2110.12024v1 [cs.LG] 22 Oct 2021

arxiv

A Prototype-Oriented Framework for
Unsupervised Domain Adaptation

Korawat Tanwisuth*!, Xinjie Fan*-!, Huangjie Zheng*'!, Shujian Zhang!,
Hao Zhang?, Bo Chen®, Mingyuan Zhou'
'The University of Texas at Austin 2 Cornell University 3Xidian University
korawat.tanwisuthQutexas.edu, mingyuan.zhou@mccombs.utexas.edu

Abstract

Existing methods for unsupervised domain adaptation often rely on minimizing
some statistical distance between the source and target samples in the latent space.
To avoid the sampling variability, class imbalance, and data-privacy concerns
that often plague these methods, we instead provide a memory and computation-
efficient probabilistic framework to extract class prototypes and align the target
features with them. We demonstrate the general applicability of our method on a
wide range of scenarios, including single-source, multi-source, class-imbalance,
and source-private domain adaptation. Requiring no additional model parameters
and having a moderate increase in computation over the source model alone, the
proposed method achieves competitive performance with state-of-the-art methods.

1 Introduction

In many real-world applications, such as healthcare and autonomous driving, data labeling can be
expensive and time-consuming. To make predictions on a new unlabeled dataset, one may naively
use an existing supervised model trained on a large labeled dataset. However, even subtle changes
in the data-collection conditions, such as lighting or background for natural images, can cause a
model’s performance to degrade drastically [1]. This shift in the input data distribution is referred to
in the literature as covariate shift [2]. By leveraging the labeled samples from the source domain and
unlabeled samples from the target domain, unsupervised domain adaptation aims to overcome this
issue, making the learned model generalize well in the target domain [3].

Ben-David et al. [4, 5] provide an H-divergence based theoretical upper bound on the target error.
Ganin [6] popularizes learning an invariant representation between the source and target domains
to minimize this divergence. Numerous prior methods [7—12] follow this trend, focusing on using
the source and target samples for feature alignment in the latent space. While this approach can
reduce the discrepancy between domains, directly using the source and target samples for feature
alignment has the following problems. First, several commonly used methods that can be used to
quantify the difference between two empirical distributions, such as maximum mean discrepancy
(MMD) [13] and Wasserstein distance [14, 15], are sensitive to outlier samples in a mini-batch when
used to match the source and target marginal distributions [16, 17]. We attribute this problem to the
sampling variability of both the source and target samples. Second, while we typically assume that
the two domains share the same label space, we cannot guarantee that the samples drawn from the
source and target domains will cover the same set of classes in each mini-batch. Especially, if the
label proportions shift between domains, learning domain invariant representation might not lead

* Equal contribution. Corresponding to: mingyuan.zhou@mccombs.utexas.edu
PyTorch code is available at https://github.com/korawat-tanwisuth/Proto_DA

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/korawat-tanwisuth/Proto_DA

Source Data

Source Features

\
1
Feature ! [— Gross
1 fS Entropy Loss
1
1
1
1

Encoder

Amazon

(XS ’ YS)

—_—— o —

(" Tw]
-::@
1 1
1 1
\]

Shared |

Weights)
A T !

: Class Prototypes
Feature 1 |:> Transport
Encoder i o Loss
1

_________ P Target Features

Target Data

Figure 1: This figure exhibits a diagram of Prototype-oriented Conditional Transport (PCT). Unlike existing
methods that align the target and source features, our method aligns the target features with class prototypes.
The gray arrow indicates that the gradients of the prototypes do not back-propagate through the transport loss.

to improvements over using the source data alone to train the model [18]. If we pull the support of
the source and target feature representations from different classes closer together, the classifier will
be more likely to misclassify those examples. Finally, aligning the target features to source features
means that we need access to both the source and target data simultaneously. In applications such as
personal healthcare, we may not have access to the source data directly during the adaptation stage;
instead, we may only be given access to the target data and the model trained on the source data.

We propose an algorithm that constructs class prototypes to represent the source domain samples in
the latent space. Using the prototypes instead of source features avoids the previously mentioned
problems: 1) sampling variability in the source domain, 2) instance class-mismatching in a mini-batch,
and 3) source-data privacy concerns. As we expect the classifier to make better predictions on the
target data in regions where the source density is sufficiently high [19], it is natural to consider
encouraging the feature encoder to map the target data close to these prototypes. Motivated by the
cluster assumption [20] (decision boundaries should not cross high-density regions of the data), we
provide a method to transport the target features to these class prototypes and vice versa. We further
extend our bi-directional transport to address the potential shift in label proportions, a common
problem that has been studied [21-25] but that has been often overlooked in prior works [6, 7, 26].

Compared to existing methods, the proposed one has several appealing aspects. First, it does not
rely on adversarial training to achieve competitive performance, making the algorithm robust and
converge much faster. Moreover, learnable prototypes not only avoid expensive computation but also
bypass the need to directly access the source data. This attribute makes our algorithm applicable to
the settings where preserving the source data privacy is a major concern. Unlike clustering-based
approaches that typically require multiple forward passes before an update, our algorithm processes
data in mini-batches for each update and is trained in an end-to-end manner.

We highlight the main contributions of the paper as follows: 1) We utilize the linear classifier’s weights
as class prototypes and propose a general probabilistic framework to align the target features to these
prototypes. 2) We introduce the minimization of the expected cost of a probabilistic bi-directional
transport for feature alignment, and illustrate its superior performance over related methods. 3) We
test the proposed method under multiple challenging yet practical settings: single-source, multi-
source, class-imbalance, and source-private domain adaptation. In comparison to state-of-the-art
algorithms, the proposed prototype-oriented method achieves highly competitive performance in
domain adaptation, while requiring no additional model parameters and only having a moderate
increase in computation over the source model alone.

2 Prototype-oriented conditional transport

In this section, we propose Prototype-oriented Conditional Transport (PCT), a holistic method for
domain adaption consisting of three parts: learning class prototypes, aligning the target features

No Adaptation DANN PCT B

A
Figure 2: Visualization of different methods on a synthetic dataset, where darker points marked with “-” and
lighter points marked with “x” denote the source and target samples, respectively, and the red and green colors
denote two different classes. For each method, the left plot shows the data space whereas the right plot exhibits
the output of the feature encoder in the latent space. Letters A and B correspond to the two class prototypes in
the latent space. When there is clear class imbalance, DANN, a representative algorithm whose strategy is to
match the marginal feature distributions between the source and target, fails to adapt to the target domain.

with learned prototypes using a probabilistic bi-directional transport framework of Zheng and Zhou
[27], and estimating the target class proportions. Our method does not introduce additional model
parameters for aligning domain features, and the model can be learned in an end-to-end manner. We
provide a motivating example of the application of our method on a synthetic dataset in Figure 2.

In domain adaptation, we are given a labeled dataset from the source domain, {(z$, y7)};*; ~ Ds,
and an unlabeled dataset from the target domain, {mz ?‘:1 ~ D¥. We focus on the closed-category
domain adaptation and assume that the source and target domains share the same label space, i.e.,
ys, y; € {1,2,..., K}, where K denotes the number of classes. The goal of domain adaptation is to
learn a model with low risk on the target samples. The model typically consists of a feature encoder,
Fg : X — R%, parameterized by 6, and a linear classification layer C,, : R% — RX parameterized
by p. In prior works [6, 7, 26], the feature encoder is a pre-trained neural network, and the classifier
is a randomly initialized linear layer. To simplify the following notation, we denote f; = Fg(x?)

and fz» = Fp (scé) as the feature representations of the source data «; and target data :1:3—, respectively.

2.1 Learning class prototypes

Most existing works [6, 7, 26] focus on aligning the source and target features in a latent space. By
contrast, we propose to characterize the features of each class with a class prototype and align the
target features with these class prototypes instead of the source features. This approach has several
advantages. First, the feature alignment between two domains would be more robust to outliers in
the source domain as we avoid using the source samples directly. Second, we do not need to worry
about the missing classes in the sampled mini-batch in the source domain like we do when we align
the features of source and target samples. Prototypes ensure that every class is represented for each
training update. Last but not least, using the inferred prototypes instead of source features allows
adapting to the target domain even without accessing the source data during the adaptation stage,
which is an appealing trait when preserving the source data privacy is a concern (see Table 6).

Previous methods [28-31, 12, 32] construct each class prototype as the average latent feature for
that class extracted by the feature encoder, which is computationally expensive due to the forward
passing of a large number of training samples. We propose to construct class prototypes in the same
latent space but with learnable parameters: [fi1, fto, . . -,] € R%*K where the dimension of
each prototype, d, is the same as the hidden dimension after the feature encoder Fy. This strategy
has been successfully applied by Saito et al. [33] in a semi-supervised learning setting. We learn each
class prototype in a way that encourages the prototype to be close to the source samples associated
with that class in the feature space. In particular, given the prototypes and source samples x; with
features f; and labels y7, we use the cross-entropy loss to learn the prototypes:

K Efi+b
Loe =B, [T —logpiliemn |+ pho= 200 G5 O

where by, is a bias term and p;, is the predictive probability for = to be classified to class k.

‘We note that this way of learning the class prototypes is closely connected to learning the standard
linear classification layer C,, on source-only data with the cross-entropy loss. The neural network
weights in the classification layer can be interpreted as the class prototypes. Therefore, compared
with source-only approaches, constructing prototypes in this way introduce no additional parameters.
As we show in Figure 4a, our method requires much fewer parameters than other domain-adaptation
methods. Moreover, it requires much less computation than other prototype-based methods by
avoiding the need to average the latent features for each class.

2.2 Bi-directional prototype-oriented conditional transport

In this section, we will discuss how we encourage the feature encoder to align the target data with class
prototypes. Our approach is motivated by the cluster assumption, which has been widely adopted
in both semi-supervised learning [20, 34, 35] and domain-adaptation literature [36, 37, 31, 38].
The cluster assumption states that the input data distribution consists of separated clusters and that
instances belonging to the same cluster tend to have the same class labels. This means that the
decision boundaries should not cross data high-density regions. To achieve this goal, we minimize
the expected pairwise cost between the target features and prototypes with respect to two differently
constructed joint distributions. By minimizing the expected costs under these two different joint
distributions, the target feature will be close to the prototypes, far from the decision boundaries.

2.2.1 Moving from target domain to class prototypes

To define the expected cost of moving from the target domain to the class prototypes, we first use
the chain rule to factorize the joint distribution of the class prototype u, and target feature f;

as p(f;»)ﬂ'g(uk \ fz»), where drawing from the target feature distribution p(f;) can be realized by
selecting a random target sample a:§ ~ D7 to obtain f; = Fg(mz). The conditional distribution,
representing the probability of moving from target feature f;- to class prototype pt;, is defined as

iy p(py) exp(pp £5)
ok | £5) = 7 tuyepur 7y B E{L - K} 2)

where, through the lens of Bayes’ rule, p(u,,) is the discrete prior distribution over the K classes
for the target domain, and exp(uf f;) plays the role of an unnormalized likelihood term, measuring
the similarity between class prototypes and target features. Intuitively, the target features are more
likely to be moved to the prototypes which correspond to dominant classes in the target domain or
which are closer to the target features (or both). Note that in practice we often do not have access
to the target class distribution p(g;,). We can use a uniform prior distribution for p(u,,). However,
this could be sub-optimal, especially when classes are seriously imbalanced in the target domain. To
address this issue, we propose a way to estimate {p(p;,) }&_; in Section 2.3.

We now define the expected cost of moving the target features to class prototypes as:

’P(l-"k) exP(“{fﬁ) (3)
i p(p) exp(pl, 1) |°

K
ﬂt—),u = Ew;waEukNﬂ'g(uk [£%) [C(y’lm f;)} = Ew;wa Zk:l C(/"’k: f?) >
where (-, -), a point-to-point moving cost, is defined with the cosine dissimilarity as

t 1 B Fy
c(trs £3) =1 = TLire S

We also consider other point-to-point costs and present the results in Section 4.2. With Eq. (3), it is
straightforward to obtain an unbiased estimation of £;_,,, with a mini-batch from target domain D .

In this target-to-prototype direction, we are assigning each target sample to the prototypes according
to their similarities and the class distribution. Intuitively, minimizing this expected moving cost
encourages each target feature to get closer to neighboring class prototypes, reducing the violation
of the cluster assumption. If we think of each prototype as the mode of the distribution of source
features for a class, this loss encourages a mode-seeking behavior [27]. Still, this loss alone might
lead to sub-optimal alignment. The feature encoder can map most of the target data to only a few
prototypes. We connect this loss to entropy minimization to elucidate this point.

Connection with entropy minimization. The expected cost of moving from the target domain to
prototypes can be viewed as a generalization of entropy minimization [20], an effective regularization
in many prior domain-adaptation works [39, 33, 40, 17]. If the point-to-point moving cost is
exp(py £5)

defined as c(py, f5) = —logpt, = —log s

SE e) and the conditional probability is

N exp(py, £5)
ot | £5) = Pix = SE_ eontul 1)
becomes: L;,, = *Ew; ~D2 [Z?zl p} i log p§ k] , which is equivalent to minimizing the entropy on
the target samples. Entropy minimization alone also has a mode-seeking behavior and has the same
tendency to drop some modes (class prototypes). In other words, one trivial solution is to assign the

same one-hot encoding to all the target samples [41, 42].

(with a uniform prior), then the expected moving cost

2.2.2 Moving from class prototypes to target domain

To ensure that each prototype has some target features located close by and avoid dropping class
prototypes, we propose to add a cost of the opposite direction [27], .e., moving from the prototypes
) =

. ..]\/I . . A
to target features. Given a mini-batch, {wz j=1, of target samples of size M, denoting p(f

> ?11 T\14) ft as the empirical distribution of the target features in this mini-batch, the probabilities of
- J
moving from a prototype u,, to the M target features is defined as a conditional distribution:

t . B(F5) exp(uf £5) _ exp(py £5) t ¢ t
molf5 1) = s Sty — S ewtut oy J1 € e fuke)

As opposed to the probabilities of moving a target feature to different class prototypes 7o g4y, | f;),

7o f; | 1)) normalizes the probabilities across the M target samples for each prototype, which
ensures that each prototype will be assigned to some target features. Then, the expected cost of
moving along this prototype-to-target direction is defined as:

t
Lyt = Eigipn B mp(u) E gt o (71) ({0 £5)]

ex Tf;
=By pp ZkK=1 p(Hy) Zj\; (Mg f;)zzylfp# (6)
i n

Lexp(ui £4)) |7
which can be estimated by drawing a mini-batch of M target samples.

Finally, combining the classification loss in Eq. (1), target-to-prototype moving cost in Eq. (3), and
prototype-to-target moving cost in Eq. (6), our loss is expressed as

£Cls + Et—>u + Eu—)t- (7)

Note that we treat p as fixed in both £;_,, and £,,_,;. This strategy allows us to apply our method
in the source-data-private setting where we only have access to the source model. We also find
empirically that this leads to more stable training.

2.3 Learning class proportions in the target domain

We propose to infer the class proportions {p(p;,)}1_, in the target domain by maximizing the log-
likelihood of the unlabeled target data while fixing the class prototypes . Directly optimizing the
marginal likelihood is intractable, so we use the EM algorithm [43-45] to derive the following iterative

updates (see the derivation in Appendix B). We first initialize with a uniform prior: p(p;,)° = %,
and obtain new estimates at each update step [(starting from 0):
1 _ 1 M t ! ty () exp(uf 1)
p(p’k) - M Zj:l ﬂ'e(/l’k ‘fj)a where We(uk' |fj) - ZkK/:lp(“k’)lexF’(l"z/f;). (8)

Intuitively, the average predicted probabilities over the target examples for each class are used to
estimate the target proportions, with p(g;,)' ™' shown above providing an estimate based on a single
mini-batch of M target samples. To estimate it based on the full dataset, we iteratively update it with
() (1= BYp(py)! + Blp(py,)! T, where we follow the decaying schedule of the learning
rate of the other parameters to set 3! = 3(1 + 1) ~, in which v = 0.0002, a = 0.75. The inintial
value [3j is a hyper-parameter that can be set as either 0 to indicate a uniform prior, or a small value,
such as 0.001, to allow the class proportions to be inferred from the data.

3 Related work

Feature distribution alignment. Most works on domain adaptation with deep learning focus on
feature alignment to align either the marginal distributions [46, 6, 8, 47, 48] or the joint distributions
[7, 26] of the deep features of neural networks. Early works use adversarial-based objectives, which
are equivalent to minimizing the Jensen—Shannon (JS) divergence [49]. When the source and target
domains have non-overlapping supports, the JS divergence fails to supply useful gradients [50, 51]. To
remedy this issue, researchers propose using the Wasserstein distance, which arises from the optimal
transport problem [52]. Courty et al. [9] develop Joint Distribution Optimal Transport (JDOT),
defining the transport cost to be the joint cost in the data and prediction spaces. Several works [10, 12]
extend this framework for deep neural networks. However, solving for the optimal couplings without

any relaxation is a linear programming problem, which has a complexity of O(M?log M) [53].
Computing the transport probabilities in our algorithm has a complexity of O(dy M K), which is
the same complexity as computing the predictive probabilities that need to be computed by most
algorithms. In this category, all the works focus on aligning the target features with source features,
whereas we align the target features with prototypes.

Prototype-based alignment. We make two distinctions to existing works in this area. First, prior
domain-adaptation works for classification [29-31] and segmentation [54, 55] utilize prototypes for
pseudo-label assignments. By contrast, we use prototypes to behave as representative samples of the
source features to define the loss. Second, all of these works use some form of average latent features
to construct class prototypes, which is computationally expensive. We instead adopt a parametric
approach to learn the prototypes, avoiding that costly computation.

Learning under shifted class proportions. Although a shift in class proportions between two
domains is a common problem in many applications, it is still largely under-explored. Over the years,
researchers have viewed the question through different lenses: applying kernel distribution embedding
[56, 57, 21], using an EM update [43, 58], placing a meta-prior over the target proportions [59], and
casting the problem under causal and anti-causal learning [21-25]. Recently, Tachet des Combes
et al. [18] propose aligning the target feature distribution with a re-weighted version of the source
feature distribution. While this method achieves consistent improvements over feature-alignment
algorithms, it still relies on learning domain-invariant representations. As we have discussed, this
approach suffers from the problems of sampling variability and class-mismatching in a mini-batch,
whereas the proposed method uses class prototypes and proportion estimation to avoid these issues.

Source-private adaptation. Finally, the proposed method can also be applied to a source-private
setting where without seeing the raw source data, we only have access to the source model and target
data while adapting to the target domain [31, 47, 60-63]. Liang et al. [31] introduce a clustering-based
approach to generate pseudo-labels for the target data. That approach requires constructing class
centers using a weighted average of the latent features. Different from that work, our prototypes
behave as class centers and are more amenable to mini-batch stochastic gradient based training.

4 Experiments

In this section, we evaluate our method under four practical settings: single-source, multi-source,
class-imbalance, and source-private domain adaptation. We present the setup, the results, and the
analysis of the results in the upcoming sections.

Datasets. We use the following three datasets of varying sizes in our experiment: 1) Office-31 [3]
consists of 4652 images coming from three domains: Amazon (A), Webcam (W), and DSLR (D).
The total number of categories is 31. 2) Office-Home [64], a more challenging dataset than Office-31,
consists of 15,500 images over 65 classes and four domains: Artistic images (Ar), Clip art (Cl),
Product images (Pr), and Real-world (Rw). 3) DomainNet [65] is a large-scale dataset for domain
adaptation. It consists of about 569,010 images with 345 categories from six domains: Clipart,
Infograph, Painting, Quickdraw, Real, and Sketch. We further perform experiments on Cross-Digits,
ImageClef, Office-Caltech, and VisDA datasets and provide the details in Appendix E.2.

Implementation details. We implement our method on top of the open-source transfer learning
library (MIT license) [66], adopting the default neural network architectures for both the feature
encoder and linear classifier. For the feature encoder network, we utilize a pre-trained ResNet-50 in
all experiments except for multi-source domain adaptation, where we use a pre-trained ResNet-101.
We fine-tune the feature encoder and train the linear layers from random initialization. The linear
layers have the learning rate of 0.01, 10 times that of the feature encoder. The learning rate follows
the following schedule as myer = 19(1 + iter) =, where 7 is the initial learning rate. We set g to
0.01, vy to 0.0002, and « to 0.75. We utilize a mini-batch SGD with a momentum of 0.9. We set the
batch size for the source data as N = 32 and that for the target data as M = 96. We use all the labeled
source samples and unlabeled target samples [6, 7, 26]. We set 3 to O (a uniform prior) in all settings
except for the sub-sampled target datasets. We perform a sensitivity analysis (see Appendix E) and
set 5y empirically to 0.001 for the sub-sampled target version of Office-31 and 0.0001 for that of
Office-Home. We report the average accuracy from three independent runs. All experiments are
conducted using a single Nvidia Tesla V100 GPU except for the DomainNet experiment, where we
use four V100 GPUs. More implementation details can be found in Appendix D.

4.1 Main results

Single-source setting. We perform single-source domain adaptation on the Office-31 and Office-
Home datasets. In each experiment, one domain serves as the source domain and another as the
target domain. We consider all permutations, leading to 6 tasks for the Office-31 dataset and 12
tasks for the Office-Home dataset. We compare our algorithm with state-of-the-art algorithms for
domain adaptations from three different categories: adversarial-based, divergence-based, and optimal
transport-based. We report the results on Office-31 in Table 1. PCT significantly outperforms the
baselines, especially on the more difficult transfer tasks (D—A and W — A). Although MDD [67],
the best baseline domain-adaptation method, uses a bigger classifier, PCT still has 1.1% higher
average accuracy. In Figure 4a, we visualize the number of parameters versus the average accuracy
on the Office-31 dataset. While PCT uses fewer parameters than most methods, it still achieves the
highest average accuracy. We report the average accuracies on the Office-Home dataset in Table 2.
PCT outperforms baseline methods on 10 of the 12 transfer tasks, yielding 3.7% improvement on the
average accuracy over MDD. The results in this setting demonstrate that aligning the target features
with prototypes is more effective than directly aligning them with the source features.

Table 1: Accuracy (%) on Office-31 for unsupervised domain adaptation (ResNet-50).
Category | Method A—-W D—-W W —D A—-D D—A W—-A Avg
| ResNet-50[68] 68.4£0.2 96.7£01 99.3+0.1 689+02 625+03 60.7£0.3 76.1

Adversarial DANN [6] 82.0+£04 969+02 991+01 79704 682+£04 674£05 822
ADDA [47] 86.2+£0.5 962+0.3 984+03 T77.8£03 69504 689+£05 829
CDAN [26] 9414+01 986+01 1000+0.0 929+02 71.0£0.3 693+03 87.7
MDD [67] 945+03 984+0.1 100.0+0.0 93.5+£02 746=£03 722+£01 889

Divergence JAN [7] 85.4+03 974+02 998+0.2 84.7+£03 686+£03 70.0£04 843
TPN [29] 91.2£03 97.7+£02 99.5+£01 89.9+£02 705+02 73.5+£01 871
oT Deep]DOT [10] 88.9+0.3 985+0.1 99.6+0.2 88.2+01 721+04 701+04 862
ETD [69] 92.1 100.0 100.0 88.0 71.0 67.8 86.2

| PCT (Ours) 94.6+£05 98.7+£04 99.9+0.1 93.8+18 77.2+05 76.0+0.9 90.0
Table 2: Accuracy (%) on Office-Home for unsupervised domain adaptation (ResNet-50).

Method Ar — Cl Ar - PrAr - Rw Cl —» Ar Cl = Pr Cl - Rw Pr — Ar Pr — Cl Pr - Rw Rw — ArRw — ClRw — Pr Avg
ResNet-50 [68] 34.9 50.0 58.0 374 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN [6] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
CDAN [26] 50.7 70.6 76.0 57.6 70.0 70.0 574 50.9 77.3 70.9 56.7 81.6 658
MDD [67] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 823 68.1
JAN [7] 459 61.2 68.9 50.4 59.7 61.0 45.8 434 70.3 63.9 52.4 76.8 583
TPN [29] 51.2 71.2 76.0 65.1 72.9 72.8 55.4 489 76.5 70.9 534 804 662
DeepDOT [10] 482 69.2 74.5 58.5 69.1 71.1 56.3 46.0 76.5 68.0 52.7 80.9 643
ETD [69] 51.3 71.9 85.7 57.6 69.2 73.7 57.8 51.2 79.3 70.2 57.5 82.1 673

PCT (Ours) 57.1 +0378.3 +1.2 81.4 +0.4 67.6 +0.377.0 £1.2 76.5 +0.5 68.0 +0.555.0 +0.6 81.3 £0.2 74.7 +0.5 60.0 £0.5 85.3 £0.3 71.8

Multi-source setting. In this setting, we evaluate our method using Office-Home and DomainNet
datasets [65]. For each task, we select one domain as the target domain and use the remaining
five domains as the source. We use the same data splitting scheme as the original paper [65]. We
compare against source-combined and multi-source algorithms introduced in Venkat et al. [70] for
Office-Home and in Peng et al. [65] for DomainNet. Multi-source algorithms use domain labels and
a classifier for each source domain, whereas source-combined algorithms combine all the source
domains into a single source domain and perform single-source adaptation. We adopt a single
classifier and do not use domain labels. Thus, PCT falls under the source-combined category. We
report the results in Tables 3 and 4. While PCT is not designed specifically for multi-source domain
adaptation, our method still outperforms those multi-source algorithms in both datasets. Since there
are more variations of the data in the source domain in this setting, the increase in performance gain
verifies our intuition that prototypes help mitigate the problem of sampling variability.

Table 3: Accuracy (%) on Office-Home for ResNet50-based MSDA methods.

Category ‘ Models R — Ar R —Cl R — Pr R — Rw Avg
Source- DAN [8] 68.5 59.4 79.0 82.5 724
combined D-CORAL [71] 68.1 58.6 79.5 82.7 72.2
RevGrad [6] 68.4 59.1 79.5 82.7 72.4

Multi-source | MFSAN [72] 72.1 62.0 80.3 81.8 74.1
SImpAl [70] 70.8 56.3 80.2 81.5 722

‘ PCT (Ours) 76.3+05 64.1+04 849+08 843+05 774

Table 4: Accuracy (%) on DomainNet for ResNet101-based MSDA methods.

Category | Models ‘R — Clipart R — Infograph R — Painting R — Quickdraw R — Real =R — Sketch Avg
DCTN [73] 48.6 £0.7 23.5£0.6 48.8 £ 0.6 72£04 53.5£0.6 473£05 382£0.6
Multi-source | M 3 SDA [65] 5724+ 1.0 242412 51.64+0.4 5240.5 61.6+09 49.6+06 41.5+0.7
M3 SDA- 3[65] 58.6+0.5 26.04+0.9 52.34+0.6 6.3+ 0.6 62.7+05 495+08 426+0.6
ML-MSDA [74] 61.4+0.8 26.2+0.4 51.9+0.2 19.1+0.3 57.0£1.0 503+£0.7 443+06
ResNet-101 [24] 47.6+0.5 13.0+£04 38.1£0.5 13.3+0.4 51.94+0.9 33.7+£05 329+0.5
DAN [8] 45.440.5 12.8 £0.9 36.240.6 15.3+£0.4 48.6+0.7 340+£05 321£06
RTN [75] 442+0.6 12.6 £0.7 35.3+£0.6 146+ 0.8 484407 31707 311407
Source- JAN [7] 409£0.4 11.1+£0.6 35.4£0.5 12.14+0.7 45.8+0.6 323+£06 29.6+£0.6
combined DANN [6] 45.54+0.6 13.1£0.7 37.0+0.7 132+£0.8 489+0.7 31.8+£06 32.6£0.7
ADDA [47] 475+£0.8 11.4+0.7 36.7£0.5 14.7+0.5 49.1+£08 335+£05 322£06
SE [38] 24.74+0.3 3.940.5 12.7+£0.4 7.1+0.5 22.84+0.5 9.14+0.5 16.1+£0.4
MCD [76] 54.34+0.6 22.14+0.7 45.7+0.6 7.6+0.5 584407 4354+06 385+0.6
| PCT (Ours) 67.24+0.5 26.14+0.2 55.04+0.2 16.2+£0.2 67.1+02 53.7+06 47.6+0.1

Sub-sampled setting. In many cases, the label proportions could significantly change from one
dataset to another, resulting in a decrease in a model’s performance. To test our algorithm under this
setting, we follow the experimental protocol in Tachet des Combes et al. [18]. We keep only thirty
percent of the first | K/2| classes to simulate class imbalance. We directly take their results for the
sub-sampled source data and perform additional experiments using the same sub-sampling scheme
on the target data. The baselines in this setting are standard domain adaptation methods (DAN, JAN,
and CDAN) and their importance weighted versions introduced in Tachet des Combes et al. [18]. We
present the results in Table 5. On the sub-sampled source data, PCT with uniform prior outperforms
the second-best method (IWCDAN) by 4% on Office-31 and 6.6% on Office-Home. Learning the
prior distribution on the target domain does not improve the result, as this setting does not have a
serious imbalance issue in the target domain. On the sub-sampled target data, PCT with a uniform
prior already outperforms the baselines, 1.9% and 5.2% higher average accuracy than IWCDAN’s
on Office-31 and Office-Home, respectively. Using a learnable prior further improves upon using a
uniform prior by 1.0% on Office-31 and by 0.4% on Office-Home. The improvements confirm our
intuition that prototypes help with the class imbalance in both the source and target domain while
estimating the target proportion further boosts the performance in the target domain sub-sampled
setting. We visualize the estimated proportions on the target data in Figure 3, verifying that the
proportions are inferred correctly.

Table 5: Average accuracy (%) on sub-sampled version of Office-31 and Office-Home (ResNet-50).

Method sub-S O-31 sub-T O-31 sub-SO-H sub-T O-H
ResNet-50 [68] 75.7 76.1 51.4 58.2
DANN [8] 76.2 759 51.8 58.3
JAN [7] 78.2 78.1 53.9 61.4
CDAN [26] 81.6 83.0 56.3 63.1
IWDAN [18] 82.6 79.2 57.6 58.6
IWIJAN [18] 82.6 82.8 55.9 62.0
IWCDAN [18] 83.9 83.5 61.2 64.6

PCT-Uniform (Ours) 879+04 854£03 678+03 69.8+0.2
PCT-Learnable (Ours) 87.9+04 864402 678+03 70.2+0.2

Source-data-private setting. In many practical applications, practitioners might not directly have
access to the source data in the adaptation stage. Instead, a trained model on the source data is
provided. In this setting, the goal is to adapt to the target domain while only operating on the
given model. We compare our method with Source Hypothesis Transfer (SHOT) [31], a state-of-
the-art method proposed specifically for this setting. SHOT contains two losses: an information
maximization (IM) loss and a pseudo-labeling loss. We follow their experimental protocol by first
training the model on the source data alone. During the adaptation stage, we only use the target
data to perform model adaptation. We use the transport losses to update the feature encoder while
fixing the prototypes. We report the results in Table 6. From the standard setting where we have
access to source data in Table 1, the average accuracy drops by 1.6% for Office-31 and by 0.8% for
Office-Home. On the Office-31 dataset, our bi-directional loss outperforms the IM loss by 1.1% and
the pseudo label loss by 0.8%. While the average accuracy for our method is 0.2% lower than both of
their losses combined, the p-value for the independent two-sample ¢-test on the accuracies of different
runs is 0.32, which is not statistically significant. On the Office-Home dataset, our approach performs
1.9% and 0.5% better than the pseudo label and IM losses, respectively. While their combined loss
achieves 0.8% accuracy higher than that of our method, the pseudo-labeling loss in SHOT requires

=== Uniform Proportion
EEE True Proportion
I Estimated Proportion

o
o
=3

o
o
<

L1 Loss
PCT-Learnable Prior: 0.16
Uniform: 0.58

@
o
=3

@
o
w}

o
o
=

Class Proportions

Bike

Mug

Pen

Bike Helmet
Ruler

Bottle
Calculator

Phone
Desk Chair

Back Pack
Headphones
Keyboard
Letter Tray
Mobile Phone
Monitor

Mouse

Paper Notebook
Printer
Projector
Punchers

Ring Binder
Scissors
Speaker
Stapler

Tape Dispenser
Bookcase
Trash Can
Desk Lamp

File Cabinet

Desktop Computer

v
]
&
5
a
£
S
o
=
9]
2
o
@
-

Class labels

Figure 3: Visualization of the estimated target proportions versus true class proportions for the task
A — sD on the Office-31 dataset. The dotted line represents a uniform proportion. It is clear that
each orange bar (the learned proportions) is close to its adjacent blue bar (the true proportion). To
quantify this observation, we measure the L1 loss between the true and learned proportions. The
estimated proportions achieve lower L1 loss than the uniform distribution (0.16 vs 0.58), illustrating
the effectiveness of our estimation strategy.

Table 6: Average Accuracy (%) on the source-private Office-31 and Office-Home (ResNet-50).
Source Model Only SHOT-Pseudo Label [31] SHOT-IM [31] SHOT [31] PCT (Ours)

Office-31 79.3 87.6 £0.5 87.3 £0.5 88.6 0.4 884£0.6
Office-Home 60.2 69.1 £0.6 70.5+0.3 71.8+04 71.0+0.6

constructing class centers, which does not scale well with large datasets. Our approach uses the
classifier’s weights as class prototypes to avoid this issue.

4.2 Analysis of results

Ablation study. To examine the effect of each component in our framework, we perform ablation
studies and present the results in Table 7. 1) Alignment strategy. Next, we present the result using
optimal transport as the alignment strategy. We consider two variants of Prototype-oriented Optimal
Transport (POT): exact linear program (POT) and Sinkhorn relaxation (POT-Sinkhorn). In each
variant, we solve for the optimal couplings using the optimal transport formulation. After obtaining
the transport probabilities, we update the feature encoder using the obtained probabilities as the
weights for the transport cost. We can see that POT performs 1.7% better than DeepJDOT in Table 1,
showing the effectiveness of using prototypes to define the transport costs with the target features.
Still, both versions of POT underperforms PCT by 2.1% and 1.7%, respectively. 2) Effect of each
loss in PCT. We examine the effect of each loss on the average test accuracy on the Office-31 dataset.
We remove each transport loss while keeping the cross-entropy loss. The bi-directional loss leads
to the best accuracy, while the drop in accuracy is more significant if we remove £,,_,;. This result
is not surprising because, without £,,_,;, the model can map target data to only a few prototypes,
leading to a degenerate solution. 3) Gradient stopping. We also show the algorithm’s performance
without stopping the gradient of g in the transport loss. PCT gains an additional 1.0% in accuracy
with the gradient stopping strategy. The performance gain is consistent with the finding in recent
work by Chen and He [77], where the authors apply the gradient stopping strategy to avoid degenerate
solutions in contrastive learning. 4) Cost function. Finally, we explore the cost function inspired by
the radial basis kernel. We can see that the cosine distance in PCT gives 3.1% higher average accuracy.
In short, the choice of the probabilistic bi-directional transport framework, gradient-stopping strategy,
and point-to-point cost function all contribute to the success of the proposed PCT method.

Table 7: Average accuracy (%) of PCT on Office-31 under different variants (ResNet-50).

POT POT-Sinkhorn PCT w/o (Ly—,,) PCT w/o (L) w/o stop-grad c(py, f;) = exp(fp,{f;’») PCT (Ours)
87.9+0.8 88.3+0.9 88.6 +0.2 84.3+0.9 89.0+0.3 86.9 + 0.4 90.0 £ 0.5
ST 100 — 5
or MDD CDAN e F 3
— DANN
sslk @ CDAN sol — pcT » *
el @ AN —— Source Only 40 » .
554 § 60} 20 . % =
g8 & .
§ sl @ DANN 2 °| - L3 % o« . -
< = 40 0 - * ™ "
80 A\ *
ok 20l L_\‘ —40 » * o *
~—— —60
76 ?Source ?"Iy 1 1 1 I I 1 1 1 1
24 26 28 30 32 0 1000 2000 3000 4000 5000 -80

Number of Parameters (in Millions)

(a)

Iteration Number

(b)

Figure 4: (a) Analysis of parameter efficiency, (b) comparison of convergence, and (c) a t-SNE
visualization of the output of the feature encoder trained with PCT on the task A — W. In plot (c),
prototypes (%), source features (+), and target features (x) are tightly clustered together for each class.

Convergence comparison. We plot test accuracy versus iteration number on the task (A — W) in
Figure 4b to compare the convergence rate of different algorithms. We also visualize test accuracy
versus convergence time in minutes in Appendix E. In both plots, PCT quickly converges within
the first one thousand iterations, and the test accuracy does not fluctuate much thereafter. This
phenomenon is not surprising since we use prototypes instead of the source features to align with the
target features. We expect the prototypes to behave as representative samples of the source features,
making the model converge quickly and stably.

Visualization. We visualize in Figure 4c the t-SNE plot of the source and target features as well as
the prototypes for the task A — W. Figure 4c shows that both the source (dots -) and target (crosses
x) features are close to the prototypes (black stars x), indicating that our algorithm is learning
meaningful prototypes and successfully align the target features with the prototypes.

5 Conclusion

We offer a holistic framework for unsupervised domain adaptation through the lens of a probabilistic
bi-directional transport between the target features and class prototypes. With extensive experiments
under various application scenarios of unsupervised domain adaptation, we show that the proposed
prototype-oriented alignment method works well on multiple datasets, is robust against class imbal-
ance, and can perform domain adaptation with no direct access to the source data. Without adding
additional model parameters, our memory and computation-efficient algorithm achieves competitive
performance with state-of-the-art methods on several widely used benchmarks.

Acknowledgments

We thank Camillia Smith Barnes and Georgii Riabov for helpful discussions and feedback on the
paper. K. Tanwisuth, X. Fan, H. Zheng, S. Zhang, and M. Zhou acknowledge the support of Grant
IIS-1812699 from the U.S. National Science Foundation, the APX 2019 project sponsored by the
Office of the Vice President for Research at The University of Texas at Austin, the support of a gift
fund from ByteDance Inc., and the Texas Advanced Computing Center (TACC) for providing HPC
resources that have contributed to the research results reported within this paper.

10

References

[1] Ali Farhadi and Mostafa Kamali Tabrizi. Learning to recognize activities from the wrong view
point. In European conference on computer vision, pages 154—166. Springer, 2008.

[2] Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting the
log-likelihood function. Journal of statistical planning and inference, 90(2):227-244, 2000.

[3] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to
new domains. In European conference on computer vision, pages 213-226. Springer, 2010.

[4] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations
for domain adaptation. In B. Scholkopf, J. Platt, and T. Hoffman, editors, Advances in Neural
Information Processing Systems, volume 19. MIT Press, 2007.

[5] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer
Vaughan. A theory of learning from different domains. Machine Learning, 79:151-175, 2010.

[6] Yaroslav Ganin and Victor S. Lempitsky. Unsupervised domain adaptation by backpropagation.
In Francis R. Bach and David M. Blei, editors, ICML, volume 37 of JMLR Workshop and
Conference Proceedings, pages 1180-1189. JIMLR.org, 2015.

[7] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I. Jordan. Deep transfer learning with
joint adaptation networks. In Doina Precup and Yee Whye Teh, editors, Proceedings of the
34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 2208-2217. PMLR, 0611 Aug 2017.

[8] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael 1. Jordan. Learning transferable
features with deep adaptation networks. In Proceedings of the 32nd International Conference
on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, pages 97-105, 2015.

[9] Nicolas Courty, Rémi Flamary, Amaury Habrard, and Alain Rakotomamonjy. Joint distribution
optimal transportation for domain adaptation. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

[10] Bharath Bhushan Damodaran, Benjamin Kellenberger, Rémi Flamary, Devis Tuia, and Nico-
las Courty. DeepJDOT: Deep joint distribution optimal transport for unsupervised domain
adaptation. CoRR, abs/1803.10081, 2018.

[11] Chen-Yu Lee, Tanmay Batra, Mohammad Haris Baig, and Daniel Ulbricht. Sliced Wasserstein
discrepancy for unsupervised domain adaptation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 10285-10295, 2019.

[12] Renjun Xu, Pelen Liu, Liyan Wang, Chao Chen, and Jindong Wang. Reliable weighted optimal
transport for unsupervised domain adaptation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020.

[13] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Scholkopf, and Alexander
Smola. A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723-773,
2012.

[14] Leonid V Kantorovich. On the translocation of masses. Journal of Mathematical Sciences, 133
(4):1381-1382, 2006.

[15] Gabriel Peyré and Marco Cuturi. Computational optimal transport. Foundations and Trends in
Machine Learning, 11(5-6):355-607, 2019.

[16] Matthieu Lerasle, Zoltan Szabd, Timothée Mathieu, and Guillaume Lecué. Monk outlier-robust
mean embedding estimation by median-of-means. In International Conference on Machine
Learning, pages 3782-3793. PMLR, 2019.

[17] Yogesh Balaji, Rama Chellappa, and Soheil Feizi. Robust optimal transport with applications in
generative modeling and domain adaptation. In Advances in Neural Information Processing
Systems, 2020.

11

[18] Remi Tachet des Combes, Han Zhao, Yu-Xiang Wang, and Geoff Gordon. Domain adaptation
with conditional distribution matching and generalized label shift. In Advances in Neural
Information Processing Systems, 2020.

[19] Fredrik D. Johansson, David Sontag, and Rajesh Ranganath. Support and invertibility in domain-
invariant representations. In Kamalika Chaudhuri and Masashi Sugiyama, editors, Proceedings
of Machine Learning Research, volume 89 of Proceedings of Machine Learning Research,
pages 527-536, 16-18 Apr 2019.

[20] Yves Grandvalet, Yoshua Bengio, et al. Semi-supervised learning by entropy minimization. In
CAP, pages 281-296, 2005.

[21] Kun Zhang, Bernhard Scholkopf, Krikamol Muandet, and Zhikun Wang. Domain adaptation
under target and conditional shift. In International Conference on Machine Learning, pages
819-827. PMLR, 2013.

[22] Bernhard Scholkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang, and Joris
Mooij. On causal and anticausal learning. arXiv preprint arXiv:1206.6471, 2012.

[23] Mingming Gong, Kun Zhang, Tongliang Liu, Dacheng Tao, Clark Glymour, and Bernhard
Scholkopf. Domain adaptation with conditional transferable components. In International
conference on machine learning, pages 2839-2848. PMLR, 2016.

[24] Zachary Lipton, Yu-Xiang Wang, and Alexander Smola. Detecting and correcting for label shift
with black box predictors. In International conference on machine learning, pages 3122-3130.
PMLR, 2018.

[25] Kamyar Azizzadenesheli, Anqi Liu, Fanny Yang, and Animashree Anandkumar. Regularized
learning for domain adaptation under label shifts. arXiv preprint arXiv:1903.09734, 2019.

[26] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial
domain adaptation. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

[27] Huangjie Zheng and Mingyuan Zhou. Comparing probability distributions with conditional
transport. arXiv preprint arXiv:2012.14100, 2020.

[28] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Proceedings of the 31st International Conference on Neural Information Processing Systems,
pages 4080-4090, 2017.

[29] Yingwei Pan, Ting Yao, Yehao Li, Yu Wang, Chong-Wah Ngo, and Tao Mei. Transferrable
prototypical networks for unsupervised domain adaptation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[30] Guoliang Kang, Lu Jiang, Yi Yang, and Alexander G Hauptmann. Contrastive adaptation
network for unsupervised domain adaptation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4893-4902, 2019.

[31] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data?
source hypothesis transfer for unsupervised domain adaptation. In International Conference on
Machine Learning, pages 6028—6039. PMLR, 2020.

[32] Xiangyu Yue, Zangwei Zheng, Shanghang Zhang, Yang Gao, Trevor Darrell, Kurt Keutzer,
and Alberto Sangiovanni Vincentelli. Prototypical cross-domain self-supervised learning for
few-shot unsupervised domain adaptation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 13834—13844, 2021.

[33] Kuniaki Saito, Donghyun Kim, Stan Sclaroff, Trevor Darrell, and Kate Saenko. Semi-supervised

domain adaptation via minimax entropy. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 8050-8058, 2019.

12

[34] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training:
a regularization method for supervised and semi-supervised learning. IEEE transactions on
pattern analysis and machine intelligence, 41(8):1979-1993, 2018.

[35] Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. arXiv preprint
arXiv:1610.02242, 2016.

[36] Yuan Shi and Fei Sha. Information-theoretical learning of discriminative clusters for unsuper-
vised domain adaptation. arXiv preprint arXiv:1206.6438, 2012.

[37] Rui Shu, Hung H Bui, Hirokazu Narui, and Stefano Ermon. A dirt-t approach to unsupervised
domain adaptation. arXiv preprint arXiv:1802.08735, 2018.

[38] Geoffrey French, Michal Mackiewicz, and Mark Fisher. Self-ensembling for visual domain
adaptation. arXiv preprint arXiv:1706.05208, 2017.

[39] Tuan-Hung Vu, Himalaya Jain, Maxime Bucher, Matthieu Cord, and Patrick Pérez. Advent: Ad-
versarial entropy minimization for domain adaptation in semantic segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2517-2526,
2019.

[40] Kuniaki Saito, Donghyun Kim, Stan Sclaroff, and Kate Saenko. Universal domain adaptation
through self supervision. arXiv preprint arXiv:2002.07953, 2020.

[41] Pietro Morerio, Jacopo Cavazza, and Vittorio Murino. Minimal-entropy correlation alignment
for unsupervised deep domain adaptation. arXiv preprint arXiv:1711.10288, 2017.

[42] Xiaofu Wu, Quan Zhou, Zhen Yang, Chunming Zhao, Longin Jan Latecki, et al. Entropy mini-
mization vs. diversity maximization for domain adaptation. arXiv preprint arXiv:2002.01690,
2020.

[43] Marco Saerens, Patrice Latinne, and Christine Decaestecker. Adjusting the outputs of a classifier
to new a priori probabilities: a simple procedure. Neural computation, 14(1):21-41, 2002.

[44] Guoliang Kang, Liang Zheng, Yan Yan, and Yi Yang. Deep adversarial attention alignment for
unsupervised domain adaptation: the benefit of target expectation maximization. In Proceedings
of the European Conference on Computer Vision (ECCV), pages 401-416, 2018.

[45] Amr Alexandari, Anshul Kundaje, and Avanti Shrikumar. Maximum likelihood with bias-
corrected calibration is hard-to-beat at label shift adaptation. In International Conference on
Machine Learning, pages 222-232. PMLR, 2020.

[46] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain
confusion: Maximizing for domain invariance. arXiv preprint arXiv:1412.3474, 2014.

[47] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain
adaptation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 7167-7176, 2017.

[48] Shujian Zhang, Xinjie Fan, Huangjie Zheng, Korawat Tanwisuth, and Mingyuan Zhou. Align-
ment attention by matching key and query distributions. In NeurIPS 2021: Neural Information
Processing Systems, Dec. 2021.

[49] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. arXiv preprint
arXiv:1406.2661, 2014.

[50] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial
networks. In International conference on machine learning, pages 214-223. PMLR, 2017.

[51] Soheil Kolouri, Phillip E Pope, Charles E Martin, and Gustavo K Rohde. Sliced Wasserstein
auto-encoders. In International Conference on Learning Representations, 2018.

[52] Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business
Media, 2008.

13

[53] Quentin Mérigot and Edouard Oudet. Discrete optimal transport: complexity, geometry and
applications. Discrete & Computational Geometry, 55(2):263-283, 2016.

[54] Qiming Zhang, Jing Zhang, Wei Liu, and Dacheng Tao. Category anchor-guided unsupervised
domain adaptation for semantic segmentation. arXiv preprint arXiv:1910.13049, 2019.

[55] Shaoan Xie, Zibin Zheng, Liang Chen, and Chuan Chen. Learning semantic representations
for unsupervised domain adaptation. In International conference on machine learning, pages
5423-5432. PMLR, 2018.

[56] Marthinus Christoffel Du Plessis and Masashi Sugiyama. Semi-supervised learning of class
balance under class-prior change by distribution matching. Neural Networks, 50:110-119, 2014.

[57] Tuan Duong Nguyen, Marthinus Christoffel, and Masashi Sugiyama. Continuous target shift
adaptation in supervised learning. In Asian Conference on Machine Learning, pages 285-300.
PMLR, 2016.

[58] Yee Seng Chan and Hwee Tou Ng. Word sense disambiguation with distribution estimation. In
1JCAI volume 5, pages 1010-5. Citeseer, 2005.

[59] Amos Storkey. When training and test sets are different: Characterizing learning transfer.
Dataset shift in machine learning, 30:3-28, 2009.

[60] Rui Li, Qianfen Jiao, Wenming Cao, Hau-San Wong, and Si Wu. Model adaptation: Unsuper-
vised domain adaptation without source data. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 9641-9650, 2020.

[61] Vinod K Kurmi, Venkatesh K Subramanian, and Vinay P Namboodiri. Domain impression: A
source data free domain adaptation method. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 615-625, 2021.

[62] Jogendra Nath Kundu, Rahul Mysore Venkatesh, Naveen Venkat, Ambareesh Revanur, and
R Venkatesh Babu. Class-incremental domain adaptation. In Computer Vision—ECCV 2020:
16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XIII 16, pages
53-69. Springer, 2020.

[63] Jogendra Nath Kundu, Naveen Venkat, R Venkatesh Babu, et al. Universal source-free domain
adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4544-4553, 2020.

[64] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan.
Deep hashing network for unsupervised domain adaptation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 5018-5027, 2017.

[65] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment
matching for multi-source domain adaptation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1406-1415, 2019.

[66] Mingsheng Long Junguang Jiang, Bo Fu. Transfer-learning-library. https://github.com/
thuml/Transfer-Learning-Library, 2020.

[67] Yuchen Zhang, Tianle Liu, Mingsheng Long, and Michael Jordan. Bridging theory and algorithm
for domain adaptation. In International Conference on Machine Learning, pages 7404—7413.
PMLR, 2019.

[68] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 770-778, 2016.
[69] Mengxue Li, Yi-Ming Zhai, You-Wei Luo, Peng-Fei Ge, and Chuan-Xian Ren. Enhanced

transport distance for unsupervised domain adaptation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 13936-13944, 2020.

14

https://github.com/thuml/Transfer-Learning-Library
https://github.com/thuml/Transfer-Learning-Library

[70] Naveen Venkat, Jogendra Nath Kundu, Durgesh Kumar Singh, Ambareesh Revanur, and
R Venkatesh Babu. Your classifier can secretly suffice multi-source domain adaptation. arXiv
preprint arXiv:2103.11169, 2021.

[71] Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation.
In European conference on computer vision, pages 443—-450. Springer, 2016.

[72] Yongchun Zhu, Fuzhen Zhuang, and Deqing Wang. Aligning domain-specific distribution and
classifier for cross-domain classification from multiple sources. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 5989-5996, 2019.

[73] Ruijia Xu, Ziliang Chen, Wangmeng Zuo, Junjie Yan, and Liang Lin. Deep cocktail network:
Multi-source unsupervised domain adaptation with category shift. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 3964-3973, 2018.

[74] Zhenpeng Li, Zhen Zhao, Yuhong Guo, Haifeng Shen, and Jieping Ye. Mutual learning network
for multi-source domain adaptation. arXiv preprint arXiv:2003.12944, 2020.

[75] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Unsupervised domain
adaptation with residual transfer networks. arXiv preprint arXiv:1602.04433, 2016.

[76] Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tatsuya Harada. Maximum classifier
discrepancy for unsupervised domain adaptation. CoRR, abs/1712.02560, 2017.

[77] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15750-15758,
2021.

[78] Tatiana Tommasi, Novi Patricia, Barbara Caputo, and Tinne Tuytelaars. A deeper look at dataset
bias. In Domain adaptation in computer vision applications, pages 37-55. Springer, 2017.

[79] Boqging Gong, Fei Sha, and Kristen Grauman. Overcoming dataset bias: An unsupervised
domain adaptation approach. In NIPS Workshop on Large Scale Visual Recognition and
Retrieval, volume 3. Citeseer, 2012.

[80] Paul S Bradley, Kristin P Bennett, and Ayhan Demiriz. Constrained K-means clustering.
Microsoft Research, Redmond, 20(0):0, 2000.

[81] Yuki Markus Asano, Christian Rupprecht, and Andrea Vedaldi. Self-labelling via simultaneous
clustering and representation learning. arXiv preprint arXiv:1911.05371, 2019.

15

A Prototype-Oriented Framework for Unsupervised
Domain Adaptation: Appendix

Korawat Tanwisuth®, Xinjie Fan', Huangjie Zheng', Shujian Zhang',
Hao Zhang?, Bo Chen?, Mingyuan Zhou'

'The University of Texas at Austin 2 Cornell University 3Xidian University

A Broader impact

Any methods that deal with classification can suffer from dataset bias caused by domain shift between
training and testing data. While domain adaptation can help mitigate the problem [78], it cannot
eliminate the issue because of the combinatorial nature of too many exogenous factors [79]. Also, as
with any computationally intensive endeavor, care must be taken to use sustainable energy sources.
On a positive note, our method addresses many practical problems—including sampling variability,
class-imbalance, and source-data privacy—by leveraing class prototypes.

B EM steps derivation

Since the target label of each data point, y is not observed, we can view it as a latent variable.

The unknown quantity we are interested in is the proportion of classes in the target data p(u;,) =
p(yj = k). To infer this quantity, we maximize the likelihood on the observed target data:

ne

K
I{p(p) ey [t @b, . xh) = In| ZP (i)pe,u(@;ly} = k)], ©)
j=1
h exp(pi £5) . .
where pp, (x; |yj = k) = —~~* and Z is a normalizing constant. Note that p, are learned

jointly using the cross entropy loss on the source data.

Since it is difficult to directly optimize the marginal likelihood due to the sum inside the
log function, we resort to the Expectation-Maximization (EM) algorithm, where we iterate
between the expectation and maximization steps. We first initialize p(p,;,) with a uniform prior ,
p(p)? = %, Vk =1,2,..., K, before performing the iterative updates. At each step [(starting
from 0), we conduct the E-step and M-step as follows:

E-step: Compute the posterior probability of the target data belonging to class k using the old
estimates. The posterior probabilities correspond to the weights of the transport cost of moving from
target features to the prototypes.

p(py) exp(pf £5)
Sy o) exp(pl £4)

oyl =kl p(py)') = mo (. | 5, p(1y)") =

M-step: The log-likelihood of the complete data is given by Zﬁl Infp(py) ™+ p,u(a;]yh)]. We
maximize the expected complete log-likelihood where the expectation is taken with respect to the
posterior distribution found in the E-step:

1= argmax L (10)

plpg)HH

K
— argmax 35 poaluf = Kind (30" o) o (5 = K+ ACY) — 1)
P(I%)Hlj 1 k=1 1
an

p(py)

16

Here,) is a Lagrange multiplier to enforce the constraint that p(u,,) should lie in a simplex.

L &
N Zp(l‘k)lﬂ —1=0
k=1

1
ap () Zpep = klxb, p(py)’)W +A=0

Multiplying both sides by p(gt;,)!*! on and summing over k, we obtain the following update rule for
p(py) L. And we get:
A::'_nh
1 &
)t = Zpe,p = ke pl)) = = 3wl | £5.p()")-
j=1
In practice, we draw a m1n1-batch of size M to estimate this quantity.

C Connection with K-means clustering and optimal transport

If we introduce a temperature parameter, 7, fix the parameters of the feature encoder 6, and let
the negative pair-wise cost be the weighting function instead of the inner product, the conditional
distribution becomes

ply) exp(—00)

Zk’ 1 p(”k’) €xXp

Ty = 7oty | £5) = (12)

((Nk’ f))

With a uniform prior and letting 7 — 0, the conditional distribution becomes a one-hot encoding,
Tkj = 1{k=argmin c(n,,,t)}» Which is equivalent to solving the following constrained optimization
4 I

problem:

min

M K
ZZ ey, f (13)

Tkj M
K
s.t. Zwk] =1, Vj, (14)
m € 0,1} Vi, k, (15)

where p; is fixed. This is exactly the cluster assignment step in the K-Means clustering algorithm
[80]. In other words, we assign each data point to its closest centroid. Thus, the update in the
cross-entropy loss can be interpreted as the cluster-center update step and the update in the transport
loss is analogous to the cluster assignment step.

As explained in the main text, we might not be able to rely on the cost, ¢(gy,, f), alone because we
do not have labels in the target domain. To avoid degenerate solutions, one might con51der introducing
a balanced constraint: each cluster should contain an equal number of data points. The constrained
optimization problem then becomes:

1 M K
uin MZZ” “lbe. f 10
j=1k=1
M
s.t. Z = vk (17)
ﬂkje{o,u, V. (18)

17

This is an integer programming problem and may look difficult to optimize. However, one can
relax the decision variables, 7y, to be continuous and solve the following constrained optimization
problem instead:

M K
i 37 203 mcli S, 1
M
s.t. me = fy (20)
1 .
Zm:ﬁ Vj 1)
k=1
Tkj 2 O, Vj,k (22)

The formulation above is the optimal transport problem discussed in the text where the marginal
constraints are uniform distributions over data points and classes. While we are solving a continuous
relaxation of the integer programming problem, solving this problem leads to an integral solution
[81], meaning that the optimal transport problem is equivalent to the cluster assignment step of the

K-means algorithm with a balanced constraint. Note that the statement holds when M is divisible by
K.

D Implementation details

We implement our method on top of the open-source transfer learning library (MIT license) [66],
adopting the default neural network architectures for both the feature encoder and linear classifier.
For the feature encoder network, we utilize a pre-trained ResNet-50 in all experiments except for
multi-source domain adaptation, where we use a pre-trained ResNet-101. We fine-tune the feature
encoder and train the linear layers from random initialization. The linear layers have the learning
rate of 0.01, ten times that of the feature encoder. The learning rate follows the following schedule:
Mier = No(1 + ~yiter)~, where 7 is the initial learning rate. We set 7o to 0.01, v to 0.0002, and
o to 0.75. We utilize a mini-batch SGD with a momentum of 0.9. We set the batch size for the
source data as N = 32 and that for the target data as M = 96. We use all the labeled source
samples and unlabeled target samples [6, 7, 26]. We set 5y to 0 (using a uniform prior) in all settings
except for the sub-sampled target datasets. We perform a sensitivity analysis (see Appendix E) and
set By empirically to 0.001 for the sub-sampled target version of Office-31 and 0.0001 for that of
Office-Home. We report the average accuracy from three independent runs. All experiments are
conducted using a single Nvidia Tesla V100 GPU except for the DomainNet experiment, where we
use four V100 GPUs.

In both the single and multi-source settings, we set 5y = 0, which corresponds to using a uniform
prior. We do not perform any additional hyper-parameter searches. The cross-entropy and transport
losses are equally weighted. We run each experiment for 10,000 iterations for the single-source
setting. For the multi-source setting, we train the model for 75,000 iterations.

In the class imbalance setting, we follow the experimental protocol in Tachet des Combes et al. [18]
and quote the results directly when available. We perform a sensitivity analysis on the parameter,
B0, and present the result in Table 8. In the sub-sampled target datasets, we empirically set 5; to
0.001 for Office-31 and 0.0001 for Office-Home. For sub-sampled source datasets, we set 3y to
0 in all experiments. In all of the above settings, we run three independent experiments using the
seeds {0, 1, 2}.

In the source-private domain adaptation setting, we implement our method using the same setup as
Liang et al. [31]. We use all the same hyper-parameters except for the maximum number of epochs
and target batch size. We set the number of epochs to 70 for Office-31 and 100 for Office-Home.
The target batch size is set to 96. We change the two parameters to adjust for the number of data
seen since SHOT goes through the whole training set at every 15 iterations. We use the same random
seeds, {2019, 2020, 2021}, as the original paper.

18

E Additional experimental results

Details on the synthetic experiment (Figure 2). In this experiment, we provide an illustration

of our method as well as the baseline, DANN, on a toy dataset. We sample two dimensional

data from multivariate Gaussian distributions with different means but the same covariance matrix,
0.5 -0.3

Y = 03 05 } In each domain, we draw 300 examples. We draw 250 of the green class

from N ([7,5.5], X) and 50 of the red class from N([4,3.5], X). In the target domain, we draw 50
of the green class from A/ ([7.5, 3.5], X) and 250 of the red class from A/ ([4.4,5],%). We utilize a
three-layer feature encoder with hidden dimension 15 and output dimension 2 to visualize the latent
space. The classifier is a linear layer.

Visualization of transport probabilities. In Figure 5, we visualize transport probabilities on a
sample batch of data for PCT and POT. As explained earlier, OT is equivalent to solving a balanced-
constrain K-means when M is divisible by K so we set M = K = 31. In Figure 5b, we can
see that OT gives equal weight to all the assigned points, and each row (class) contains only one
active cell, meaning that each data point is assigned into a distinct cluster. In Figure 5a, the active
cells in 7o (g, | f;) usually correspond to those in 7g(f; |). However, the magnitudes often
differ: mo (s, | f;) takes into account the uncertainty in the classes whereas g (f; | py,) considers
the uncertainty of the target features. mg (g, | f;) will have at least one active cell across the rows
(every data point is close to some prototype), while 7g(f; | j.) will have at least one active cell
across the columns (every prototype is close to some target feature).

o (el) o (ff k)

-10
-08
1 - 0.6
- 04
- 0.2
- 0.0

024 6 8101214161820 22 2426 28 30) 02 4 6 81012141618 20 22 24 26 28 30

3028262422201816141210 8 6 4 2 0
o
s
3028262422201816141210 8 6 4 2 0

(a)

OT plan

-0.030
-0.024
-0.018
-0.012
- 0.006
; - 0.000

S S N A NS N SO S i R S
0 2 4 6 810121416 18 20 22 24 26 28 30

3028262422201816141210 8 6 4 2 0

(b)

Figure 5: Visualization of transport probabilities for PCT and POT. The rows correspond to different
u,;. whereas the columns correspond to different f;

19

100} i
CDAN
—— DANN
— PCT
801 = Source Only
—_
2 6o}
L
e
¢
20
'—\—*__
1 I 1 1 1 1 I

0 2 4 6 8 10 12
Time (in minutes)

Figure 6: Test error vs. training time in minutes for different algorithms trained on the task A — W.

t 3 *ﬁ* *
. ‘*u* I) ¢ o *
% 7 - < % > . » *
Q“" * * * *

N 'h"‘ . **‘#@',*y’\ . "ﬁ.Q*
‘S’.*** **x&* . *:: .
*3" * * * » . *

. . s) * .
* * P .&

(@) (b) (©
] “‘ [

oo @ & e

@) . uw & B & .
v‘."‘. « ¥ 3 _» e o ®
“« 8 0 8 “at2’s » s Le v,
» N * o0& & S e e
Tt a9 e o ® . A
. & Y ® & -
s ® s " : ..
® $ ‘.
(d) (e) (®

Figure 7: TSNE visualizations on the Office-31 dataset. The plots in each column correspond to each
transfer task: (a),(d) to A—=D, (b),(e) to D—A, and (c),(f) to W—D. Plots in the top row highlight
class information whereas those in the bottom row exhibit domain information. In the top row, each
plot shows that both the source (dots) and target (crosses x) features are close to the prototypes
(black stars x). In the bottom row, we can see that the blue dots (source domain) are close to the red
dots (target domain).

20

Sensitivity analysis. In Table 8, we can see that 5y, works well in the range of 0.0001 — 0.01.
Generally, 3y should be set to a small value because the average predictions of a single mini-batch
can be noisy. Thus, we give more weight to the weighted sum of the past average predictions over
multiple mini-batches, which are more stable.

Table 8: Accuracy (%) on the task (A— sW) for the sub-sampled (target) Office-31 for different
values of 3y (ResNet-50).

Bo 1 0.1 0.01 0.001 0.0001 0
37.8 80.2 885 889 885 872

E.1 Full experimental results

Due to space constraints, we report the average accuracy of different transfer tasks of a dataset in
some experiments. Below, we present the full tables, which include the average accuracy of the
individual tasks.

E.1.1 Ablation study

Table 9: Accuracy (%) of PCT on Office-31 under different variants (ResNet-50).

Method A—-W D—-W W —=D A—D D—A W= A Avg
PCT w/o (L) 927 98.1 99.8 92.0 75.3 73.6 88.6
PCT w/o (L,,—1) 84.4 98.5 99.9 89.8 69.0 64.0 84.3
POT 94.1 97.6 97.8 89.7 74.0 74.1 87.9
POT-Sinkhorn 94.4 98.1 98.3 89.6 75.3 74.0 88.3
w/o stop-grad 92.4 98.8 100.0 93.4 75.8 73.8 89.0
(. £5) = exp(—pl f2) 90.4 98.9 100.0 89.9 72.8 69.5 86.9
PCT (Ours) 946405 987404 999+01 93.8+18 77.2+0.5 76.0+0.9 90.0

E.1.2 Sub-sampled setting

Table 10: Accuracy (%) on the sub-sampled (source) Office-31 for unsupervised domain adaptation
(ResNet-50).

Method sA - W sD —- W sW—=D sA - D sD — A sW— A Avg
ResNet-50 70.7 95.3 97.3 75.8 56.8 58.4 75.7
DANN 71.7 93.8 96.0 75.5 56.6 57.5 76.2
JAN 77.6 91.7 92.6 77.8 64.5 65.1 78.2
CDAN 84.6 96.8 98.3 82.5 62.5 65.0 81.6
IWDANN 88.4 97.0 98.7 81.6 65.0 64.9 82.6
IWJAN 83.3 96.3 98.8 84.6 65.3 67.4 82.6
IWCDAN 87.3 97.7 99.0 86.6 66.5 66.3 839

PCT-Uniform (Ours) 924+12 978+04 994+00 91.1+22 739+05 73.0+11 879

Table 11: Accuracy (%) on the sub-sampled (target) Office-31 for unsupervised domain adaptation
(ResNet-50).

Method A —sW D — sW W —sD A —sD D —sA W — sA Avg
ResNet-50 68.4 96.7 99.3 68.9 62.5 60.7 76.1
DANN 76.3 88.0 93.0 72.9 62.3 63.1 75.9
JAN 78.5 89 92.1 81.4 62.9 64.9 78.1
CDAN 85.8 97.6 99.9 852 64.9 64.6 83.0
IWDANN 76.4 97.1 100.0 82.7 59.0 59.9 79.2
IWJAN 83.6 97.9 99.7 86.2 64.0 65.6 82.8
IWCDAN 87.9 97.7 100.0 86.2 64.8 64.1 83.5

PCT-Uniform (Ours) 86.4+£0.86 97.3+0.3 100.0+£0.5 885408 69.5+0.9 70.5+£0.7 854
PCT-Learnable (Ours) 88.1+0.5 985+04 99.9+0.17 904+17 6994037 71.3+051 864

21

Table 12: Accuracy (%) on the sub-sampled (source) Office-Home for unsupervised domain adapta-
tion (ResNet-50).

Method sAr — Cl sAr — Pr sAr — Rw sCl — Ar sCl — Pr sCl — Rw sPr — Ar sPr — Cl sPr — Rw sRw — Ar sRw — Cl sRw — Pr Avg
ResNet-50 35.7 54.7 62.6 43.7 52.5 56.6 443 33.0 65.2 57.1 40.5 70.0 51.4
DANN 36.1 542 61.7 443 52.6 56.4 44.6 37.1 65.2 56.7 432 69.9 51.8
JAN 34.5 56.9 64.5 46.2 56.8 59.0 50.6 372 70.0 58.7 40.6 72.00 539
CDAN 389 56.8 64.8 48.0 60.0 61.2 49.7 41.4 70.2 62.4 47.0 74.7 56.3
IWDANN 39.8 63.0 68.7 474 61.1 60.4 50.4 41.6 725 61.0 494 76.1 57.6
IWJAN 36.2 61.0 66.3 48.7 59.9 61.9 529 377 70.9 60.3 41.5 733 559
IWCDAN 43.0 65.0 71.3 529 64.7 66.5 549 44.8 75.9 67.0 50.5 78.6 61.2

PCTUniform (Ours) 51.9 £0.2 69.7 £0.9 76.5 + 0.3 63.3 £1.370.8 £ 0.4 71.1 0.5 66.0 0.8 49.9 £ 0.7 80.2 £ 0.5 73.1 £ 0.6 58.6 £ 0.7 83.2 £ 0.8 67.8

Table 13: Accuracy (%) on the sub-sampled (target) Office-Home for unsupervised domain adaptation
(ResNet-50).

Method Ar —sCl Ar — sPr Ar — sRw Cl = sAr Cl — sPr Cl — sRw Pr — sAr Pr — sCl Pr — sRw Rw — sAr Rw — sCl Rw — sPr Avg
ResNet-50 415 65.8 73.6 52.2 59.5 63.6 51.5 36.4 71.3 65.2 428 754 58.2
DANN 47.8 559 66.0 453 54.8 56.8 494 48.0 70.2 65.4 55.5 727 58.3
JAN 458 69.7 74.9 539 63.2 65.0 56 425 74 65.9 474 78.8 61.4
CDAN 51.1 69.7 74.6 56.9 60.4 64.6 572 45.5 75.6 68.5 527 79.8 63.0
IWDANN 48.7 62.0 71.6 50.4 57.0 60.3 51.4 41.1 69.9 62.6 51.0 712 58.6
IWJAN 44.0 71.9 75.1 55.2 65.0 67.7 57.1 424 749 66.1 46.1 8.5 62.0
IWCDAN 52.3 722 76.3 56.9 67.3 67.7 572 46.0 71.8 67.3 53.8 80.6 64.6

PCT-Uniform (Ours) 55.8£0.5 77.64+0.6 80.4+0.3 65.1 1.2 72.3+£2.0 74.7£0.2 67.0+£1.550.9+1.0 81.1+£0.3 72.64+0.2 57.0+0.2 84.0£0.2 69.8
PCT-Learnable (Ours) 57.5 0.4 78.2+ 0.2 80.5 4+ 0.0 66.7 0.6 74.3 £ 1.3 75.4+ 0.5 64.6 1.5 50.7+ 1.4 81.3 +£0.4 72.9+ 0.3 57.3 0.9 83.5+£0.15 70.2

E.1.3 Source-private setting

Table 14: Accuracy (%) on the source-private Office-31 for unsupervised domain adaptation (ResNet-
50).

Method A—-W D—-W W=D A—-D D—A W= A Avg
Source Model Only 76.8 95.3 98.7 80.8 60.3 63.6 79.3
SHOT-Psuedo-Label 90.8 96.6 99.3 93.2 72.1 73.5 87.6
SHOT-IM 91.2 98.3 99.9 90.6 72.5 714 87.3
SHOT 90.1 98.4 99.9 94.0 74.7 74.3 88.6
PCT (Ours) 91.7£08 979+£03 999402 922+11 74.0+16 746+03 884

Table 15: Accuracy (%) on the source-private Office-Home for unsupervised domain adaptation
(ResNet-50).
Method Ar—Cl Ar—-Pr Ar»Rw Cl—+Ar Cl—-Pr Cl - Rw Pr—Ar Pr— Cl Pr— Rw Rw — Ar Rw — Cl Rw — Pr Avg

ResNet-50 44.6 67.3 74.8 52.7 62.7 64.8 53.0 40.6 732 65.3 45.4 78.0 602
SHOT 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 843 718

PCT (Ours) 56.6 1.1 77.0 £ 0.6 79.8 =0.568.3 £0.575.7+ 0.4 75.5 £0.367.3 £ 1.355.1 =1.080.2 £ 0.974.4 + 0.558.9+0.583.2 £ 0.7 71.0

E.2 Additional Results

To further verify the efficacy of our framework, we provide additional results on the Cross-Digits,
Office-Caltech, Image-Clef, and VisDA under different settings.

E.2.1 Single-source setting

Table 16: Average Accuracy (%) on the Cross-Digits dataset for unsupervised domain adaptation
(ResNet-50).

Method MNIST — USPS SVHN — MNIST USPS — MNIST Avg
CDAN 95.6 89.2 98.0 94.3
rRevGrad+CAT 94 98.8 96 96.3
ETD 96.4 97.9 96.3 96.9
PCT (Ours) 97.8 +0.1 98.9 + 0.0 97.0£0.6 98.0

22

Table 17: Average Accuracy (%) on the Office-Caltech dataset for unsupervised domain adaptation
(ResNet-50).

Method A=W A—D A—=C D—A D—-W D—C W—A W=D W—=C C—A C—W C—D Avg
CDAN 99.3 96.8 95.4 94.7 100.0 94.6 95.7 100.0 94.5 94.8 95.9 92.4 96.2
MDD 98.3 98.0 94.8 95.3 98.6 94.3 95.6 100.0 94.9 95.8 96.3 98.7 96.7

PCT (Ours) 99.1+0.1 985%03 956+0.1 96.3+03 99.8+0.17 951x03 96.2+0.1 10000 952+02 958+04 98.7+04 96.6+1.0 973

Table 18: Average Accuracy (%) on the Image-Clef dataset for unsupervised domain adaptation
(ResNet-50).

Method I—-P P—I I-C C—Il C—P P—C Avg
CDAN 71.7 90.7 97.7 91.3 74.2 94.3 87.7
rRevGrad+CAT 77.2 91 95.5 91.3 75.3 93.6 87.3
ETD 81 91.7 97.9 93.3 79.5 95 89.7
PCT (Ours) 785+04 93.1+02 97.0+03 922+0.2 757+x06 954+04 887

E.2.2 Multi-source setting

Table 19: Average Accuracy (%) on the Office-31 dataset for ResNet50-based MSDA methods.

Category | Method R—D R—W R—A Avg
Multi-source DCTN 99.3 98.2 64.2 87.2
MFSAN 99.5 98.5 72.7 90.2
SImpAl 99.2 97.4 70.6 89.0
Source- DAN 99.6 97.8 67.6 88.3
combined D-CORAL 99.3 98.0 67.1 88.1
RevGrad 99.7 98.1 67.6 88.5

| PCT (Ours) 99.8+0.0 985+0.1 769+06 91.7

E.2.3 Source-private setting

Table 20: Accuracy (%) on the VisDA-2017 dataset for unsupervised domain adaptation (ResNet-50).
ETN STA UAN DANCE PCT (Ours)
64.1 48.1 664 702 712408

23

	1 Introduction
	2 Prototype-oriented conditional transport
	2.1 Learning class prototypes
	2.2 Bi-directional prototype-oriented conditional transport
	2.2.1 Moving from target domain to class prototypes
	2.2.2 Moving from class prototypes to target domain

	2.3 Learning class proportions in the target domain

	3 Related work
	4 Experiments
	4.1 Main results
	4.2 Analysis of results

	5 Conclusion
	A Broader impact
	B EM steps derivation
	C Connection with K-means clustering and optimal transport
	D Implementation details
	E Additional experimental results
	E.1 Full experimental results
	E.1.1 Ablation study
	E.1.2 Sub-sampled setting
	E.1.3 Source-private setting

	E.2 Additional Results
	E.2.1 Single-source setting
	E.2.2 Multi-source setting
	E.2.3 Source-private setting

