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Summary 

Gene expression in all eukaryotes depends critically on the function of transcriptional activation 
domains of gene activator proteins. The conventional model for activation domain (AD) function 
is the direct physical recruitment of specific coactivators and transcriptional machinery 
components. However, ADs are short and astronomically variable sequences, with up to 1024 
possible interchangeable sequence variants for a single gene activator; each variant is 
intrinsically disordered in structure and interacts with its targets with low specificity and affinity. 
How these peptides recruit their targets is becoming increasingly difficult to explain, exposing a 
massive knowledge gap in molecular biology. Here, we show that the single required 
characteristic of ADs—consistent with their extreme variability, intrinsic structural disorder, and 
near-stochastic interaction mode—is an amphiphilic aromatic–acidic surfactant-like property. 
We propose that the AD surfactant, by triggering the local gene-promoter chromatin phase 
transition, catalyzes the formation of “transcription factory” condensates. We demonstrate that 
the presence of tryptophan and aspartic acid residues in the AD sequence is sufficient for in 
vivo functionality, even when present only as a single pair of residues within a 20-amino-acid 
sequence containing nothing more than additional 18 glycine residues. We demonstrate that the 
amphipathic α-helix structure, suggested previously as beneficial for AD function, is actually 
detrimental, and breaking this helix by inserting prolines significantly increases activation 
domain functionality. The proposed surfactant action mechanism based on near-stochastic 
interactions implied by the minimalistic activation domains changes not only the paradigm for 
the explanation of gene activation but also the fundamental biochemistry paradigm based on the 
specificity of sequence-to-structure-to-functional-interaction. The mechanism of activity 
regulation by near-stochastic allosteric interactions could easily be applied to other biological 
processes.    
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Introduction 

The expression of genetic information written in nucleotide sequences of DNA is the 

fundamental function of all living entities. The process is initiated by the binding of gene 

activators to corresponding gene promoters. In eukaryotes, gene activator proteins typically 

contain two obligatory parts: the DNA-binding domain (DBD), which is responsible for 

recognition and specific binding to the cognate promoter DNA sequence, and the activation 

domain (AD), which is responsible for the initiation of gene transcription. The two domains are 

drastically different in nature and in function. The DBD for each activator contains a certain 

conserved amino acid sequence and structure and binds to a specific consensus DNA 

sequence 1,2. Contrarily, ADs are typically short, ranging from six to several dozen amino acids, 

and extremely variable in sequence and it has been estimated that up to 1024 sequences are 

able to substitute for each other within the context of the same activator molecule 3-7.  In 

addition, ADs are intrinsically disordered in structure and bind to a wide variety of proteins and 

binding regions on the surface of these targets via “fuzzy”, low-specificity interactions 8-10. The 

mechanism of the function of ADs is a long-standing enigma, as their features defy the 

traditional specificity of sequence-to-structure-to-function paradigm of molecular biology. 

Two models have been proposed to explain the mechanism of AD function. First is the 

traditional and widely accepted model of direct physical recruitment by ADs of coactivators and 

components of enzymatic transcriptional machinery. This model implies a certain level of 

specificity for AD sequences, such as a consensus sequence, or at least Short Linear Motifs 

(SLiMs); some specific structural features, such as an amphipathic α-helix; and specific targets, 

for instance, the Mediator complex. However, recent high-throughput experimental data and the 

results of bioinformatics analysis increasingly contradict the recruitment model, showing the lack 

of specificity of ADs at the sequence, structure, and target interaction levels (for review see [co-

submitted manuscript]). The second, newer and not yet widely accepted model 7,11 considers 



ADs as surfactants that act on promoter nucleosomes, triggering chromatin phase transition, 

freeing promoter DNA, and promoting condensation of necessary enzymes and co-factors.  The 

surfactant model postulates the extremely high variability of AD sequences, because the 

requirement for the functional sequence is the presence of a limited number of acidic and 

aromatic amino acids. The model requires no specific structure but spatial and structural 

flexibility, and presumes near-stochastic interactions with targets at the anchoring site (i.e., the 

gene promoter). The absence of a specific sequence or structure, and a near-stochastic target 

interaction mechanism, of a protein domain that is critical for a fundamental biological function 

presents a new paradigm, challenging the traditional foundational biochemical principle of 

specificity rooted in the sequence-to-structure-to-functional-interaction triad.  

Here, we provide experimental data that allow us to discriminate between these two 

proposed mechanisms. By synthesizing and testing large sets of specific AD sequences in vivo, 

we demonstrate that, in line with the surfactant model and contrary to the specificity required by 

the recruitment model, the presence of only one tryptophan and aspartic acid, each represented 

as a single side chain-bearing amino acid residue within the AD region, is sufficient for gene 

activation. Also contrary to the expectations of the recruitment model, we demonstrate that the 

presence of the amphipathic α-helix structure is detrimental for AD functionality, while breaking 

this structure by insertion of prolines significantly increases AD functionality, providing for the 

first time a rationale for the existence of the entire class of proline-rich ADs. With these and 

other data, and in line with the surfactant model, we hope to change the gene expression 

paradigm and establish near-stochastic interactions as required for, rather than detrimental to, 

this and possibly other crucial biological functions.  

Results 

To elucidate the mechanism of AD function, we developed a high-throughput assay to 

test the in vivo functionality of individual sequences within a library of 12,400 synthetically 



generated sequences. These sequences were designed to address multiple questions 

regarding potential determinants of AD function, such as length, composition, structure 

preference and others. The synthesized library was then cloned into a yeast centromeric shuttle 

vector, fusing each AD sequence to the Gal4 DBD. Then, the library was transformed into the 

yeast two-hybrid Y2HGold tester strain, and the transformed yeast were screened for growth, 

which was dependent on the expression of the Gal-Aureobasidin antibiotic resistance reporter 

gene (Fig. 1A). The library DNA for different growth time points was isolated and sequenced to 

determine the number of reads for each individual sequence and its change over time. The 

growth slope for each sequence was calculated and served as a measure of the AD 

functionality. Since the results were obtained within the scope of the whole library pool 

screening, the results for individual sequences and for all different sequence sets can be 

considered to be obtained under identical experimental conditions and thus to be accurately 

comparable. In addition, each sequence was labeled by multiple individual barcodes; thus, the 

results for each individual sequence are the mean of multiple (typically five) independent 

experimental repeats. As part of the library we used the sequences of known AD regions, such 

as Gal4(840-857), Gal4(860-872) and VP16 sequences 12,13, as internal positive controls (Fig. 

1B). As negative controls, we used a null sequence that contained a stop codon after the DBD 

and a sequence containing a stretch of 20 glycines (G), which was shown to be neutral for AD 

functionality under similar experimental conditions 7. To ensure high stringency, the cutoff for a 

“functional AD” was defined as the mean of the five highest values produced by 50 independent 

stop codon-null sequences.  

 

A single aspartic acid and single tryptophan residue within the AD region are sufficient 

for functionality 



Previous reports indicated that the most beneficial residues for AD functionality are 

aromatic and acidic amino acids, and the highest gain in prediction of AD functionality using 

machine learning on large >106 set of diverse random sequences was derived from the 

presence of amino acids W and D 7. In addition, high AD functionality was repeatedly 

demonstrated for the monotonous WDWDWDWDWDWDWDWDWDWD sequence5, indicating 

that for high functionality, it is sufficient to have only W and D. Here, we analyzed sequences 

with different numbers of WD repeats to determine how functionality depends on this feature 

and found that decreases in WD repeat number generally correlate with decreases in 

functionality (Fig. 1B). Unexpectedly, the sequence GGGGGGGGGGGGGGGGGGDW, 

containing just one W and one D, showed residual functionality (1.11±0.02 [95% CI]) 

comparable to that of the VP16 minimal AD module (0.55±0.28). Similarly, analysis of WD 

sequences surrounded by G residues or WD blocks separated by a stretch of G residues (Fig. 

1C) revealed functionality for sequences containing a single W and a single D. The lowest 

functionality was demonstrated for sequences containing four or five Ws and Ds, and the 

highest functionality was demonstrated for the DWx9 sequence (2.12±0.22). The answer to the 

same question about the amount of Ws and Ds sufficient for AD functionality within the context 

of sequences with non-alternating clustered Ws and Ds (Fig. 1D) is that one W and one D is 

sufficient for at least a low level of functionality. Sequences with a single W and single D 

separated by different numbers of Gs (e.g., WGD, WGGD, WGGGD, see Fig. 1E and F) are 

also functional. By contrast, sequences containing more than two adjacent Ws or Ds (e.g., 

GGGGGGGGGGGGGGGGWWWDDD or GGGGGGGGGGGGGGGGDDDWWW) are 

nonfunctional, and the sequence functionality generally drops with increasing lengths of homo-

W and homo-D stretches (Fig. 1D). These results are in good agreement with previous 

observations that clustering of separate acidic and separate aromatic residues within the AD 

region is detrimental to functionality 7. Interestingly, some functionality was observed for 

sequences containing both W homostretches and D homostretches separated from each other 



by larger numbers of Gs (Fig. 1E, green dots). In examining why the sequence containing the 

WDWDWDWD block is nonfunctional, we found that DWWDDWDW, a different sequence with 

an identical composition, is functional (Fig. 1G). A possible explanation for this observation is 

that while forming a 3D α-helix, Ws within the WDWDWDWD sequence are forming pi-pi 

interacting pairs, similar to those in a tryptophan zipper 14, while in DWWDDWDW, at least one 

W remains free. That in turn suggests that solvent exposure of at least one aromatic residue in 

the AD sequence is required for functionality and is consistent with the finding that a single D 

and single W is sufficient for functionality (Fig. 1F). 

Balance and intermixing of acidic and aromatic residues underlies AD function 

To expand the analysis, we turned to the other part of our library, which contains a set of 

sequences with all possible combinations of W and D at 12 positions (3968 quantified out of 

4096 possible sequences). The in vivo screening revealed 1330 functional and 2638 

nonfunctional sequences within this set. Analyzing this set as a whole, we found that in general, 

two features are important for functionality: the balance between W to D residues in the 

sequence, and how they are intermixed (Figs. 2A and 2B). Similar patterns were noticed when 

the balance and intermixing between aromatic and acidic residues were analyzed within a much 

larger set of ADs in the context of the Gcn4 activator or HSF activator (see reference7 and Fig. 

2C). 

To examine whether these functional sequences might contain a specific mini-motif, we 

tested all 16 WD tetrapeptide variants and found that tetrapeptide sequences containing an 

excess of Ds, especially Ds clustered together, are generally detrimental, while D and W 

intermixing is beneficial and creates a number of functional tetrapeptide sequences, with 

DDWW as the top performing sequence (Fig. 2D). A very similar trend of aromatic-acidic 

tetrapeptide motif distribution is obvious from our analysis of two independent in vivo-tested AD 

and previously published sequence datasets created on the basis of natural AD sequences in 



the context of artificial DBD-ER fusions 9 and a sampling of large unbiased random sequence 

ADs in the context of Gcn4 6. This similarity of the trends suggests an activator-independent 

general mechanism for AD function. 

To test whether the position of the tetrapeptides within the AD sequence is important, we 

calculated the probability of each tetrapeptide contributing to functionality when positioned in 

different parts of the AD region (Fig. 2E). This analysis indicated that while W and D intermixing 

is beneficial, W-rich sequences are generally more beneficial at the spatially freer end of the 

molecule, while D-rich sequences are beneficial internally. Similar trends are observed for the 

broader set of acidic-aromatic tetrapeptides in the Gcn4 context (Fig. 2F and reference 7). When 

we used individual tetrapeptides, their position within the sequence, and the balance between 

acidic and aromatic residues as features for regression ML model training, we observed that 

each feature had a positive value for the prediction of AD functionality, and the combination of 

all these features produces the most accurate prediction (Fig. 2G). 

The position effect is much clearer when the functionality contributions of W and D within 

the AD sequence space are analyzed directly (Fig. 3A). Generally, the positive contribution of W 

increases when it is positioned toward the end of the molecule, while D shows the exactly 

opposite behavior. This observation is consistent with our previous analysis 7; however, the 

trend breaks at the last two positions within a 12-amino-acid AD. In examining what sequences 

display higher functionality with generally detrimental terminal D(s), we found that it is especially 

beneficial if a cluster of Ws precedes the D(s) (Fig. 3B). A similar trend was observed when we 

analyzed the acidic and aromatic amino acid distributions within a previously published 6 dataset 

of random AD sequences in the Gcn4 context (Fig. 3C). Comparing the different sequences 

containing a cluster of 5 Ws, which is usually detrimental for functionality, we found that flanking 

such clusters with Ds is generally beneficial, with the highest functionality observed if the 

majority of Ds are situated internally (Fig. 3D). Molecular modeling suggested that the D-



flanking effect likely occurs because the repelling charges of aspartic acid residues prevent the 

tryptophan moieties from forming a hydrophobic mini-globule or a disordered aggregate 

supported by hydrophobic and pi-pi interactions between aromatic rings (Fig. 3E). 

Formation of an amphipathic α-helix is not beneficial for AD functionality, while breaking 

the helix with proline increases the gene activation potential 

Since the 3D structure within the AD microenvironment (Fig. 1-3) seems to play an 

important role, and because the amphipathic α-helix is specifically considered as an important 

structural feature of ADs 9,10, we created a library of sequences all containing 5 Ws and 5 Ds 

interspersed with random amino acids (W.D.W.D.W.D.W.D.W.D, henceforth called the WD5 

library). The WD5 backbone sequence, if folded, always creates an amphipathic α-helix (Fig. 

4A). WD5 library screening followed by DNA sequencing, normalization of the number of reads 

for each sequence to that at the 0 time point, and AD functionality cutoff based on redundant 

stop codon null sequences, as described above, confirmed that of 107,975 distinct sequences 

tested, 19.6% were functional ADs. We binned the sequences by their predicted percent α-helix 

formation and found that the percentage of functional sequences in each bin decreased as the 

prediction of the α-helix fraction increased (Fig. 4B). By analyzing sets of sequences enriched 

with individual amino acids within the WD5 library (Fig. 4C), we found that increasing the 

number of basic amino acids between Ws and Ds was detrimental, which was consistent with 

the highly negative effect of K and R on AD functionality 7. A similar negative effect was 

observed for sequences enriched with additional (> 5) aromatic residues and to a lesser degree 

among sequences enriched with additional acidic residues, which is consistent with the results 

of Fig. 2A and the previously observed negative effect of shifting the balance between acidic 

and aromatic residues 7. Unexpectedly, a progressive increase in the number of proline residues 

(P) within the WD5 sequences was correlated with a significant increase in the probability of 

functionality, from 15.7% with zero prolines to 55.6% with five prolines (Fig. 3C). Proline 



residues are known to be potent helix breakers. Thus, breaking the amphipathic α-helix of the 

WD5 sequence is generally beneficial for functionality of the sequence within the WD5 context. 

This proline effect was not observed for sequences from random-sequence libraries 5,6, 

suggesting that the positive proline effect may be specific to the amphipathic helix context of the 

WD5 library. The presence of prolines in this case likely prevents tryptophan rings from 

interacting with each other on one side of the amphipathic helix, thus keeping the Ws exposed 

to the solvent (Fig. 4D). Fig. 4E confirms the phenotypes of the key sequences discussed 

above. 

Discussion 

Several key results of our study help to discriminate between the recruitment and 

surfactant models for the AD mechanism of function. An important observation in our study is 

that a variety of sequences containing a single W and a single D, interspersed with glycine 

residues, which lack a side chain, are able to serve as functional ADs when fused to the Gal4 

DBD and activate the reporter gene expression in vivo. This indicates that interactions of ADs 

with targets have extremely low affinity and specificity, at the level of a single salt bridge and a 

single amino acid hydrophobic contact. This level of interactions is easily compatible with the 

action of a surfactant triggering the local promoter-chromatin phase transition, while for the 

coactivator recruitment and selection by AD among variety of possible targets, a significantly 

higher level of specificity for AD sequence is necessary. This conflict with the specificity 

concept, used by the conventional sequence-to-structure-to-function mentality, was noticed 

previously 6,9,15, and is reflected in invoking of a consensus sequence for ADs, or at least short 

linear motifs (SLiMs). However, the consensus sequence and SLiMs upon inspection and 

machine learning (ML) analysis of large AD datasets are demonstrated to be absent or not 

contributing to ML predictions for a sequence to be functional AD 6,7. In contrast, the surfactant 

model does not require high level of specificity and can even explain the otherwise puzzling 



early reports of nonnatural acidic-aromatic chemical compounds and even RNA fragments 

acting as ADs in the context of the Gal4 DBD 16,17. It is also worth noting that in our study, 

although we analyzed designed AD sequences created by the cutting-edge massive parallel 

synthesis method, and thus the sequences could be characterized as “synthetic” or “artificial”, 

all of the sequences were verified in vivo and thus represent bona fide ADs. In addition, 

naturally occurring AD sequences such as VP16 and Gal4 AD modules were included in the 

library as internal controls. 

The conventional recruitment model favors the idea that the amphipathic α-helix is a 

structural element that is involved in the recruitment of coactivators and transcriptional 

machinery by the AD 9,10. The amphipathic α-helix in this case fits the valley or even a tunnel of 

the AD binding site on the coactivator surface, thus ensuring multiple bonds necessary for the 

recruitment event 9. However, the results of our analysis of thousands of sequences suggest 

that the presence of the amphipathic α-helix in AD is, if not detrimental, then at least not 

beneficial for function, and breaking this structure by prolines increases the probability of AD 

functionality proportionally to the increase in proline content (Fig. 4C). Contrary to the 

expectation based on the recruitment model concept, breaking the structure and thus making 

Ws and Ds more solvent-exposed and more available for interaction with target(s) is functionally 

beneficial. Following the same logic, adding a surplus of Ws in a WD5 sequence increases the 

likelihood of pi-pi interactions between neighboring Ws, thus leading to the formation of a locked 

noncanonical structure or a structure similar to that of a tryptophan zipper 14, which might 

contribute to the decrease in functionality observed for sequences containing 4 WDs (Fig. 1G). 

The gain of functionality for sequences with identical composition correlates with the ability to 

adopt a structure that ensures an individual tryptophan maintaining a solvent exposed 

configuration.  



The positive effect of proline, demonstrated for 830 sequences with ≥3 prolines within 

the WD5 amphipathic α-helix context, suggests the explanation for existence of the entire 

proline-rich class of ADs. This class was described several decades ago 8,18, but the reason for 

the functional preference of proline in ADs has remained obscure. Considering the surfactant 

model, proline residues simply ensure the exposure of key residues, such as W and D, for 

interactions with the target. Following the same logic, 2579 functional AD sequences out of 

8094 sequences with ≥2W and ≥2D in our design library maintain the functionality of the domain 

through the internal repulsion of similarly charged Ds, which disrupts conventional structures or 

non-conventional aggregation of Ws, maintaining aromatic residues in the solvent exposed 

configuration.  

Whether the hydrophobic residues in AD are aliphatic or aromatic should be irrelevant 

for the recruitment mechanism, but this is incompatible with the previously published results of 

ML analyses7 , which suggest that aromatic residues are beneficial, while aliphatic residues, 

although also highly hydrophobic (i.e. I, V), are not 7. Our study shows a variety of highly 

functional sequences containing only W as a hydrophobic residue, which is consistent with 

previous findings of the ML analysis 7. Although the exclusive role of aromatic residues is not 

fully compatible with the recruitment model, the surfactant model proposes the initial step of AD 

function as “fuzzy” interaction with DNA via intercalation 7,11, which requires aromatic residues to 

be exclusively important.  

Another argument in favor of the surfactant model is the general preference for aromatic 

residues at the spatially free terminus of the molecule observed in this study (Fig. 3A) and 

previously 6,7. While for the recruitment model, initial interactions with the target are based on 

scanning by the negatively charged acidic residue and establishing a strong initial salt bridge 

with the target 19, for the surfactant model the negative charge at the end is disadvantageous for 

function due to the repulsion of DNA phosphates and hence the interference with the required 



initial intercalations of aromatic residues into DNA. Consistent with the surfactant model, we 

demonstrate that the exception from the aromatic end preference is observed only when a 

terminal acidic residue(s) is(are) required for the unraveling of aromatic clusters (Fig. 3). 

While the role of acidic residues in exposing aromatics is important, the main function of 

acidic moieties in the surfactant model is interference in DNA-histone nucleosome salt bridges. 

This action of the amphiphilic AD triggers promoter chromatin remodeling, freeing the promoter 

DNA 11. The attraction of multiple transcription machinery components to the exposed promoter 

DNA may explain the liquid–liquid phase separation (LLPS) observed in the eukaryotic nucleus 

upon induction of transcription 15. 

The deficiency of the recruitment model in explaining the coactivator recruitment by the 

AD sequences, which have almost no sequence-structure specificity, has been noted many 

times 6,9,11, and an attempt to resolve this contradiction was recently made by invoking the LLPS 

model 15. The transient condensates are proposed to bring together the potential interacting 

partners, such as gene activators, coactivators, and transcriptional machinery, which otherwise 

are unlikely to interact due to “fuzziness” and the overwhelming variability of the interactions. 

However, the initial trigger of condensation is supposed to be action of ADs. With the extremely 

high variability of AD sequences, absence of a specific structure, and lack of target selectivity, it 

is unclear how ADs could initiate this process by recruiting specific other factors. The surfactant 

model restores the logic for LLPS, suggesting that the initial trigger is the local chromatin phase 

transition, leading to the exposure of gene promoter DNA, which attract the general 

transcriptional machinery, including the Mediator complex, and thereby promotes transcriptional 

factory condensation.  

While the surfactant model allows us to look at the most important function in biology – 

gene expression – from a different perspective, it is not the only biological function with an 

unexplained mechanism that requires close attention. Near-stochastic interactions and 



intrinsically disordered protein regions have been shown to play important roles in such 

processes as mRNA processing, apoptosis, molecular transport within and between cells, 

glycolysis, and many others 20,21. Breaking from the specific sequence-to-structure-to-function 

paradigm and considering near-stochastic interactions as fundamentally important and not 

detrimental opens the direction to the completely new branch of biochemistry and molecular 

biology 11.  

 

 

Methods 

Library construction, cloning, and screening 
The parental library plasmid was constructed by cloning the fragment containing the ADH1 
promoter and the Gal4(1-147) DBD cassette, PCR amplified from the commercially available 
pGBKT7 vector. The PCR fragment was cloned into the SacI and KpnI sites of the centromeric 
yeast shuttle vector pRS314. 

The design library containing 11,500 individual sequences, each with an individual 20-
nucleotide barcode directly following the stop codon to improve alignment performance, was 
synthesized at the GenScript commercial facility, amplified by PCR five times (each time 
appending a unique BioRep barcode), quantitated for the DNA content, and mixed in equal 
proportions into a single pool. For description of more detailed steps, see supplementary Fig.1. 
The pool was cloned into the NcoI and SalI restriction sites remaining from the pGBKT7 
fragment of the parental library plasmid. The library complexity was estimated by individual 
colony counts after transformation for a fraction of the total transformation mix, then multiplying 
by the fraction factor. Total complexity was estimated to be ~10^6. The total content of 
individual sequences within the library was determined by NGS at GenScript. The NGS 
sequencing also confirmed the in-frame fusion of AD sequences to the Gal4 DBD region. After 
the bacterial cloning and verification, the plasmid library was isolated for the following yeast 
transformation.  

At the Butler University research lab, the isolated plasmid library was transformed into the yeast 
strain Y2HGold, available commercially from Clontech/Takara. The maintenance of the library 
complexity was determined by the individual colony count for a fraction of a transformation mix 
as described above for the bacterial transformation. The number of individual yeast 
transformants for entire library was estimated to be ~10^6. After transformation, the whole-
library cell culture was transferred into the –trp synthetic yeast growth medium containing 200 
µg/ml of aureobasidin and grown for four days with daily 1/100 dilution to maintain the culture in 
the mid-log phase. Cell culture samples were taken at 0, 1, 2, 3, and 4 days. DNA was isolated 
using a Thermo Scientific Pierce Yeast DNA Extraction Reagent Kit. The library component was 



isolated by PCR using the Invitrogen AccuPrime SuperMix I kit with primers containing Illumina 
adapters and barcodes unique for each DNA sample. DNA samples were controlled for purity, 
repeatedly quantitated for DNA content, and sequenced at the NovoGene commercial facility. 

The semirandom WD5 library, containing sequences encoding peptides with five Ws and five Ds 
separated by random amino acids, was constructed from oligonucleotides synthesized at the 
IDT commercial facility according to the target sequence: 
ATCTCAGAGGAGGACCTGCATATGGGATGGNNNGATNNNTGGNNNGATNNNTGGNNNGAT
NNNTGGNNNGATNNNTGGNNNGATNNNTAGGTAGCTATGCGACCTGCAGCGGCCGCATA
ACTAGCATA where Ns are random nucleotides forming a triplet for a random amino acid. 

At the GenScript commercial facility, the oligo was converted into the double-stranded form, 
digested with NcoI and SalI, and cloned into the corresponding restriction sites of the parental 
library vector, as described for the design library. The library complexity was estimated as 
described above by individual colony counts after transformation and assessed to be ~10^6. 
The insertions and in-frame fusions with Gal4 DBD were confirmed by PCR and Sanger DNA 
sequencing for 40 randomly chosen individual plasmid isolations. After the bacterial cloning and 
verification, the entire plasmid library was isolated for the following yeast transformation. 

The isolated WD5 library was transformed into yeast Y2HGold strain, the maintenance of the 
library complexity was confirmed by the individual colony count for the fraction of the 
transformation mix, as described above. Screening procedure, sample preparation, and NGS 
sequencing were also the same as for the design library. 

 
Sequence read processing 
The reads from the semirandom WD5 library were processed similarly to those of the random 
library in 5. All processing steps aside from Illumina adapter sequence removal were completed 
using VSEARCH 22. Forward and reverse read pairs were merged, allowing a maximum of one 
expected error when considering the quality scores per base. Adapter sequences were removed 
using cutadapt 23. Sequences were then deduplicated across all samples, counting the number 
of times each unique sequence appeared. The sequences were then filtered to include only 
those with a length of at least 60 bases and appearing at least twice across the library. The 
deduplicated sequences were clustered between those with a minimum sequence similarity of 
90%, in an attempt to prevent two sequences with minor differences from being considered 
distinct sequences 5. These sequence clusters were then considered centroids, to which the 
original reads (merged, without adapters) were mapped and counted. For this step, the 
sequence identity parameter was set to 80%. 

Reads from the design library were mapped using Kallisto24, thanks to the improved alignment 
rate offered by the 20-nucleotide barcode present in each sequence of the library. Kallisto 
performs pseudoalignment, a probabilistic method, to map reads to the design library 
sequences and their barcodes, thereby providing the abundances of each sequence in the 
library. For each sample, cutadapt was used to remove adapters and demultiplex by the biorep 
barcode 23. Reads were then pseudoaligned to the design library (tAD sequence plus individual 
barcode) using Kallisto, with a default kmer size of 31. 



Estimation of sequence growth rates 
Correlations among the read counts of biological replicates were calculated to ensure 
reasonable consistency, and sequences with at least five counts in at least two of the five 
biological replicates at baseline (identified by the five unique BioRep barcodes that were 
appended during PCR amplifications) were retained for subsequent analysis. Sequence counts 
were then averaged across biological replicates, resulting in one value for each sequence in 
each sample. These were then normalized within each sample (read counts divided by total 
reads in sample) to control for overall quantification differences between samples, and 
normalized to the baseline to quantify cell growth (by calculating the log2 fold change of each 
sequence at each time point versus its counts at time 0). The result of this step was a set of 
baseline-centered read counts for each sample at each of the five time points, which could then 
be plotted to determine whether abundance increases or decreases over time. Robust linear 
regression (implemented in the MASS package in R) was used to estimate the slope of each 
sequence over time; this was our final estimate for the functionality of each sequence 25. 
Regression of sequence counts vs. day was conducted from day 0 to 4 for most sequences, 
forcing a y intercept of 0 (because counts were normalized against day 0). Sequences for which 
the read count dropped and stayed below 3 were regressed from day 0 through the first day at 
which their read count was below 3. To define a strict binary cutoff for defining functional versus 
nonfunctional sequences, the 5 highest growth slopes out of 50 total stop codon sequences (the 
unique sequences that started with a stop codon) were averaged and used for individual 
sequence classification. For data visualization, all growth slopes were recentered to this cutoff 
slope so that the cutoff slope became zero. 

Sequence feature analysis 

Sequence features such as the presence or number of individual amino acids or multiresidue 
motifs, the balance of aromatic versus acidic residues, and the mixing between amino acid 
residues were used in machine learning analyses. Balance was defined as the difference 
between the number of aromatic and acidic amino acids, while mixing was defined as the 
number of aromatic-acidic dipeptides plus the number of acidic-aromatic dipeptides. Ridge 
regression was conducted using the caret package in R 26. Neural network prediction of 
functionality was performed using the Keras and TensorFlow packages, where each sequence 
is transformed into a one-hot encoded 3 x 20 matrix (3 amino acids G, W, or D & 20 positions) 27 
28. The neural network architecture was simple, consisting of a flattened input matrix, two fully 
connected hidden layers of 60 and 30 nodes, with a dropout rate of 0.2 after each hidden layer, 
and finally connected to a softmax output layer predicting 1 – functional or 0 – nonfunctional. 

Structure prediction and analysis 

Secondary structure prediction was performed with SPOT-1D 29. The predictions were 
calculated for each candidate 30-aa-long tAD sequence only. The SS3 output of SPOT-1D was 
then used to assign a helicity percentage to each candidate tAD sequence. The visualization of 
structure predictions utilized the AlphaFold2 Colab notebook 30. Sequence structures were 
predicted for both the candidate tAD and the preceding “linker” 
(PEFVIRLTIGRAAIMEEQKLISEEDLHMAMG). Visualizations of the candidate tADs were 
finalized in PyMOL V 1.8; the common “linker” sequence was removed, and key amino acids 
were colored. 

 



Data and code availability 

The datasets generated for this study are available in the Gene Expression Omnibus (GEO) 
repository, under the SuperSeries GSE200787. These data are currently private and can be 
accessed by reviewers using the code crwvssuivzgtvyl; all data will be made public upon 
publication. Code used for data analysis and figure generation are provided at 
https://doi.org/10.5281/zenodo.6461744.   
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Figure 1. A single W and a single D are sufficient for the functionality of AD. A – 
Experimental setup: oligo pool synthesis, followed by cloning in bacteria, then isolation of 
plasmid library and transformation in yeast, followed by screening for growth phenotype 
determined by expression of the reporter gene regulated by the activator with a specific AD, 
then isolation of DNA pool, NGS sequencing, and data analysis (for more details see Methods 
section and Supplementary Figure 1). B – Growth of sequences with different numbers of WD 
repeats. X axis: individual sequences indicated in the inset table, where black dots represent 
glycine, yellow dots represent tryptophan, and red dots represent aspartic acid residues.  Y axis: 
Log2 growth slope. Axes are same in C, D, E, F.  C – Sequences with different numbers of WD 
repeats, either surrounded or interrupted by repeated glycines. D – Sequences with non-
alternating clusters of Ws and Ds. E – Sequences with non-alternating clusters of Ws and Ds, 
separated by varying numbers of Gs. F – Sequences with a single W and D, separated by 
varying numbers of Gs. Error bars show growth slope +/- root-mean-square-deviation (RMSD) 
of the fit of the growth slope. G – Log2 growth slopes and images of the α-helix frontal view for 
two different sequences with four W’s and four D’s, showing that despite identical composition, 
only one is functional.  
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Figure 2. The balance and intermixing of acidic and aromatic residues is beneficial for AD 
function. A – X axis: balance score, calculated as Balance=n(W)-n(D); Y axis: % of functional 
sequences in the sub-library of sequences containing all combinations of W and D  for 12 
positions (WD12 library, 3968 sequences quantified). B – X axis: mixing score, calculated as 
Mixing=n(WD)+n(DW); Y axis: % of functional sequences in the set of sequences containing all 
combinations of 6 W and 6 D (906 sequences quantified). C – X axis: mixing score, calculated 
as Mixing=n([WYF][DE]) + n([DE][WYF]) for the previously published AD dataset screened 
within the Gcn4 context 6; Y axis: % of functional sequences in the set of sequences from the 
Gcn4 random peptide library with 6 [WYF] and 6 [DE] (3018 sequences total). D – X axis: % 
functionality of sequences that contain the specified tetrapeptide motif; Y axis: tetrapeptide 
motifs. Regression lines are provided to demonstrate concordance between the three libraries, 
and motifs were ordered based on average % functionality between the three libraries, with the 
most functional on top. E –  X axis: Starting amino acid position of tetrapeptide in tAD module 
for the WD12 library; Y axis: 16 sequence combinations for tetrapeptides containing D and W, 
Tile fill: % functionality of sequences that contain the specified tetrapeptide motif at the indicated 
position. Motifs were ordered by overall % functionality. F – X axis: Starting amino acid position 
of the tetrapeptide in the tAD module for the Gcn4 library 6; Y axis: 16 sequence combinations 
for tetrapeptides containing [DE] and [WYF], Tile fill: % functionality of sequences that contain 
the specified tetrapeptide motif at the indicated position. Motifs order is the same as in panel E. 
G  – ML accuracy on the reserved testing set (20% of WD12 library) and trained on 80% of 
WD12 library unless noted otherwise, measured as area under the receiver operating 
characteristic (AUROC). 
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Figure 3. Ws are generally beneficial at the end of the molecule, while Ds – internally, 
with the exception when Ds rescue the AD functionality by flanking adjacent Ws in the 
sequence. A – X axis: position of D (red) or W (yellow) within the sequence; Y axis: % 
functionality of sequences in the sub-library of sequences containing all combinations of W and 
D for 12 positions (3968 sequences quantified). B –X axis: size of W cluster preceding indicated 
end cap for sequences representing each line; Y axis: same as in A. (*) sequence construct 
shows tAD constructs of indicated sequence where “.” = G, “x” = [DW], ● = W, and ● = D. C – 
same as in B, calculated for the Gcn4 library 6 using [WYF] instead of just W and [DE] instead of 
just D for end caps. (**) sequence construct shows tAD constructs of indicated sequence where 
“.” = any AA, ϕ = [AVILMWYF], and ● = [WYF]. D – Growth slopes of sequences with different 
numbers of Ds flanking a stretch of 5 Ws. ● = W, and ● = D.   E – sequence constructs of (***) 
and (****) sequences from panel D, “.” = G, ● = W, and ● = D. AlphaFold2 predicted structures 
shown for tAD region. Distance between α-carbon of first tryptophan (W1) and last tryptophan 
(W5) was measured from predicted structure. 
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Figure 4. Formation of the amphipathic α-helix is generally detrimental for AD 
functionality, and insertion of proline is beneficial. A – graphical representation of 
sequences for the WD5 library (107975 sequences quantified): each member of which has five 
Ws, five Ds, and ten random amino acids represented by black dots/circles between Ws and 
Ds.  B – X axis: % α-helix predicted by the SPOT-1D algorithm for each set of sequences from 
the WD5 library; Y axis: % functionality of the set of corresponding sequences in the WD5 
library. C – X axis: count of corresponding amino acid residues between set Ws and Ds of WD5 
library; Y axis: % functionality of the set of corresponding sequences. Amino acid groups: acidic 
[DE], aliphatic [AVILM], aromatic [WYF], basic [RHK], special [CGP] not grouped, polar [STNQ]. 
D – Growth slopes with 3D structures of sequences with varying numbers of proline residues 
predicted by AlphaFold2. E – Growth phenotype on media with and without aureobasidin for 
cells expressing the indicated representative sequences. Spots are conglomerates of yeast 
colonies representing threefold serial dilutions of corresponding cell cultures. 
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Supplementary Figure 1. Schematic representation of wet lab steps: A – massively parallel 
synthesis of the design library; B – BioRep barcodes appending; C – cloning into parental yeast 
shuttle vector; D – sample preparation for NGS Illumina sequencing; E – sequencing at Illumina 
sequencing facility. 
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