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Summary

Gene expression in all eukaryotes depends critically on the function of transcriptional activation
domains of gene activator proteins. The conventional model for activation domain (AD) function
is the direct physical recruitment of specific coactivators and transcriptional machinery
components. However, ADs are short and astronomically variable sequences, with up to 10%
possible interchangeable sequence variants for a single gene activator; each variant is
intrinsically disordered in structure and interacts with its targets with low specificity and affinity.
How these peptides recruit their targets is becoming increasingly difficult to explain, exposing a
massive knowledge gap in molecular biology. Here, we show that the single required
characteristic of ADs—consistent with their extreme variability, intrinsic structural disorder, and
near-stochastic interaction mode—is an amphiphilic aromatic—acidic surfactant-like property.
We propose that the AD surfactant, by triggering the local gene-promoter chromatin phase
transition, catalyzes the formation of “transcription factory” condensates. We demonstrate that
the presence of tryptophan and aspartic acid residues in the AD sequence is sufficient for in
vivo functionality, even when present only as a single pair of residues within a 20-amino-acid
sequence containing nothing more than additional 18 glycine residues. We demonstrate that the
amphipathic a-helix structure, suggested previously as beneficial for AD function, is actually
detrimental, and breaking this helix by inserting prolines significantly increases activation
domain functionality. The proposed surfactant action mechanism based on near-stochastic
interactions implied by the minimalistic activation domains changes not only the paradigm for
the explanation of gene activation but also the fundamental biochemistry paradigm based on the
specificity of sequence-to-structure-to-functional-interaction. The mechanism of activity
regulation by near-stochastic allosteric interactions could easily be applied to other biological
processes.
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Introduction

The expression of genetic information written in nucleotide sequences of DNA is the
fundamental function of all living entities. The process is initiated by the binding of gene
activators to corresponding gene promoters. In eukaryotes, gene activator proteins typically
contain two obligatory parts: the DNA-binding domain (DBD), which is responsible for
recognition and specific binding to the cognate promoter DNA sequence, and the activation
domain (AD), which is responsible for the initiation of gene transcription. The two domains are
drastically different in nature and in function. The DBD for each activator contains a certain
conserved amino acid sequence and structure and binds to a specific consensus DNA
sequence 2. Contrarily, ADs are typically short, ranging from six to several dozen amino acids,
and extremely variable in sequence and it has been estimated that up to 10** sequences are
able to substitute for each other within the context of the same activator molecule *7. In
addition, ADs are intrinsically disordered in structure and bind to a wide variety of proteins and
binding regions on the surface of these targets via “fuzzy”, low-specificity interactions &1°. The
mechanism of the function of ADs is a long-standing enigma, as their features defy the

traditional specificity of sequence-to-structure-to-function paradigm of molecular biology.

Two models have been proposed to explain the mechanism of AD function. First is the
traditional and widely accepted model of direct physical recruitment by ADs of coactivators and
components of enzymatic transcriptional machinery. This model implies a certain level of
specificity for AD sequences, such as a consensus sequence, or at least Short Linear Motifs
(SLiMs); some specific structural features, such as an amphipathic a-helix; and specific targets,
for instance, the Mediator complex. However, recent high-throughput experimental data and the
results of bioinformatics analysis increasingly contradict the recruitment model, showing the lack
of specificity of ADs at the sequence, structure, and target interaction levels (for review see [co-

submitted manuscript]). The second, newer and not yet widely accepted model ”'! considers



ADs as surfactants that act on promoter nucleosomes, triggering chromatin phase transition,
freeing promoter DNA, and promoting condensation of necessary enzymes and co-factors. The
surfactant model postulates the extremely high variability of AD sequences, because the
requirement for the functional sequence is the presence of a limited number of acidic and
aromatic amino acids. The model requires no specific structure but spatial and structural
flexibility, and presumes near-stochastic interactions with targets at the anchoring site (i.e., the
gene promoter). The absence of a specific sequence or structure, and a near-stochastic target
interaction mechanism, of a protein domain that is critical for a fundamental biological function
presents a new paradigm, challenging the traditional foundational biochemical principle of

specificity rooted in the sequence-to-structure-to-functional-interaction triad.

Here, we provide experimental data that allow us to discriminate between these two
proposed mechanisms. By synthesizing and testing large sets of specific AD sequences in vivo,
we demonstrate that, in line with the surfactant model and contrary to the specificity required by
the recruitment model, the presence of only one tryptophan and aspartic acid, each represented
as a single side chain-bearing amino acid residue within the AD region, is sufficient for gene
activation. Also contrary to the expectations of the recruitment model, we demonstrate that the
presence of the amphipathic a-helix structure is detrimental for AD functionality, while breaking
this structure by insertion of prolines significantly increases AD functionality, providing for the
first time a rationale for the existence of the entire class of proline-rich ADs. With these and
other data, and in line with the surfactant model, we hope to change the gene expression
paradigm and establish near-stochastic interactions as required for, rather than detrimental to,

this and possibly other crucial biological functions.

Results

To elucidate the mechanism of AD function, we developed a high-throughput assay to

test the in vivo functionality of individual sequences within a library of 12,400 synthetically



generated sequences. These sequences were designed to address multiple questions
regarding potential determinants of AD function, such as length, composition, structure
preference and others. The synthesized library was then cloned into a yeast centromeric shuttle
vector, fusing each AD sequence to the Gal4 DBD. Then, the library was transformed into the
yeast two-hybrid Y2HGold tester strain, and the transformed yeast were screened for growth,
which was dependent on the expression of the Gal-Aureobasidin antibiotic resistance reporter
gene (Fig. 1A). The library DNA for different growth time points was isolated and sequenced to
determine the number of reads for each individual sequence and its change over time. The
growth slope for each sequence was calculated and served as a measure of the AD
functionality. Since the results were obtained within the scope of the whole library pool
screening, the results for individual sequences and for all different sequence sets can be
considered to be obtained under identical experimental conditions and thus to be accurately
comparable. In addition, each sequence was labeled by multiple individual barcodes; thus, the
results for each individual sequence are the mean of multiple (typically five) independent
experimental repeats. As part of the library we used the sequences of known AD regions, such
as Gal4(840-857), Gal4(860-872) and VP16 sequences '2'3, as internal positive controls (Fig.
1B). As negative controls, we used a null sequence that contained a stop codon after the DBD
and a sequence containing a stretch of 20 glycines (G), which was shown to be neutral for AD
functionality under similar experimental conditions ’. To ensure high stringency, the cutoff for a
“functional AD” was defined as the mean of the five highest values produced by 50 independent

stop codon-null sequences.

A single aspartic acid and single tryptophan residue within the AD region are sufficient

for functionality



Previous reports indicated that the most beneficial residues for AD functionality are
aromatic and acidic amino acids, and the highest gain in prediction of AD functionality using
machine learning on large >10° set of diverse random sequences was derived from the
presence of amino acids W and D 7. In addition, high AD functionality was repeatedly
demonstrated for the monotonous WDWDWDWDWDWDWDWDWDWD sequence®, indicating
that for high functionality, it is sufficient to have only W and D. Here, we analyzed sequences
with different numbers of WD repeats to determine how functionality depends on this feature
and found that decreases in WD repeat number generally correlate with decreases in
functionality (Fig. 1B). Unexpectedly, the sequence GGGGGGGGGGGGGGGGGGDW,
containing just one W and one D, showed residual functionality (1.11+0.02 [95% CI])
comparable to that of the VP16 minimal AD module (0.55+0.28). Similarly, analysis of WD
sequences surrounded by G residues or WD blocks separated by a stretch of G residues (Fig.
1C) revealed functionality for sequences containing a single W and a single D. The lowest
functionality was demonstrated for sequences containing four or five Ws and Ds, and the
highest functionality was demonstrated for the DWx9 sequence (2.12+0.22). The answer to the
same question about the amount of Ws and Ds sufficient for AD functionality within the context
of sequences with non-alternating clustered Ws and Ds (Fig. 1D) is that one W and one D is
sufficient for at least a low level of functionality. Sequences with a single W and single D
separated by different numbers of Gs (e.g., WGD, WGGD, WGGGD, see Fig. 1E and F) are
also functional. By contrast, sequences containing more than two adjacent Ws or Ds (e.g.,
GGGGGGGGGGGGGGGGWWWDDD or GGGGGGGGGGGGGGGGDDDWWW) are
nonfunctional, and the sequence functionality generally drops with increasing lengths of homo-
W and homo-D stretches (Fig. 1D). These results are in good agreement with previous
observations that clustering of separate acidic and separate aromatic residues within the AD
region is detrimental to functionality 7. Interestingly, some functionality was observed for

sequences containing both W homostretches and D homostretches separated from each other



by larger numbers of Gs (Fig. 1E, green dots). In examining why the sequence containing the
WDWDWDWD block is nonfunctional, we found that DWWDDWDW, a different sequence with
an identical composition, is functional (Fig. 1G). A possible explanation for this observation is
that while forming a 3D a-helix, Ws within the WDWDWDWD sequence are forming pi-pi
interacting pairs, similar to those in a tryptophan zipper ', while in DWWDDWDW, at least one
W remains free. That in turn suggests that solvent exposure of at least one aromatic residue in
the AD sequence is required for functionality and is consistent with the finding that a single D

and single W is sufficient for functionality (Fig. 1F).
Balance and intermixing of acidic and aromatic residues underlies AD function

To expand the analysis, we turned to the other part of our library, which contains a set of
sequences with all possible combinations of W and D at 12 positions (3968 quantified out of
4096 possible sequences). The in vivo screening revealed 1330 functional and 2638
nonfunctional sequences within this set. Analyzing this set as a whole, we found that in general,
two features are important for functionality: the balance between W to D residues in the
sequence, and how they are intermixed (Figs. 2A and 2B). Similar patterns were noticed when
the balance and intermixing between aromatic and acidic residues were analyzed within a much
larger set of ADs in the context of the Gen4 activator or HSF activator (see reference’ and Fig.

2C).

To examine whether these functional sequences might contain a specific mini-motif, we
tested all 16 WD tetrapeptide variants and found that tetrapeptide sequences containing an
excess of Ds, especially Ds clustered together, are generally detrimental, while D and W
intermixing is beneficial and creates a number of functional tetrapeptide sequences, with
DDWW as the top performing sequence (Fig. 2D). A very similar trend of aromatic-acidic
tetrapeptide motif distribution is obvious from our analysis of two independent in vivo-tested AD

and previously published sequence datasets created on the basis of natural AD sequences in



the context of artificial DBD-ER fusions °® and a sampling of large unbiased random sequence
ADs in the context of Gen4 ©. This similarity of the trends suggests an activator-independent

general mechanism for AD function.

To test whether the position of the tetrapeptides within the AD sequence is important, we
calculated the probability of each tetrapeptide contributing to functionality when positioned in
different parts of the AD region (Fig. 2E). This analysis indicated that while W and D intermixing
is beneficial, W-rich sequences are generally more beneficial at the spatially freer end of the
molecule, while D-rich sequences are beneficial internally. Similar trends are observed for the
broader set of acidic-aromatic tetrapeptides in the Gen4 context (Fig. 2F and reference 7). When
we used individual tetrapeptides, their position within the sequence, and the balance between
acidic and aromatic residues as features for regression ML model training, we observed that
each feature had a positive value for the prediction of AD functionality, and the combination of

all these features produces the most accurate prediction (Fig. 2G).

The position effect is much clearer when the functionality contributions of W and D within
the AD sequence space are analyzed directly (Fig. 3A). Generally, the positive contribution of W
increases when it is positioned toward the end of the molecule, while D shows the exactly
opposite behavior. This observation is consistent with our previous analysis ’; however, the
trend breaks at the last two positions within a 12-amino-acid AD. In examining what sequences
display higher functionality with generally detrimental terminal D(s), we found that it is especially
beneficial if a cluster of Ws precedes the D(s) (Fig. 3B). A similar trend was observed when we
analyzed the acidic and aromatic amino acid distributions within a previously published © dataset
of random AD sequences in the Gen4 context (Fig. 3C). Comparing the different sequences
containing a cluster of 5 Ws, which is usually detrimental for functionality, we found that flanking
such clusters with Ds is generally beneficial, with the highest functionality observed if the

majority of Ds are situated internally (Fig. 3D). Molecular modeling suggested that the D-



flanking effect likely occurs because the repelling charges of aspartic acid residues prevent the
tryptophan moieties from forming a hydrophobic mini-globule or a disordered aggregate

supported by hydrophobic and pi-pi interactions between aromatic rings (Fig. 3E).

Formation of an amphipathic a-helix is not beneficial for AD functionality, while breaking

the helix with proline increases the gene activation potential

Since the 3D structure within the AD microenvironment (Fig. 1-3) seems to play an
important role, and because the amphipathic a-helix is specifically considered as an important
structural feature of ADs °'°, we created a library of sequences all containing 5 Ws and 5 Ds
interspersed with random amino acids (W.D.W.D.W.D.W.D.W.D, henceforth called the WD5
library). The WD5 backbone sequence, if folded, always creates an amphipathic a-helix (Fig.
4A). WD5 library screening followed by DNA sequencing, normalization of the number of reads
for each sequence to that at the 0 time point, and AD functionality cutoff based on redundant
stop codon null sequences, as described above, confirmed that of 107,975 distinct sequences
tested, 19.6% were functional ADs. We binned the sequences by their predicted percent a-helix
formation and found that the percentage of functional sequences in each bin decreased as the
prediction of the a-helix fraction increased (Fig. 4B). By analyzing sets of sequences enriched
with individual amino acids within the WD?5 library (Fig. 4C), we found that increasing the
number of basic amino acids between Ws and Ds was detrimental, which was consistent with
the highly negative effect of K and R on AD functionality ’. A similar negative effect was
observed for sequences enriched with additional (> 5) aromatic residues and to a lesser degree
among sequences enriched with additional acidic residues, which is consistent with the results
of Fig. 2A and the previously observed negative effect of shifting the balance between acidic
and aromatic residues ’. Unexpectedly, a progressive increase in the number of proline residues
(P) within the WD5 sequences was correlated with a significant increase in the probability of

functionality, from 15.7% with zero prolines to 55.6% with five prolines (Fig. 3C). Proline



residues are known to be potent helix breakers. Thus, breaking the amphipathic a-helix of the
WD5 sequence is generally beneficial for functionality of the sequence within the WD5 context.
This proline effect was not observed for sequences from random-sequence libraries °¢,
suggesting that the positive proline effect may be specific to the amphipathic helix context of the
WDS5 library. The presence of prolines in this case likely prevents tryptophan rings from
interacting with each other on one side of the amphipathic helix, thus keeping the Ws exposed
to the solvent (Fig. 4D). Fig. 4E confirms the phenotypes of the key sequences discussed

above.
Discussion

Several key results of our study help to discriminate between the recruitment and
surfactant models for the AD mechanism of function. An important observation in our study is
that a variety of sequences containing a single W and a single D, interspersed with glycine
residues, which lack a side chain, are able to serve as functional ADs when fused to the Gal4
DBD and activate the reporter gene expression in vivo. This indicates that interactions of ADs
with targets have extremely low affinity and specificity, at the level of a single salt bridge and a
single amino acid hydrophobic contact. This level of interactions is easily compatible with the
action of a surfactant triggering the local promoter-chromatin phase transition, while for the
coactivator recruitment and selection by AD among variety of possible targets, a significantly
higher level of specificity for AD sequence is necessary. This conflict with the specificity
concept, used by the conventional sequence-to-structure-to-function mentality, was noticed
previously 8215 and is reflected in invoking of a consensus sequence for ADs, or at least short
linear motifs (SLiMs). However, the consensus sequence and SLiMs upon inspection and
machine learning (ML) analysis of large AD datasets are demonstrated to be absent or not
contributing to ML predictions for a sequence to be functional AD 8. In contrast, the surfactant

model does not require high level of specificity and can even explain the otherwise puzzling



early reports of nonnatural acidic-aromatic chemical compounds and even RNA fragments
acting as ADs in the context of the Gal4 DBD '®'". It is also worth noting that in our study,
although we analyzed designed AD sequences created by the cutting-edge massive parallel
synthesis method, and thus the sequences could be characterized as “synthetic” or “artificial”,
all of the sequences were verified in vivo and thus represent bona fide ADs. In addition,
naturally occurring AD sequences such as VP16 and Gal4 AD modules were included in the

library as internal controls.

The conventional recruitment model favors the idea that the amphipathic a-helix is a
structural element that is involved in the recruitment of coactivators and transcriptional
machinery by the AD ®'°. The amphipathic a-helix in this case fits the valley or even a tunnel of
the AD binding site on the coactivator surface, thus ensuring multiple bonds necessary for the
recruitment event °. However, the results of our analysis of thousands of sequences suggest
that the presence of the amphipathic a-helix in AD is, if not detrimental, then at least not
beneficial for function, and breaking this structure by prolines increases the probability of AD
functionality proportionally to the increase in proline content (Fig. 4C). Contrary to the
expectation based on the recruitment model concept, breaking the structure and thus making
Ws and Ds more solvent-exposed and more available for interaction with target(s) is functionally
beneficial. Following the same logic, adding a surplus of Ws in a WD5 sequence increases the
likelihood of pi-pi interactions between neighboring Ws, thus leading to the formation of a locked
noncanonical structure or a structure similar to that of a tryptophan zipper '*, which might
contribute to the decrease in functionality observed for sequences containing 4 WDs (Fig. 1G).
The gain of functionality for sequences with identical composition correlates with the ability to
adopt a structure that ensures an individual tryptophan maintaining a solvent exposed

configuration.



The positive effect of proline, demonstrated for 830 sequences with =3 prolines within
the WD5 amphipathic a-helix context, suggests the explanation for existence of the entire
proline-rich class of ADs. This class was described several decades ago &', but the reason for
the functional preference of proline in ADs has remained obscure. Considering the surfactant
model, proline residues simply ensure the exposure of key residues, such as W and D, for
interactions with the target. Following the same logic, 2579 functional AD sequences out of
8094 sequences with 22W and 22D in our design library maintain the functionality of the domain
through the internal repulsion of similarly charged Ds, which disrupts conventional structures or
non-conventional aggregation of Ws, maintaining aromatic residues in the solvent exposed

configuration.

Whether the hydrophobic residues in AD are aliphatic or aromatic should be irrelevant
for the recruitment mechanism, but this is incompatible with the previously published results of
ML analyses’ , which suggest that aromatic residues are beneficial, while aliphatic residues,
although also highly hydrophobic (i.e. I, V), are not 7. Our study shows a variety of highly
functional sequences containing only W as a hydrophobic residue, which is consistent with
previous findings of the ML analysis . Although the exclusive role of aromatic residues is not
fully compatible with the recruitment model, the surfactant model proposes the initial step of AD
function as “fuzzy” interaction with DNA via intercalation 7-'', which requires aromatic residues to

be exclusively important.

Another argument in favor of the surfactant model is the general preference for aromatic
residues at the spatially free terminus of the molecule observed in this study (Fig. 3A) and
previously 8. While for the recruitment model, initial interactions with the target are based on
scanning by the negatively charged acidic residue and establishing a strong initial salt bridge
with the target '°, for the surfactant model the negative charge at the end is disadvantageous for

function due to the repulsion of DNA phosphates and hence the interference with the required



initial intercalations of aromatic residues into DNA. Consistent with the surfactant model, we
demonstrate that the exception from the aromatic end preference is observed only when a

terminal acidic residue(s) is(are) required for the unraveling of aromatic clusters (Fig. 3).

While the role of acidic residues in exposing aromatics is important, the main function of
acidic moieties in the surfactant model is interference in DNA-histone nucleosome salt bridges.
This action of the amphiphilic AD triggers promoter chromatin remodeling, freeing the promoter
DNA "'. The attraction of multiple transcription machinery components to the exposed promoter
DNA may explain the liquid—liquid phase separation (LLPS) observed in the eukaryotic nucleus

upon induction of transcription 5.

The deficiency of the recruitment model in explaining the coactivator recruitment by the
AD sequences, which have almost no sequence-structure specificity, has been noted many
times 8%, and an attempt to resolve this contradiction was recently made by invoking the LLPS
model 5. The transient condensates are proposed to bring together the potential interacting
partners, such as gene activators, coactivators, and transcriptional machinery, which otherwise
are unlikely to interact due to “fuzziness” and the overwhelming variability of the interactions.
However, the initial trigger of condensation is supposed to be action of ADs. With the extremely
high variability of AD sequences, absence of a specific structure, and lack of target selectivity, it
is unclear how ADs could initiate this process by recruiting specific other factors. The surfactant
model restores the logic for LLPS, suggesting that the initial trigger is the local chromatin phase
transition, leading to the exposure of gene promoter DNA, which attract the general
transcriptional machinery, including the Mediator complex, and thereby promotes transcriptional

factory condensation.

While the surfactant model allows us to look at the most important function in biology —
gene expression — from a different perspective, it is not the only biological function with an

unexplained mechanism that requires close attention. Near-stochastic interactions and



intrinsically disordered protein regions have been shown to play important roles in such
processes as mMRNA processing, apoptosis, molecular transport within and between cells,
glycolysis, and many others 2°2', Breaking from the specific sequence-to-structure-to-function
paradigm and considering near-stochastic interactions as fundamentally important and not
detrimental opens the direction to the completely new branch of biochemistry and molecular

biology .

Methods

Library construction, cloning, and screening

The parental library plasmid was constructed by cloning the fragment containing the ADH1
promoter and the Gal4(1-147) DBD cassette, PCR amplified from the commercially available
pGBKT7 vector. The PCR fragment was cloned into the Sac/ and Kpnl sites of the centromeric
yeast shuttle vector pRS314.

The design library containing 11,500 individual sequences, each with an individual 20-
nucleotide barcode directly following the stop codon to improve alignment performance, was
synthesized at the GenScript commercial facility, amplified by PCR five times (each time
appending a unique BioRep barcode), quantitated for the DNA content, and mixed in equal
proportions into a single pool. For description of more detailed steps, see supplementary Fig.1.
The pool was cloned into the Ncol and Sall restriction sites remaining from the pGBKT7
fragment of the parental library plasmid. The library complexity was estimated by individual
colony counts after transformation for a fraction of the total transformation mix, then multiplying
by the fraction factor. Total complexity was estimated to be ~1076. The total content of
individual sequences within the library was determined by NGS at GenScript. The NGS
sequencing also confirmed the in-frame fusion of AD sequences to the Gal4 DBD region. After
the bacterial cloning and verification, the plasmid library was isolated for the following yeast
transformation.

At the Butler University research lab, the isolated plasmid library was transformed into the yeast
strain Y2HGold, available commercially from Clontech/Takara. The maintenance of the library
complexity was determined by the individual colony count for a fraction of a transformation mix
as described above for the bacterial transformation. The number of individual yeast
transformants for entire library was estimated to be ~1076. After transformation, the whole-
library cell culture was transferred into the —trp synthetic yeast growth medium containing 200
Mg/ml of aureobasidin and grown for four days with daily 1/100 dilution to maintain the culture in
the mid-log phase. Cell culture samples were taken at 0, 1, 2, 3, and 4 days. DNA was isolated
using a Thermo Scientific Pierce Yeast DNA Extraction Reagent Kit. The library component was



isolated by PCR using the Invitrogen AccuPrime SuperMix | kit with primers containing lllumina
adapters and barcodes unique for each DNA sample. DNA samples were controlled for purity,
repeatedly quantitated for DNA content, and sequenced at the NovoGene commercial facility.

The semirandom WDS5 library, containing sequences encoding peptides with five Ws and five Ds
separated by random amino acids, was constructed from oligonucleotides synthesized at the
IDT commercial facility according to the target sequence:
ATCTCAGAGGAGGACCTGCATATGGGATGGNNNGATNNNTGGNNNGATNNNTGGNNNGAT
NNNTGGNNNGATNNNTGGNNNGATNNNTAGGTAGCTATGCGACCTGCAGCGGCCGCATA
ACTAGCATA where Ns are random nucleotides forming a triplet for a random amino acid.

At the GenScript commercial facility, the oligo was converted into the double-stranded form,
digested with Ncol and Sall, and cloned into the corresponding restriction sites of the parental
library vector, as described for the design library. The library complexity was estimated as
described above by individual colony counts after transformation and assessed to be ~10/6.
The insertions and in-frame fusions with Gal4 DBD were confirmed by PCR and Sanger DNA
sequencing for 40 randomly chosen individual plasmid isolations. After the bacterial cloning and
verification, the entire plasmid library was isolated for the following yeast transformation.

The isolated WD5 library was transformed into yeast Y2HGold strain, the maintenance of the
library complexity was confirmed by the individual colony count for the fraction of the
transformation mix, as described above. Screening procedure, sample preparation, and NGS
sequencing were also the same as for the design library.

Sequence read processing

The reads from the semirandom WD?5 library were processed similarly to those of the random
library in °. All processing steps aside from lllumina adapter sequence removal were completed
using VSEARCH 22, Forward and reverse read pairs were merged, allowing a maximum of one
expected error when considering the quality scores per base. Adapter sequences were removed
using cutadapt ?3. Sequences were then deduplicated across all samples, counting the number
of times each unique sequence appeared. The sequences were then filtered to include only
those with a length of at least 60 bases and appearing at least twice across the library. The
deduplicated sequences were clustered between those with a minimum sequence similarity of
90%, in an attempt to prevent two sequences with minor differences from being considered
distinct sequences °. These sequence clusters were then considered centroids, to which the
original reads (merged, without adapters) were mapped and counted. For this step, the
sequence identity parameter was set to 80%.

Reads from the design library were mapped using Kallisto?*, thanks to the improved alignment
rate offered by the 20-nucleotide barcode present in each sequence of the library. Kallisto
performs pseudoalignment, a probabilistic method, to map reads to the design library
sequences and their barcodes, thereby providing the abundances of each sequence in the
library. For each sample, cutadapt was used to remove adapters and demultiplex by the biorep
barcode 23. Reads were then pseudoaligned to the design library (tAD sequence plus individual
barcode) using Kallisto, with a default kmer size of 31.



Estimation of sequence growth rates

Correlations among the read counts of biological replicates were calculated to ensure
reasonable consistency, and sequences with at least five counts in at least two of the five
biological replicates at baseline (identified by the five unique BioRep barcodes that were
appended during PCR amplifications) were retained for subsequent analysis. Sequence counts
were then averaged across biological replicates, resulting in one value for each sequence in
each sample. These were then normalized within each sample (read counts divided by total
reads in sample) to control for overall quantification differences between samples, and
normalized to the baseline to quantify cell growth (by calculating the log2 fold change of each
sequence at each time point versus its counts at time 0). The result of this step was a set of
baseline-centered read counts for each sample at each of the five time points, which could then
be plotted to determine whether abundance increases or decreases over time. Robust linear
regression (implemented in the MASS package in R) was used to estimate the slope of each
sequence over time; this was our final estimate for the functionality of each sequence 2.
Regression of sequence counts vs. day was conducted from day 0 to 4 for most sequences,
forcing a y intercept of 0 (because counts were normalized against day 0). Sequences for which
the read count dropped and stayed below 3 were regressed from day 0 through the first day at
which their read count was below 3. To define a strict binary cutoff for defining functional versus
nonfunctional sequences, the 5 highest growth slopes out of 50 total stop codon sequences (the
unique sequences that started with a stop codon) were averaged and used for individual
sequence classification. For data visualization, all growth slopes were recentered to this cutoff
slope so that the cutoff slope became zero.

Sequence feature analysis

Sequence features such as the presence or number of individual amino acids or multiresidue
motifs, the balance of aromatic versus acidic residues, and the mixing between amino acid
residues were used in machine learning analyses. Balance was defined as the difference
between the number of aromatic and acidic amino acids, while mixing was defined as the
number of aromatic-acidic dipeptides plus the number of acidic-aromatic dipeptides. Ridge
regression was conducted using the caret package in R ?6. Neural network prediction of
functionality was performed using the Keras and TensorFlow packages, where each sequence
is transformed into a one-hot encoded 3 x 20 matrix (3 amino acids G, W, or D & 20 positions) 7
2 The neural network architecture was simple, consisting of a flattened input matrix, two fully
connected hidden layers of 60 and 30 nodes, with a dropout rate of 0.2 after each hidden layer,
and finally connected to a softmax output layer predicting 1 — functional or 0 — nonfunctional.

Structure prediction and analysis

Secondary structure prediction was performed with SPOT-1D 2°. The predictions were
calculated for each candidate 30-aa-long tAD sequence only. The SS3 output of SPOT-1D was
then used to assign a helicity percentage to each candidate tAD sequence. The visualization of
structure predictions utilized the AlphaFold2 Colab notebook *°. Sequence structures were
predicted for both the candidate tAD and the preceding “linker”
(PEFVIRLTIGRAAIMEEQKLISEEDLHMAMG). Visualizations of the candidate tADs were
finalized in PyMOL V 1.8; the common “linker” sequence was removed, and key amino acids
were colored.



Data and code availability

The datasets generated for this study are available in the Gene Expression Omnibus (GEO)
repository, under the SuperSeries GSE200787. These data are currently private and can be
accessed by reviewers using the code crwvssuivzgtvyl; all data will be made public upon
publication. Code used for data analysis and figure generation are provided at
https://doi.org/10.5281/zenodo.6461744.
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Figure 1. A single W and a single D are sufficient for the functionality of AD. A —
Experimental setup: oligo pool synthesis, followed by cloning in bacteria, then isolation of
plasmid library and transformation in yeast, followed by screening for growth phenotype
determined by expression of the reporter gene regulated by the activator with a specific AD,
then isolation of DNA pool, NGS sequencing, and data analysis (for more details see Methods
section and Supplementary Figure 1). B — Growth of sequences with different numbers of WD
repeats. X axis: individual sequences indicated in the inset table, where black dots represent
glycine, yellow dots represent tryptophan, and red dots represent aspartic acid residues. Y axis:
Log2 growth slope. Axes are same in C, D, E, F. C — Sequences with different numbers of WD
repeats, either surrounded or interrupted by repeated glycines. D — Sequences with non-
alternating clusters of Ws and Ds. E — Sequences with non-alternating clusters of Ws and Ds,
separated by varying numbers of Gs. F — Sequences with a single W and D, separated by
varying numbers of Gs. Error bars show growth slope +/- root-mean-square-deviation (RMSD)
of the fit of the growth slope. G — Log2 growth slopes and images of the a-helix frontal view for
two different sequences with four W’s and four D’s, showing that despite identical composition,
only one is functional.
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Figure 2. The balance and intermixing of acidic and aromatic residues is beneficial for AD
function. A — X axis: balance score, calculated as Balance=n(W)-n(D); Y axis: % of functional
sequences in the sub-library of sequences containing all combinations of W and D for 12
positions (WD12 library, 3968 sequences quantified). B — X axis: mixing score, calculated as
Mixing=n(WD)+n(DW); Y axis: % of functional sequences in the set of sequences containing all
combinations of 6 W and 6 D (906 sequences quantified). C — X axis: mixing score, calculated
as Mixing=n([WYF][DE]) + n([DE][WYF]) for the previously published AD dataset screened
within the Gen4 context ©; Y axis: % of functional sequences in the set of sequences from the
Gcen4 random peptide library with 6 [WYF] and 6 [DE] (3018 sequences total). D — X axis: %
functionality of sequences that contain the specified tetrapeptide motif; Y axis: tetrapeptide
motifs. Regression lines are provided to demonstrate concordance between the three libraries,
and motifs were ordered based on average % functionality between the three libraries, with the
most functional on top. E — X axis: Starting amino acid position of tetrapeptide in tAD module
for the WD12 library; Y axis: 16 sequence combinations for tetrapeptides containing D and W,
Tile fill: % functionality of sequences that contain the specified tetrapeptide motif at the indicated
position. Motifs were ordered by overall % functionality. F — X axis: Starting amino acid position
of the tetrapeptide in the tAD module for the Gen4 library 8; Y axis: 16 sequence combinations
for tetrapeptides containing [DE] and [WYF], Tile fill: % functionality of sequences that contain
the specified tetrapeptide motif at the indicated position. Motifs order is the same as in panel E.
G — ML accuracy on the reserved testing set (20% of WD12 library) and trained on 80% of
WD12 library unless noted otherwise, measured as area under the receiver operating

characteristic (AUROC).
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Figure 3. Ws are generally beneficial at the end of the molecule, while Ds — internally,
with the exception when Ds rescue the AD functionality by flanking adjacent Ws in the
sequence. A — X axis: position of D (red) or W (yellow) within the sequence; Y axis: %
functionality of sequences in the sub-library of sequences containing all combinations of W and
D for 12 positions (3968 sequences quantified). B —X axis: size of W cluster preceding indicated
end cap for sequences representing each line; Y axis: same as in A. (*) sequence construct
shows tAD constructs of indicated sequence where “.” = G, “x” = [DW], » =W, and e =D. C —
same as in B, calculated for the Gen4 library © using [WYF] instead of just W and [DE] instead of
just D for end caps. (**) sequence construct shows tAD constructs of indicated sequence where
“” =any AA, ¢ = [AVILMWYF], and « = [WYF]. D — Growth slopes of sequences with different
numbers of Ds flanking a stretch of 5 Ws. « =W, and e = D. E - sequence constructs of (***)
and (****) sequences from panel D, “.” = G, « =W, and e = D. AlphaFold2 predicted structures
shown for tAD region. Distance between a-carbon of first tryptophan (W1) and last tryptophan
(W5) was measured from predicted structure.
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Figure 4. Formation of the amphipathic a-helix is generally detrimental for AD
functionality, and insertion of proline is beneficial. A — graphical representation of
sequences for the WD5 library (107975 sequences quantified): each member of which has five
Ws, five Ds, and ten random amino acids represented by black dots/circles between Ws and
Ds. B — X axis: % a-helix predicted by the SPOT-1D algorithm for each set of sequences from
the WD5 library; Y axis: % functionality of the set of corresponding sequences in the WD5
library. C — X axis: count of corresponding amino acid residues between set Ws and Ds of WD5
library; Y axis: % functionality of the set of corresponding sequences. Amino acid groups: acidic
[DE], aliphatic [AVILM], aromatic [WYF], basic [RHK], special [CGP] not grouped, polar [STNQ].
D — Growth slopes with 3D structures of sequences with varying numbers of proline residues
predicted by AlphaFold2. E — Growth phenotype on media with and without aureobasidin for
cells expressing the indicated representative sequences. Spots are conglomerates of yeast
colonies representing threefold serial dilutions of corresponding cell cultures.
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Supplementary Figure 1. Schematic representation of wet lab steps: A — massively parallel
synthesis of the design library; B — BioRep barcodes appending; C — cloning into parental yeast
shuttle vector; D — sample preparation for NGS lllumina sequencing; E — sequencing at lllumina
sequencing facility.



