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Abstract. 3D CT point clouds reconstructed from the original CT im-
ages are naturally represented in real-world coordinates. Compared with
CT images, 3D CT point clouds contain invariant geometric features
with irregular spatial distributions from multiple viewpoints. This pa-
per rethinks pulmonary nodule detection in CT point cloud represen-
tations. We first extract the multi-view features from a sparse convo-
lutional (SparseConv) encoder by rotating the point clouds with differ-
ent angles in the world coordinate. Then, to simultaneously learn the
discriminative and robust spatial features from various viewpoints, a
nodule proposal optimization schema is proposed to obtain coarse nod-
ule regions by aggregating consistent nodule proposals prediction from
multi-view features. Last, the multi-level features and semantic segmen-
tation features extracted from a SparseConv decoder are concatenated
with multi-view features for final nodule region regression. Experiments
on the benchmark dataset (LUNA16) demonstrate the feasibility of ap-
plying CT point clouds in lung nodule detection task. Furthermore, we
observe that by combining multi-view predictions, the performance of the
proposed framework is greatly improved compared to single-view, while
the interior texture features of nodules from images are more suitable for
detecting nodules in small sizes.

Keywords: 3D point cloud · Nodule detection · Multi-view feature rep-
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1 Introduction

Lung cancer is the leading cancer killer and one of the most common cancers
around the world [26]. Many efforts have been made on AI-driven computer-
aided diagnosis (CAD) systems for lung nodule detection and diagnosis [17, 18,
28, 30]. Most existing 3D nodule detectors [11, 30] extract spatial-temporal fea-
tures from the stacked CT images as 3D volumes via 3D convolutional neural
networks (3D CNNs). By extending a two-dimensional feature representation to a
three-dimensional space, the significant performance improvement demonstrates
the benefits of interpreting the spatial features for nodule detection. Meanwhile,
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Fig. 1. Illustration of a CT scan in the image (a) and CT point cloud visualized in
different views (b). Compared to CT images, as shown in (b), 3D CT point clouds nat-
urally represent pulmonary nodules by multi-view representations in 3D coordinates.
View A in (b) has the same viewpoint as the CT image. Note that the background of
the lung region is excluded for both CT images and CT point clouds. Best viewed in
color.)

by projecting CT images to multiple planes (i.e., axial, coronal, and sagittal),
the multi-view features show the effectiveness to reduce false positives as richer
features are obtained from different viewpoints [22, 23, 16, 9]. Although these ex-
isting methods can extract spatial-temporal features or multi-view features from
the continuous CT images, the data representation with multi-view flexibility
that can directly represent 3D spatial features is still remain exploring.

Table 1. Comparison between CT image representation and 3D CT point cloud rep-
resentations.

Visual
Representation

Geometric
Invariance

Multi-view
Perspective

Real-world
Coordinates

Irregular
Shape

Grid
Align

Texture
Feature

Radiation
Intensity

Image No No No No Yes Yes Yes

3D Point Cloud Yes Yes Yes Yes No No Yes

Recently, 3D point clouds are considered to be a natural way to capture
and represent 3D objects [20, 21, 2, 4, 12]. As shown in Fig. 1, unlike CT images
(Fig. 1(a)) represented by grids, 3D CT point clouds (Fig. 1(b)) are organized
in an irregular manner, thereby provides more flexible feature representations of
3D geometric structure. We summarize the characters of visual representations
of 3D CT point clouds and CT images in Table 1. Real-world coordinates are
applied to 3D CT point clouds, representing the accurate geometric distribution
of radiation intensity. Due to geometric invariance, multi-view representations
can be obtained by tilting the 3D CT point cloud heading angles to obtain richer
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features than the single-view representation. However, the scattered 3D CT point
cloud lacks the texture features as CT images that preserve the details of internal
nodules. Therefore, this paper attempts to rethink the nodule detection task
from multiple perspectives in CT point clouds and investigate the advantages
and limitations compared to CT images.

We aim to address the challenging task of predicting nodule regions in the
entire lung area. Per our knowledge, this is the first work to explore 3D point
cloud data representation for the nodule detection task. The main contributions
of this paper are summarized as follows: 1) We explore the possibility of ap-
plying 3D CT point cloud and the effectiveness of 3D spatial representations
on nodule detection. By rotating the 3D CT point clouds, compared to a sin-
gle view of stacked CT images, irregular shapes and richer spatial distributions
of nodules in lung regions are extracted from multi-views. 2) A nodule pro-
posal optimization schema is proposed to acquire a set of 3D nodule candidate
proposals which simultaneously agreed by multi-view feature predictions. The
rich multi-level features and point-wise segmentation are further concatenated
with multi-view features for final nodule candidate refinement. 3) Experiment
results show the advantages of multi-view 3D CT point clouds as spatial repre-
sentations and the impact of lacking the texture feature representations on small
nodule detection. Furthermore, the ablation studies demonstrate that with more
multi-views involved, the performance of the proposed framework achieves en-
couraging improvements, proofing the effectiveness of multi-view 3D features in
point clouds.

2 Methods

As shown in Fig. 2, N samples are acquired by combining the original 3D CT
point clouds with the rotated multi-view samples, representing irregular geomet-
ric distributions from various perspectives. A 3D Sparse Convolution (SparseC-
onv) encoder simultaneously learns the multi-view features by optimizing the
nodule proposals in various viewpoints. Last, a final nodule prediction is refined
by fusing the multi-level features and semantic segmentation features extracted
by the 3D SpaseConv decoder, as well as the multi-view features.

Multi-view Sample Collection: 3D CT point clouds consist of a set of
three-dimensional vertices, defined as {x, y, z} representing the distribution of
points in a world coordinate. Besides, the unique internal texture with the ra-
diation intensities is essential to identify nodule types. We further apply the
radiant intensity I of each point to preserve internal intensity-based texture fea-
tures. The nodule region is represented by (x, y, z, h, w, l), indicating the nodule
location {x, y, z} and the nodule size in three dimensions {h,w, l}. During the
training, the objective function consists of the BinaryCrossEntropy loss for nod-
ule class probability and smooth − l1 loss for nodule region by comparing the
predicted nodule candidates and the ground-truths.

By rotating the 3D point clouds along the world coordinate in N angles, the
discriminate multi-view features of the same object can be extracted. Therefore,
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Fig. 2. The pipeline of our proposed 3D point cloud nodule detection framework. Multi-
view feature representations are extracted from a 3D sparse encoder-decoder network
and further employed to select the coarse nodule predictions by a nodule proposal
optimization (details are illustrated in Fig. 3 and explained in Section 3 - Nodule
Proposal Optimization). Then, the finer candidate prediction is obtained based on the
fusion of 1) multi-view features; 2) multi-level features; 3) semantic features of the
region of interest (ROI).

to train a backbone network with robust spatial features from multiple perspec-
tives, we rotate the 3D CT point clouds along the xy-axis, yz-axis, xz-axis, and
xyz-axis with a set of rotation angles from +θ to −θ. As shown in Fig. 3, four
sets of (N − 1) viewpoints are added, donated as V-xy, V-yz, V-xz, and V-xyz.
We implement nine viewpoint samples with the rotation angles of +45◦ and
−45◦ for V-xy, V-yz, V-xz, and V-xyz. The multi-view features are fed into the
backbone network for nodule proposal prediction.

Multi-view and Multi-level Feature Extraction: The irregular shape of
the 3D point cloud brings challenges to implement feature extraction with con-
volutional neural networks (CNN). We follow the baseline PV-RCNN [24] and
the extension work, Part-A2 [25] to extract features by integrating the grids of
irregular point clouds as voxels and multi-level point-wise features from the de-
coder network. A 3D sparse convolution (SparseConv) encoder composed of four
layers as es1, es2, es3, and es4. The features are downsampled to 1×, 2×, 4×, 8×
as the layers go deeper. A 3D SparseConv decoder comprises four sparse decon-
volutional layers as ds1, ds2, ds3, and ds4 for feature upsampling. The lateral
connections are conducted through all layers, as the es1 with ds1, es2 with ds2,
es3 with ds3, and es4 with ds4, extracting the multi-level point-wise features for
final candidate prediction.

Nodule Proposal Optimization: Unlike typical data augmentation meth-
ods, we employ the samples from all views to predict and optimize the nodule
proposals simultaneously. Reliable preliminary nodule proposals are acquired
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Fig. 3. The detailed illustration of the proposed multi-view samples and nodule pre-
diction optimization schema. Multi-view samples are obtained by rotating the original
samples from N viewpoints. By rotating from +θ to −θ along the xy-axis, yz-axis,
xz-axis, and xyz-axis, (N − 1) additional viewpoints are obtained as V-xy, V-yz, V-xz
and V-xyz. Features of N views are extracted from the 3D SparseConv encoder and
the primary nodule proposals are predicted by a regression head. The coarse nodule
predictions are collected if the number of consensus nodule proposals predicted by the
multi-view features is greater than a consistency threshold.

from multi-views. In the meantime, compared with the ground truth, the 3D
SparseConv encoder is updated by the objective function to extract multi-view
features for accurate predictions. The distinguish and robust features ensure the
prediction of the nodule regions. As shown in Fig. 3, a regression head (RH) is
used for nodule proposal prediction, which consists of three SparseConv layers,
followed by two fully connected layers to predict the confidence score and pro-
posal region. RH takes the features of N views extracted from the last SparseC-
onv layer of the encoder network and predicts the initial coarse nodule candidate
regions. First, we choose a nodule proposal with a confidence score greater than
0.05 and then calculate the number of nodule proposals with a 3D IoU of 0.25
overlap among the multi-view predictions. If the number is higher than a con-
sistency threshold, the nodule proposal is set as the coarse nodule prediction for
a finer region regression.

Final Nodule Prediction with Multi-feature Fusion: To guarantee an
accurate nodule candidate prediction, rich feature fusion is conducted by com-
bining the multi-view features, multi-level features, and semantic segmentation
features, as shown in Fig. 2. First, the point-wise attention benefits the flexible
receptive field from the irregular format. We follow PV-RCNN [24], multi-scale
features are extracted from ds1, ds2, ds3, and ds4 layers. Second, semantic seg-
mentation maps are predicted by the 3D decoder network and semantic features
further extracted by a SparseConv, interpreting the point level classification of
nodule candidates. Finally, same as Part-A2 [25], the multi-level features and
the semantic features are concatenated for nodule region prediction along with
the multi-view features. A regression head predicts the final nodule candidate
region (x, y, z, h, w, l, r) based on the rich multi-feature fusion.
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3 Experiments

3.1 Data and Training

We conduct the experiments on the LUNA16 public dataset [1], which contains
1, 186 nodules with sizes ranging from 3 to 30 mm from 888 CT scans. The
dataset is officially divided into ten subsets. We follow the same cross-validation
protocol by applying nine subsets as training and the remaining subset as test-
ing. One subset from the training subsets is used for validation to monitor the
convergence of the training process.

3D CT Point Cloud Reconstruction: A CT scan consists of CT images
represented by (x, y) as image coordinates and z as scan depth. To eliminate
unrelated regions, we first segment the lung region from the CT images based on
the lung region mask and then apply (x, y, z) as the location of each point in the
world coordinates, represented by (x, y, z, radiation intensity). The air points
in the lung regions are discarded based on the standard Hounsfield scale (-1000).
Therefore, the CT point clouds precisely represent the nodules, tissues, organs,
and lung boundaries in the lung region. Besides, to avoid sampling redundant and
non-informative points in the training, we follow Drokin et al. [8] by applying the
non-uniform sampling schema, which keeps a high sampling rate at the nodule
regions and gradually reduces the sampling rate according to the increasing
distance from sample points to the center of nodules.

Table 2. FROC performance comparison of nodule detection between the proposed 3D
point cloud-based method and the state-of-the-art image-based methods on LUNA16
dataset: sensitivity and the corresponding false positives at 1/8, 1/4, 1/2, 1, 2, 4, 8 per
scan with and without false positive reduction.

Methods 1/8 1/4 1/2 1 2 4 8 CPM

Without False Positive Reduction

Zhu et al.[30] 0.692 0.769 0.824 0.865 0.893 0.917 0.933 0.842
Li et al.[15] 0.739 0.803 0.858 0.888 0.907 0.916 0.920 0.862
Gong et al.[10] 0.713 0.801 0.867 0.917 0.920 0.962 0.971 0.883
Khosravan et al.[13] 0.709 0.836 0.921 0.953 0.953 0.953 0.953 0.897
Liu et al.[17] 0.848 0.876 0.905 0.933 0.943 0.957 0.970 0.919

With False Positive Reduction

Dou et al.[7] 0.677 0.737 0.815 0.848 0.879 0.907 0.922 0.827
Dou et al.[6] 0.659 0.745 0.819 0.865 0.906 0.933 0.946 0.839
Wang et al.[29] 0.676 0.776 0.879 0.949 0.958 0.958 0.958 0.878
Ding et al.[5] 0.748 0.853 0.887 0.922 0.938 0.944 0.946 0.891
Kim et al.[14] 0.904 0.931 0.943 0.947 0.952 0.956 0.962 0.942

Ours 0.779 0.848 0.914 0.918 0.939 0.939 0.939 0.895
Ours (w/FPR) 0.794 0.886 0.916 0.934 0.951 0.956 0.959 0.913

Model Training: The experiment is modified based on an open source
project OpenPCDet [27]. The proposed framework is trained to minimize Bi-
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naryCrossEntropy loss and Smooth-L1 loss. The Adam algorithm is used for
optimization with an initial learning rate of 1e−4 and decreased by 0.1 after 80
and 160 epochs. The batch size is set to 2. The multi-view proposal optimization
is conducted after 20 epochs. The model is trained with a total of 200 training
epochs.

3.2 Experiments on LUNA16

Compare with State-of-the-art Nodule Detection Methods: We evalu-
ate the proposed method and compare it with the state-of-the-art image-based
nodule detectors in two groups: one-stage methods without false-positive re-
duction and two-stage frameworks with false-positive reduction. Similar to the
LUNA16 challenge, the Free-Response ROC Curve (FROC) [3] is employed to
evaluate the sensitivity versus the specificity of the nodule detection at 1/8, 1/4,
1/2, 1, 2, 4, 8 False Positive (FP) levels per scan with the average Competition
Performance Metric (CPM) score. As shown in Table 2, the proposed 3D nod-
ule detector reaches comparable results with the one-stage methods trained on
stacked CT images, demonstrating that the spatial features are feasible to em-
ploy in the nodule detection task. We observe that performance is improved with
a small margin (1.6% CPM) by implementing the false positive reduction to the
proposed nodule detector and shows a comparable result with the image-based
two-stage frameworks [6, 7, 29, 5]. We notice that most of the missing nodules
are small, with an average size of 5 mm. With few point representations, spatial
feature extraction is significantly limited for all the SparseConv encoder layers.
For the image-based methods, detailed internal texture features of small nodules
are better preserved by the feature pyramid extraction [29, 17].

Table 3. Ablation study of the effectiveness of proposed multi-views samples with
nodule proposal optimization, multi-level features (MF) and semantic features (SF)
by comparing the performance on LUNA16 dataset: sensitivity and the corresponding
false positives at 1/8, 1/4, 1/2, 1, 2, 4, 8 per scan.

V-xy V-yz V-xz V-xyz MF SF 1/8 1/4 1/2 1 2 4 8 CPM

- - - - - - 0.617 0.695 0.765 0.796 0.811 0.811 0.811 0.758√
- - - - - 0.632 0.719 0.787 0.819 0.837 0.862 0.862 0.788√ √

- - - - 0.701 0.749 0.849 0.866 0.879 0.891 0.891 0.832√ √ √
- - - 0.742 0.801 0.863 0.904 0.907 0.917 0.917 0.864√ √ √ √

- - 0.756 0.835 0.879 0.902 0.911 0.921 0.921 0.875√ √ √ √ √
- 0.772 0.843 0.881 0.916 0.919 0.927 0.927 0.883√ √ √ √ √ √

0.779 0.848 0.914 0.918 0.939 0.939 0.939 0.897

Ablation Study: We investigate the effectiveness of the proposed multi-view
feature learning with the nodule proposal optimization schema and the feature
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fusion on the final nodule candidate predictions. For all ablation studies, the
consistency threshold is set to 5 when 9 views involved as the model shows the
best performance. Table 3 shows that the CPM is increased by 11.7% when all
viewpoints are applied compared with the single-view baseline. As the multi-view
features V-xy, V-yz, V-xz, and V-xyz gradually join for training, the sensitivities
are raised by 3%, 4.4%, 3.2%, and 1.1% CPM, respectively. The performance is
significantly gained by learning the multi-view feature representations through
nodule proposal optimization schema. The average sensitivity is further improved
0.7% and 1.4% CPM by multi-level features (MF) and semantic feature (SF)
for final nodule prediction, respectively, demonstrating the benefits of irregular
point-wise feature fusion for nodule region regression. We further compare the
baseline model to the existing point cloud backbone networks: PointNet [20],
PointNet++ [21] and DGCNN [19]. The PV-RCNN substantially outperforms
these models by 4.2%, 3.3%, and 3.6% CPM respectively.

4 Discussions and Conclusions

Overall, 3D CT point clouds can be feasible data representations on nodule de-
tection tasks for medical image analysis with a very careful data preprocessing.
3D point clouds naturally present the irregular shape of lung regions in real-
world coordinates, which are flexible in employing multi-view features based on
the geometric invariance and acquiring the discriminative spatial features from
different viewpoints. Multi-view features can be obtained by rotating the 3D
point clouds and further aggregated them to acquire the coarse nodule predic-
tions through a nodule proposal optimization schema. By simultaneously learn-
ing the multi-view features from a 3D SparseConv encoder, combined with the
multi-level and semantic segmentation features extracted from a 3D SparseConv
decoder, the proposed nodule detector achieves a promising performance on the
pulmonary nodule detection task.

The point cloud-based backbone network tends to extract informative spa-
tial relations for nodule prediction. As small nodules contain few points, the
lack of spatial feature extraction makes it challenging to detect. In contrast, the
image-based methods handle it relatively well due to detailed texture informa-
tion extracted from image-based CNNs at the low-level layers. There are still
opportunities for further improvements on small nodule detection. Future work
will extend the 3D point-cloud representations with image-based texture fea-
tures detecting nodules via a dynamic multi-view nodule proposal optimization
schema. It is worth investigating to fully utilize the spatial representations from
3D CT point clouds, which have the potential to benefit the clinical diagnosis,
especially in surgical operations.
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