PSMNet: Position-aware Stereo Merging Network for Room Layout Estimation
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Figure 1: Estimating the complete layout of complex indoor spaces from a pair of 360° panoramas. We use GT data for the sake of demonstration. Due to
occlusion, a single panorama may view only a portion of the whole space. (a) shows the 2D and 3D room layout components, representing only portion of the
whole space that is visible to each panorama. In practice, the input relative pose may be only approximately known; this is represented by the noisy alignment
between the two partially visible components. Our proposed end-to-end PSMNet shown in (b) takes the two panoramas as input and jointly estimates the
complete visible room layout in 2D, while refining a given noisy relative pose. (c) visualizes the estimated layout in 3D. (a) and (c) are used for visualization.

The input and output of PSMNet are shown in (b).

Abstract

In this paper, we propose a new deep learning-based
method for estimating room layout given a pair of 360°
panoramas. Our system, called Position-aware Stereo Merg-
ing Network or PSMNet, is an end-to-end joint layout-pose
estimator. PSMNet consists of a Stereo Pano Pose (SP?)
transformer and a novel Cross-Perspective Projection (CP?)
layer. The stereo-view SP? transformer is used to implicitly
infer correspondences between views, and can handle noisy
poses. The pose-aware CP? layer is designed to render
features from the adjacent view to the anchor (reference)
view, in order to perform view fusion and estimate the visible
layout. Our experiments and analysis validate our method,
which significantly outperforms the state-of-the-art layout
estimators, especially for large and complex room spaces.

1. Introduction

Image-based room layout estimation is an important step
to constructing models of home interiors for a variety of
applications, such as virtual tours, path planning, floor plan
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generation, and home insights on square footage and archi-
tectural style. Much work has been done in room layout
estimation, and current techniques perform well on simple
Manhattan and Atlanta-world layouts. However, their per-
formance degrade for large and complex rooms, e.g., those
that have more than 10 corners.

It is not unusual (at least in North America) to find room
layouts that are significantly more complex than cuboids or
L-shapes. Examples include large open spaces with merged
kitchen, dining room, and living room. The prevalence of
complex rooms is evidenced by the statistics of real residen-
tial homes in ZInD [4]. Figure 1 illustrates the difficulty
of layout estimation for a complex indoor space with many
self-occlusions. Here, single image solutions would not be
adequate due to occlusion. This is because no panorama is
able to see the entire open space. Using both panoramas
would, in principle, be able to better extract the layout. In
addition, given that reliability is distance dependent (due to
reductions in resolution at farther distances), such depen-
dence is reduced with multiple views.

In this paper, we recover the room layout from two 360°
panoramas. This has its challenges, because relative camera
pose of the panorama pair needs to be estimated jointly with
layout. While techniques such as structure-from-motion



exist, our goal is to generate layouts of complex rooms that
may lack features due to occlusions. Wide baseline 2-view
Structure from Motion (SfM) is still an open problem. In
this work we assume that an input pose, potentially noisy, is
provided. For example, this could be based on a rough user
input [4] or matching corresponding semantic elements with
noisy predictions [29].

Our solution is a joint pose-layout deep architecture to
predict 2D room layout and refine a noisy 3 DOF relative
camera pose in an end-to-end manner. Our system, called
Position-aware Stereo Merging Network (PSMNet), consists
of a transformer-based Stereo Pose Estimation (SP?) network
and a new pose-aware Cross-Perspective Projection (CP?)
module. CP? generates the final layout with the help of an
attention-based merging model (inspired by SEBlock [12])
that weights regions based on certainty. The pose and lay-
out modules share the same encoder for efficiency, and are
trained end-to-end.

In our work, we make the same assumptions as ZInD [4]:
input panoramas are both captured upright at approximate
same height, and layouts are based on Atlanta world (hor-
izontal floor and ceiling, and vertical walls). The ceiling
height is used for visualization.

The contributions of our work are:

(1) First end-to-end joint layout-pose deep architecture (to
our knowledge) for large and complex room layout
estimation from a pair of panoramas.

(ii) New Cross-Perspective Projection (CP?) module with
attention-based merging for layout generation.

(iii) An integrated transformer-based relative Stereo Pano
Pose (SP?) network to refine noisy input pose.

(iv) State-of-the-art performance on a challenging, stereo
panoramas dataset, sampled from ZInD [4].

2. Related Work

In this section, we review approaches relevant to our work.
They are organized based on the following attributes for
room layout estimation: (1) partial versus complete layouts,
(2) single-view, and (3) multi-view 360° panoramas. More
extensive surveys can be found in [19] and [23].

2.1. Partial vs Complete Rooms Layouts

Much work has been done on generating partial room
layout from a single perspective image [2, 5, 11, 15, 16, 28,

, 42]. Early, geometric-based approaches analyze lines
and vanishing points [8, | 1]. With the introduction of large-
scale datasets [4, 11, 39, 40], most of the recent work is
learning-based [5, 15, 41].

Extending [8] to multiple perspective views, [9] pro-
posed a hybrid approach where low-level cues (extracted
from structure-from-motion) are combined into a learnable
Bayesian framework to build a multi-view consistent partial

room layout. Extending further the input requirements, by
using a small number of overlapping perspective RGB-D
images, [17] proposed a geometric-based approach to fuse
multiple, partial pieces into a complete room layout.

2.2. Single-view 360° Layout Estimation

PanoContext [38] was one of the first to study the effect of
FoV for room layout estimation. Similar to other early work
[36], they first convert a single panorama into overlapping
perspective images to estimate per-pixel normals, by com-
bining [16] and [ 1], which is later used to evaluate room
layout hypothesis. LayoutNet [42] demonstrated the bene-
fits of operating directly on the equirectangular panorama.
They use an encoder-decoder CNN, similar to RoomNet
[15], to estimate the corner and boundary probabilities for
cuboid layout estimation. DuLa-Net [37] jointly exploited
the equirectangular panorama and its perspective ceiling-
view in an end-to-end differentiable network, using a novel
equirectangular-to-perspective (E2P) feature fusion step.

HorizonNet [31] is a seminal approach that generates a
compact 1D representation where each image column of the
equirectangular panorama encodes the floor-wall, ceiling-
wall, and wall-wall boundaries. A bidirectional RNN is
used to learn short and long-term dependencies across the
panorama. Many subsequent approaches [25, 32, 34, 35]
adopted HorizonNet as their back-bone architecture. At-
lantaNet [20] proposed floor and ceiling-view projections to
combine the benefits of DuLa-Net and HorizonNet. They
handle the more complex Atlanta-world cases [27]. Despite
the increased 360° FoV, monocular layout estimation tech-
niques are less effective for large open spaces or complex
rooms with self-occlusion.

2.3. Multi-view 360° Layout Estimation

Most techniques on multi-view 360° layout estimation
are focused on full floor-plan reconstruction from a sparse set
of overlapping RGB panoramas [1, 22] or a dense sequence
of RGB-D scans [3, 6, 7, 18]. The pure RGB approaches
[1, 22] typically start with SfM [13] to determine relative
panorama poses. However, this step tends to fail for sparsely
captured panoramas with wide baselines, as demonstrated
by [4, 29]. Assuming all images can be localized, a common
approach is to first segment each input image into floor,
wall and ceilings regions (akin to [36]), in combination with
multi-view cues and constraints [1, 22, 24]. The multi-view
segmentation maps are then projected, as 2D layouts, and
fused together into a final floor-plan boundary [1], or per-
room layout boundaries [2 1, 24].

Recently, [30] proposed a multi-view layout reconstruc-
tion for large indoor spaces, starting from multiple panorama
images with known poses. Using ideas from DuLa-Net and
HorizonNet, they first use [31] to obtain single-view lay-
out predictions, which are then converted into ceiling-view
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Figure 2: Our proposed PSMNet architecture. Its input is a pair of equirectangular panoramas with noisy relative pose, from
which perspective projections are generated by the Cross-Perspective Projection layer (CP?) as additional inputs to generate
the room layout. Stereo Pano Pose (SP?) Net is trained to refine the relative pose. The output of PSMNet is mask M, which is

then post-processed to generate the layout polygon M.

segmentation masks. Their key idea is to train a DNN to
generate multiple ceiling-wall (boxification) line proposals
from each view. Those are then fused using a graph-cut opti-
mization to obtain a single multi-view consistent 2D layout.
Their method can handle more than 2 views. However, they
highly rely on the quality of the pre-computed single-view
layouts as well as the given camera poses.

In contrast, we focus on 2-view layout reconstruction,
with approximate poses. We propose an end-to-end fully
differentiable DNN to jointly estimate multi-view consistent
layout while refining pose.

3. Framework

In this section, we describe PSMNet (Figure 2) and the
loss function we optimize. PSMNet includes the Cross-
Perspective Projection layer (CP?) and Stereo Pano Pose Net
(SP?), both of which are described in subsequent sections.

3.1. Architecture Design

PSMNet adopts a backbone similar to DuLa-Net [37] or
AtlantaNet [20] with a dual-segmentation structure. The
inputs to PSMNet are two 360° panoramas I I¥ with cam-
era viewpoints V1, V5, respectively. Without loss of general-
ity, let the first be the anchor view, with the other (secondary
view) the target for pose estimation and feature fusion. Each

image I”(n = 1,2) is processed in equirectangular space
and perspectively projected to the anchor view. The latter
operation, which we call Cross-Perspective Projection (CP?)
layer , uses the relative pose estimated by the Stereo Pano
Pose (SP?) Network given the two panoramas.

Given a potentially noisy input pose, SP?Net uses a
transformer-based attention mechanism to refine the rela-
tive positions between stereo-view panoramas. We also
extract two sets of segmentation features, namely equi-seg
features and persp-seg features, with each set being the re-
sult of concatenating two views. The equi-seg features are
further rendered to the anchor view in the perspective space
in the same way as was done for the panoramas, resulting in
proj-seg features. Note that persp-seg features and proj-seg
features are camera aligned and thus can readily be merged.

Prior to segmentation feature merging, we apply an atten-
tion model inspired by [12] to extract an implicit confidence
representation. As the concatenated segmentation features
are generated from two separate camera views, each view’s
feature vector encodes content from differing regions of the
room. As a result, the contributions of these features on the
final merged feature are expected to be non-uniform (e.g.,
due to depth and texture variation). An SE-Attention model
is used to estimate these contribution weights. The refined
persp-seg features and proj-seg features are concatenated



and fed to a set of Up-Conv layers. The output of the last
Up-Conv layer is binary mask M of the 2D room layout.
The final polygon layout is generated by our proposed
Mostly Manhattan algorithm as follows. We first extract
a dense contour from M, which is then fit with line seg-
ments using the Douglas-Peucker algorithm [26]. While
the majority of published work imposed a strong Manhattan
constraint on the post-processed layout, we allow some walls
to be non-Manhattan when a candidate wall is greater than a
threshold v away from one of the coordinate axes; more de-
tails are found in the supplementary material. As we do not
estimate the ceiling height, the 3D layout can be extracted
by extruding the layout with the ground truth ceiling height.

3.2. Loss Function Design

PM?2Net is jointly trained end-to-end on the pose and
layout estimation tasks. The pose estimation is formulated
as a regression problem; we compute the ¢; loss between the
ground truth and predicted pose parameters. We denote the
rotation loss by LI()R) and translation loss by L}()T). The pose
loss is given by

Ly = pL{® + (1 — p)L{". (1)

Layout estimation is cast as a segmentation process where
we compute the cross-entropy losses between the predicted

room shape mask and the ground truth in both equirectan-

gular and perspective spaces, denoted by LZ(E) and Ll(P),

respectively. The layout loss is
L =1 + 1", )
The total loss for end-to-end training is
Lot = (1 =X)L, + ALy 3)

Note that in Egs. (1) and (3), the hyper-parameters i, A €
[0, 1]. For our experiments, both 1 and X are set as 0.5.

4. Cross-Perspective Projection (CP?) Layer

PSMNet augments the equirectangular panoramas
IP(n = 1,2) with aligned perspective-projected top-down
views as additional signals. These top-down views are gen-
erated by the CP? layer, using the first (anchor) viewpoint as
reference; let these views be I7(n = 1,2). The two panora-
mas are assumed to be axis aligned vertically [38]. We use
normalized texture coordinates (v, v n = 1,2) ranging
from O to 1 to represent position in I{ and 1.

The 3 DOF pose of the secondary relative to the anchor
is {Az, Ay, Af}, indicating relative 2D position shift and
horizontal angular difference. These are refined by SP?Net
as described in Section 5.

Let the focal lengths of IF'(n = 1,2) be fF'(n = 1,2).
The panorama south pole can be found at the origin of IF.

Anchor-view

Projection

Figure 3: Illustration of our proposed CP?. We plot visible floor
area on the panorama and perspective projected images. (c) is the
anchor-view projection from (a). (d) displays the estimated room
layout from both views with jointly refined camera pose. (e) and (f)
compare the projected adjacent panorama to the anchor view with
and without the pose refinement, respectively.

1Y is projected from I£ to be in the same reference coor-
dinate system as I{". For a fixed field of view FoV/} in the
anchor view, flp , F'oV; (field of view in the secondary view),
and f¥ can be found as follows:

JE = 0.5 cot(0.5FoVy), “)
HE

FoVy = 2tan™" (g tan(0.5+ FoV1)),  (3)
2

#F = 0.5\ cot(0.5F0Va), (6)

where HE(n = 1,2) are the camera heights and X is the
width (in pixels) of I”’(n = 1,2). In our work, we assume
HE = HE, which results in FoV; = FoV, and ff = fF.
Given translation ¢,, = {x,,y,} and rotation 6,,, n =
1,2, our CP? layer projects the panorama coordinates as
follows:
atan2(ply — Tn, Py — Yn) — On

UE = o ) (7)

tan2(||py — xn, Dy — Yully s Fr

™

v,

where (p?, py,m =1, 2) is a point in the joint floor coordi-
nate system. For the anchor view, 1 = y; = 67 = 0. For
the secondary view, o = Ax,ys = Ay,0y = Af. The
effect of CP? is illustrated in the Figure 3.

5. Stereo Panorama Pose (SP?) Network

We assume that the relative pose between the two in-
put panoramas is only approximately known; in practice,
any pose estimate will be subject to noise. The SP?Net
component of PSMNet is responsible for refining the initial



pose estimate. More specifically, the goal of SP?Net is to
predict the pose refinement parameters At = t,; — t. and
A = 04 — 0., where At = {Ax, Ay}, (t., 0.) is the input
noisy pose and (4, f4¢) the ground truth pose.

First, the anchor panorama ¥ is projected to perspective
view I{ by the CP? layer, with the pose parameters all set to
0. The second input panorama 2 is projected to perspective
view I’ by the same CP? layer using the input noisy pose
(te, 0.). The shared backbone ResNet-18 is then used to
extract multi-scale features from 7" and IZ". The extracted
features are denoted as ¥ and FY .

FF and Ff are added with positional encodings, and
each feature map is then flattened to a 1-D vector. The en-
coded features are passed through a transformer to extract
position and context dependent local features. The trans-
former (inspired by [33]) consists of self-attention and cross-
attention layers. The output features from the transformer
are denoted as 777 and TY .

Finally, 71 and T are concatenated along the channel
dimension. The concatenated features C'* are fed into three
convolutional layers to extract features that contain the rela-
tive pose information between the two input panoramas. The
extracted features are flattened, and a fully connected layer
is used to predict At and Af.

6. Experiments

In this section, we report results of our approach on Zillow
Indoor Dataset (ZInD) [4]. Given the variability of relative
location of panoramas as well as the complexity of the room
layout, we use spatial overlap and co-visibility (which we
define shortly) to stratify our results.

Most room layout datasets such as PanoContext [38],
Stanford 2D-3D [42], and Realtor360 [37] only feature a
single panorama per room, making them not suitable for
our work. We chose Zillow Indoor Dataset (ZInD) [4] for
evaluation because it is the only large-scale, public dataset
that has the multi-view panorama configuration for layout
estimation, it is based on many real residential homes across
many cities, and its rooms have significant geometric diver-
sity (Manhattan and non-Manhattan, and significant spread
in room size and number of room corners). We derive a
stereo-view dataset from ZInD for our experiments. In total,
there are 107,916, 13,189, and 12,348 pano pair instances in
our train, test, and val splits, from 40,336, 5,138, and 4,993
unique panoramas, respectively.

6.1. Benchmarks and Evaluation Metrics

We compare our PSMNet with baselines built upon recent
state-of-the-art layout estimation methods: HorizonNet [31],
DulaNet [37], LED?Net [35] and HoHoNet [32]. Since these
methods only address single view layout estimation, we first
derive the estimated result for each view and then perform
a simple shape union across stereo views to get the merged
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Figure 4: Data distribution of the spatial overlap and co-visibility
scores.

result. Note that room layout recovery is based on what is
visible; an occlusion edge shows up as a “wall”.

In deriving single-view results, we found that using fully-
Manbhattan post-processing decreases the baseline perfor-
mance. This is because ZInD contains many partially visible
layouts, which introduces non-Manhattan occlusion “walls”.

To increase the baseline performance, we instead apply
post-processing which preserves non-Manhattan structure.
For HorizonNet and HoHoNet, we sample the predicted con-
tour at corner lines of sight to get the final layout polygon.
For the segmentation based methods, we apply AtlantaNet’s
post-processing, which also preserves non-Manhattan walls.
For all methods, we apply our Mostly Manhattan post-
processing (Section 3.1) to the merged shape union to get
the final room layout. The quality of the stereo-view layout
estimate is evaluated using 2D IoU. We also use ¢; [37],
which measures accuracy in panorama pixel space.

Spatial overlap and co-visibility are employed in our ex-
periments as measures of difficulty and to stratify results.
For a panorama pair, spatial overlap measures the IoU be-
tween the ground truth single-view visible layout polygons.
The higher the score, the more visible floor area the two
panoramas have in common. As shown in Figure 4, we split
the dataset into Overlap-High (> 0.9), Overlap-Medium (0.5
- 0.9) and Overlap-Low (< 0.5). In the test set, each split has
3,769, 5,644, and 3,776 data instances, respectively.

Since our method incorporates both the perspective and
equirectangular projections, we additionally stratify by co-
visibility [4], which measures visual overlap (€ [0, 1]) be-
tween two panoramas. Examples are split into Covis-High
(> 0.9), Covis-Medium (0.5 - 0.9), and Covis-Low (< 0.5).

6.2. Implementation Details

PSMNet is implemented in PyTorch and trained with the
Adam [14] optimizer on a single GPU for 200 epochs. We
set the learning rate as 0.0001 and the batch size as 6. The
backbone feature extraction network is ResNet18 [10]. The
Manhattan threshold  in Section 3.1 is set to 10.

The joint layout-pose network is trained with two config-
urations (one with ground truth pose and the other with noisy
pose augmentation). For pose noise, in the training stage,
we perturb the ground truth pose with noise sampled from a



Table 1: Quantitative evaluation stratified by spatial overlap at different levels of room complexity. Note that ”Overlap-Low”

indicates higher room complexity with more occlusions.

Pose Methods Overall Overlap-High Overlap-Medium Overlap-Low
2D IoU (%) 0 2D IoU (%) 0; 2D ToU (%) 0; 2D IoU (%) 0
DulaNet [37] 64.03 0.8043 65.21 0.8185 62.14 0.8031 60.27 0.7980
w/ HorizonNet [31] 73.35 0.8663 82.08 0.8801 71.47 0.8678 69.20 0.8535
GT HoHoNet [32] 74.25 0.8649 82.55 0.8816 72.43 0.8672 70.35 0.8486
LED?Net [35] 76.39 0.9056 83.68 0.9243 73.73 0.8736 72.08 0.8697
PSMNet (Ours) 81.01 0.9238 85.71 0.9349 80.13 0.9253 76.93 0.9074
DulaNet [37] 59.30 0.7828 62.06 0.7699 57.97 0.7855 51.21 0.7936
wo HorizonNet [31] 62.79 0.8354 70.98 0.8437 61.51 0.8355 58.24 0.8288
GT HoHoNet [32] 63.31 0.8324 70.59 0.8390 62.03 0.8339 59.47 0.8253
LED?Net [35] 65.81 0.8566 71.06 0.8493 64.81 0.8574 63.14 0.8611
PSMNet (Ours) 75.77 0.9217 84.80 0.9371 74.73 0.9210 66.73 0.9040
uniform distribution. We perform further data augmentation 0 A o tedum A= Low A e tedum A= Low
by randomly switching which panorama is selected as the 5 0.94
anchor view. For all of the single-view baseline models, we § 08 { AT S 0.921 P o
re-train the network on single-view examples from the ZInD % 074 Sogo{ M Ay |
stereo dataset, with 200 epochs for fair comparison. After g | E 0.88 |
getting the single-view layout estimation results, we apply £°°7 0.6
both the same ground truth pose and noisy pose to perform oS~ ‘ P S

the merging process.

To assess our model’s tolerance to noise, we synthetically
generate noisy pose estimates by sampling. In practice, any
pose estimator may be used, such as LayoutLoc [4]. 2-view
wide baseline SfM remains a challenging open problem.

6.3. Quantitative Evaluation

In our evaluation of PSMNet on the ZInD stereo-view
dataset, we apply the same ground truth (GT) and noisy
poses as inputs for other baseline methods, as well as PSM-
Net, for an apples-to-apples comparison. Quantitative results
reported in Table 1 show that PSMNet consistently outper-
forms the baseline methods with significant improvements
especially for complex rooms.

Performance with GT pose. With known GT pose, the
influence of pose refinement removed. As shown in the up-
per half of Table 1, with GT pose as input, PSMNet shows an
overall improvement over the LED?Net baseline of 4.62%
for 2D IoU and 0.02 for §;. Overlap High demonstrates the
most competitive baseline performance. With high visual
overlap, the benefit of an additional view is reduced. Nev-
ertheless, we improve upon all baselines. The advantage
of PSMNet further increases as visual overlap is reduced
(Overlap-Medium and Overlap-Low).

Performance with noisy pose. To assess noise tolerance,
we sample pose noise from uniform distributions U (0, 40°)
and U(0, 1m), for rotation and translation, respectively. As
shown in the lower part of Table 1, when the input pose is
noisy, our joint layout-pose estimation pipeline surpasses the

Pose Noise level Pose Noise level

Figure 5: Illustration of the robustness of our proposed PSM-
Net under various level of pose noise for Overlap-High,
Overlap-Medium, and Overlap-Low groups.

baseline performance by a large margin. For Overlap-High,
even without GT pose, PSMNet performs better than most
baselines with GT pose. This is compelling illustration of the
benefit of SP2. Additional results for all methods stratified
by co-visibility are shown in the supplementary. They are
similarly positive for PSMNet.

Effect of pose noise. Our simulated coarse poses are gen-
erated by adding £62,.,. rotational errors as well as translation
errors of fixed magnitudes in a random direction. Figure 5
shows our system performance with pose noises ranging
from 0 — (0m, 0°) to 10 — (1m,40°), with increments of
(0.1m, 4°). We compute both 2D IoU and ; on the stratified
ZInD dataset. PSMNet demonstrates robust performance
over a range of input pose noises, with higher than 80%
IoU on Overlap-High and more than 60% IoU on Overlap-
Low, even when the pose noise increases significantly to
(1m, 40°). The ¢; plot shows a similar trend.

6.4. Qualitative Evaluation

In Figure 6, we show sample estimated layouts for PSM-
Net compared with the LED?Net baseline. In the first two
columns, the accuracy of both our layout and pose refinement
is demonstrated by the alignment with the true boundaries in
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Figure 6: Position-aware layout estimation results on the ZInD dataset with noisy pose. The first two columns show the
estimated visible room layout on each panorama in green. In the middle top-down plot we stack the predicted room shape in
oreen over the ground truth mask in cyan, while the LED?Net baseline result is shown in red. The fourth column demonstrates
the 3D layouts of our PSMNet and the last column is the results of LED?Net.

the equirectangular images, for both the anchor and adjacent
view alike. Note that while they are captured in segmenta-
tion, we do not post-process additional “internal” polygons
for islands, pillars, or separating walls that arise in large
spaces. This can be seen by the absence of partial boundary
in row 2. We further compare PSMNet, the LED?Net base-
line, and GT, displayed in top-down projection, in column
3. Columns 4 and 5 show the 3D layouts for PSMNet and
LED?Net, extruded by GT ceiling height for display. The
benefits of SP2, and by contrast the consequences of pose
noise, are striking. We highlight significant differences; the
benefit of end-to-end learning of pose and layout is most
noticeable when comparing the cohesive PSMNet layouts,
with the poorly merged regions of the LED?Net baseline.

6.5. Ablation Study on Network Components

We conduct experiments to investigate the affect of indi-
vidual components in our PSMNet architecture. Specifically,

Table 2: Evaluation of different variants of PSMNet.

CP> SP? SE Attention || 2D IoU (%) 5;
X X X 60.41 0.8031
v X X 66.39 0.8701
v v X 70.92 0.8883
v X v 69.14 0.8723
v v v 72.38 0.9003

we consider the following variants:

(i) Remove the proposed CP?, SP2, and SE Attention
layers. Instead of cross-perspective rendering, we do
a direct perspective rendering for the second view of
input panorama 1%

(ii) Remove the SP? and the SE Attention layers, while just
using the proposed CP? to perform cross-perspective
projection based on the coarse pose. There is no further



Table 3: Comparison of different post processing methods.

Pose Methods Most Manhattan PP AtlantaNet PP
2D IoU 0i 2D IoU oi
DulaNet [37] 64.03 0.8043 62.06 0.7899
W/ HorizonNet [31] 73.35 0.8663 71.36 0.8785
GT HoHoNet [32] 74.25 0.8649 73.25 0.8732
LED2Net [35] 76.39 0.9056 75.14 0.8849
PSMNet (Ours) 81.01 0.9238 77.69 0.9159
DulaNet [37] 59.30 0.7828 58.90 0.7634
wio HorizonNet [31] 62.79 0.8354 60.17 0.8145
GT HoHoNet [32] 63.31 0.8324 61.85 0.8204
LED2Net [35] 65.81 0.8566 64.09 0.8423
PSMNet (Ours) 75.77 0.9217 73.22 0.8926

pose refinement.

(iii) Replace the SE Attention layers with standard convo-
lution layers to process extracted features.

(iv) Remove the pose refinement model SP?, instead using
the coarse pose directly as input to the CP? layer.

Variant performance is reported in Table 2 with high-
lighted the best (bold) and worst (underline) layout estima-
tions. CP? is the most critical component of our model which
makes use of the refined pose from SP? in order to associate
the adjacent view to the anchor view. With CP? added, we
see that both SP? and SE Attention bring additional substan-
tial gains to our model, with SP? proving to be slightly more
effective than SE Attention.

We further examine the effect of our proposed Mostly
Manhattan post processing algorithm. As mentioned in
Section 6.1, due to ZInD’s complexity where most visible
layouts go beyond the Manhattan world, fully-Manhattan
post processing methods such as in HorizonNet [31], and
DulaNet [37] do not work well. By comparison, the post
processing method introduced by AtlantaNet [20] is better
suited for general visible layouts. Here, we compare the per-
formance of our proposed Mostly Manhattan post-processing
to AtlantaNet’s post-processing method, when applied to our
network as well as the baselines. The results are reported in
Table 3. Our Mostly Manhattan method consistently outper-
forms the AtlantaNet post processing method w/ or w/o GT
pose. Also note that even when we apply AtlantaNet post
processing to our network’s output, we still achieve a better
performance compared to the baseline models.

7. Discussion

In Figure 7, we share an example which highlights lim-
itations and challenges of our task. Here, the room is not
only complex, but there is also a low overlap score (only
0.27) between the two panoramas. As a result, there are few
common features between the two views. The GT and pre-
dicted PSMNet layouts are shown in Figure 7 (a) and (b); in
(b), boundary misalignment can be seen in panorama 2. We

AP:

Pose Error

Figure 7: Illustration of a challenging example, with an
overlap score of just 0.27.

highlight the narrow path connecting the kitchen and living
room (with arrows), which causes low co-visibility. This
challenge is further compounded in the perspective views,
Figure 7 (c) and (f), with limited common floor and wall
texture between the image pair.

Figure 7 (e) displays the error (A P) in the refined position
of panorama 2. This pose error results in feature misalign-
ment inside our network, which ultimately leads to a noisy
predicted segmentation, shown in Figure 7 (d). Figure 7 (e)
further visualizes the final predicted layout and GT floor seg-
mentation, where we observe a direct correlation between
the relative pose error and shifted layout boundary. This
particular example also contains a flaw in the data, where
the GT is missing a portion of floor boundary around the
divider between kitchen and living room (which our model
recognizes). This means that in actuality the co-visibility
and overlap scores are even lower than computed.

8. Conclusion

We have introduced a novel end-to-end approach for
jointly estimating complex room layout from stereo-view
panoramas, while refining a noisy relative pose. We adopt
a dual-projection backbone architecture to extract features
from both equirectangular and perspective-view images. For
pose refinement, we propose a transformer-based Stereo
Pano Pose (SP?) Network to derive implicit correspondence,
and predict refinement parameters by a fully-connected layer.
A novel Cross-Perspective Projection (CP?) is crucially de-
signed to project the adjacent panorama view to the anchor
view, as well as to align multi-scale equirectangular features
for merging in the central segmentation branch. To weight
the contribution of features from both views, we apply SE-
Attention inspired by [12]. To evaluate the performance of
our method, we introduce baselines based upon currently
available state-of-the-art single-perspective layout estima-
tors. Our model demonstrates significant improvements in
layout estimation accuracy on a new stereo-view visible lay-
out dataset, derived from ZInD, which will be released to the
community.
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