input. Our goal is to assess the po-252

tential for COMET’s relations in answering Why253

questions. To this end, we first build an oracle that254

identifies the best relation generated by COMET255

for each question based on its semantic overlap256

with the answer for the question. For each sen-257

tence that was used to create a question in TellMe-258

Why, we obtain 3 relation phrases of different types259

from ATOMIC2020 (Hwang et al., 2021). We fo-260

cus on relation types2 about people (social inter-261

action) and events (event-centered). We calculate262

the BertScore (Zhang* et al., 2020) between each263

relation and all gold answers for a question. The264

relation with the highest score is considered to be265

the best relation to help answer the question. We266

hypothesize that this is the kind of knowledge the267

model needs to answer the question correctly. The268

best relation is encapsulated inside an ‘info’ tag269

and concatenated to the end of model input. It is270

important to note that this is an oracle experiment271

since we use the gold answers in the test set to find272

the best relation for each question. We employ this273

oracle approach since our preliminary experiments274

showed that models have a hard time automatically275

determining the relevant type of knowledge when276

COMET inferences for all relations are included,277

resulting in decreased performance.278

2Full list of COMET relations: Causes, CausesDe-
sire, DesireOf, Desires, HasFirstSubevent, HasLastSubevent,
HasPrequisite, HasSubEvent, HinderedBy, MotivatedByGoal,
oEffect, oReact, oWant, xEffect, xIntent, xNeed, xReact, xRea-
son, xWant.

3.2.2 COMET Relations as Explanations 279

We explore another way to use the COMET knowl- 280

edge injected into question answering models. 281

First, for every question, each related COMET re- 282

lation is ranked according to its BertScore with 283

respect to all the gold answers for the question. We 284

build a T5-11B model which takes the question, 285

the context and the top 5 scoring COMET relations 286

(in shuffled order) as its input. We call this model 287

EXPLAINCOMET. It is trained to generate the an- 288

swer to the question as well as the best relation 289

type. Such a setup allows the model to automat- 290

ically express the type of information it thinks is 291

useful in answering the question. We compare this 292

model with an analogous explicit injection method 293

(T5-11B + top 5) where the input to the model is 294

the same but the model is only required to produce 295

the requisite answer. 296

3.2.3 COMET Relations as Noisy Hints 297

External knowledge sources are noisy and injecting 298

them into a model as input increases their influ- 299

ence as well as risk for the task. Finally, we use 300

COMET as a noisy source of information to train 301

the T5 (NOISYCSK) model to better answer why 302

questions in stories. For each question, we extract 303

inferences from COMET along with its scores. The 304

top 5 scoring relation types and phrases (in order) 305

are used as supplementary information in the input 306

of the model. We maintain the order of the rela- 307

tions to use the position bias (ranking), expecting 308

the model to learn more from the higher ranked 309

relations rather than the lower ranked ones. An 310

example of its input-output behaviour can be seen 311

in Figure 1. 312

4 Experiments 313

4.1 Dataset 314

TellMeWhy (Lal et al., 2021) is a dataset of 30k 315

questions and free-form answers concerning why 316

characters in short narratives perform the actions 317

described. It is built upon the ROCStories corpus 318

(Mostafazadeh et al., 2016). The questions are cre- 319

ated by applying templates over events described in 320

the narratives, and the answers are crowd-sourced 321

from MTurk. Each question has 3 (possibly dif- 322

ferent) human answers. The dataset contains both 323

explicit-answer questions (Expl; there is a possible 324

answer to the question in the narrative) and implicit- 325

answer questions (Impl; the answer is not in the 326

narrative, so external knowledge and/or reasoning 327
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is needed).328

4.2 Implementation Details329

First, we investigate T53 models (Raffel et al.,330

2020) that were designed to tackle a variety of331

text to text tasks, including free-form question an-332

swering. We follow the input format described in333

Appendix D.15 of Raffel et al. (2020) and illustrate334

an example in Figure 1. Next, we also analyse Uni-335

fiedQA models (Khashabi et al., 2020), variants336

of T5 that are tailored to question answering tasks.337

Each model is fine tuned in the same manner.338

Finally, we analyse the T5 model in a multi-task339

setting. The model is given the question, the related340

story and its associated top 5 types and inferences341

from COMET. Essentially, we ask the model to342

generate an answer as well as an explanation (in the343

form of the COMET relation type and inference)344

for it.345

4.3 Human Evaluation Metric346

We use the human evaluation templates and MTurk347

settings provided by Lal et al. (2021) to collect348

judgments for the predicted answers of all the mod-349

els. We asked the annotators whether the answer350

shown to them was valid. Each answer is evaluated351

by 3 annotators on a 5-point Likert scale (-2 to 2)4.352

We use the average Likert score over all answers353

as a metric for performance. The maximum score354

possible is 2, and the minimum is -2. In order to355

improve time and cost efficiency, we implement a356

caching mechanism to re-use previous annotator357

judgments for the same answer for a question in a358

particular story. For this purpose, we save all the359

human judgments for a (question, answer, story)360

triple. For all model predictions, we first check if a361

(question, answer, story) triple5 is already present362

in the cache. If it is, we use the old judgments for363

it. If not, we gather validity annotations for it using364

human evaluation and add them to the cache for365

future use.366

5 Results367

We presents human evaluation results that show the368

effects of model size (Table 1), explicit common-369

3Hereafter, unless specified otherwise, T5 refers to the 11
billion parameter version (T5-11B)

4Integer scores correspond to the labels: strongly disagree,
disagree, neutral, agree, strongly agree

5All text is lowercased and answer is also stripped of punc-
tuation.

Model Full Expl Impl

T5-BASE (NOCSK) 0.19 0.56 -0.56
T5-BASE (NOCSK) UQA 0.2 0.55 -0.51
T5 (NOCSK) 0.91 1.11 0.51
T5 (UQA) 1.22 1.36 0.95

Human 1.35 1.39 1.28

Table 1: Effect of model size: Average likert score of
human judgments of answers generated by models of
different sizes. T5 denotes the T5 model, (UQA) de-
notes the UnifiedQA checkpoint for that size. (NoCSK)
denotes that no commonsense knowledge was added to
this model.

Model Full Expl Impl

T5-BASE (ORA1CSK) 0.87 1.06 0.5
T5-BASE (ORA1CSK) UQA 0.75 0.88 0.51
T5 (ORA1CSK) 1.19 1.35 0.87
T5 (ORA1CSK) UQA 1.07 1.2 0.81

Human 1.35 1.39 1.28

Table 2: Effect of explicit commonsense injection:
Average likert score of human judgments of answers
generated by models with and without explicit common-
sense knowledge injection. T5 denotes the T5 model,
UQA denotes the UnifiedQA checkpoint for that size,
and the ORACSK suffix denotes the model provided
with the best relation during fine tuning.

sense injection (Table 2), and implicit common- 370

sense injection (Table 3). 371

Effect of Model Size: Table 1 shows the aver- 372

age Likert scores of models of different sizes. The 373

base model performance is underwhelming, doing 374

especially poorly on Impl. T5-base (UnifiedQA) 375

is the best performing benchmark on the TellMe- 376

Why dataset (Lal et al., 2021). We see that its 377

performance is very similar to the T5-base model, 378

showing only minor improvements on Impl. Next, 379

we increase the model sizes to the 11 billion pa- 380

rameter T5 model. We find that the larger models 381

show a notable performance improvement as com- 382

pared to their base counterparts. In fact, T5-11B 383

(UQA) comes close to human performance on Expl. 384

While this large model comes close to human per- 385

formance, there is still room for improvement for 386

implicit answer questions. 387

Effect of Knowledge Injection: We add the 388

best scoring relation (top1) to the input of the mod- 389

els to provide them extra information to answer the 390

question. This top1 relation is the relation that has 391
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Model Full Expl Impl

Explain EXPLAINCOMET 1.31 1.4 1.13
Answer T5 (ORA5CSK) 1.28 1.39 1.11

Human 1.35 1.39 1.28

Table 3: Effect of explaining model answers: Average
likert score of human judgments of answers generated
by EXPLAINCOMET model (built over T5) and a large
model given the top 5 relations (ORA5CSK) in shuffled
order.

the highest BertScore with respect to all the gold392

answers for the question. Table 2 shows the average393

Likert scores of models which had access to exter-394

nal commonsense. Compared to Table 1, we find395

that adding this information helps the base models396

answer questions a lot better. It also improves the397

performance of T5-11B, bringing it close to human398

performance on Expl. However, it hurts T5-11B399

(UQA) performance significantly. We hypothesize400

that, since this model architecture is pretrained for401

question answering, it is possible that providing402

any information other than context distracts it from403

its ability to do the task. Wu et al. (2021) previ-404

ously have shown an instability in performance405

when scaling up T5 (UnifiedQA) models. Our find-406

ings are in line with that. Overall, even with the407

best possible information from an external source,408

there is a significant gap with human performance409

on the implicit answer questions.410

Effect of Explaining Model Answers: Hav-411

ing shown that models benefit from commonsense412

knowledge, we proceed to explore a way to inte-413

grate this kind of information into the model implic-414

itly. Table 3 shows that ExplainCOMET achieves415

overall performance close to humans on this task.416

In fact, it does slightly better on Expl. But there is417

still a clear gap on the implicit answer questions.418

In addition to that, it is able to generate the correct419

best relation type 44.27% of the time.420

To demonstrate the advantage of implicit injec-421

tion, we compare this joint training method with an422

analogous explicit injection method. We see that423

T5-11B + top 5, despite having explicit access to424

the top 5 scoring relations extracted from COMET,425

scores a little lower than ExplainCOMET model426

for all types of questions. It should be noted that427

both these models cheat to a lesser extent as they428

do not have direct access to the best relation in-429

formation. Instead, during training, they learn to430

attend to relevant knowledge for answer generation.431

This requires some understanding of the type of432

Model Full Expl Impl

T5 (NOCSK) 0.91 1.11 0.51
T5 (NOISYCSK) 1.09 1.25 0.76
T5 (ORA1CSK) 1.19 1.35 0.87
T5 (ORA5CSK) 1.28 1.39 1.11

Human 1.35 1.39 1.28

Table 4: Effect of using top 5 relations: Average likert
score of human judgments of answers generated by the
NOISYCSK model and a large model given the top 5
relations in shuffled order (ORA5CSK). The numbers
in bold represent the performance of a model without
any oracle information.

knowledge needed to answer a question. 433

Effect of using Noisy Hints: Having shown 434

an upper bound for using COMET relations as a 435

source of commonsense knowledge for why ques- 436

tion answering, we proceed to build a model that 437

tries to leverage them. We use the top 5 relations 438

from COMET (as scored by COMET itself) and 439

add that information into the input encapsulated 440

in ‘<info>’ tags. Table 4 shows that this model’s 441

performance lies squarely between a model trained 442

without external commonsense and a model trained 443

with ideal commonsense knowledge. 444

6 Analysis 445

To better understand the strengths and weaknesses 446

of these models, we defined an ontology for the 447

types of knowledge that are required to answer 448

TellMeWhy questions. We identified five cate- 449

gories of answers, and then labeled the CATERs 450

subset of TellMeWhy, for which the gold answers 451

already have judgments. The categories are: (1) 452

Goal-seeking: an agent performed an action be- 453

cause it was an intermediate step to a larger goal 454

(22.6% of questions), (2) Reactionary: an agent per- 455

formed an action as a reaction/followup to another 456

event (23.1% of questions), (3) Desire: an agent 457

performed an action to accomplish an inherent goal 458

(11.5%), (4) Consequence: an event (a tangible 459

action was not performed) happened as a conse- 460

quence of another event (35.6%), (5) Other: types 461

of knowledge that do not fall into the categories 462

above (7.4%). 463

Since there is a bigger gap with human perfor- 464

mance on the implicit answer questions (Impl), we 465

analyse them to further understand the gaps in the 466

models’ understanding and to identify possible ar- 467

eas for improvement. We present the distribution 468

of performances of the different models on each 469
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Figure 2: Accuracy of the base and larger models on
different ontological types of questions.

other categories. To further quantify the differences470

across models, we first compute a failure probabil-471

ity for each category i.e., the probability of a failed472

question to belong to a given category. We compute473

this by dividing the number of incorrectly answered474

questions of that knowledge type by the total num-475

ber of questions it gets wrong. We measure the476

differences in these failure probability distributions477

across two models using the Jensen-Shannon Di-478

vergence (JSD).479

6.1 What kind of information do humans use480

that are inaccessible to models?481

Figure 2 shows accuracy for the different types482

of questions. The base model is unable to reason483

adequately about the ‘Consequence’ and ‘Other’484

types of knowledge. However, as the model size485

increases, it is apparently able to capture a variety486

of types of knowledge and it also demonstrates487

the gaps in their understanding as compared to488

humans. Understanding all consequences of an489

Figure 3: Effectiveness of T5 models at capturing dif-
ferent types of relational knowledge. Both models cor-
rectly answer the same number of questions for some
relation types (indicated by the presence of only one
color).

Models
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T5 T5 + top1

Figure 4: Effect of adding external commonsense knowl-
edge to T5-base.

event is difficult, so it is plausible that it is the 490

hardest category for models to learn. 491

The failure probability distributions for UQA 492

and UQA-11B have a moderate divergence. The 493

JSD of the distributions across categories is only 494

0.14, suggesting that there is only a slight differ- 495

ence in the kinds of knowledge both models are 496

unable to capture. 497

6.2 What kinds of COMET relations are 498

already accessible to larger models? 499

We can also categorize the questions in terms of the 500

COMET relation type that best helps to answer the 501

question. Using this we can analyze what kinds of 502

knowledge seem to already be encoded in the larger 503

model that allows it to answer questions better than 504

the smaller model. Comparing this with Figure 3 505

shows that the larger model seems to capture many 506

types of COMET relations. In fact, increasing the 507

size of the model helps it accurately answer all 508

the questions for some relation types (HasPrerequi- 509

site, HasLastSubEvent, HasSubEvent). However, 510

it does not help for information related to effects 511

(xEffect, oEffect), amongst others. It is clear that 512

there is a lot of ground to be covered for most rela- 513

tion types. 514

6.3 What kind of questions does external 515

knowledge help with? 516

There is a large potential for improvement if we can 517

effectively integrate external knowledge into mod- 518

els as shown in Table 2. In Figure 4, we see that 519

adding external knowledge helps the base model 520

improve the most on Consequence and Other, al- 521

though these also had the most overall room for 522

improvement to begin with. In terms of errors, the 523

JSD between the failure probability distributions 524

of the base and larger models is 0.24, which sug- 525
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Figure 5: Effect of adding external commonsense knowl-
edge to T5-11B. Both models answer the same number
of questions requiring Other kinds of knowledge.

gests that there is a larger divergence in model’s526

abilities to use knowledge of different categories.527

Figure 2 demonstrates that larger models are able528

to capture these kinds of information better than529

the base model (even with the external knowledge530

added to it), showing that they already contain the531

some of the external commonsense knowledge.532

For the UnifiedQA model, we observe that533

adding external knowledge to the larger model actu-534

ally hurts performance. We hypothesize that since535

UnifiedQA is trained on question answering tasks536

using only the context and question, it is plausi-537

ble that this extra information confuses the model538

from learning the right micro-patterns. External539

commonsense helps learn more ‘Reactionary’ and540

‘Other’ knowledge but confuses the model about541

all other kinds of knowledge.542

7 Conclusion and Future Work543

Answering Why questions requires access to some544

forms of commonsense knowledge. This work an-545

alyzed how much of this knowledge is already ac-546

cessible in large models, what parts of it can be547

tapped from the COMET commonsense relations.548

As we would expect, large models seem to contain549

a larger portion of this knowledge compared to the550

base size model. But we also find that question551

relevant COMET relations have the potential to552

substantially improve performance even for a large553

model. The knowledge category analyses shed fur-554

ther light on what kinds of knowledge are helpful.555

Our empirical study indicates that these com-556

monsense sources usually contain the required557

knowledge, but it is not easy to tell apart the task558

relevant knowledge just by using the scores of those559

sources. Future work needs to develop better ways560

of automatically locating relevant relations in or- 561

der to realize the potential. We also show that a 562

simple approach for commonsense injection has to 563

deal judiciously with the noise in the commonsense 564

source. In the absence of any additional supervi- 565

sion signal, this noise limits the learning of the 566

model hence we need more advanced methods that 567

can deal with the inevitable noise in commonsense 568

sources. 569

We demonstrate better ways to train to deal with 570

some noise when provided the extra supervision 571

signals of the expected explanation (our Explain- 572

COMET model). Such signals are not present at 573

test time and thus our current models provide an 574

upperbound. We show that it is possible in the near- 575

future to close the gap w.r.t. human performance 576

on simple story tasks, but this would require new 577

techniques that can jointly learn to distinguish the 578

noise from existing sources of commonsense while 579

leveraging their redundant signals. 580
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