-: I_,..::. -': - -:I_'n R +

— : b RN AR

6} usenix
& THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

z10: Accelerating 10-Intensive Applications
with Transparent Zero-Copy 10

Timothy Stamler, Deukyeon Hwang, and Amanda Raybuck, UT Austin;
Wei Zhang, Microsoft; Simon Peter, University of Washington

https://www.usenix.org/conference/osdi22/presentation/stamler

This paper is included in the Proceedings of the
16th USENIX Symposium on Operating Systems
Design and Implementation.

July 11-13, 2022 « Carlsbad, CA, USA
978-1-939133-28-1

Open access to the Proceedings of the
16th USENIX Symposium on Operating
Systems Design and Implementation
is sponsored by

F NetApp-

ARTIFACT
EVALUATED
yusenix

&

AVAILABLE

zIO: Accelerating I0-Intensive Applications with Transparent Zero-Copy 10

Deukyeon Hwang!
'UT Austin ~ ?Microsoft

Tim Stamler!

Abstract

We present zIO, a transparent zero-copy IO mechanism for un-
modified IO-intensive applications. zIO tracks IO data through
the application, eliminating copies that are unnecessary while
maintaining data consistency.

Applications often modify only a part of the data they pro-
cess. zIO leverages this insight and interposes on IO stack
and standard library memory copy calls to track IO data and
eliminate unnecessary copies. Instead, intermediate data lo-
cations are unmapped, allowing zIO to intercept and resolve
any access via page faults to maintain data consistency. To
avoid harming application performance in situations where
data tracking overhead is high, zIO’s tracking policy decides
ona per IO basis when to eliminate copies. Further, we demon-
strate how to use zIO to achieve optimistic network receiver
persistence for applications storing data from the network
in non-volatile memory (NVM). By mapping socket receive
buffers in NVM and leveraging kernel-bypass IO, we can rely
on zIO to transparently eliminate all copies from the network,
through the application, to storage.

We implement zIO as a user-space library. On top of kernel
IO stacks, zIO eliminates application-level IO copies. We also
integrate zIO with kernel-bypass IO stacks, where it can ad-
ditionally eliminate copies incurred by the IO stack APIs and
enable optimistic network receiver persistence. We evaluate
zIO with IO-intensive applications, such as Redis, Icecast, and
MongoDB. zIO improves application throughput by up to 1.8
with Linux and by up to 2.5x with kernel-bypass IO stacks
and optimistic network receiver persistence. Compared to
common uses of zero-copy IO stack APIs, such as memory
mapped files, zIO can improve performance by up to 17% due
to reduced TLB shootdown overhead.

1 Introduction

Zero-copy IO has been a long-standing performance goal.
Copies introduce memory and CPU overhead, limiting the
performance of IO-intensive applications. IO data copies are
performed within IO stacks, by their application program-
ming interfaces (APIs), and within applications. Existing work
has focused on eliminating copies within IO stacks [27, 28]
and within IO stack APIs by developing zero-copy 10 APIs
[1,11,12, 15,17, 28, 32], including some that strive for trans-
parency [8, 9, 22].

Despite these advances, data from IO is still copied. We
find that IO-intensive applications perform up to 8 copies
of request data for each 10 request (cf. §2.1). Many of these

Amanda Raybuck!

Wei Zhang? Simon Peter®

3University of Washington

copies occur among subsystems within the applications them-
selves (application copies). Only a fraction is performed at the
I0 stack API (IO copies—for example, many standard POSIX
socket and file IO system calls copy data between system and
user-provided buffers).

A reason for the continued adoption of copies is that they
simplify development. Copies are used as a robust mechanism
to pass ownership of data among independent subsystems.
A data buffer local to a subsystem cannot be touched by a
caller of the subsystem, allowing for subsystem-internal use
of the data without worry of corruption or deallocation of
the memory backing the data from the outside. For example,
copies are used to simplify asynchronous IO. POSIX allows
kernel IO stacks to provide internal buffers to IO devices that
operate asynchronously. Applications request and copy 10
data into user-space buffers, allowing applications synchro-
nous processing of a single buffer at a time, while the IO stack
recycles its internal buffers for further asynchronous IO. Fi-
nally, applications use copies to simplify data handling, for
example to perform alignment, padding, serialization and
deserialization, as well as bucketization (cf. §2.2).

Unfortunately, copying is an imperfect tool. While copies
provide the aforementioned benefits, they also introduce over-
head. Using the Redis [21] key-value store as an example
I0-intensive application, we study the overhead of copies
for IO, both using Linux kernel IO stacks (§2.2) and using
kernel-bypass IO stacks for high-bandwidth IO devices (§2.3).
IO copying overhead scales with the amount of copied 10
data. As IO devices, in particular for storage and networking,
increase bandwidth, copies become the performance-limiting
factor in IO-intensive applications [7].

The question we ask is: can we attain the benefits of simple
development offered by copying, while alleviating its increas-
ing overheads? As we have seen, application developers opt
for copies regardless of the availability of zero-copy IO APIs.
We find that zero-copy APIs require application modification,
increase code complexity, and are not widely supported (§2.4).
Hence, we strive for a solution that allows application devel-
opers the freedom to program with copies and to use any 10
API, while transparently eliminating copies where it makes
sense, without requiring application modification.

We present zIO, a transparent zero-copy IO mechanism
for IO-intensive applications. IO-intensive applications act
between IO stacks, examining and potentially transforming
inputdatabefore output. zIO tracks data that is read by applica-
tions from IO stacks to its final destination (typically another

USENIX Association

16th USENIX Symposium on Operating Systems Design and Implementation 431

IO stack, but the data may also be held in memory). In the pro-
cess, zIO eliminates copies that are unnecessary while main-
taining consistency for data that the application accesses. By
tracking data and eliminating copies, zIO minimizes the over-
head incurred by copies, improving application performance.

zIO works under the assumption that IO-intensive appli-
cations often touch only a part of the data they process. Un-
touched data may remain in its original place, while touched
data continues to be copied. However, the challenge is that
we do not know a priori what data will be touched. zIO opti-
mistically assumes that most data will remain untouched and,
by interposing on IO system calls and C standard library calls
like memcpy and memmove, eliminates copies, instead sim-
ply marking the target memory area as intermediate. zIO can
do so transitively for entire copy chains. To maintain consis-
tency, each target area remains unmapped. If the application
attempts to touch any intermediate memory area, zIO inter-
cepts the access via a page fault. In this case, zIO performs the
copy for touched pages and remaps them. Another challenge
is to deal with unaligned memory areas. In this case, zIO per-
forms the copy of unaligned sections of the area and leaves
only page-aligned portions unmapped. Unaligned sections
are small and copying them does not harm performance.

To avoid harming application performance due to data
tracking overhead, zIO dynamically decides on a per IO basis
when to track and when to copy (via its tracking policy). If the
size of an IO buffer is smaller than 16KB, zIO copies the buffer.
zIO also tracks the average number of page faults and elim-
inated copied bytes per buffer. If the ratio of bytes accessed
to bytes eliminated from copies exceeds 6%, we impose too
much overhead handling page faults to improve application
performance and zIO copies the buffer instead.

In addition to eliminating application copies, we also use
zIO to eliminate copies across 10 stack APIs. To do so, we
use kernel-bypass IO stacks in addition to zIO. Kernel-bypass
stacks use shared memory to implement their APIs, allowing
zIO to track IO as it arrives from the IO devices and eliminate
copies, even across the IO stack API. We implement these
changes in the TAS [18] network stack and the Strata [20] file
system. We discuss how to apply these principles to any 10
stack in (§3.4).

By leveraging non-volatile memory (NVM), we achieve
a further optimization: optimistic input persistence. If input
received from an IO stack is persisted in NVM via a storage
stack by applications, optimistic input persistence enables
end-to-end transparent elimination of copies through to stor-
age. To do so without violating application data persistence
requirements, we extend zIO to identify NVM mappings. Data
copies to NVM may be eliminated if the original data already
resides in NVM. Otherwise, a copy is necessary to enforce
persistence. Using this technique, we demonstrate how to
achieve optimistic network receiver persistence by mapping
socket receive buffers in NVM and relying on zIO to transpar-
ently eliminate all copies through to the file system.

We make the following contributions:

o Ananalysis of copying in IO-intensive applications (§2). We
study the number of copies made in popular IO-intensive
applications and find that copies are common, in particular
within applications themselves. We conduct a case study
of copies in the Redis key-value store, analyzing when
and why copies are carried out. Finally, using the Redis
case study, we demonstrate that copies are a performance
bottleneck for IO-intensive applications, especially when
leveraging optimized kernel-bypass IO stacks.

o We present zIO, a transparent zero-copy IO system for IO-
intensive applications. zIO addresses the presented over-
heads due to copying. We show how to use zIO to eliminate
application-level copies. We show how to eliminate 10
stack API copies when combining zIO with kernel-bypass
IO stacks. We show how to achieve optimistic input persis-
tence by leveraging NVM.

e We implement zIO as a user-space library. When executing
on top of the Linux kernel network and storage stacks, zIO
successfully eliminates application copies of IO buffers. We
alsointegrate zIO with the kernel-bypass IO stacks TAS [18]
and Strata [20], enabling it to additionally eliminate copies
performed by the IO stack APIs.

e We break down zIO’s performance contributions with mi-
crobenchmarks and analyze the overheads of buffer track-
ing. We evaluate the performance benefit to IO-intensive ap-
plications, like Redis [21], Icecast [37], and MongoDB [25]
and compare to Linux and kernel-bypass IO without copy
elimination, where zIO improves performance by up to
1.8x and 2.5X, respectively. We also compare zIO’s perfor-
mance to common uses of zero-copy 10 stack APIs, such as
memory mapped files, where zIO can improve performance
by up to 17% due to reduced TLB shootdown overhead.

2 Background

IO-intensive applications often make several copies of 10
data while processing it. We survey the prevalence of these
copies in IO-intensive applications (§2.1). To learn how copies
are used for 10, we study one of these applications, Redis,
and investigate how it uses copies to do IO processing (§2.2).
Looking forward, we investigate how copies can become a
limiting factor to IO performance (§2.3). Zero-copy APIs are
a potential alternative to IO copies. We study their intended
use and the tradeoffs they make (§2.4).

2.1 Copiesin IO-Intensive Applications

We study the prevalence of IO data copies in popular 10-
intensive applications. We identify the call site of these copies
and break down occurrences into copies that are involved in
an IO stack API call and copies occurring within application
subsystems. Our methodology involves a source code anal-
ysis of IO data flows through application subsystems from
input to output. We identify what methods applications use

432 16th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

Copy call site

Application Operation App IO Stack
Redis [21] SET 4 2
GET 2 1
Icecast [37] Cast to N clients 0 1+N
Ceph [34] Write 1 2
Read 0 2
Anna [36] PUT 5 3
GET 4 3
MongoDB [25] Insert 3 2
Disk sync 1 1
Read 2 2
Tensorflow-serving [26] Inference 2 1
Nebula Graph [33] Insert vertex 5 2
Store a vertex 4 3

Table 1. Number and call site of copies between input and
output for various application operations.

to copy IO data and how copies are affected by the executed
functionality and its parameters. We find that all applications
investigated use C standard library functions, such as memcpy
and memmove, to copy data. We use this insight to validate our
source code analysis via an execution of the relevant appli-
cation operations under a debugger set to break on these C
library memory copy APIs. For each application operation,
we count the number of breakpoints hit on IO code paths
between input and output and check that the count matches
that of our source code analysis.

Table 1 presents the number of copies made at the IO stack
and within various IO-intensive applications, broken down
by operation. We are specifically interested in the copy of po-
tentially large IO data, as small data copies do not significantly
impact application performance. For example, the Anna [36]
key-value store conducts up to 45 copies of keys duringa PUT
operation. We ignore these copies in the table.

While the number of copies varies among applications and
operations, we can see that IO-intensive applications exten-
sively copy IO data between input and output. We can also
see that applications often make more internal copies of IO
data than at the IO stack APIL For example, Redis [21] makes
twice as many application-internal copies than at the IO stack
for a SET request. I0-intensive applications also often employ
third-party libraries. For example, the Anna [36] key-value
store uses gRPC [14] and Protobuf [13] to serialize and de-
serialize data. We observe that these libraries incur up to 3
per-10 data copies for this task, leading Anna to make up to
5 internal IO copies. This indicates that zero-copy IO APIs
are only going to eliminate a fraction of the overhead due to
copies. Application-internal copies, including in third-party
libraries, often constitute a similar or even larger fraction of
copy-induced CPU overhead.

2.2 Copy Case Study: Redis

To better understand these IO data copies, we study the Redis
SET request. Redis [21] is a popular key-value store providing

Source Destination Call site

I0; Socket buffer c.socket_buf readQueryFromClient
Aq c.socket_buf c.socket_buf processInputBuffer
Ay c.socket_buf hash_node dbAdd

As c.socket_buf c.write_to_aof feedAppendOnlyFile
Ay c.write_to_aof aof_buf flushAppendOnlyFile
I0; aof_buf Append-only file flushAppendOnlyFile

Table 2. Copies in Redis SET request. I0; are 10 stack copies,
Aj are application copies. c is a per-client structure.

a rich RPC-based network API to an in-memory store, per-
sisted via snapshots or operation logging. We configure Redis
to log SET operations to study a use-case that is equally net-
work and storage IO intensive. In our study, each SET request
provides a new value, identified by a 32 byte key. We run a
single-threaded Redis server instance on the evaluation plat-
form described in Section 5. We use redis-benchmark [21]
to attach 64 clients over a 100G network, enough to saturate
the server. We configure Redis to use an append-only file to
persist data without delay. This configuration provides strong
crash consistency—every operation is persisted before it is ac-
knowledged. We evaluate the number of memory copies that
Redis performs per SET request and we study these copies.

As reported in Table 1, we find that Redis copies request
data 6 times for each SET request. We list these copies and
their call sites in Table 2. As we can see, Redis performs copies
toread and deserialize the SET request and to store the request
both in an in-memory hash table and in the append-only file.
After reading a number of kilobytes from the network socket
to an input buffer (copy 10,), Redis identifies the next request
within the input buffer and removes its headers from the buffer
(copy A;). If the identified SET request is admissible, Redis cre-
ates a copy of the key and value data to store in its in-memory
hash table (copy A»). Redis then reformats the request so it can
be logged to its append-only file and appends the request to a
per-client log (copy As). Redis uses per-client logs to support
group commit—Redis can process a number of pending client
requests in-memory and then persist and acknowledge these
requests in a batch, eliminating storage stack overheads in-
curred for small IO. To do so, Redis first combines all pending
per-client logs into a single log stream (copy A4) and then
writes the log stream to the append-only file (copy 10,).

All of these copies could have been avoided. However, it
would have required the Redis developers to design a complex
set of coordinated, reference counted buffer descriptors that
can track each request and its data in each source buffer (in
this case, a network socket buffer). Reference counts provide
use-after-free protection. Use-after-free [38] is an error con-
dition where one part of an application or IO stack frees an
allocated IO data buffer and re-uses it for other purposes while
another part of the application or an IO device still uses the
data. Use-after-free protection requires complex ownership
tracking, including APIs to convey ownership transfer. Fur-
ther, fine-grained memory management is required, including
the ability to free fragments of a previously allocated memory

USENIX Association

16th USENIX Symposium on Operating Systems Design and Implementation 433

>
_ 14 ‘ \ \ 100 g

w o 1oL Kernel-bypass CPU %
8 1ol Linux CPU % 18 ¢
= Kernel-bypass throughput 1 60 c
3 8r Linux throughput o
< 6 40 %
s 4r S
s 2 20 =
= 0 L:
64B 2568 1KB 4KB 16KB 64KB &

Value size

Figure 1. Redis SET throughput and fraction of CPU cycles
in memcpy over value size, with and without kernel-bypass.

buffer. For example, the headers of incoming SET requests can
be freed after each request is processed, while the keys and
values remain in their original buffers for as long as they are
stored in the key-value store. This creates buffer fragmenta-
tion that is difficult to resolve via memory management alone,
requiring further APIs to defragment buffers over time. All of
these APIs are complex and it is often impossible to support
them in an application when third-party libraries or IO stacks
are used that do not support the APIs.

2.3 Whenis IO Performance Copy-Limited?

Ashardware IO bandwidth continues to increase and 10 stacks
become lighter-weight to keep up with increasing application
demand for bandwidth, copies start to limit IO performance.
In light of these trends, we investigate the performance im-
pact of copying for Redis SET requests over increasing value
sizes, while using heavy-weight in-kernel and light-weight
kernel-bypass IO stacks. We use the same Redis configuration
described in Section 2.2, evaluating the Linux network stack
and the ext4 file system, as well as TAS [18] and Strata [20] for
kernel-bypass. As we vary the value size, we measure through-
put and the fraction of CPU cycles spent in data copies per
request with Linux perf.

The results are presented in Figure 1. We can see that larger
value sizes imply higher per-core throughput. Also, kernel-
bypass IO improves throughput by up to 4x. This is intuitive.
Kernel-bypass IO is lighter-weight than in-kernel IO, while
larger IO granularity amortizes IO stack overheads. As hard-
ware IO bandwidth continues to increase, it is likely that ap-
plications will employ larger IO sizes to leverage the available
bandwidth. At the same time, IO stacks will become lighter-
weight to provide the necessary performance to keep up with
the increasing IO speeds.

We can also see that larger value (and thus IO) sizes cause a
noticeable increase of per-request CPU cycles spent in mem-
ory copies. We already know that Redis makes 6 copies of
IO data for each SET request. As value sizes increase, the
amount of CPU cycles spent copying them must naturally
also increase. Even moderate value sizes of 64KB cause 39% of
per-request CPU cycles to be spent in memory copies using
the heavy-weight Linux kernel IO stacks. The lighter-weight
kernel-bypass IO causes an even larger fraction of up to 52% of

per-request CPU cycles to be spent in memory copies, owing
to a reduction of per-request CPU cycles spent in 10 stack
processing. For even larger value sizes of 512KB, CPU cycles
spent in copying reaches 60%.

2.4 Limitations of Existing Zero-Copy 10 APIs

Various zero-copy APIs have been proposed to limit the num-
ber of copies involved in IO-intensive applications. Zero-copy
IO APIs fall into two categories. (1) Single-stack APIs, and
(2) cross-stack APIs. Single-stack APIs eliminate copies for a
particular IO API, such as the network sockets system call API.
Cross-stack APIs eliminate copies across IO APIs. For exam-
ple, across network and storage APIs. We study the tradeoffs
made by each category in this section.

Single-stack APIs. Single-stack APIs provide zero-copy
10 for single IO stacks. The AP is specific to the IO stack and
is often provided in the form of new parameters or tweaks to
a familiar IO API that enable zero-copy, typically along with a
set of invocation and environment requirements that have to
be met by the application developer for the API to function. We
describe a number of storage and networking zero-copy APIs
here, including memory mapped files, Linux FreeBSD, and
Solaris zero-copy networking, remote direct memory access
(RDMA), and the Arrakis [28] zero-copy networking APL

Memory mapping files is one of the oldest zero-copy stor-
age IO APIs. Applications map (parts of) files into their virtual
address space, which the OS implements by loading the file
into the page cache and providing direct application access
to the relevant pages. Page cache entries may be directly
written to disk, without further copies. More recently, appli-
cations may also map non-volatile memory (NVM) directly
into virtual memory, referred to as direct access (DAX) [2].
Memory mapped files restrict some file I0. For example, mem-
ory mapped files cannot be appended to. Instead, an appli-
cation developer has to determine the file size in advance
and truncate the file to the desired length before memory
mapping it. Further, the interface does not allow applications
to make atomic modifications to file data without copying
data to their own buffers first.

Linux provides two networking zero-copy APIs [11, 12] for
TCP sockets. A zero-copy send will lock a given application
buffer into memory and start the transmission. If transmission
is not complete by the time send returns, the application must
take care not to touch the buffer. The zero-copy mechanism
will place a notification message in the error queue associated
with the socket, which has to be monitored by the applica-
tion. When an “error” packet appears, it can be examined to
determine the status of the operation, including whether the
transmission succeeded and whether it was able to run in
zero-copy mode.

For zero-copy receive, Linux allows to memory map a TCP
socket. If several network conditions are met, including the
next incoming data chunk being page-sized and page-aligned,

434 16th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

the socket buffer containing the incoming chunk will be
mapped into the calling process’s address space, where it
can be accessed directly. When the incoming data has been
processed, the application calls munmap to release the pages
and free the buffer for another incoming packet. The mecha-
nism only works if the application developer has knowledge
of exactly what each incoming packet will look like.

RDMA [30] provides zero-copy IO either by directly read-
ing/writing remote memory or by pre-registering buffers with
the network card for receive and transmit operation. Simi-
larly, Arrakis [28] provides a zero-copy 10 network socket
interface that returns buffers and consumes them, rather than
letting the application specify its own buffers. All of these in-
terfaces introduce the same complexities of buffer ownership
management and knowledge of network conditions. These
conditions are often difficult to meet and the additional buffer
management burden is cumbersome for many developers.

A limited solution proposed by SocksDirect [22] and also
implemented in FreeBSD [8] and Solaris [9] to transparently
avoid copies in the network sockets API is to simply remap
the pages carrying IO data from the network stack to the
application-provided buffer location, instead of copying the
data. This works in cases where both buffers are page-aligned
and it requires the NIC to be able to isolate packet payloads
and place them into page-aligned buffers. To isolate payloads,
SocksDirect requires RDMA, while Solaris requires ATM.
FreeBSD supports traditional Ethernet NICs, but requires
that the maximum transfer unit is configured to be greater
than the hardware page size, which may be undesirable or dif-
ficult. Unfortunately, applications often misalign IO buffers,
even if memory allocators return aligned memory. For exam-
ple, when headers are inserted into a buffer and IO is read
to a location after the header. Our investigation into Redis
shows that only about 40% of IO data can be remapped using
this approach. Further, transmit buffers must be kept until
acknowledged, leaking memory if acknowledgments lag. The
limited applicability, security concerns (including from mali-
cious NICs [24]), and hardware requirements led the FreeBSD
developers to abandon the transparent zero-copy socket API
in FreeBSD 11.

Cross-stack APIs. A variety of cross-stack APIs attempt
to eliminate copies across IO stacks, in particular the network-
ing and storage stacks. To do so, they offer new and often
higher-level APIs that the application developer must use.
These new APIs avoid copies. We describe three example
cross-stack APIs here, the Linux sendfile family of system
calls, PASTE, and Demikernel.

The Linux sendfile system call (and cousins splice for
pipes and copy_file_range for files) transmits data from the
storage stack via the network stack without user-level copies.
The APl is restricted to network and storage 10 and does not
permit the application developer to inspect data before trans-
mission. To add any application data, such as headers, the

developer must use the TCP_CORK option, requiring them to
add the necessary data within a 200 millisecond time window.
sendfile does not allow sending or receiving from/to user
memory. The APIis used to send static files across the network
but is increasingly obsolete with the prevalence of dynamic
in-memory content.

PASTE [15] provides an API that combines the network
stack with persistent data structures in NVM to avoid copies.
PASTE builds on the Netmap [31] kernel framework to place
packets from the network interface card (NIC) directly in
NVM. Developers can refer to these packets from application-
specific persistent data structures. However, PASTE operates
at the packet level and requires developers to track network
connections and decode byte streams to find relevant data
to persist. PASTE also requires the developer to implement
a copy-on-write scheme to efficiently return packet buffer
space to the NIC after use. Due to the complexity of its API,
PASTE’s intended use is constrained to run-to-completion
processing of requests that fit in individual network packets.

Demikernel [38] eliminates copies between kernel-bypass
networking stacks, like DPDK and RDMA, and kernel-bypass
storage stacks, like SPDK. The Demikernel memory manager
allocates memory to applications from DPDK’s memory pool
and it registers that memory with RDMA. This allows Demik-
ernel applications toreceive data over the network and to store
it without any copies. Demikernel offers a queue-oriented in-
terface, PDPIX, which replaces datapath IO calls with pushes
and pops to and from queues that may return tokens if data
is unavailable. Demikernel’s interface requires application
developers to implement run-to-completion IO processing.
This simplifies zero-copy IO for Demikernel, but it limits the
application developer. The Demikernel interface does not sup-
port making in-place updates to IO data or allow developers
to schedule input and output beyond handling each input
request to completion, and it cannot eliminate any further
copies an application might make internally to process input.

Summary. Both categories of zero-copy 10 stacks seek to
eliminate copies involved in IO stack APIs. However, in do-
ing so they introduce complexities, such as buffer ownership
management involving special API calls. They also introduce
restrictions, such as requiring run-to-completion processing,
buffer alignment, or disallowing in-place updates. Finally,
they may enforce external IO properties, such as packet lay-
out and MTU size. These complexities and restrictions are
difficult for developers to navigate and external IO properties
are often difficult or impossible to enforce. Further, none of
the existing zero-copy APIs provide transparent copy
elimination across IO stacks or eliminate copies that
are made within the application. For these reasons, both
application and kernel developers forgo zero-copy APIs, as
they often struggle to outperform APIs that involve copies
and are deemed not worth the complexity they introduce [12].

USENIX Association

16th USENIX Symposium on Operating Systems Design and Implementation 435

libzlO

! send, recv read, recv

Application = = = = = = = — = = p | §3-1.1Input Buffer Ly
PP H H Recording I/O
H read, write : write, send
——— = = == — §3.1.3 Input to output
* memcpy, H | buffer resolution
: memmove i = => §3.1.2 Intermediate
—— == = == Buffer Tracking and
load/store = - q i free H Copy Elimination
Nessssssssssnnnnnnns -
Kernel m . — . p Access Conflict
> I userfaultfd | Resolutions
Page Faults d

Figure 2. zIO overview.

3 zIO Design

zIO0 isa user-levellibrary (libzIO) that may be dynamically and
transparently linked to applications. zIO intercepts a number
of C standard library and IO system calls (shown in Figure 2),
including memory copy and management, and socket and
file IO. zIO leverages userfaultfd [5] to intercept page faults,
which may be caused by applications touching intermediate
memory buffers. We now describe zIO in three parts. First,
we describe how zIO tracks data within the application to
eliminate application copies (§3.1). Second, we describe how
we extend zIO with kernel-bypass IO stacks to allow it to
eliminate IO stack copies (§3.2). Third, we describe how to
realize optimistic input persistence by mapping appropriate
IO buffers into NVM (§3.3).

3.1 Application Copy Elimination

To eliminate application copies, zIO tracks IO data buffer loca-
tions transitively through the application. zIO intercepts any
copies of IO buffers and optimistically forgoes them. To pro-
vide data consistency in the face of the application accessing
any intermediate, uncopied buffer locations, zIO leverages
page faults to detect and resolve these accesses.

Figure 3 shows the mechanisms involved in this process
via an example involving a key-value pair being read from an
input IO stack, processed by the application, and written to an
output IO stack. On input (e.g., IO stack read/recv calls), the
provided location of the application buffer is recorded by zIO
(@). For the purpose of application copy elimination, this is
the original location of the IO data. zIO uses this information
to track and eliminate any application-level copies of this data.
Upon memory copy of any tracked data (memcpy/memmove
calls), zZIO unmaps the destination buffer, forgoes the copy,
and tracks the destination buffer as intermediate (2). Some
buffer locations may not be page aligned, in which case, buffer
fringes have to be copied (app_buf3 in Figure 3 is unaligned,
causing copies in @ and @, where it is used as destination
and source buffer, respectively). To provide consistency when
applications access intermediate buffers, zIO leverages page
faults. If a page fault to any intermediate buffer occurs, zZIO
finds the original buffer location to resolve the page fault with

the appropriate data by lazily copying faulted pages (®). Fi-
nally, when tracked data is written to another IO stack (e.g.,
send/write calls), zIO intercepts the call and provides the
original buffer instead of the application-provided interme-
diate buffer, but including any intermediate data updates (®).
Before we detail each of these mechanisms, we describe zIO’s
tracking granularity and data structure.

Page granularity copy elimination. To be able to pro-
vide data consistency via page faults, zIO eliminates copies
only at page granularity. However, buffers may reside at any
address in virtual memory. To resolve this issue, zIO will only
eliminate the part of a copy that lies within page boundaries
of the provided buffer (i.e., unaligned buffer start addresses
are rounded up to the page boundary, while unaligned buffer
end addresses are rounded down)—the core buffer. The left
and right buffer fringe—the beginning and end of an applica-
tion buffer that is beyond the core buffer page boundaries,
respectively—is always copied. While this approach involves
small copies for unaligned buffers, we find that it often helps
performance. The left and right buffer fringe often contain
headers and footers that applications are more likely to access
than the core.

Intermediate buffer tracking via skiplists. zIO records
the locations of all application data buffers containing IO data.
As buffer tracking has to incur minimal overhead and records
are frequently mutated, we choose a skiplist for probabilistic
fast search and insertion. Each entry in the skiplist keeps track
of the original buffer address, a corresponding core interme-
diate buffer address, the length of the core intermediate buffer
as a number of base pages, the size of the left intermediate
buffer fringe in bytes, a timestamp of the last copy (cf. §3.1.7),
and a free flag (cf. §3.1.4, not shown in Figure 3). The skiplist
is sorted by intermediate buffer address. We evaluate the per-
formance of buffer tracking via skiplists in §5.2.1.

3.1.1 Inputbuffer recording. When data is read from an
IO stack via a function or system call, zIO intercepts these
operations. We have implemented intercepts for all common
POSIX network and file system calls. According to its policy
(cf. §3.1.6), zIO records the application-provided destination
buffer as the original buffer, along with an identity core in-
termediate buffer (@). This record filters IO buffers for copy
tracking—zIO only eliminates copies for data originally read
from an IO stack.

3.1.2 Copy tracking and elimination. zIO identifies cop-
ies within the application by interposing on the standard
library memory copy calls memcpy and memmove'. These calls
take a source and destination buffer address, as well as a size
(in bytes) to copy. On each call, according to policy (cf. §3.1.6),
instead of executing the copy, we record in the skiplist the core

Variations of these calls use memcpy and memmove in our standard C library.
For other C libraries, variations may need to be explicitly intercepted.

436 16th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

—~ : Apblicati app_buf3 (unaligned)
F [4] 4] @) Application @ : .
X rem— @ . . :_ E @ﬁ g;‘?“/ gg{
g - @ . app_bufd A H
s §3.1.1 ’ [A - :
Q. afraasi r\ead() app_buf? @Wr‘ite() \4
F= - §3.1.3 Output Stack
___ o e e i
libZIO Skiplist: @ ‘ app_bufl/app_bufl/6/0 /0/1 S omhmrmr T L/

Original / Current / Size (Pages}

@ ‘ app_bufl /app buf2/6/0/0/2 ‘

/ Fringe (Bytes) / Free / Time

@‘ app_bufl /app bufd+4/1/0/0/5 ‘ Handler

@ ‘ app_bufl /app buf3/5/4B/0/3 ‘

1
i
(4| app_buf1 / app_bufa / 2/ 40968 /0/4 | Page Fault
1
I
I
I

§3.1.5

Figure 3. zIO application copy elimination example with an IO buffer spanning 6 pages. Original buffer pages are unshaded.

Shaded pages are copied. Dark shaded pages are unmapped.

destination buffer and its size as intermediate location and size
(e.g., @, where app_buf1 and app_buf2 do not have a fringe).

To determine the original buffer location, we first use the
core source buffer address to search through the skiplist to see
if it falls within any existing intermediate buffers. If it does,
we use that buffer’s original buffer location, and, if this is the
first time this original buffer is copied, zIO also remaps the
core original buffer read-only to detect any application mod-
ification to it. If we find no intersecting intermediate buffer,
then this data did not originate from IO (cf. §3.1.1) and we
execute the copy, forgoing any tracking of this buffer. Finally,
if the data originated from IO, we record the size of the left
intermediate buffer fringe (®, where app_buf3 is unaligned
and has a left fringe of 4 bytes—it also has a right fringe, but we
do not need to record it). The left buffer fringe is necessary to
resolve access conflicts (cf. §3.1.5). If the destination location
is within a buffer that is already tracked in the skiplist, the
skiplist entry is updated with the new buffer information.

zIO unmaps the core intermediate buffer and registers it
with userfaultfd to intercept application access. The union
of left and right buffer fringes of original and intermediate
buffer is copied. For example, if the source buffer has a left
fringe of 4 bytes and the target buffer has no left fringe, then
the left fringe of the target buffer becomes 4KB, as the original
left fringe taints the first 4 bytes of what could have been a
core page of the target buffer, making the entire page part
of the fringe (@, where app_buf3 has a left fringe of 4 bytes,
app_buf4 acquires a left fringe of 4KB).

The cost of unmapping intermediate buffersis often avoided
or amortized. For example, buffers that are allocated on the
heap are backed with physical memory and mapped only on
first access (this lazy memory allocationis the default in Linux,
for example). zIO can simply register these unmapped buffers
with userfaultfd. Statically allocated buffers are often reused
across requests instead of freed and reallocated. These buffers
remain unmapped across requests if they are not otherwise
accessed by the application. Upon reuse, zIO simply updates
the skiplist when new IO data is processed.

3.1.3 Input to output buffer resolution. Whenever data
is written to an IO stack, zIO interposes on the IO stack API
and searches the skiplist to see if the core buffer being written
intersects with any intermediate buffers tracked in the skiplist.
If a match is found, zIO modifies the write operation to use
any original buffer addresses recorded in the skiplist. This
may result in a single IO stack source buffer location being
transformed into multiple buffer locations (®, where shaded
areas of the output are copied, unshaded areas are sourced
from original buffer locations). If the IO stack API supports
gather IO, we leverage that API to refer to the appropriate
buffer pages when generating the output IO call. If the IO
stack does not support gather IO, zIO breaks up the output
call into multiple calls that refer to each individual buffer.

3.1.4 Freeing buffers. Finally, zIO interposes on free.
This interposition allows zIO to look up and delete skiplist
entries that are potentially no longer needed. If an intermedi-
ate buffer is freed that means we have successfully eliminated
a copy; the contents of the buffer were not touched and the
application has specified that it no longer needs it. At this
point, the skiplist entry can be deleted and the memory region
unregistered from userfaultfd. If an original buffer is being
freed, the skiplist entry is only marked as freed to prevent
use-after-free violations. Buffers marked as freed are deleted
upon garbage collection (see below).

3.1.5 Access conflict resolution. When a core intermedi-
ate buffer is touched by the application, it will trigger a page
fault. zIO looks up the faulting page number in the skiplist.
zIO then maps the faulting page, potentially allocating it (lazy
memory allocation), and copies the data from the original
buffer, as recorded in the skiplist entry. zIO uses the left buffer
fringe size to determine the byte offset of the intermediate core
buffer, which is used as an offset into the recorded original
buffer to determine the copy source address.

If a page at the beginning or end of a buffer is faulted in,
it is removed from the tracked buffer core and thus copied
going forward. If a page is faulted in the middle of a buffer, a

USENIX Association

16th USENIX Symposium on Operating Systems Design and Implementation

437

new skiplist entry must be created for the second section of
the buffer, if it meets the appropriate size threshold (®). The
original buffer is effectively split; the buffer before the faulting
page is considered part of the originally tracked buffer and
the buffer after the faulting page is a newly tracked buffer.
If a core original buffer is modified by the application, it
also triggers a page fault. In this case, zIO walks the skiplist
to determine any intermediate buffers derived from the core
original buffer page. zIO copies the faulting original buffer
page to the relevant intermediate buffers and resets the access
permissions to the relevant original and intermediate pages.

3.1.6 Tracking policy. We determine experimentally (cf.
§5.1.2) that for data buffers smaller than 16KB, the overhead
of tracking outweighs any performance benefits from elimi-
nating copies. Hence, we configure zIO to track and elide only
sufficiently large copies (core buffer sizes of 16KB or larger).
There is also an overhead for handling page faults. We
determine this experimentally (§5.1.4) under a number of con-
ditions. For example, we find that if the ratio of bytes accessed
by the application to bytes eliminated from copies exceeds
6%, we no longer see a performance benefit with a single ap-
plication thread. This number can change with a different
number of threads and is fully explored in §5.1.3. After these
thresholds, we stop eliding copies for these buffers.

3.1.7 Intermediate buffer garbage collection. zIO avoids
tracking an arbitrary number of entries to prevent memory
exhaustion and skiplist performance reduction. For exam-
ple, tracked intermediate buffers may be kept indefinitely in
memory by the application, causing skiplist entries to accrue.
Hence, skiplist entries are garbage collected periodically (once
every second in our prototype). For each collected skiplist
entry, we must fill any intermediate buffers with consistent
data. This is done via the same process as conflict resolution.
The region is mapped and the data is copied from its original
location at the appropriate offset. Buffers marked free can be
freed immediately.

zI0’s garbage collection policy collects intermediate buffers
that have been least recently used in copies. A timestamp on
each skiplist entry (not shown in Figure 3) keeps track of the
last time the entry was involved in a copy. If the skiplist grows
beyond a threshold, zIO collects the least recently used entries.

3.2 10 Stack API Copy Elimination

Simply linking zIO when kernel-bypass IO stacks are used
already provides transparent zero-copy 10. However, we can
achieve further performance benefits by modifying these IO
stacks to integrate with zIO more tightly. We now describe
how we integrate zIO with kernel-bypass IO stacks to opti-
mize IO stack API copy elimination.

Kernel-bypass IO stacks are a good fit for zIO, as they com-
municate with the application via shared library calls and
shared memory—mechanisms that zIO can transparently pro-
cess at user-level—rather than system calls. We choose the

TAS [18] and Strata [20] kernel-bypass network and stor-
age stacks, which are state-of-the-art. Strata, in particular,
is a good fit, as it uses a per-process operation log in NVM,
mapped into userspace, to persist file writes. zIO transparently
intercepts Strata’s memory copies into this log and can pro-
vide transparent copy elimination, provided that the original
buffer already resides in NVM.

Input API copy elimination. POSIX file and socket input
calls (e.g., read and recv) require applications to provide a
buffer that input data is copied into. In TAS and Strata, these
library calls internally call memcpy to copy from an IO stack
internal buffer to the application-provided buffer. zIO trans-
parently tracks and eliminates this copy across the IO stack
API (cf. §3.1). As the source buffers are IO stack-private, we do
not need to protect the original source data buffer by remap-
ping it read-only. Instead, we modify the IO stacks to execute
zIO’s garbage collection protocol for any tracked buffers that
the IO stack intends to free or overwrite. To prevent this from
happening frequently, we can configure the 10 stack internal
buffers to be sufficiently large. For example, socket receive
buffers can be resized to hold at least the expected size of input
data per IO request.

Output API copy elimination. POSIX file and socket
output calls (e.g., write and send) require applications to
provide a source buffer that output data is copied from. As
with the input API calls, zIO already transparently eliminates
stack-internal memory copies. As output buffers are IO stack-
private, no unmapping is necessary. Instead, we modify the
10 stacks to fetch the original buffer locations from zIO when
the output data is processed. For example, when TAS sends
payload from the socket transmit buffer or when Strata “di-
gests” [20] the update log. When zIO has to resolve copies due
to mis-speculation or garbage collection, the relevant output
buffer fields are simply filled in with the appropriate data.
When the 10 stacks ask zIO for original buffer locations, filled
output buffers will not be marked as intermediate.

3.3 Optimistic Input Persistence

To realize optimistic input persistence for end-to-end IO copy
elimination when data is persisted in NVM by a storage stack,
we simply have to ensure that the original data already resides
in NVM. zIO automatically detects the type of memory back-
ing a virtual memory mapping. If original and intermediate
buffers are backed by NVM, zIO can eliminate and track any
copies among the buffers, while ensuring persistence. We
describe here how we use this feature to realize optimistic
network receiver persistence, where incoming data from the
network does not need to be copied to storage.

Optimistic network receiver persistence. TAS uses shared
memory for socket receive buffers between its TCP fast-path
process and processes linking the kernel-bypass 1ibTAS li-
brary. The fast-path writes incoming payload directly into

438 16th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

socket receive buffers residing in this shared memory. We
can realize optimistic network receiver persistence simply
by mapping the socket receive buffers into NVM. zIO will
detect that original buffers are backed by NVM and eliminate
copies end-to-end to the Strata update log, which also resides
in process-local NVM.

3.4 Discussion

Huge pages. Huge pages (pages larger than the system’s
base page size) are desirable for improved memory address
translation performance. However, tracking IO buffers re-
quires fine-grained page protection, as tracked buffers may
be smaller than the huge page size. In this case, zIO’s fine-
grained page mapping requests force the OS to break huge
pages into base page mappings. Indeed, an investigation of
the Redis YCSB benchmark with 512KB value size (cf. §5.2)
shows that Linux with transparent huge page (THP) support
maps 40% of Redis’ working set with huge pages when zIO
is not used, while mapping only 35% of the working set with
huge pages when zIO is used.

Unfortunately, if the application stores IO buffers in re-
served huge page memory using Linux’s huget1lbfs mecha-
nism, fine-grained page protection is disallowed and zIO can
only track buffers at huge page granularity. Note that Linux
could technically allow fine-grained protection for reserved
huge page memory, while still allocating memory at huge
page granularity. This would be compatible with zIO.

Luckily, transparent zero-copy and huge pages do not need
to be at odds. zIO operates on the assumption that tracked 10
buffers are seldom touched by applications. Hence, leveraging
fine-grained page protection for tracking IO buffers does not
impact application performance in the common case, as these
mappings are seldom exercised. On mis-speculation, zIO’s
policy reverts to copying IO buffers and the OS may again map
them with huge pages. This may happen transparently when
THP support is enabled in the OS. Our application bench-
marks run with THP, showing that transparent zero-copy IO
still outperforms any potential slow-down from fine-grained
page protection.

Linux kernel IO stack API copy elimination. While we
present 10 stack API copy elimination with kernel-bypass
stacks (§3.2), we believe it is possible to provide IO stack API
copy elimination for the Linux kernel IO stacks in certain
cases by leveraging Linux’s zero-copy IO APISs (cf. §2.4). For
example, using Linux’s zero-copy socket receive API (cf. §2.4),
zIO can memory map kernel TCP socket receive buffers into
user-private memory when sockets are created. It can then in-
tercept application recv calls and track the target application
buffer as an intermediate buffer, with the private socket buffer
mapping as the original. This eliminates the IO stack API copy
for recv, similar to our integration with TAS, as described
in §3.2. Network receiver persistence may also be realizable,
albeit with kernel modifications, by mapping socket buffers

into a file stored in NVM and then using the FICLONERANGE
ioctl to remap core data buffers to their final destination upon
input to output resolution to a file. We leave IO stack API copy
elimination for the Linux kernel IO stacks for future work.

4 Implementation

Our zIO implementation consists of two key components.
The first component is tracking data through an application
and eliminating copies along the way. The second component
is closely integrating this tracking with the kernel-bypass
network and storage stacks TAS and Strata, respectively, to
provide transparent zero-copy across IO stack APIs, as well
as optimistic input persistence.

Application copy elimination. This component of zZIO
is written in 1,608 lines of C code and is dynamically loaded
with LD_PRELOAD.

IO stack API copy elimination. To integrate zIO with
TAS and Strata to provide IO stack API copy elimination, we
modify 184 lines of code in TAS and 66 lines of code in Strata.

5 Evaluation

We analyze zIO’s performance via a number of experiments
based on a multi-threaded IO microbenchmark, using net-
work and storage stacks, and varying relevant IO and copy
parameters. We also evaluate zIO with the IO-intensive ap-
plications Redis [21], MongoDB [25], and Icecast [37]. We
compare zIO to Linux and kernel-bypass IO stacks without
any copy optimizations.
Our evaluation answers the following questions:

e What is the impact of copies on IO performance? What
benefits to IO processing throughput does zIO provide by
transparently eliminating copies? How do the number of
copies per 10 (§5.1.1), IO size (§5.1.2), and number of IO
threads (§5.1.3) affect the observed performance?

e What are the overheads zIO introduces by tracking data?
How do overheads increase as applications touch the data
they copy, causing zIO to mis-speculate? How effective is
zIO’s tracking policy in avoiding mis-speculation? (§5.1.4)

e How do zIO performance improvements break down into
its mechanisms? By how much can we improve IO perfor-
mance when employing optimistic input persistence with
NVM? (§5.2.1)

e What benefits to IO processing throughput and latency
does zIO provide by eliminating copies within IO-intensive
applications, such as Redis (§5.2), Icecast (§5.3), and Mon-
goDB (§5.4)? In what situations might zIO hurt application
performance (§5.3.1)?

e How does zIO perform compared to zero-copy 10 APIs,
such as memory mapped files and sendfile? (§5.3.1)

Evaluation platform. We run our evaluation on a single
socket of a dual-socket Intel Cascade Lake-SP system running
at 2.2GHz with 24 cores per socket and a 100 GbE ConnectX-5

USENIX Association

16th USENIX Symposium on Operating Systems Design and Implementation 439

Throughput [Gb/s]

1 1
0o 1 2 4 8 12
Number of copies

Figure 4. Linux throughput versus zIO application IO copy
elimination (512KB IO size).

= 20
a
© 15 N -
- 4 e §
3 10 - g
< ZI0+10 —a—
3 5 20 —— A
£ TAS
[0 | | | |

0 1 2 4 8 12

Number of copies

Figure 5. TAS throughput versus zIO application and IO stack
API copy elimination (512KB IO size).

NIC. Each socket has 192 GB of DDR4 DRAM and 3 TB of
Intel Optane DC NVM. To leverage all 6 memory channels per
processor, there are 6 DIMMs of DRAM and NVM per socket.
The machine runs Fedora 27 with Linux kernel version 5.10.0.
We use the latest master branches of TAS [3] and Strata [4].

5.1 Microbenchmarks

We quantify the overhead introduced by copies of IO data and
the benefit that zIO provides for various IO parameters via a
simple echo server benchmark. Our evaluation setup is the
same as in §2.2, but in place of Redis we run a simple TCP
echo server that echoes client messages back to the sender.
To simulate IO-intensive application processing, our echo
server can make a configurable number of copies to the IO
data. Beyond the number of copies, we also vary other I0
parameters, such as IO size, fraction of IO data accessed, and
number of echo server threads. We report the average echo
server throughput, measured at the client, over 3 runs for each
configuration, using the steady-state throughput of each run.

5.1.1 Number of Copies. We firstevaluate IO performance
with a varying number of copies of the IO data made before it
is echoed. We compare four scenarios: Vanilla Linux (Linux),
Linux with zIO application copy elimination (zIO), vanilla
kernel-bypass (TAS), kernel-bypass with zIO application copy
elimination (zIO), and kernel-bypass with zIO application and
IO stack API copy elimination (zIO+10). We run this exper-
iment with 512KB IO, using a single server thread. For each
run, we vary the number of times the request is copied before

being echoed.

o 20 T T T T T T
S
O 15
3 104 .
S
3 3 — ~
= Linux O copies * zIO * Linux 5 copies
= 0 | | | | |
8 16 32 64 128 256 512 1024
10 size [KB]

Figure 6. zIO throughput versus Linux with 0 and 5 copies.

m 20 T T T T

3

O 15 p e

= A . & :
e

3 10 / B

S

2 54 zI0+I0 —+— TAS 0 copies E

= zI0 —e— TAS 5 copies

[0 L L L L L L

8 16 32 64 128 256 512 1024
10 size [KB]

Figure 7. zIO throughput versus TAS with 0 and 5 copies.

Figures 4 and 5 present the results. We can see that an
increasing number of application IO copies decreases the
achieved throughput for Linux and TAS networking?, due
to the involved copying overhead. Kernel-bypass maintains
high throughput with more copies than Linux, as more CPU
cyclesare available for copies due to the lighter-weight kernel-
bypass network stack. zZIO maintains performance close to the
configuration without copies for both stacks, showing that it
successfully eliminates these copies with negligible overhead.
With 12 copies, zIO improves throughput by 3.8x with Linux
and by 2.8x with TAS. Finally, zZIO+I10 improves throughput
by up to 21% versus zIO by additionally eliminating IO stack
API copies.

5.1.2 IO Size. We next investigate how IO size affects per-
formance, using a single echo server thread. To evaluate the
overhead of tracking small IO, we disable zI0’s IO size thresh-
old for this benchmark, causing zIO to always track buffers
and eliminate copies. We vary the IO size from 8KB to 1MB
and evaluate two extreme copy scenarios (cf. Table 1): 5 appli-
cation copies and 0 application copies. Figures 6 and 7 present
the results.

zIO benefits large IO. Firstly, we can see that Linux has
poor performance with small IO, but performance improves
as IO size increases. TAS performs better with smaller 1O size.
This is expected, as kernel-bypass stacks are light-weight.
When copies are involved, both Linux and TAS perform worse,
in particular as IO size increases. This is also expected, as

2We consistently observe TAS throughput to be lower than Linux with large
10 sizes. TAS is optimized for small IO and does not do the necessary batching
to handle large IO efficiently.

440 16th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

- 100
o
©
=
>3
o
ey
(o)}
>
o
<
|_
Number of threads
Figure 8. zIO scalability.
— 14 T I
512
S10 o
T e
S 21 No faults —e— aults —— |
3 40 1fault —=— 8 faults 7
c 2r 2 faults —e— 12 faults —+— 7|
(= 0 | | | | | I
1 2 3 4 5 6 7 8

Threads

Figure 9. zIO scalability with page faults.

larger copies require more CPU time. zIO improves through-
put by up to 2.9% with Linux and up to 2X with TAS as IO
size increases, reaching zero-copy performance with IO sizes
larger than 512KB for Linux and 32KB for TAS. zIO+IO im-
proves throughput further, by up to 40% versus zIO, for a
combined improvement of up to 2.7X versus TAS.

Limits of zIO with small IO. zIO transparent copy elim-
ination is no panacea, as the overhead of zIO tracking with
small IO limits throughput. For IO smaller than 16KB, zIO
reduces throughput by up to 30% versus Linux. For IO smaller
than 32KB, zIO reduces throughput by up to 49% versus TAS.
IO sizes smaller than 8KB would incur even further through-
put reduction. Based on this measurement, we set zZIO’s track-
ing policy to avoid tracking IO buffers smaller than 16KB
(cf. 3.1.6).

5.1.3 Scalability. We evaluate two scalability aspects. zZIO
tracking scalability and the impact of page faults.

zIO tracking. We configure the echo server to make 1 ap-
plication copy of each 512KB IO buffer and vary the number
of server threads. Each thread handles a private pool of clients
and uses private IO buffers. Figure 8 shows that zIO improves
throughput scalability over Linux by up to 19% due to copy
elimination. Copies pollute the CPU caches, causing Linux’s
scalability to be impacted.

Page faults. Page faults can affect scalability when fault-
ing pages are mapped, requiring TLB shootdowns. In theory,
information about newly mapped pages may be lazily synchro-
nized among TLBs, avoiding TLB shootdowns. Other cores
accessing the same unmapped page simply fault on the stale
TLB information, synchronizing the TLB at this moment. Most

3 T
+ « . 1MB + 64KB
o : -
2 + 256KB x Fit
= +
g\ 2+ % + . i
g c
=l + s
g 1 . 4% s ‘
=z x * X X
3
0 L 1 L
1 6 10 100

10 data accessed versus copied [%)]

Figure 10. zIO throughput improvement under data access.

I0-intensive applications use thread-private IO buffers and ac-
cessacross coresisrare. Unfortunately, Linux does not support
lazy mapping of pages. Hence, page faults do affect scalability.

To show this effect, we configure the echo server to access a
number of pages of each 512KB IO buffer, without application
copies, and vary the number of server threads. We supply the
same IO buffer each time, requiring zIO to unmayp it for each
I0 request. The results can be found in Figure 9. We can see
that, up to 2 page faults, server throughput still scales well.
Increasing the number of page faults per IO beyond this point
starts limiting server throughput due to TLB shootdowns.
With Linux modifications, many of these TLB shootdowns
could be avoided.

5.1.4 Mis-speculation. To evaluate the impact of zIO mis-
speculation on performance, we configure the echo server to
access a number of bytes in each IO request before echoing a
response. We run this experiment under a variety of 10 sizes
(64KB, 256KB, and 1MB) and copies (1, 3, and 6), using the
Linux network stack.

Figure 10 presents the results as a scatter plot, where we
compare zIO throughput improvement over vanilla Linux to
the ratio of IO bytes accessed versus elided in copies. This
ratio clearly limits zIO’s throughput improvements. Applica-
tions accessing copied IO data means that zZIO mis-speculated.
zIO has to resolve the elided copies for the accessed data,
which incurs a performance penalty. Less IO data accessed
implies better performance improvements. At the same time,
more IO data elided in copies also implies better performance
improvements and creates headroom for mis-speculation. Fit-
ting a Bezier curve to the scatter plot shows that zIO improves
throughput when the ratio of data bytes accessed by an ap-
plication versus data bytes elided in copies is less than 6%.
Above 6%, overheads created by zIO mis-speculation decrease
throughput. As an example, for an input buffer of size 200KB
that is copied twice, the application may incur up to 6 page
faults before output to still yield a speed-up. If the same buffer
is copied 4 times, up to 12 page faults are permissible.

5.2 Redis

We evaluate how zIO improves Redis throughput with Linux
and kernel-bypass IO stacks (TAS and Strata). Our benchmark
setup is identical to the one presented in §2.2. We evaluate two

USENIX Association

16th USENIX Symposium on Operating Systems Design and Implementation 441

w
o)
O 15 - et
5
a 10 /E—E/E/E—__f
S —
2 S5 7210 —=— zI0+ORP :
= Linux —&— Kernel-bypass
[0 1 1 1 1 1

8 16 32 64 128 256 512

Value size [KB]
Figure 11. Redis throughput (100% SET).

o 20
ey
O 15t =
3 10 & 5 e
g //Aq’
2 5l 210 —=— zI0+ORP 3
£ Linux —=— Kernel-bypass
[0 | | | | |

8 16 32 64 128 256 512

Value size [KB]

Figure 12. Redis throughput YCSB A (50% SET, 50% GET).

benchmark configurations: 1) 100% SET, and 2) YCSB Work-
load A, which has a distribution of 50% SETs and 50% GETs.
We vary the value size over independent runs for each of these
configurations. In addition to zIO’s improvement over vanilla
Linux with application copy elimination, we investigate the
performance of zIO with additional optimistic receiver per-
sistence and IO stack API copy elimination (zIO+ORP) over
kernel-bypass IO stacks. The zIO size threshold is disabled
for these experiments; enabling it would allow zIO to match
vanilla IO stack performance for smaller values, evaluated in
§5.2.1.

We first look at 100% SET throughput. This case involves
2 1O copies (one from the network and one to storage), as
well as 4 IO application copies per request (cf. Table 1). The
results can be found in Figure 11. zIO with Linux eliminates
all application copies, which allows for a throughput improve-
ment of up to 1.8x%, especially for larger values. zIO+ORP with
kernel-bypass IO stacks improves performance by up to 2.5X%,
as the IO paths consume noticeably less CPU time.

We now look at YCSB workload A, with 50% GET requests
and 50% SET requests. These results can be found in Figure 12.
Asthe 50% GET requests require fewer application copies, zIO
with Linux provides less of a performance improvement than
in the first benchmark, up to 1.3x. However, GET requests
provide an opportunity for zIO+ORP to eliminate IO stack
API copies, maintaining a speedup of up to 2X over vanilla
kernel-bypass.

5.2.1 zIO Performance Breakdown. We use the Redis
100% SET benchmark to break down the performance con-
tributions of zIO. To do so, we evaluate zIO throughput with
kernel-bypass IO in two IO size configurations, progressively

8KB T'put [k SETs/s]

256KB T'put [k SETs/s]

zI0O+10 zIO+ORP

Kernel zIo zIo Kernel zIo
bypass no policy +policy bypass

Figure 13. zIO performance breakdown.

Storage tonet | Net to net
Throughput | Listeners
Kernel-bypass 0.89 GB/s (1.00x) | 812 (1.00x)

210+10 1.08 GB/s (1.25x) | 944 (1.16X)
Table 3. Icecast throughput.

enabling different zIO optimizations. These results can be
found in Figure 13.

The first configuration uses 8KB SET requests. We evaluate
zIO with and without its tracking policy, which applies a 16KB
size threshold (§3.1.6). We can see a drastic slowdown of 40%
when zIO does not apply this policy, due to the overhead of
tracking small IO. Enabling zIO’s policy instead copies the IO
buffers and attains a negligible slowdown of 2% versus vanilla
kernel-bypass.

We further evaluate a configuration with 256KB SET re-
quests. When eliminating application copies, zIO provides
a speedup of 1.7x. When adding IO stack API copy elimina-
tion, zIO+IO improves performance by another 9%. Adding
optimistic receiver persistence in zZIO+ORP finally improves
performance by another 7%, for a combined improvement
over vanilla kernel-bypass of 2x.

Intermediate buffer tracking overhead. We investigate
the overhead of buffer tracking via zIO’s skiplist. For the same
100% SET request Redis configuration, we find an average of
5 skiplist entries per client connection. With 64 clients, we
measured a maximum of 640 entries in the skiplist over the
duration of the benchmark. For this scenario, we measure the
average skiplist operation latency for lookup and insert to
be 190ns. This confirms that intermediate buffer tracking via
skiplists is lightweight.

5.3 Icecast

Icecast [37] is an audio broadcasting service. Icecast can
stream audio from a source client to a number of listener
clients or read data from a local file and serve it to a number of
listener clients via HTTP. Table 1 shows that Icecast makes no
application copies, but it uses the IO stack APIs. We evaluate
both Icecast configurations, providing insight into network
to network and storage to network performance. We use the
kernel-bypass IO stacks for our evaluation, as they support IO
stack API copy elimination. The results are shown in Table 3.

442 16th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

—. 80 ‘ ‘ 50 2
g 70 zI0+10 TLB shootdowns 0
© 60 [mmap TLB shootdowns 1 40 §
— 50 F read TLB shootdowns 130 S
2 40 F —— zIO+I0]
-§, 30 | mmdap -4 20 g
3 20+ read_ |
£ 10| 10 2
oo 0 <
1 2 4 8 16
Number of threads
Figure 14. Icecast throughput scalability.

wn
% 80 T T T 500 ~
S 70 - Pre-fault TLB shootdowns 400 2
O 60 - zIO+10 TLB shootdowns H
= 28 - —*— Pre-fault 300 T
o [—»— zIO+IO Qo
§, 30 - 200 _g
3 201 100 m
E 10 = _|
F 0 0 :

1 2 4 8 16 32
Number of threads

Figure 15. Icecast scalability with pre-faulted buffers.

Storage to network. We configure Icecast to broadcast
a 1.1MB audio file to a number of listener clients. We eval-
uate the amount of audio that a single Icecast file-serving
thread can deliver. Icecast reads and sends the audio file in
a configurable chunk size, which we set to 64KB. Listener
clients request the audio stream via curl-loader [16], a
HTTP benchmark tool. We connect enough clients to sat-
urate Icecast server throughput and measure throughput over
a 30 second period. We can see that zZIO+IO improves Icecast
maximum throughput by 1.25X by eliminating IO stack API
copies, freeing CPU cycles for audio streaming.

Network to network. Next, we evaluate Icecast receiving
data from a single client and broadcasting it to a number
listeners via a single relay thread. We configure Icecast to
relay 64KB at a time and measure the number of concurrent
listeners that Icecast can broadcast to. We see a zZIO+IO im-
provement of 1.16X by eliminating IO stack copies. Icecast
uses a static buffer for relay, which remains unmapped across
IO chunks. This allows zIO+IO to eliminate IO stack copies
with minimal overhead.

5.3.1 Scalability. Icecast is a single-threaded application
when serving local files to listeners. To evaluate [O-intensive
application scalability with zIO, we modify Icecast to create
a thread-pool, where each thread can handle listener client
HTTP requests from storage via a thread-local IO buffer. This
configuration makes Icecast behave like a web server, such as
Apache [6]. This version of Icecast is using the read system
call to read from each file (read).

zIO scalability versus zero-copy IO interfaces. Web
servers (like Apache) often use zero-copy IO interfaces to
accelerate service, such as memory mapped files and the

sendfile system call. To compare application performance
with a zero-copy 1O interface to that of zIO’s transparent zero-
copy IO, we create a version of Icecast that maps a requested
file into memory (cf. §2.4) and sends data to the clients from the
memory-mapped file via the socket send call (mmap). Mem-
ory mapping each requested file eliminates an IO stack copy
on input, but also incurs a TLB shootdown. Common usage
(cf. Apache) of the mmap API unmaps each file after serving
it, incurring another TLB shootdown. zIO+IO can eliminate
copies without having to incur TLB shootdowns if buffers are
re-used and remain untouched in the common case.

We evaluate these configurations with a 512KB audio file
with an increasing number of threads and measure through-
put, as well as the number of TLB shootdowns. These results
are found in Figure 14. We can see that zZIO+10 consistently
performs the best, as it does not incur TLB shootdowns. For
a small number of threads, memory mapping input files per-
forms similarly to zZIO+10. However, as the number of threads
increases, the number and cost of performing TLB shoot-
downsincreases, which negatively affects mmap performance.
The number of TLB shootdowns when using read and zIO+I0
are negligible, as no memory mapping calls happen in the
common case. zIO outperforms memory mapping of input
files by up to 17%.

Finally, we evaluate versions of Icecast using the Linux
sendfile APIto transmit files to listeners. The first version
uses mmap to memory map each file to validate its header
before using sendfile to transmit it. The second version uses
the read system call to read the file’s header. These versions
cannot use the kernel-bypass IO stacks, as sendfileis kernel-
specific, and read+sendfile performs up to 7% worse than
zIO0+10, while mmap+sendfile performsup to 30% worse than
zIO+I0. The scalability trend of read+sendfile follows that
of zZIO+IO, while mmap+sendfile scales similarly to mmap.

zIO scalability with pre-faulted buffers. We have al-
ready evaluated zIO scalability when buffers are touched,
incurring page faults (§5.1.3). zIO can detect these cases and
stop copy elision (§3.1.6). However, if the application causes
page faults before buffers are tracked by zIO, for example
by pre-faulting mapped memory (cf. MAP_POPULATE flag for
mmap) before using it to buffer IO, then zIO can incur TLB
shootdowns by unmapping these buffers for tracking.

To evaluate this scenario, we modify Icecast to pre-fault the
IO buffer before reading into it via read and unmapping it af-
ter it was sent over the network (pre-fault). This forces zIO+IO
to unmap the IO buffer to track potential access. We run these
two configurations with a 512KB audio file, a 32KB chunk size,
and an increasing number of threads. We measure throughput
and TLB shootdowns for both cases. We present these results
in Figure 15. With a small number of threads, zIO+IO outper-
forms pre-fault, as it still eliminates copies in the IO stack API.
However, as the number of threads increases, performance
is affected by the additional TLB shootdown overhead and

USENIX Association

16th USENIX Symposium on Operating Systems Design and Implementation 443

zIO+I0 performance degrades. Note that pre-faulting mem-
ory causes TLB shootdowns by itself and the scalability of
this scenario is already limited.

5.4 MongoDB

We run MongoDB [25] on Linux, with and without zIO. We
connect a client over the network running the YCSB [10] load
phase and measure request throughput with 1MB values, di-
vided into 10 fields. The YCSB load phase is a workload with
100% inserts of a uniform random distribution. We repeat this
benchmark 5 times and report the average throughput for
each configuration.

We find that zIO is not able to provide a performance ben-
efit for this workload, with a performance of 191 requests/s
compared to 194 for Linux without zIO. zIO is disabling all
optimizations due to a large number of page faults. We find
that the page faults are generated by MongoDB reading each
inserted value in its entirety to calculate a checksum before
writing it to the file system.

If we modify MongoDB to skip checksum calculation, zIO
is able to eliminate 2 out of 3 application copies (cf. Table 1).
Similar to Redis (cf. Table 2), MongoDB copies the inserted
value first into an in-memory B-tree (similar to Redis’ copy Aj)
and then into a log (copy As). Finally, MongoDB reallocates
the IO buffer, causing a copy, before inserting it into an on-
disk index. All three copies are initially elided by zIO, the file
system writes complete and their buffers are freed. However,
the next IO request re-uses the original IO buffer, forcing zIO
to execute the elided copy of the previous buffer to the B-tree
data structure. zIO achieves a throughput of 222 requests/s,
a 6% improvement over Linux’ throughput of 209 requests/s.

We also run MongoDB with the TAS kernel-bypass net-
work stack, allowing us to use zIO+IO to elide an IO stack API
copy in recvmsg that MongoDB uses to read data from the
network. Doing so additionally implies that original buffer
reuse, which is now internal to the IO stack and directly com-
municated to zIO+IO, is lighter weight, as it is not initiated via
a page fault. TAS without zIO+IO achieves a throughput of
191 requests/s, while TAS with zIO+IO achieves a throughput
of 229 requests/s, a 19% performance improvement.

6 Related Work

In this section, we cover related work beyond the zero-copy
IO APIs studied in §2.4.

Zero-copy networked storage. Reflex [19] is a networked
storage system designed to provide fast access to remote flash
devices. Reflex gains performance by eliminating software
copies between network interface cards and flash storage.
Unlike zIO, ReFlex does not focus on eliminating application-
level or IO stack API copies.

Hardware-accelerated serialization. Recent work has
looked at accelerating serialization with help from hardware.

Zerializer [35] proposes DMA hardware with data transforma-
tion logic to offload serialization. Breakfast of Champions [29]
proposes using existing scatter-gather capabilities of NICs to
offload serialization. Unlike these works, zIO provides zero-
copy without assuming specialized hardware and can elimi-
nate application copies beyond those needed for serialization.

Custom user-level IO stacks. Sandstorm [23] addresses
the idea of specially tailoring user-level IO stacks to meet
the specific needs of applications to maximize performance,
including zero-copy. However, similar to cross-stack APIs,
these customizations are not transparent. Either the IO stack
has to be modified to work with the application, the applica-
tion has to be modified to use new APIs, or both. zIO offers
transparent cross-stack zero-copy.

7 Conclusion

We present zIO, a transparent zero-copy 10 mechanism for un-
modifiedI0-intensive applications. zIO tracks IO data through
the application, eliminating copies that are unnecessary while
maintaining data consistency. We implement zIO as a user-
space library, supporting Linux kernel and kernel-bypass
10 stacks. We evaluate zIO with IO-intensive applications,
like Redis, Icecast, and MongoDB. zIO improves application
throughput by up to 1.8x with Linux, as well as by up to 2.5x
with kernel-bypass IO stacks with optimistic network receiver
persistence.

Acknowledgments. We thank the anonymous reviewers
and our shepherd, Dan Tsafrir, for their helpful comments and
feedback. This work was supported by NSF grants 2226057,
2227066, and 2227132.

References

[1] sendfile(2)—linux manual page.
pages/man2/sendfile.2.html.

[2] Supporting filesystems in persistent memory. https://lwn.net/Articles/
610174/, September 2014.

https://man7.org/linux/man-

[3] https://github.com/tcp-acceleration-service/tas, 2020. Commit
d3926baf6ad65211dc724206a8420715eb5ab645.
[4] https://github.com/ut-osa/strata, 2020. Commit

f368dadcefe874e1b31a19df7c6436b48f489381.
[5] userfaultfd(2). http://man7.org/linux/man-pages/man2/userfaultfd.
2.html, February 2020.
[6] Apache. Apache HTTP Server, 2022. https://httpd.apache.org/.
[7] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati, Jachyun Hwang,
and Rachit Agarwal. Understanding host network stack overheads. In
Proceedings of the 2021 ACM SIGCOMM Conference, pages 65-77, 2021.
[8] J.S.Chase, AJ. Gallatin, and K.G. Yocum. End system optimizations for
high-speed TCP. IEEE Communications Magazine, 39(4):68-74, 2001.
H.K.Jerry Chu. Zero-Copy TCP in Solaris. In USENIX Annual Technical
Conference, January 1996.
[10] BrianF. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking Cloud Serving Systems with YCSB.
In Proceedings of the 1st ACM Symposium on Cloud Computing, pages
143-154, 2010.

[11] Jonathan Corbet. Zero-copy networking, 2017. https:
//lwn.net/Articles/726917/.

—
O
—

444 16th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

(12]

[16]

(17]

(18]

[27]

(28]

[29]

(30]

(31]

(32]

Jonathan Corbet. Zero-copy TCP receive, 2018.
//lwn.net/Articles/752188/.

Google. Protocol buffers, 2008. https://developers.google.com/protocol-
buffers.

Google. gRPC, 2016. https://grpc.io.

Michio Honda, Giuseppe Lettieri, Lars Eggert, and Douglas Santry.
PASTE: A network programming interface for non-volatile main
memory. In Proceedings of the 15th USENIX Conference on Networked
Systems Design and Implementation, pages 17-33, 2018.

Robert Iakobashvili and Michael Moser. curl-loader, 2007.
http://curl-loader.sourceforge.net/index.html.

Anuj Kalia, Michael Kaminsky, and David Andersen. Datacenter RPCs
can be general and fast. In 16th USENIX Symposium on Networked
Systems Design and Implementation, pages 1-16, 2019.

Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr Sharma,
Arvind Krishnamurthy, and Thomas Anderson. TAS: TCP acceleration
as an OS service. In Proceedings of the 14th EuroSys Conference, pages
1-16, 2019.

AnaKlimovic, Heiner Litz, and Christos Kozyrakis. Reflex: Remote flash
~local flash. SIGARCH Comput. Archit. News, 45(1):345-359, April 2017.
Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett
Witchel, and Thomas Anderson. Strata: A cross media file system.
In Proceedings of the 26th Symposium on Operating Systems Principles,
pages 460-477, 2017.

Redis Labs. Redis, 2022. https://redis.io/.

Bojie Li, Tianyi Cui, Zibo Wang, WeiBai, and Lintao Zhang. Socksdirect:
Datacenter sockets can be fast and compatible. In Proceedings of the
ACM Special Interest Group on Data Communication, pages 90-103, 2019.
Ilias Marinos, Robert N.M. Watson, and Mark Handley. Network stack
specialization for performance. SIGCOMM Comput. Commun. Rev.,
44(4):175-186, August 2014.

Alex Markuze, Adam Morrison, and Dan Tsafrir. True IOMMU protec-
tion from DMA attacks: When copy is faster than zero copy. In Pro-
ceedings of the 21st International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 249-262, 2016.
MongoDB. MongoDB, 2022. https://www.mongodb.com/.
Christopher Olston, Fangwei Li, Jeremiah Harmsen, Jordan Soyke, Kiril
Gorovoy, Li Lao, Noah Fiedel, Sukriti Ramesh, and Vinu Rajashekhar.
TensorFlow-Serving: Flexible, high-performance ML serving. In
Workshop on ML Systems at NIPS, 2017.

Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. 10-Lite: A
unified I/O buffering and caching system. ACM Trans. Comput. Syst.,
18(1):37-66, February 2000.

Simon Peter, Jialin Li, Irene Zhang, Dan RK Ports, Doug Woos, Arvind
Krishnamurthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The
operating system is the control plane. ACM Transactions on Computer
Systems, 33(4):1-30, 2015.

Deepti Raghavan, Philip Levis, Matei Zaharia, and Irene Zhang.
Breakfast of champions: Towards zero-copy serialization with NIC
scatter-gather. In Proceedings of the 23rd USENIX Conference on Hot
Topics in Operating Systems, pages 199-205, 2021.

RDMA Consortium. Architectural specifications for RDMA over
TCP/IP. http://www.rdmaconsortium.org/.

Luigi Rizzo. Netmap: A novel framework for fast packet I/O. In
Proceedings of the USENIX Annual Technical Conference, 2012.

H. Tezuka, F. O’Carroll, A. Hori, and Y. Ishikawa. Pin-down cache: a
virtual memory management technique for zero-copy communication.
In Proceedings of the First Merged International Parallel Processing
Symposium and Symposium on Parallel and Distributed Processing,
pages 308-314, 1998.

Vesoft, Inc. Nebula graph, 2019. https://nebula-graph.io/.

Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and
Carlos Maltzahn. Ceph: A scalable, high-performance distributed file
system. In Proceedings of the 7th Symposium on Operating Systems

https:

[35]

[36]

[37]
[38]

Design and Implementation, pages 307-320, 2006.

Adam Wolnikowski, Stephen Ibanez, Jonathan Stone, Changhoon
Kim, Rajit Manohar, and Robert Soulé. Zerializer: Towards zero-copy
serialization. In Proceedings of the 23rd USENIX Conference on Hot
Topics in Operating Systems, pages 206-212, 2021.

Chenggang Wu, Vikram Sreekanti, and Joseph M Hellerstein.
Autoscaling tiered cloud storage in Anna. Proceedings of the VLDB
Endowment, 12(6):624-638, 2019.

xiph. Icecast, 2022. https://icecast.org/.

Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk, Jacob Nel-
son, Omar S. Navarro Leija, Ashlie Martinez, Jing Liu, Anna Kornfeld
Simpson, Sujay Jayakar, Pedro Henrique Penna, Max Demoulin, Piali
Choudhury, and Anirudh Badam. The Demikernel datapath OS archi-
tecture for microsecond-scale datacenter systems. In Proceedings of the
28th Symposium on Operating Systems Principles, pages 195-211, 2021.

USENIX Association

16th USENIX Symposium on Operating Systems Design and Implementation

445

