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Abstract. We formally introduce, define, and construct memory-hard
puzzles. Intuitively, for a difficulty parameter t, a cryptographic puzzle is
memory-hard if any parallel random access machine (PRAM) algorithm
with “small” cumulative memory complexity (� t2) cannot solve the
puzzle; moreover, such puzzles should be both “easy” to generate and
be solvable by a sequential RAM algorithm running in time t. Our def-
initions and constructions of memory-hard puzzles are in the standard
model, assuming the existence of indistinguishability obfuscation (iO)
and one-way functions (OWFs), and additionally assuming the existence
of a memory-hard language. Intuitively, a language is memory-hard if it
is undecidable by any PRAM algorithm with “small” cumulative mem-
ory complexity, while a sequential RAM algorithm running in time t can
decide the language. Our definitions and constructions of memory-hard
objects are the first such definitions and constructions in the standard
model without relying on idealized assumptions (such as random ora-
cles).

We give two applications which highlight the utility of memory-hard
puzzles. For our first application, we give a construction of a (one-time)
memory-hard function (MHF) in the standard model, using memory-
hard puzzles and additionally assuming iO and OWFs. For our second
application, we show any cryptographic puzzle (e.g., memory-hard, time-
lock) can be used to construct resource-bounded locally decodable codes
(LDCs) in the standard model, answering an open question of Blocki,
Kulkarni, and Zhou (ITC 2020). Resource-bounded LDCs achieve better
rate and locality than their classical counterparts under the assumption
that the adversarial channel is resource bounded (e.g., a low-depth cir-
cuit). Prior constructions of MHFs and resource-bounded LDCs required
idealized primitives like random oracles.

1 Introduction

Memory-hardness is an important notion in the field of cryptography that is
used to design egalitarian proofs of work and to protect low entropy secrets (e.g.,
passwords) against brute-force attacks. Over the last decade, there has been a
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rich line of both theoretical and applied work in constructing and analyzing
memory-hard functions [43,7,16,2,4,6,8,28,3,5,25,34]. Ideally, one wants to prove
that any algorithm evaluating the function (possibly on multiple distinct inputs)
has high cumulative memory complexity (cmc) [7] (asymptotically equivalent
to the notions of (amortized) Space-Time complexity and (amortized) Area-
Time complexity in idealized models of computation [4]). Intuitively, the cmc of
an algorithm Af evaluating a function f on input x (denoted by cmc(Af , x))
is the summation of the amount of memory used by Af during every step of
the computation. Currently, security proofs for memory-hard objects rely on
idealized assumptions such as the existence of random oracles [7,6,8,5] or other
ideal objects such as ideal ciphers or permutations [34]. Informally, a function
f is memory-hard if there is a sequential algorithm computing f in time t, but
any parallel algorithm computing f (possibly on multiple distinct inputs) has
high cmc, e.g., t2−ε for small constant ε > 0. An important open question is to
construct provably secure memory-hard objects in the standard model.

In this work, we focus specifically on memory-hard puzzles. Cryptographic
puzzles are cryptographic primitives that have two desirable properties: (1) for
a target solution s, it should be “easy” to generate a puzzle Z with solution
s; and (2) solving the puzzle Z to obtain solution s should be “difficult” for
any algorithm A with “insufficient resources”. Such puzzles have seen a wide
range of applications, including using in cryptocurrency, handling junk mail, and
constructing time-released encryption schemes [41,83,60,77]. For example, the
well-known and studied notion of time-lock puzzles [83,29,44,73,19,74] requires
that for difficulty parameter t and security parameter λ, a sequential (i.e., non-
parallel) machine can generate a puzzle in time poly(λ, log(t)) and solve the
puzzle in time t · poly(λ), but requires that any parallel algorithm running in
sequential time significantly less than t (i.e., any polynomial size circuit of depth
smaller than t) cannot solve the puzzle, except with negligible probability (in the
security parameter). In the context of memory-hard puzzles, we want to ensure
that the puzzles are easy to generate, but that any algorithm solving the puzzle
has high cmc. More concretely, we require that the puzzles can be generated
(resp., solved) in time poly(λ, log(t)) (resp., t · poly(λ)) on a sequential machine
while any algorithm solving the puzzle has cmc at least t2−ε for small constant
ε > 0. We remark that any sequential machine solving the puzzle in time at
most t · poly(λ) will have cmc at most t2 · poly(λ) so a lower bound of t2−ε for
the cmc of our puzzles would be nearly tight.

In this work, we ask the following questions:

Is it possible to construct memory-hard puzzles under standard cryptographic
assumptions? If yes, what applications of memory-hard puzzles can we find?

1.1 Our Results

We formally introduce and define the notion of memory-hard puzzles. Inspired by
time-lock puzzles and memory-hard functions, we define memory-hard puzzles
without idealized assumptions. Intuitively, we say that a cryptographic puzzle
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is memory-hard if any parallel random access machine (PRAM) algorithm with
“small” cmc cannot solve the puzzles. This is in contrast with time-lock puzzles
which require that any algorithm running in “small” sequential time (i.e., any
low-depth circuit) cannot solve the puzzle. For both memory-hard and time-
lock puzzles, the puzzles should be “easy” to generate; i.e., in sequential time
poly(λ, log(t)).

Similar to the time-lock puzzle construction of Bitansky et al. [19], we con-
struct memory-hard puzzles assuming the existence of a suitable succinct ran-
domized encoding scheme [58,12,17,19,70,11,46], and the additional assumption
that there exists a language which is “suitably” memory-hard. Towards this
end, we formally introduce and define memory-hard languages: such languages,
informally, require that (1) the language is decidable by a family of uniformly
succinct circuits—succinct circuits which are computable by a uniform algorithm
—of appropriate size; and (2) any PRAM algorithm deciding the language must
have “large” cmc. We discuss the technical ideas behind our construction in
Section 2.2 and present its memory-hardness in Theorems 2 and 3.

We stress that our construction does not rely on an explicit instance of
a memory-hard language: the existence of such a language suffices to prove
memory-hardness of the constructed puzzle, mirroring the construction of [19].
We use succinct randomized encoding scheme of Garg and Srinivasan [46], which
is instantiated from indistinguishability obfuscation (iO) for circuits and some-
where statistically binding hash functions [57,67,78].1 We remark that our con-
structions are primarily of theoretical interest, as known constructions of ran-
domized encodings rely on expensive primitives such as iO [13,45,67,69,14,1,33,59].
We make no claims about the practical efficiency of our constructions.

It is important to note that even if we defined memory-hard puzzles in an
idealized model (e.g., the random oracle model), memory-hard functions do
not directly yield memory-hard puzzles. Cryptographic puzzles stipulate that
for parameters t and λ the puzzle generation algorithm needs to run in time
poly(λ, log(t)). However, using a memory-hard function to generate a crypto-
graphic puzzle would require the generation algorithm to compute the memory-
hard function, which would yield a generation algorithm running in time (roughly)
proportional to t · poly(λ).

Application 1: Memory-Hard Functions. We demonstrate the power of
memory-hard puzzles via two applications. For our first application, we use
memory-hard puzzles to construct a (one-time secure) memory-hard function
(MHF) in the standard model. As part of this construction, we formally de-
fine (one-time) memory-hard functions in the standard model, without idealized
primitives; see Definitions 7 and 8. We emphasize that all prior constructions
of memory-hard functions rely on idealized primitives such as random oracles

1 Such hash functions generate a hashing key that statistically binds the i-th input bit.
For example, a hash output y may have many different preimages, but all preimages
have the same i-th bit. Construction of such hash functions exist under standard
cryptographic assumptions such as DDH and LWE, among others [78].
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[43,7,16,2,4,6,8,28,3,5,25] or ideal ciphers and permutations [34]. In fact, prior
definitions of memory-hardness were with respect to an idealized model such as
the parallel random oracle model, e.g., [7].

Recall that a function f is memory-hard if it can be computed by a sequential
machine in time t (and thus uses space at most t), but any PRAM algorithm
evaluating f (possibly on multiple distinct inputs) has large cumulative memory
complexity (cmc); e.g., at least t2−ε for small constant ε > 0. One-time security
stipulates that for any input x, any attacker with low cmc cannot distinguish
between (x, f(x)) and (x, r) with non-negligible advantage when r is a uniformly
random bit string.2 Assuming the existence of indistinguishability obfuscation,
puncturable pseudo-random functions, and memory-hard puzzles, we give a con-
struction of one-time secure memory-hard functions. We discuss the technical
ideas of our MHF construction in Section 2.3 and present its memory-hardness
in Theorem 4.

We stress that, to the best of our knowledge, this is the first construction
of a memory-hard function under standard cryptographic assumptions and the
additional assumption that a memory-hard puzzle exists. Given our construction
of a memory-hard puzzle, we construct memory-hard functions from standard
cryptographic assumptions additionally assuming the existence of a memory-
hard language. or ideal cipher and permutation models.

We also conjecture that our scheme is multi-time secure as well: if an attacker
with low cmc, say some g, cannot compute f(x) for given input x, then an
attacker with cmc at most m · g cannot compute f(xi) for m distinct inputs
x1, . . . , xm. However, we are unable to formally prove this due to some technical
barriers in the security proof. At a high level, this is due to the fact that allowing
the attacker to have higher cmc (e.g., m · g) eventually leads to an attacker with
large enough cmc to simply solve the underlying memory-hard puzzle that is used
in the MHF construction, thus allowing the adversary to distinguish instances
of the MHF instance. See Section 2.3 for discussion.

Application 2: LDCs for Resource-Bounded Channels. We use crypto-
graphic puzzles to construct efficient locally decodable codes for resource-bounded
channels [26]. A (`, δ, p)-locally decodable code (LDC) C[K, k] over some alpha-

bet Σ is an error-correcting code with encoding function Enc : Σk → {0, 1}K
and probabilistic decoding function Dec : {1, . . . , k} → Σ satisfying the follow-
ing properties. For any message x, the decoder, when given oracle access to some
ỹ such that ∆(ỹ,Enc(x)) 6 δK, makes at most ` queries to its oracle and out-
puts xi with probability at least p, where ∆ is the Hamming distance. The rate
of the code is k/K, the locality of the code is `, the error tolerance is δ, and
the success probability is p. Classically (i.e., the adversarial channel introducing
errors is computationally unbounded), there is an undesirable trade-off between
the rate k/K and locality, e.g., if ` = polylog(k) then K � k.

2 Our one-time security definition differs from those in prior literature (e.g., [7,6]), and
is, in fact, stronger. See Section 2.3 for discussion.
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Modeling the adversarial channel as computationally unbounded may be
overly pessimistic. Moreover, it has been argued that any real world commu-
nication channel can be reasonably modeled as a resource-bounded channel
[71,26]. A resource-bounded channel is an adversarial channel that is assumed
to have some constrained resource (e.g., the channel is a low-depth circuit), and
a resource-bounded LDC is a LDC that is resilient to errors introduced by some
class of resource-bounded channels C. Arguably, error patterns (even random
ones) encountered in nature can be modeled by some (not necessarily known)
resource-bounded algorithm which simulates the same error pattern, and thus
these channels are well-motivated by real world channels. For example, sending
a message from Earth to Mars takes between (roughly) 3 and 22 minutes when
traveling at the speed of light; this limits the depth of any computation that
could be completed before the (corrupted) codeword is delivered. Furthermore,
examining LDCs resilient against several resource-bounded channels has led to
better trade-offs between the rate and locality than their classical counterparts
[71,76,15,50,84,24]. Recently, Blocki, Kulkarni, and Zhou [26] constructed LDCs
for resource-bounded channels with locality ` = polylog(k) and constant rate
k/K = Θ(1), but their construction relies on random oracles.

We use cryptographic puzzles to modify the construction of [26] to obtain
resource-bounded LDCs without random oracles. Given any cryptographic puz-
zle that is secure against some class of adversaries C, we construct a locally
decodable code for Hamming errors that is secure against the class C, resolving
an open problem of Blocki, Kulkarni, and Zhou [26]. We discuss our LDC con-
struction in Section 2.4 and present its memory-hardness in Corollary 1. We can
instantiate our LDC with any (concretely secure) cryptographic puzzle. In par-
ticular, the time-lock puzzles of Bitansky et al. [19] directly give us LDCs secure
against small-depth channels, and our memory-hard puzzle construction gives
us LDCs secure against any channel with low cmc. Our LDC construction for
resource bounded Hamming channels can also be extended to resource-bounded
insertion-deletion (InsDel) channels by leveraging recent “Hamming-to-InsDel”
LDC compilers [80,21,20]. See discussion in Section 2.4 and Corollary 2.

Challenges in Defining Memory-Hardness. Defining the correct machine
model and cost metric for memory-hard puzzles is surprisingly difficult. As
PRAM algorithms and cmc are used extensively in the study of MHFs, it is
natural to use the same machine model and cost metric. However, cmc intro-
duces subtleties in the analysis of our memory-hard puzzle construction: like
[19], we rely on parallel amplification in order to construct an adversary which
breaks our memory-hard language assumption. While parallel amplification does
not significantly increase the depth of a computation (the metric used by [19]),
any amplification directly increases the cmc of an algorithm by a multiplicative
factor proportional to the number of amplification procedures performed. This
requires careful consideration in our security reductions.

One may also attempt to define memory-hard languages as languages with
cmc at least t2−ε, for small constant ε > 0, that are also decidable by single-tape
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Turingmachines(̀ala[19])intimet,ratherthanbyuniformlysuccinctcircuit
families.However,wedemonstrateamajorhurdletowardsthisdefinition.In
particular,weshowthatanysingle-tapeTuringmachinerunningintimetcan
besimulatedbyanyPRAMalgorithmwithcmcO(t1.8·log(t));seeSection2.1
fordiscussionandTheorem1forourformaltheorem.Takingthisapproach,we
couldnothopeobtainmemoryhardpuzzleswithcmcatleastt2−εforsmallε
aswecanruleouttheexistenceofmemory-hardlanguageswithcmc t1.8.
Tocontrast,underouruniformlysuccinctdefinition,wecanprovideaconcrete
candidatelanguagewithcmcplausiblyashighast2−εsuchthatthelanguageis
alsodecidablebyauniformlysuccinctcircuitfamilyofsizeO(t).3Furthermore,
weshowthatourdefinitionisessentiallyminimal,i.e.,wecanusememory-hard
puzzlestoconstructmemory-hardlanguagesunderthemodestassumptionthat
thepuzzlesolvingalgorithmisuniformlysuccinct;seediscussioninSection2.1
andProposition1.

1.2 Prior Work

Cryptographicpuzzlesarefunctionswhichrequiresomespecifiedamountof
resources(e.g.,timeorspace)tocompute.Time-lockpuzzles,introducedby
Rivest,Shamir,and Wagner[83]extendingthestudyoftimed-releasedcryptog-
raphyofMay[75],arepuzzleswhichrequirelargesequentialtimetosolve:any
circuitsolvingthepuzzlehaslargedepth.[83]proposedacandidatetime-lock
puzzlebasedontheconjecturedsequentialhardnessofexponentiationinRSA
groups,andtheproposedschemesof[29,44]arevariantsofthisscheme.Mah-
moody, Moran,andVadhan[73]giveaconstructionofweaktime-lockpuzzles
intherandomoraclemodel,where“weak”saysthatbothapuzzlegenerator
andpuzzlesolverrequire(roughly)thesameamountofcomputation,whereas
thestandarddefinitionofpuzzlesrequiresthepuzzlegenerationalgorithmto
bemuchmoreefficientthanthesolvingalgorithm.Closertoourwork,Bitan-
skyetal.[19]constructtime-lockpuzzlesusingsuccinctrandomizedencodings,
whichcanbeinstantiatedfromone-wayfunctions,indistinguishabilityobfus-
cation,andotherassumptions[46].Recently, MalavoltaandThyagarajan[74]
introduceandconstructhomomorphictime-lockpuzzles:puzzleswhereonecan
computefunctionsoverpuzzlesolutionswithoutsolvingthem.Continuedexplo-
rationofindistinguishabilityobfuscationhaspusheditcloserandclosertobeing
instantiatedfromwell-foundedcryptographicassumptionssuchaslearningwith
errors[59].
Memory-hardfunctions(MHFs),introducedbyPercival[81],haveenjoyed

richlinesofboththeoreticalandappliedresearchinconstructionandanalysis
ofthesefunctions[34,7,8,16,43,2,4,5,6,28,3,25].Thesecurityproofsofallprior
MHFcandidatesrelyonidealizedassumptions(e.g.,randomoracles[7,6,8,5,27])
orotheridealobjects(e.g.,idealciphersorpermutations[34]).Thenotionof
data-independentMHFs—MHFswherethedata-accesspatternofcomputing
thefunction,say,viaaRAMprogram,isindependentoftheinput—hasalso

3Infact,onecanprovablyshowthatthecmcist2 εintherandomoraclemodel.
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been widely explored. Data-independent MHFs are attractive as they provide
natural resistance to side-channel attacks. However, building data-independent
memory-hard functions (iMHFs) comes at a cost: any iMHF has amortized space-
time complexity at most O(N2 · loglog(N)/ log(N)) [2], while data-dependent
MHFs were proved to have maximal complexity Ω(N2) in the parallel random
oracle model [6] (here, N is the run time of the honest sequential evaluation
algorithm). Recently, Ameri, Blocki, and Zhou [10] introduced the notion of
computationally data-independent memory-hard functions: MHFs which appear
data-independent to a computationally bounded adversaries. This relaxation of
data-independence allowed [10] to circumvent known barriers in the construction
of data-independent MHFs as long as certain assumptions on the tiered memory
architecture (RAM/cache) hold.

LDC constructions, like all code constructions, generally follow one of two
channel models: the Hamming channel where worst-case bit-flip error patterns
are introduced, and the Shannon channel where symbols are corrupted by an
independent probabilistic process. Probabilistic channels may be too weak to
capture natural phenomenon, while Hamming channels often limit achievable
code constructions. For the Hamming channel, the channel is assumed to have
unbounded power. Protecting against unbounded errors is desirable but often
has undesirable trade-offs. For example, current constructions of LDCs with ef-
ficient (i.e., poly-time) encodings an obtain any constant rate R < 1, are robust

to δ < (1 − R)-fraction of errors, but have query complexity 2O(
√
logn log logn)

for codeword length n [65]. If one instead focuses on obtaining low query com-
plexity, one can obtain schemes with codewords of length sub-exponential in the
message size while using a constant number q > 3 queries [87,40,42]. These un-
desirable trade-offs have lead to a long line of work examining LDCs (and codes
in general) with relaxed assumptions [71,76,15,50,84,24]. Two relaxations closely
related to our work are due to Ostrovsky, Pandey, and Sahai [79] and Blocki,
Kulkarni, and Zhou [26]. [79] introduce and construct private Hamming LDCs:
locally decodable codes in the secret key setting, where the encoder and decoder
share a secret key that is unknown to the (unbounded) channel. Blocki, Kulka-
rni, and Zhou [26] analyze Hamming LDCs in the context of resource-bounded
channels. The LDC construction of [26] bootstraps off of the private Hamming
LDC construction of [79], obtaining Hamming LDCs in the random oracle model
assuming the existence of functions which are uncomputable by the channel.

While Hamming LDCs have enjoyed decades of research [61,86,40,42,62,65,66,87,88],
the study of insertion-deletion LDCs (or InsDel LDCs) remains scarce. An InsDel
LDC is a LDC that is resilient to adversarial insertion-deletion errors. In the non-
LDC setting, there has been a rich line of research into insertion-deletion codes
[68,64,51,55,48,49,56,54,32,37,36,38,53,52,85,35,39,47,72], and only recently have
efficient InsDel codes with asymptotically good information rate and error toler-
ance been well-understood [54,52,53,47,72]. Ostrovsky and Paskin-Cherniavsky
[80] and Block et al. [21] give a compiler which transforms any Hamming LDC
into an InsDel LDC with a poly-logarithmic blow-up in the locality. Block and
Blocki [20] extend the compiler of [21] to the private and resource-bounded
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settings. Recently, Blocki et al. [22] give lower bounds for InsDel LDCs with
constant locality: they show that (1) any 2-query InsDel LDC must have ex-
ponential rate; (2) 2-query linear InsDel LDCs do not exist; and (3) for any
constant q > 3, a q-query InsDel LDC must have rate that is exponential in
existing lower bounds for Hamming LDCs.

2 Technical Overview

Our construction of memory-hard puzzles relies on two key technical ingredi-
ents. First we require the existence of a language L ⊆ {0, 1}∗ that is suitably
memory-hard. Given such a language, we additionally require succinct random-
ized encodings [17,70,46] for succinct circuits. With these two objects, we con-
struct memory-hard puzzles. Both of our memory-hard objects are defined with
respect to parallel random access machine (PRAM) algorithms and cumulative
memory complexity (cmc). We say that an algorithm A is a PRAM algorithm if
during each time-step of the computation, the algorithm has an internal state
and can read from multiple positions from memory, perform a computation,
then write to multiple positions in memory. Recall that cmc(A, x) is the sum-
mation of the memory used by A(x) during every time step of the computation,
and cmc(A, λ) = maxx : |x|=λ cmc(A, x). Moreover, for a function y, we say that
cmc(A) < y if cmc(A, λ) < y(λ) for all λ ∈ N. We note that even though we
define cmc as a maximum, in all of our memory-hard definitions we quantify
over all adversaries, and thus capture worst-case hardness.

We discuss the key ideas and present our main results in the remainder of
this section. Section 2.1 presents our formal definition of memory-hard languages
and a discussion on the plausibility and necessity of this assumption. Section 2.2
presents our formal definition of memory-hard puzzles and presents an overview
of our construction assuming the existence of a memory-hard language and a
succinct randomized encoding scheme. Section 2.3 presents an overview of our
construction of a (one-time secure) memory-hard functions assuming the exis-
tence of indistinguishability obfuscation, one-way functions, and memory-hard
puzzles. Finally, Section 2.4 presents our construction of resource-bounded lo-
cally decodable codes from any cryptographic puzzle.

2.1 Memory-Hard Languages

Our definition of memory-hard languages is inspired by the notion of non-
parallelizing languages,4 which are required by Bitansky et al. [19] to construct
time-lock puzzles (also using succinct randomized encodings). We define our
memory-hard languages with respect to a particular language class that requires
the notion of uniformly succinct circuits. Informally, a circuit family {Ct,λ}λ∈N
is succinct if there exists a smaller circuit family {C ′t,λ}λ∈N such that for ev-
ery t ∈ N: (1) |C ′t,λ| = polylog(|Ct,λ|); and (2) on input gate number g of Ct,λ

4 Informally, a language is non-parallelizing if any polynomial sized circuit deciding
the language has large depth.
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the circuit C ′t,λ(g) outputs the indices of the input gates of g and the function
fg computed by gate g. Furthermore, we say that a succinct circuit family is
uniformly succinct if there additionally exists a sequential algorithm running in
time poly(|C ′t,λ|) that outputs the description of the succinct circuit C ′t,λ for ev-
ery λ. We capture the formal definitions below, beginning with succinct circuits.

Definition 1 (Succinct Circuits [18,46]). Let C : {0, 1}n → {0, 1}m be a
circuit with N − n binary gates. The gates of the circuit are numbered as fol-
lows. The input gates are given numbers {1, . . . , n}. The intermediate gates are
numbered {n + 1, n + 2, . . . , N −m} such that for any gate g with inputs from
gates i and j, the label for g is bigger than i and j. The output gates are num-
bered {N −m+ 1, . . . , N}. Each gate g ∈ {n+ 1, . . . , N} is described by a tuple
(i, j, fg) ∈ [g− 1]2 ×GType where the outputs of gates i and j serve as inputs to
gate g and fg denotes the functionality computed by gate g. Here, GType denotes
the set of all binary functions f : {0, 1}2 → {0, 1}.

We say that the circuit C is succinct if there exists a circuit Csc such that
on input g ∈ {n+ 1, N} outputs description (i, j, fg) and |Csc| < |C|.

For notational convenience, for any circuit Csc that succinctly describes a larger
circuit C, we define FullCirc(Csc) := C and SuccCirc(C) := Csc. Next we give the
definition uniformly succinct circuit families.

Definition 2 (Uniform Succinct Circuit Families). We say that a circuit
family {Ct,λ}t,λ is succinctly describable if there exists another circuit family
{Csc

t,λ}t,λ such that |Csc
t,λ| = polylog(|Ct,λ|)5 and FullCirc(Csc

t,λ) = Ct,λ for every
t, λ. Additionally, if there exists a PRAM algorithm A such that A(t, λ) outputs
Csc
t,λ in time poly(|Csc

t,λ|) for every t, λ, then we say that {Ct,λ}t,λ is uniformly
succinct.

Given the notion of uniformly succinct circuits, we define our language class SCt.

Definition 3 (Language Class SCt). Let t be a positive function. We define
SCt as the class of languages L decidable by a uniformly succinct circuit family
{Ct,λ}λ such that there exists a polynomial p satisfying |Ct,λ| 6 t · p(λ, log(t))
for every λ and t := t(λ).

Given Definition 3, we define memory-hard languages. Intuitively, a language
L ∈ SCt is memory-hard if any (PRAM) algorithm B that ε-decides L must
have large cmc, where ε-decides here informally means that any probabilistic
algorithm can decide the language L with advantage at least ε.

Definition 4 ((g, ε)-Memory Hard Language). Let t be a positive function.
A language L ∈ SCt is a (g, ε)-memory hard language if for every PRAM al-
gorithm B with cmc(B, λ) < g(t(λ), λ), the algorithm B does not ε(λ)-decide Lλ
5 For our purposes, we require the size of the succinct circuit to be poly-logarithmic

in the size of the full circuit. One can easily replace this requirement with the re-
quirement presented in Definition 1.
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for every λ. If ε(λ) = negl(λ), we say L is a g-strong memory-hard language. If
ε(λ) ∈ (0, 1/2) is a constant, we say L is a (g, ε)-weakly memory-hard.

Note that one may define a weak memory-hard language with respect to
ε(λ) = 1/poly(λ); however, this turns out to be essentially equivalent to ε(λ) ∈
(0, 1/2). See the full version of our work [9] for a discussion. Moreover, our def-
inition of memory-hard languages is essentially minimal, as one can construct
memory-hard languages from memory-hard puzzles under the modest assump-
tion that the puzzle solving algorithm is uniformly succinct. We prove the fol-
lowing proposition in the full version of our work [9].

Proposition 1. Let Puz = (Puz.Gen,Puz.Sol) be a (g, ε)-memory hard puzzle
such that Puz.Sol is computable by a uniformly succinct circuit family {Ct,λ}t,λ
of size |Ct,λ| 6 t · poly(λ, log(t)) for every λ and difficulty parameter t := t(λ).
For language LPuz := {(Z, s) : s = Puz.Sol(Z)}, we have that LPuz ∈ SCt and is
a (g, ε)-memory hard language.

Plausibility of Memory-Hard Languages. We complement our definition of memory-
hard languages by providing a concrete construction of a candidate memory-hard
language. We define a language Lλ = L∩{0, 1}λ that is decidable by a uniformly
succinct circuit Ct,λ of size t2 ·polylog(t). Our language relies on a hash function
H, and under the idealized assumption that H is a random oracle, Lλ is provably
memory-hard with cumulative memory complexity at least t2/ log(t).

Key to defining Lλ is a recent explicit construction of a depth-robust graph
due to Blocki, Cinkoske, Lee, and Son [23]. Depth-robustness is a combinato-
rial property which is sufficient for constructing memory-hard functions in the
parallel random oracle model [4]. Crucially, this graph is explicit and determin-
istic, and can be fully encoded by a uniformly succinct circuit. We remark that
other randomized constructions of depth-robust graphs such the one used in the
DRSample memory-hard function [3] cannot be used to construct memory-hard
languages as the graphs are not uniformly succinct. We defer the reader to the
full version of our work for more discussion [9].

We acknowledge that we only know how to prove our candidate language is
memory-hard in the random oracle model or other idealized models of compu-
tation, which we are trying to avoid in our memory-hard puzzle construction.
However, our memory-hard puzzle construction- does not require an explicit
memory-hard language and our security proof holds as long as some memory-
hard language exists. Thus, our goal is simply to establish a plausible candi-
date for such a language. We conjecture that our defined language will remain
memory-hard when the random oracle is instantiated with a concrete crypto-
graphic hash function such as SHA3. Proving that the conjecture holds in the
standard model, however, would require major advances in the difficult field of
complexity theory and circuit lower bounds. Moreover, assuming that all of our
cryptographic assumptions hold, a concrete attack against our memory-hard
puzzle construction would directly show that memory-hard languages do not
exist, which is presumably a difficult problem in complexity theory.
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PRAM Algorithms versus Turing Machines. One might try to define memory-
hard languages to require they be decidable by a single-tape Turing machine
rather than a PRAM algorithm. However, we show that if we require our memory-
hard language to be decidable by a single-tape Turing machine in time t = t(λ),
then the language is only secure against PRAM algorithms with cmc less than
Õ(t1.8). We show this by proving that any single-tape Turing machine running
in time t = t(λ) for λ-bit inputs can be simulated by a PRAM algorithm in time
O(t) using with space at most O(t0.8 · log(t)). As cmc is upper bounded by the
maximum space of a computation times the maximum time of a computation,
this implies that cmc is at most O(t1.8 · log(t)). We prove the following theorem
in the full version of our work [9].

Theorem 1. For any language L decidable in time t(n) by a single-tape Turing
machine for inputs of size n, there exists a constant c > 0 such that L is decidable
by a PRAM algorithm with cmc at most c · t(n)1.8 · log(t(n)).

It is an interesting open question if such a reduction holds for multi-tape
Turing machines; in particular, showing such a reduction for two-tape Turing
machines would only strengthen our definition due to the reduction from multi-
tape to two-tape Turing machines [82].

2.2 Memory-Hard Puzzles

We formally define memory-hard puzzles. Intuitively, a memory-hard puzzle is a
cryptographic puzzle which requires any PRAM algorithm solving the puzzle to
have large cmc. We give two flavors of memory-hard puzzles and begin with an
asymptotically secure memory-hard puzzle.

Definition 5 (g-Memory Hard Puzzle). A puzzle Puz = (Puz.Gen,Puz.Sol)
is a g-memory hard puzzle if there exists a polynomial t′ such that for all polyno-
mials t > t′ and for every PRAM algorithm A with cmc(A) < y for the function
y(λ) := g(t(λ), λ), there exists a negligible function µ such that for all λ ∈ N and

every pair s0, s1 ∈ {0, 1}λ we have |Pr [A(Zb, Z1−b, s0, s1) = b] − 1/2| 6 µ(λ),

where the probability is taken over b
$←{0, 1} and Zi ← Puz.Gen(1λ, t(λ), si) for

i ∈ {0, 1}.

Note that for any difficulty parameter t := t(λ) for security λ, we assume that
Puz.Sol is computable in time t·poly(λ) on a sequential RAM algorithm. This im-
plies that there exists a PRAM algorithm A computing Puz.Sol has cmc(A, λ) 6
(t · poly(λ))2 = t2 · poly(λ). This yields an upper bound on the function g of
Definition 5: take t to be any (large enough) polynomial. Then suitable values of
g (ignoring poly(λ) factors) include g = t2/ log(t) or g = t2−θ for small constant
θ > 0. In particular, we cannot expect to design g-memory hard puzzles for any
function g = ω(t2 · poly(λ)) (by our definitions).

We complement Definition 5 with the following concrete security definition.

Definition 6 ((g, ε)-Memory Hard Puzzle). A puzzle Puz = (Puz.Gen,
Puz.Sol) is a (g, ε)-memory hard puzzle if there exists a polynomial t′ such that
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for all polynomials t > t′ and every PRAM algorithm A with cmc(A) < y for

y(λ) := g(t(λ), λ), and for all λ > 0 and any pair s0, s1 ∈ {0, 1}λ, we have
|Pr [A(Zb, Z1−b, s0, s1) = b] − 1/2| 6 ε(λ), where the probability is taken over

b
$←{0, 1} and Zi ← Puz.Gen(1λ, t(λ), si) for i ∈ {0, 1}. If ε(λ) = 1/ poly(λ), we

say the puzzle is weakly memory-hard.

Similar to Definition 5, suitable values of g for Definition 6 include g = t2/ log(t)
and g = t2−θ for small constant θ > 0, as any PRAM algorithm with cmc
larger than t2 · poly(λ) can trivially break puzzles security simply by running
the algorithm Puz.Sol.

We note that in our security definition the adversary is given two puzzles
Zb, Z1−b in random order along with both solutions s0, s1 (in the correct order).
An alternate security definition would only give the adversary one puzzle, Zb,
and the solutions s0, s1. We remark that our security definition is at least as
strong since the attacker can simply choose to ignore Z1−b. It is an open question
whether or not there is reduction in the other direction establishing tight concrete
security guarantees. Thus, we choose to use the stronger definition.

We construct memory-hard puzzles by using succinct randomized encodings
for succinct circuits and additionally assuming that a (suitable) memory-hard
language exists. Informally, a succinct randomized encoding for succinct circuits
consists of two algorithms sRE.Enc and sRE.Dec where Ĉx,G ← sRE.Enc(1λ, C ′,
x, G) takes as input a security parameter λ, a succinct circuit C ′ describing
a larger circuit C with G gates and an input x ∈ {0, 1}∗ and outputs a ran-

domized encoding Ĉ in time poly(|C ′|, λ, log(G), |x|). The decoding algorithm

sRE.Dec(Ĉx,G) outputs C(x) in time at most G · poly(log(G), λ). Note that the
running time requirement ensures sRE.Enc cannot simply compute C(x). Intu-

itively, security implies that the encoding Ĉx,G reveals nothing more than C(x)
to a computationally bounded attacker. Due to space constraints, we defer the
formal definitions of both asymptotically secure and concretely secure succinct
randomized encodings to the full version of our work [9].

We extend ideas from [19] to construct memory-hard puzzles from succinct
randomized encodings; the formal construction is presented in the full version
of our work [9]. The generation algorithm Puz.Gen(1λ, t, s) first constructs a
Turing machine Ms,t that on any input runs for t steps then outputs s, where

t = t(λ) and s ∈ {0, 1}λ. This machine is then transformed into a succinct
circuit C ′s,t (via a transformation due to Pippenger and Fischer [82]), and then
encodes this succinct circuit with our succinct randomized encoding; i.e., Z =
sRE.Enc(1λ, C ′s,t, 0

λ, Gs,t). Here, C ′s,t succinctly describes a larger circuit Cs,t
which is equivalent to Ms,t (on inputs of size λ) and has Gs,t := |Cs,t| gates. The
puzzle solution algorithm simply runs the decoding procedure of the randomized
encoding scheme; i.e., Puz.Sol(Z) outputs s← sRE.Dec(Z).

Security is obtained via reduction to a suitable memory-hard language L.
If the security of the constructed puzzle is broken by an adversary A with
small cmc, then we construct a new adversary B with small cmc which breaks
the memory-hard language assumption by deciding whether x ∈ L with non-
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negligible advantage. Suppose that Z0 ← Puz.Gen(1λ, t, s0), Z1 ← Puz.Gen(1λ,
t, s1), b is a random bit, and t := t(λ). If A(s0, s1, Zb, Z1−b) can violate the MHP
security and predict b with non-negligible probability, then we can construct an
algorithm B with similar cmc that decides our memory-hard language. Algorithm
B first constructs a uniformly succinct circuit Ca,a′ such that on any input x
we have Ca,a′(x) = a if x ∈ L; otherwise Ca,a′(x) = a′ if x 6∈ L. Our defi-
nition of memory-hard languages ensures that Ca,a′ is uniformly succinct and
has size G = t · poly(λ, log(t)). Let C ′a,a′ denote the smaller circuit that suc-

cinctly describes Ca,a′ . The adversary computes Zi = sRE.Enc(1λ, C ′si,s1−i
, x,G)

for i ∈ {0, 1}, samples b
$← {0, 1}, and obtains b′ ← A(Zb, Z1−b, s0, s1). Our

adversary B outputs 1 if b = b′ and 0 otherwise.
Observe that if x ∈ L then Puz.Sol(Z0) = s0 and Puz.Sol(Z1) = s1; otherwise

if x 6∈ L then Puz.Sol(Z0) = s1 and Puz.Sol(Z1) = s0. By security of sRE,
adversary A cannot distinguish between Zi = sRE.Enc(1λ, C ′si,s1−i

, x,G) and a
puzzle generated with Puz.Gen. Thus on input (Zb, Z1−b, s0, s1), the adversary A
outputs b′ = b with non-negligible advantage. By our above observation, we have
that B now (probabilistically) decides the memory-hard language L with non-
negligible advantage. To obtain an adversary B′ that deterministically decides
L, we use standard amplification techniques, along with the assumption of B′
being a non-uniform algorithm (à la the argument for BPP ⊂ P/poly). Whereas
amplification—when performed in parallel—does not significantly increase the
total computation depth, any amplification increases the cmc of an algorithm by
a multiplicative factor proportional to the amount of amplification performed.
Intuitively, this is because the cmc of an algorithm A is equal to the sum of the
cmc of all sub-computations performed by A. We defer formal details to the full
version of our work [9].

The memory-hardness of our construction relies on the particular succinct
randomized encoding scheme used, and the existence of an appropriately memory-
hard language. We again stress that the memory-hardness of our construction
does not rely on an explicit instance of a memory-hard language, and the exis-
tence of such a language is sufficient for the above reduction to hold. We show
that our construction satisfies two flavors of memory-hardness. First, given an
asymptotically secure succinct randomized encoding scheme sRE and the exis-
tence of a strong memory-hard language, we show that there exists is an asymp-
totically secure memory-hard puzzle.

Theorem 2. Let t := t(λ) be a polynomial and let g := g(t, λ) be a function. Let
sRE = (sRE.Enc, sRE.Dec) be a succinct randomized encoding scheme. If there ex-
ists a g′-strong memory-hard language L ∈ SCt for g′(t, λ) := g+2psRE(log(t), λ)2+
2pSC(log(t), log(λ))2 + O(λ), then there exists a g-memory hard puzzle. Here,
psRE and pSC are fixed polynomials for the run-times of sRE.Enc and the uniform
machine constructing the uniform succinct circuit of L, respectively.

To get a handle on Theorem 2, consider a large enough polynomial t such
that t � psRE(log(t), λ) and t � pSC(log(t), log(λ)). Then if there exists a g′-
strong memory-hard language for g′(t, λ) = t2/ log(t), we obtain a g-memory
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hard puzzle for g(t, λ) = (1−o(1))·g′(t, λ) (i.e., there is little loss in the memory-
hardness of the constructed puzzle).

Next, assuming a concretely secure succinct randomized encoding scheme
sRE and the existence of a weak memory-hard language, then there exists a
weakly-secure memory-hard puzzle.

Theorem 3. Let t := t(λ) be a polynomial and let g := g(t, λ) be a function. Let
sRE = (sRE.Enc, sRE.Dec) be a (g, s, εsRE)-secure succinct randomized encoding
scheme for g := g(t, λ) and s(λ) := t · poly(λ, log(t)) such that psRE is a fixed
polynomial for the runtime of sRE.Enc. Let ε := ε(λ) = 1/poly(λ) > 3εsRE(λ)
be fixed. If there exists a (g′, εL)-weakly memory-hard language L ∈ SCt for
g′(t, λ) := [g+2psRE(log(t), λ)2 +2pSC(log(t), log(λ))2 +O(λ)] ·Θ(1/ε), and some
constant εL ∈ (0, 1/2), then there exists a (g, ε)-weakly memory-hard puzzle.
Here, pSC is a fixed polynomial for the runtime of the uniform machine con-
structing the uniform succinct circuit for L.

Notice here we lose a factor of Θ(1/ε) when compared with Theorem 2.
Concretely, using our same example from Theorem 2, if t is sufficiently large such
that t � psRE(log(t), λ) and t � pSC(log(t), log(λ)), and if ε = 1/λ2, then for
g′ = t2/ log(t) we obtain a (g, ε)-weakly memory-hard puzzle for g = g′ ·Θ(λ2).
This loss is due to the security reduction: our adversary performs amplification
to boost the success probability of breaking the weakly memory-hard language
assumption from ε to the constant εL. To achieve constant εL, one needs to
amplify Θ(1/ε) times. As discussed previously, amplification directly incurs a
multiplicative blow-up in the cmc complexity of a PRAM algorithm performing
the amplification.

2.3 Memory-Hard Functions from Memory-Hard Puzzles

Using our new notion of memory-hard puzzles, we construct a one-time memory-
hard function under standard cryptographic assumptions. To the best of our
knowledge, this is the first such construction in the standard model; i.e., without
random oracles [7] or other idealized primitives [34]. Recall that informally a
function f is memory-hard if any PRAM algorithm computing f has large cmc.
We define the one-time security of a memory-hard function f via the following
game between an adversary and an honest challenger. First, before the game
begins an input x is selected and provided to the challenger and the attacker.

Second, the challenger computes y0 = f(x) and samples y1 ∈ {0, 1}λ and b
$←

{0, 1} uniformly at random, and sends yb. Then the attacker outputs a guess b′ for
b. We say that the adversary wins if b′ = b, and say that f is (t, ε)-one time secure
if for all inputs x and all attackers running in time 6 t the probability that the
attacker outputs the correct guess b′ = b is at most ε(λ). Note that this definition
differs from prior definitions in the literature (e.g., [7,6]), and is in fact stronger
than requiring that an adversary with insufficient resources cannot compute
the MHF. However, we remark that in the random oracle model, for random
oracle H, any MHF f immediately yields a function f ′(x) = H(f(x)) which
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is indistinguishable from random to any adversary that cannot compute f(x).
We provide two definitions of one-time memory-hard functions in the standard
model. First, we present a simplified definition of asymptotic security for MHFs
(see [9] for the complete formal definition).

Definition 7 (One-Time g-MHF). For a function g(·, ·), we say that a mem-
ory hard function MHF = (MHF.Setup,MHF.Eval) is one-time g-memory hard
if there exists a polynomial t′ such that for all polynomials t(λ) > t′(λ) and
every adversary A with cmc(A) < y for y(λ) := g(t(λ), λ), there exists a neg-

ligible function µ(λ) such that for all λ ∈ N and every input x ∈ {0, 1}λ, we
have |Pr[A(x, hb, pp) = b] − 1/2| 6 µ(λ), where the probability is taken over

pp← MHF.Setup(1λ, t(λ)), b
$←{0, 1}, h0 ← MHF.Eval(pp, x), and h1

$←{0, 1}λ.

We complement the above definition with a concrete security definition.

Definition 8 (One-time (g, ε)-MHF). For a function g(·, ·), we say that
a MHF = (MHF.Setup,MHF.Eval) is a one-time (g, ε)-MHF if there exists a
polynomial t′ such that for all polynomials t(λ) > t′(λ) and every adversary A
with area-time complexity cmc(A) < y, where y(λ) = g(t(λ), λ), and for all λ > 0

and x ∈ {0, 1}λ we have |Pr[A(x, hb, pp) = b]−1/2| 6 ε(λ), where the probability

is taken over pp← MHF.Setup(1λ, t(λ)), b
$←{0, 1}, h0 ← MHF.Eval(x, pp) and

a uniformly random string h1 ∈ {0, 1}λ.

We give a memory-hard function construction that relies on our new notion
of memory-hard puzzles, and additionally uses indistinguishability obfuscation
(iO) for circuits and a family of puncturable pseudo-random functions (PPRFs)
{Fi}i [30,63,31]. Informally, PPRFs are pseudo-random functions that allow one
to “puncture” a key K at values x1, . . . , xk, where the key K can be used to
evaluate the function at any point x 6∈ {x1, . . . , xk} and hide the values of the
function at the points x1, . . . , xk.

We formally present our memory-hard function in the full version of our work
[9] and provide a high-level overview of the construction here. During the setup
phase we generate three PPRF keys K1, K2, and K3 and obfuscate a program
prog(·, ·) which does the following. On input (x,⊥), prog outputs a memory-
hard puzzle Puz.Gen(1λ, t(λ), s; r) with solution s = FK1

(x) using randomness
r = FK2(x). On input (x, s′), prog checks to see if s′ = FK1(x) and, if so,
outputs FK3(x); otherwise ⊥. Given the public parameters pp = iO(prog), we
can evaluate the MHF as follows: (1) run pp(x,⊥) = iO(prog(x,⊥)) to obtain a
puzzle Z; (2) solve the puzzle Z to obtain s = Puz.Sol(Z); and (3) run pp(x, s) =
iO(prog)(x, s) to obtain the output FK3

(x). Intuitively, the construction is shown
to be one-time memory-hard by appealing to the memory-hard puzzle security,
PPRF security, and iO security.

We establish one-time memory-hardness by showing how to transform an
MHF attacker A into a MHP attacker B with comparable cmc. Our reduction
involves a sequence of hybrids H0, H1, H2 and H3. Hybrid H0 is simply our above
constructed function. In hybrid H1 we puncture the PPRF keys Ki{x0, x1} at
target points x0, x1 and hard code the corresponding puzzles Z0, Z1 along with
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their solutions—iO security implies that H1 and H0 are indistinguishable. In
hybrid H2 we rely on PPRF security to replace Z0, Z1 with randomly generated
puzzles independent of the PPRF keys K1,K2 and hardcode the corresponding
solutions s0, s1. Finally, in hybrid H3 we rely on MHP security to break the
relationship between si and Zi; i.e., we flip a coin b′ and hardcoded puzzles
Z ′0 = Zb′ and Z ′1 = Z1−b′ while maintaining si = Puz.Sol(Zi). In the final
hybrid we can show that the attacker cannot win the MHF security game with
non-negligible advantage.

Showing indistinguishability of H2 and H3 is the most interesting case. In
fact, an attacker who can solve either puzzle Zb or Z1−b can potentially dis-
tinguish the two hybrids. Instead, we only argue that the hybrids are indistin-
guishable if the adversary has small area-time complexity. In particular, if an
adversary with small cmc is able to distinguish between H2 and H3, then we
construct an adversary with small cmc which breaks the memory-hard puzzle.

Our main result is that given a concretely secure PPRF family and a con-
cretely secure iO scheme, if there exists a concretely secure memory-hard puzzle
(Definition 6), then there exists a concretely secure memory-hard function.

Theorem 4. Let t := t(λ) be a polynomial and let g := g(t, λ) be a function.
Let F be a (tPPRF, εPPRF)-secure PPRF family and iO be a (tiO, εiO)-secure iO
scheme. If there exists a (g, εMHP)-memory hard puzzle for g 6 min{tPPRF(λ), tiO(λ)},
then there exists one-time (g′, εMHF)-MHF for g′(t, λ) = g(t, λ)/p(log(t), λ)2,
where εMHF(λ) = 2 · εMHP(λ) + 3 · εPPRF(λ) + εiO(λ) and p(log(t), λ) is a fixed
polynomial which depends on the efficiency of underlying puzzle and iO.

To get a handle on Theorem 4, consider the following parameter settings. Let θ >
0 be a small constant and suppose that t is suitably large such that p(log(t), λ)2 =
Θ(tc) for some suitably small constant 0 < c < θ. Then for g(t, λ) = t2−θ+c,
εMHP = (1/6) · 2−λ, εPPRF = (1/9) · 2−λ, and εiO = (1/3) · 2−λ,6 our theorem
yields a (g′, εMHF) for g′(t, λ) = Θ(t2−θ) and εMHF = 1/2λ. Note that the exact
parameters of the constructed MHF depend explicitly on the parameters of the
underlying primitives used in the construction. Due to space constraints, we
defer the formal definitions of concretely secure PPRF families and iO to the
full version of our work [9].

Note that for any instantiation of iO that we are aware of, our construction
is also a (computationally) data-independent MHF [10], i.e., the memory access
pattern is (computationally) independent of the secret input x. This is a desirable
and useful property that provides natural resistance to side-channel attacks.

Remark 1. One may attempt to construct memory-hard puzzles directly from
memory-hard functions in a natural way. For example, for a memory-hard func-

tion f , one could define Gen(x) = r‖x⊕ f(r) for random r
$←{0, 1}∗ and Sol(Z)

such that first Z is parsed as Z = r′‖y′ and then returns y′ ⊕ f(r′). Clearly
computing Sol(Z) is memory-hard, but (Gen,Sol) is not a cryptographic puzzle
by our definitions since Gen violates the efficiency constraints of cryptographic
puzzles.
6 In this example, we assume sub-exponentially secure iO.
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Barriers to Proving Multi-Time Security. While we conjecture that our MHF
construction achieves stronger multi-time security, we are unable to formally
prove this. An interesting aspect of our final hybrid is that indistinguishability
does not necessarily hold against an attacker with higher cmc who could trivially
distinguish between (s0, s1, Z0, Z1) and (s0, s1, Z1, Z0) by solving the puzzles Z0

and Z1. However, once the cmc of the attacker is high enough to solve one
puzzle, then we cannot rely on the MHP security for the indistinguishability of
the final two hybrids. Proving multi-time security would involve proving that any
attacker solving m distinct puzzles has cmc that scales linearly in the number
of puzzles; i.e., any attacker with cmc = o (m · g(t(λ))) will fail to solve all m
puzzles. In particular, even though we expect the cmc of the attacker to be too
small to solve all m puzzles, the cmc will become large enough to solve at least
one puzzle, which allows the attacker to distinguish between the hybrids in our
security reduction. See the full version [9] for more details.

2.4 Resource-Bounded LDCs from Cryptographic Puzzles

Recall that a resource-bounded LDC is a (`, δ, p) locally decodable code that is
resilient to δ-fraction of errors introduced by some channel in some adversarial
class C, where every A ∈ C is assumed to have some resource constraint. For
example, C can be a class of adversaries that are represented by low-depth
circuits, or have small cumulative memory complexity. In more detail, security
of resource-bounded LDCs requires that any adversary in the class C cannot
corrupt an encoding y = Enc(x) to some ỹ such that (1) the distance between
y and ỹ is at most δ · |y|; and (2) there exists an index i such that the decoder,
when given ỹ as its oracle, outputs xi with probability less than p.

We construct our resource-bounded LDC by modifying the construction of
[26] to use cryptographic puzzles in place of random oracles. In particular, for
algorithm class C, if there exists a cryptographic puzzle that is unsolvable by
any algorithm in C, then we use this puzzle to construct a LDC secure against
C. See the full version of our work for the formal definitions of a (C, ε)-hard
puzzle and a C-secure LDC [9].

Our construction crucially relies on a private LDC [79]. Private LDCs are
LDCs that are additionally parameterized by a key generation algorithm Gen
that on input 1λ for security parameter λ outputs a shared secret key sk to both
the encoding and decoding algorithm. Crucially, this secret key is hidden from
the adversarial channel. See [79,26,9] for formal definitions.

We provide a high-level overview here of our LDC construction and defer
the formal construction to the full version of our work [9]. Let (Gen,Encp,Decp)
be a private Hamming LDC. The encoder Encf , on input message x, samples
random coins s ∈ {0, 1}λ then generates cryptographic puzzle Z with solution s.
The encoder then samples a secret key sk← Gen(1λ; s), where Gen uses random
coins s, and encodes the message x as Y1 = Encp(x; sk). The puzzle Z is then
encoded as Y2 via some repetition code. The encoder then outputs Y = Y1 ◦ Y2.
This codeword is corrupted to some Ỹ , which can be parsed as Ỹ = Ỹ1 ◦ Ỹ2.
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The local decoder Decf , on input index i and given oracle access to Ỹ , first
recovers the puzzle Z by querying Ỹ2 and using the decoder of the repetition
code (e.g., via random sampling with majority vote). Given s, the local decoder
is able to generate the same secret key sk ← Gen(1λ; s) and now runs the local

decoder Decp(i; sk). All queries made by Decp(i; sk) are answered by querying Ỹ1,
and the decoder outputs Decp(i; sk). The construction is secure against any class
C for which there exist cryptographic puzzles that are secure against this class.
For example, time-lock puzzles give an LDC that is secure against the class C
of circuits of low-depth, and memory-hard puzzles give an LDC that is secure
against the class C of PRAM algorithms with low cmc.

Security is established via a reduction to the cryptographic puzzle. Suppose
there exists an adversary A ∈ C which can violate the security of our LDC.
The reduction relies on a two-phase hybrid distinguishing argument [26]. Fix
(Encf ,Decf) to be the encoder and local decoder constructed above. We define
two different encoders to be used in the hybrid arguments. First the encoder
Enc0 := Encf is defined to be exactly the same as our LDC encoder. Second,
the encoder Enc1 is defined to be identical to Encf , except with the following
changes: (1) Enc1 receives both a message x and some secret key sk as input;

(2) Enc1 encodes x as Y1 = Encp(x; sk); and (3) Enc1 samples some s′
$←{0, 1}λ

that is uncorrelated with its input sk, computes puzzle Z ′ ← Puz.Gen(s′), and
computes Y2 as the repetition encoding of Z ′.

We now construct our attacker B which violates the security of the cryp-
tographic puzzle as follows: B is given (Zb, Z1−b, s0, s1) for uniformly random
bit b, where Zi is a puzzle with solution si as input. Then B fixes a message
x and encodes x as follows. (1) Using puzzle solution s0, generate secret key
sk← Gen(1λ, s0). (2) Compute Y2 as the encoding of Zb (i.e., its first input) using
the repetition code. (3) Compute Y1 ← Encp(x; sk). (4) Set Y = Y1 ◦Y2. With Y

in hand, the adversary B simulates adversary A to obtain Ỹ = Ỹ1◦Ỹ2 ← A(x, Y ).
Finally, B outputs b′ ← D(x, sk, Ỹ1). Here, the distinguisher D is given Ỹ1, the
secret key sk0, and message x as input; additionally, it can simulate the local
decoding algorithm Decp. In particular, the distinguisher D is defined as fol-

lows: (1) sample an index i
$← {1, . . . , |x|} uniformly at random; (2) compute

x̃i ← DecỸ1
p (i; sk0); and (3) output b′ = 0 if xi 6= x̃i and b′ = 1 otherwise.

Intuitively, if b = 1 then Y1 = Encp(s; sk0) where the secret key sk0 is infor-
mation theoretically hidden from A when the corrupted private-key codeword
Ỹ1 ← A(x, Y ) is produced. Private key LDC security ensures that, except with

negligible probability, DecỸ1
p (i; sk0) will output the correct answer x̃i = xi and

D will output the correct answer b′ = 1. On the other hand if b = 0 we have

Y = Enc0(x) and Ỹ ← A(x, Y ) so that the probability that DecỸ1
p (i; skb) outputs

the wrong answer xi 6= x̃i will be non-negligible — at least 1/|x| times the ad-
vantage of A in the LDC security game. Thus, the probability that D outputs the
correct answer b′ = 0 is also non-negligible. It follows our adversary B outputs
the correct bit b = b′ with non-negligible advantage violating security of the
underlying memory hard puzzles. See [9] for formal details.
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Our main result is that given any private Hamming LDC, if there exists a
memory-hard puzzle, then there exists a resource-bounded LDC that is secure
against the class of PRAM algorithms, where the parameters of the resource-
bounded LDC are comparable to the parameters of the private LDC.

Corollary 1. Let g be a function, let C(g) := {A : A is a PRAM algorithm and
cmc(A) < g}, and let Cp[Kp, kp, λ] be a (`p, δp, pp, εp)-private Hamming LDC.
If there exists a (g, ε′)-memory hard puzzle then there exists a (`, δ, ε)-resource
bounded LDC C[Ω(Kp), kp] that is secure against the class C(g) with parameters
` = Θ(`p), δ = Θ(1), p = 1− negl(λ), and ε = Θ(εp + ε′).

Actually, in the full version of our work [9], we prove a more general theorem
which utilizes any private LDC in conjunction with a more general (C, ε)-hard
puzzle (i.e., the puzzle is secure against the class of adversaries C, which allows
us to construct a resource-bounded LDC that is secure against the class C.

Resource-Bounded LDCs for Insertion-Deletion Errors in the Standard Model.
Recently, Block and Blocki [20] proved that the so-called “Hamming-to-InsDel”
compiler of Block et al. [21] extends to both the private Hamming LDC and
resource-bounded Hamming LDC settings. That is, there exists a procedure
which compiles any resource-bounded Hamming LDC to a resource-bounded LDC
that is robust against insertion-deletion errors such that this compilation proce-
dure preserves the underlying security of the Hamming LDC. We apply the result
of Block and Blocki [20] to our construction and obtain the first construction
of resource-bounded locally decodable code for insertion-deletion errors in the
standard model. We remark that the prior construction presented in [20] was in
the random oracle model.

Corollary 2. Let C(g) = {A : A is a PRAM algorithm and cmc(A) < g} and
let Cp[Kp, kp, λ] be a private Hamming LDC. If there exists a (g, ε′)-memory hard
puzzle and a (`, δ, p, ε) resource-bounded LDC that is secure against the class C(g),
then there exists a (`′, δ′, p′, ε′′)-LDC C[n, k] for insertion-deletion errors against
class C(g), where `′ = ` · O(log4(n)), δ′ = Θ(δ), p′ < p, ε′′ = ε/(1 − negl(n)),
k = kp, and K = Ω(Kp).
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