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Abstract

Offline reinforcement learning (RL) extends the
paradigm of classical RL algorithms to purely
learning from static datasets, without interacting
with the underlying environment during the learn-
ing process. A key challenge of offline RL is
the instability of policy training, caused by the
mismatch between the distribution of the offline
data and the undiscounted stationary state-action
distribution of the learned policy. To avoid the
detrimental impact of distribution mismatch, we
regularize the undiscounted stationary distribu-
tion of the current policy towards the offline data
during the policy optimization process. Further,
we train a dynamics model to both implement this
regularization and better estimate the stationary
distribution of the current policy, reducing the er-
ror induced by distribution mismatch. On a wide
range of continuous-control offline RL datasets,
our method indicates competitive performance,
which validates our algorithm. The code is pub-
licly available.

1. Introduction
Offline reinforcement learning (RL), traditionally known as
batch RL, eschews environmental interactions during the
policy learning process and focuses on training policy from
static dataset collected by one or more data-collecting poli-
cies, which we collectively call the behavior policy (Ernst
et al., 2005; Lange et al., 2012; Levine et al., 2020). This
paradigm extends the applicability of RL from trial-and-
error in the simulator (Mnih et al., 2013; 2015; Silver et al.,
2016; 2017) to applications where environmental interac-
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tions can be costly or even dangerous (Nie et al., 2019;
Yurtsever et al., 2020), and to domains with abundant ac-
cumulated data (Gilotte et al., 2018). While classical off-
policy RL algorithms (Mnih et al., 2013; Lillicrap et al.,
2016; Bellemare et al., 2017; Dabney et al., 2018; Fujimoto
et al., 2018; Haarnoja et al., 2018) can be directly applied
to the offline setting, they often fail to learn purely from a
static dataset, especially when the offline dataset exhibits a
narrow distribution on the state-action space (Fujimoto et al.,
2019; Kumar et al., 2019). One important cause to such a
failure is the mismatch between the stationary state-action
distribution of the behavior policy and that of the learned
policy, resulting in possibly pathological estimates of the
queried action-values during the training process and thus
the instability and failure of the policy learning.

To successfully learn a policy from the offline dataset,
prior model-free offline RL works try to avoid the action-
distribution shift during the training process, so that the
overestimated action-values in out-of-distribution (OOD)
actions can be mitigated. Their approaches can be mainly
characterized into three categories: (1) robustly train the
action-value function or provide a conservative estimate
of the action-value function whose numerical values dis-
tinguish in- and out-of-distribution actions (Agarwal et al.,
2020; Kumar et al., 2020; Gulcehre et al., 2021; Sinha et al.,
2022); (2) design a tactful behavior-cloning scheme to learn
only from “good” actions in the dataset (Wang et al., 2020;
Chen et al., 2021; Kostrikov et al., 2021a); (3) regularize
the current policy to be close to the action choice in the of-
fline dataset during the training process, so that the learned
policy mainly takes action within the reach of the action-
value function estimate (Fujimoto et al., 2019; Laroche &
Trichelair, 2019; Kumar et al., 2019; Wu et al., 2019; Jaques
et al., 2019; Siegel et al., 2020; Urpı́ et al., 2021; Kostrikov
et al., 2021b; Wu et al., 2021; Fujimoto & Gu, 2021).

Model-based RL (MBRL) can provide a potential enhance-
ment over the model-free RL. By learning an approximate
dynamic model and subsequently using that for policy learn-
ing, MBRL can provide a sample-efficient solution to an-
swer the counterfactual question pertaining to action-value
estimation in the online setting (Janner et al., 2019; Ra-
jeswaran et al., 2020), and to provide an augmentation to the
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static dataset in the offline setting (Yu et al., 2020). Directly
applying model-based RL methods into the offline setting,
however, still faces the challenge of mismatching station-
ary state-action distribution. In particular, when the offline
dataset only covers a narrow region on the state-action space,
the estimated dynamic model may not support far extrap-
olation (Hishinuma & Senda, 2021). Consequently, poor
empirical performance related to the “model exploitation”
issue can appear when directly using the learned model for
offline policy learning (Ross & Bagnell, 2012; Clavera et al.,
2018; Kurutach et al., 2018; Rajeswaran et al., 2020; Yu
et al., 2020). As remedies, prior model-based offline RL
methods try to avoid state-action pairs far from the offline
dataset by uncertainty quantification (Yu et al., 2020; Ki-
dambi et al., 2020; Fan et al., 2021; Swazinna et al., 2021),
model-based constrained policy optimization (Matsushima
et al., 2021; Cang et al., 2021), or model-based conservative
action-value function estimation (Yu et al., 2021).

In this work, we propose to directly regularize the undis-
counted stationary state-action distribution of the current
policy towards that of the behavior policy during the policy
learning process. The learned policy thus avoids visiting
state-action pairs far from the offline dataset, reducing the
occurrence of overestimated action-values and stabilizing
policy training. We derive a tractable bound for the dis-
tance between the undiscounted stationary distributions. To
implement this bound, we (1) train a dynamic model in a
sufficiently rich function class via the maximum likelihood
estimation (MLE); and (2) add a tractable regularizer into
the policy optimization objective. This regularizer only re-
quires samples from the offline dataset, the short-horizon
model rollouts, the current policy, and the estimated dy-
namic. Further, model-based synthetic rollouts are used
to better estimate the stationary state-action distribution of
the current policy, which helps the performance of the final
policy. Besides, our framework allows training an implicit
policy to better approximate the maximizer of the action-
value function estimate, particularly when the latter exhibits
multi-modality. Without assuming any knowledge about the
underlying environment, including the reward function and
the termination condition, our method shows competitive
performance on a wide range of continuous-control offline-
RL datasets from the D4RL benchmark (Fu et al., 2020),
validating the effectiveness of our algorithmic designs.

2. Background
We follow the classical RL setting (Sutton & Barto, 2018) to
model the interaction between the agent and the environment
as a Markov Decision Process (MDP), specified by the tuple
M = (S,A, P, r, γ, µ0), where S denotes the state space,
A the action space, P (s′ | s, a) : S × S × A → [0, 1] the
environmental dynamic, r(s, a) : S× A→ [−rmax, rmax]

the reward function, γ ∈ (0, 1] the discount factor, and
µ0(s) : S→ [0, 1] the initial-state distribution.

For a given policy π(a | s), we follow the litera-
ture (Puterman, 2014; Liu et al., 2018) to denote
the state-action distribution at timestep t ≥ 0 in-
duced by policy π on MDP M as dπ,t(s, a) :=
Pr (st = s, at = a | s0 ∼ µ0, at ∼ π, st+1 ∼ P,∀ t ≥ 0) .
Denote the discounted stationary state-action distribution in-
duced by π as dπ,γ(s, a) = (1− γ)

∑∞
t=0 γ

tdπ,t(s, a) and
the undiscounted (average) stationary state-action distribu-
tion as dπ(s, a) = limT→∞

∑T
t=0

1
T+1dπ,t(s, a). We have

dπ,γ(s, a) = dπ,γ(s)π(a | s) and dπ(s, a) = dπ(s)π(a | s).
In offline RL (Levine et al., 2020), one has only access to
a static dataset Denv = {(s, a, r, s′)} collected by some
behavior policy πb, which can be a mixture of several
data-collecting policies.

Denote the action-value function for policy π on M as
Qπ(s, a) = Eπ,P,r [

∑∞
t=0 γ

tr(st, at) | s0 = s, a0 = a]. In
the actor-critic algorithm (Sutton & Barto, 2018), the policy
π and critic Qπ(s, a) are typically modelled as parametric
functions πφ andQθ , parametrized byφ and θ, respectively.
In offline RL, the critic is trained in the policy evaluation
step by Bellman backup as minimizing w.r.t. θ:

`(θ) := E(s,a,r,s′)∼Denv

[(
Qθ(s, a)− B̂πQθ′(s, a)

)2
]
,

B̂πQθ′(s, a) = r(s, a) + γEa′∼π(· | s′) [Qθ′(s
′, a′)] , (1)

where Qθ′ is the target network. The actor πφ is trained in
the policy improvement step as

arg maxφ Es∼dπb (s), a∼πφ(· | s) [Qθ (s, a)] , (2)

where samples from the offline dataset Denv is used to ap-
proximate the samples from dπb(s) (Fu et al., 2019; Levine
et al., 2020).

In model-based offline RL, a stochastic dynamic model
P̂ (s′ | s, a) within some function class P is learned to ap-
proximate the true environmental dynamic, denoted as P ∗.
With the offline dataset Denv, P̂ is typically trained using
MLE (Janner et al., 2019; Yu et al., 2020; 2021) as

arg maxP̂∈P E(s,a,s′)∼Denv

[
log P̂ (s′ | s, a)

]
. (3)

Models for the reward function r̂ and the termination con-
ditional can also be trained similarly if assumed unknown.
With P̂ and r̂, an approximated MDP to M can be con-
structed as M̂ = (S,A, P̂ , r̂, γ, µ0). To distinguish the
aforementioned stationary distributions induced by policy
π onM and on M̂, we denote the undiscounted stationary
state-action distribution induced by π on the true dynamic
P ∗ (orM) as dP

∗

π (s, a), on the learned dynamic P̂ (or M̂ )
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as dP̂π (s, a), and similarly for the discounted stationary state-
action distributions dP

∗

π,γ(s, a) and dP̂π,γ(s, a). With the esti-
mated dynamic P̂ , prior model-based offline RL works (Ki-
dambi et al., 2020; Yu et al., 2020; 2021; Cang et al., 2021)
typically approximate dP

∗

πφ
(s, a) by simulating the learned

policy πφ in M̂ for a short horizon h starting from state
s ∈ Denv. The resulting trajectories are stored into a replay
buffer Dmodel, similar to the replay buffer in off-policy RL
(Lin, 1992; Lillicrap et al., 2016). Sampling from Denv in
Eqs. (1) and (2) is commonly replaced by sampling from the
augmented datasetD := fDenv +(1−f)Dmodel, f ∈ [0, 1],
denoting sampling from Denv with probability f and from
Dmodel with probability 1− f .

We follow the offline RL literature (Liu et al., 2018; Nachum
et al., 2019b; Kallus & Zhou, 2020; Zhang et al., 2020) to
assume (i) that all the Markov chains induced by the stud-
ied (approximated) dynamics and policies are ergodic, and
thus the undiscounted stationary state-action distribution
dπ(s, a) equals to the limiting state-action occupancy mea-
sure induced by π on the corresponding MDP; and (ii) that
the offline dataset Denv is constructed as the rollouts of
πb on the true dynamic P ∗, i.e., Denv ∼ dP

∗

πb
(s, a). We

denote the state-action and state distributions in Denv as
dDenv

(s, a) and dDenv
(s), which are discrete approxima-

tions to dP
∗

πb
(s, a) and dP

∗

πb
(s), respectively.

3. Main Method
In this section, we introduce our approach to stabilize the
policy training. Specifically, except optimizing the policy π
to maximize the action-value function, we add a distribution
regularization into the policy optimization objective, which
encourages the closeness between the stationary distribution
of the learned policy π and that of the behavior πb. Our
policy optimization objective is summarized as

J(π) := λEs∼Denv, a∼π(·|s) [Qθ (s, a)]−D(dP
∗

πb
, dP

∗

π ),

where λ is the regularization coefficient, D(·, ·) is a statisti-
cal distance between two probability distributions, such as
the integral probability metric (IPM, Müller (1997)) and the
Jensen–Shannon divergence (JSD, Lin (1991)), dP

∗

πb
(s, a)

is the stationary distribution induced by behavior policy
πb in the true dynamic P ∗, and dP

∗

π (s, a) is the stationary
distribution induced by the current policy π in P ∗.

3.1. A Tractable Bound to the Regularization Term

As discussed in Section 2, the offline dataset Denv is drawn
from dP

∗

πb
. Since the current policy π can not interact with

the environment during the training process, we can not
directly estimate dP

∗

π using simulation. Hence, we use a
learned dynamic model P̂ to approximate dP

∗

π . Using the

triangle inequality for the distance D, we have

D(dP
∗

πb
, dP

∗

π ) ≤ D(dP
∗

πb
, dP̂π ) +D(dP̂π , d

P∗

π ) . (4)

Next, we describe how to estimate D(dP
∗

πb
, dP̂π ) and how to

upper bound D(dP̂π , d
P∗

π ) in the RHS of Eq. (4).

For a given dynamic model P̂ (s′|s, a), since we do not
know the formula of dP̂π (s, a), a natural way to estimate
this distribution is collecting rollouts of π on the dynamic
P̂ . A major drawback of this approach is that it requires
drawing many trajectories. This can be time-consuming as
trajectories are typically long or even infinite, especially
when they converge to the stationary distribution slowly.
Even worse, since π changes during the policy-learning
process, we have to repeat this expensive rollout process
many times. To estimate D(dP

∗

πb
, dP̂π ) in Eq. (4), we instead

derive the following theorem, which avoids sampling full
trajectories and only requires sampling a single (s′, a′) pair
using policy π and model P̂ starting from (s, a) drawn from
the offline dataset. This can significantly save computation
and training time.

Theorem 3.1. If the distance metricD is the IPM w.r.t some
function class G = {g : S× A→ R}, defined as

DG(dP
∗

πb
, dP̂π ) := sup

g∈G

∣∣∣EdP∗πb [g(s, a)]− EdP̂π [g(s, a)]
∣∣∣ ,

then there exists a G s.t. we can rewrite DG(dP
∗

πb
, dP̂π ) as:

DG(dP
∗

πb
, dP̂π ) = RF (dP

∗

πb
, π, P̂ )

:= sup
f∈F

∣∣∣∣E(s,a)∼dP∗πb
[f(s, a)]− E s′∼P̂ (·|s,a),a′∼π(·|s′)

(s,a)∼dP∗πb

[f(s′, a′)]

∣∣∣∣ ,
where

F :=

{
f : f(s, a) = Eπ,P̂

[ ∞∑
t=0

(g(st, at)− η̂π) | a0 = a

s0 = s

]
,

η̂π = lim
T→∞

Eπ,P̂

[
1

T + 1

T∑
t=0

g(st, at)

]
, g ∈ G

}
.

We describe the definition of the function class G in Ap-
pendix B.2. In Theorem 3.1, the supremum is taken over a
new function classF , which captures the relative value func-
tion following the policy π and the transition P̂ when the
reward function is the deterministic function g(s, a) (Puter-
man, 2014; Sutton & Barto, 2018). Using this new function
class F instead of the original G enables the aforementioned
avoidance of full-trajectory sampling. A more detailed dis-
cussion on the relation between f(s, a) and g(s, a) can be
found in Appendix B.2.

We remark that in practice the relative value function f is
approximated by neural networks with regularity, under the



Model-based Stationary Distribution Regularization

same assumptions as approximating the solution of Bellman
backup using neural networks. Because of the expressive-
ness of neural networks, we assume that f then resides in a
richer function class that contains the class F of differential
value functions. Since f is maximized over a larger function
class than F , we effectively minimize an upper bound of the
original regularization term in Theorem 3.1. This relaxation
avoids explicitly estimating the differential value function
for each reward function g encountered in the training pro-
cess. Such explicit estimation can be time-consuming.

Our next step is to bound D(dP̂π , d
P∗

π ).

Theorem 3.2. Let P ∗ be the true dynamic,DG the IPM with
the same G as Theorem 3.1, and P̂ the estimated dynamic.
There exist a constant C ≥ 0 and a function class Ψ = {ψ :
S× A→ R} such that for any policy π,

DG(dP̂π , d
P∗

π ) ≤C · E(s,a)∼dP∗πb

[√
1

2
KL
(
P ∗(s′|s, a)||P̂ (s′|s, a)

)]
+RΨ(dP

∗

πb
, π) ,

(5)
where

RΨ(dP
∗

πb
, π) := sup

ψ∈Ψ

∣∣∣∣∣E(s,a)∼dP∗πb
[ψ(s, a)]− E s∼dP∗πb

a∼π(·|s)

[ψ(s, a)]

∣∣∣∣∣ .
We describe the definition of the function class Ψ in Ap-
pendix B.3. Detailed proof of Theorem 3.2 can be found in
Appendix B.3.

Proposition 3.3. An upper bound of the first term on the
right-hand-side of Eq. (5) can be minimized via the MLE
for P̂ , i.e., Eq. (3).

Informally, this proposition coincides with the intuition that
estimating the environmental dynamic using MLE can be
helpful for matching dP̂π with dP

∗

π . This proposition is re-
stated and proved in Proposition B.2 in Appendix B.3.

Theorem 3.4. Combine Theorems 3.1 and 3.2 and Propo-
sition 3.3, and suppose the dynamic model P̂ is trained by
the MLE objective (Eq. (3)), then for the same G and any
policy π, up to some constants w.r.t. π and P̂ , we have

DG(dP
∗

πb
, dP

∗

π ) ≤ RF (dP
∗

πb
, π, P̂ ) +RΨ(dP

∗

πb
, π) + Emodel,

where Emodel is the error associated with the maximum
likelihood training, and is independent of the policy π.

If the function class P for the estimated dynamic P̂ is rich
enough and we have sufficiently many empirical samples
from dP

∗

πb
, under the classical statistical regularity condi-

tion, we can achieve a small model error Emodel by MLE
(Ferguson, 1996; Casella & Berger, 2001). So we focus on
minimizing the first two terms in Theorem 3.4 as a regular-
ization during the policy improvement step.

3.2. Practical Implementation

Based on the analysis in Section 3.1, we would like to min-
imize DG(dP

∗

πb
, dP

∗

π ) as a regularization term in the policy
optimization step.

Model Training. The first step is to minimize the model
error Emodel by pre-training the dynamic model under a suf-
ficiently rich function class via MLE. In this paper, we take
on a fully-offline perspective, assuming no prior knowledge
about the reward function and the termination condition.
We use neural networks to parameterize the learned transi-
tion, reward, and termination. Following prior model-based
offline-RL work (Yu et al., 2020; 2021; Cang et al., 2021),
we assume stochastic transition and reward, and use an
ensemble of Gaussian probabilistic networks, denoted as
P̂ (· | s, a) and r̂(s, a), to model these distributions. We use
the same model structure, training strategy, and hyperpa-
rameters as in Yu et al. (2020), where the model outputs the
mean and log-standard-deviation of the normal distributions
of the reward and next state. The termination condition is
modelled as an ensemble of deterministic sigmoid networks
with the same training strategy as P̂ and r̂, and outputs the
probability of the input satisfying the termination condition.
For computational simplicity, the termination-condition net-
works share the input and hidden layers with P̂ and r̂. A
default cutoff-value of 0.5 is used to decide termination.
Further details on model training is in Appendix C.2.1.

Model Rollouts. In practice, we have only a finite static
dataset, and we therefore replace sampling from dP

∗

πb
with

sampling from its discrete approximation Denv. With the
learned model P̂ , we follow prior model-based RL work
(Janner et al., 2019; Yu et al., 2020) to augment Denv

with the replay buffer Dmodel consisting of h-horizon roll-
outs of the current policy πφ on the learned model P̂ , by
branching from states in the offline dataset Denv. As dis-
cussed in Section 2, the augmented dataset is defined as
D := f · Denv + (1− f) · Dmodel, with f ∈ [0, 1] denotes
the percentage of real data. While theoretically not required
in the derivation in Section 3.1, in our preliminary study we
find that adding a significant amount of synthetic rollouts
can benefit the performance. We hypothesize that adding
Dmodel can better estimate the stationary state-action dis-
tribution of the current policy and hence mitigate the issue
of distribution mismatch in offline policy evaluation and
optimization. Besides, Dmodel can also serve as a natural
data-augmentation to Denv, reducing the sampling error in
training the action-value function, as discussed in Yu et al.
(2021). We therefore use D in lieu of Denv in the policy
evaluation, policy optimization, and regularizer construc-
tion. We follow Yu et al. (2021) to use f = 0.5 for our
algorithm and conduct an ablation study on f in Section 5.3.

Regularizer Construction. Though technically possible to
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use different test functions under different function classes
to separately estimateRF (dP

∗

πb
, π, P̂ ) andRΨ(dP

∗

πb
, π), for

computational simplicity, we use the same test function to
directly estimate the sum RF (dP

∗

πb
, π, P̂ ) + RΨ(dP

∗

πb
, π),

and parametrize the test function using neural network. We
leave the strategy of separate estimation as future work.

A sample-based estimate ofRF (dP
∗

πb
, π, P̂ ) +RΨ(dP

∗

πb
, π)

requires sampling from the data distribution, which we dub
as “true” samples; and sampling from the policy’s distribu-
tion, dubbed as “fake” samples. The “true” samples Btrue

are formed by sampling from Denv. To form the “fake”
samples Bfake, we first sample s ∼ D, followed by getting
a corresponding action for each s using a ∼ πφ(· | s). Then
for each (s, a) pair, we get a sample of the next state s′

using the learned model P̂ as s′ ∼ P̂ (· | s, a), followed by
sampling one next action a′ for each s′ via a′ ∼ πφ(· | s′).
Finally, we construct the “fake” sample Bfake as

Bfake :=

[
(s , a )
(s′, a′)

]
. (6)

Here, (s, a) is used to estimate E s∼dP∗πb
a∼π(·|s)

[ψ(s, a)], the sec-

ond term inside the |·| of RΨ(dP
∗

πb
, π). The pair (s′, a′)

corresponds to E s′∼P̂ (·|s,a),a′∼π(·|s′)
(s,a)∼dP∗πb

[f(s′, a′)], the second

term inside the absolute-value ofRF (dP
∗

πb
, π, P̂ ).

Notice that both the IPM and JSD are well-defined statistical
metrics, and matching w.r.t. one of them effectively matches
the other. Meanwhile, the GAN (Goodfellow et al., 2014)
framework provides a stable training scheme for approx-
imately minimizing JSD, with easy reference to hyperpa-
rameter configuration in literature. We henceforth change
the IPM structure inRF (dP

∗

πb
, π, P̂ ) +RΨ(dP

∗

πb
, π) to JSD

and approximately minimize it via GAN. This amounts to
training a discriminator Dw to maximize

1

|Btrue|
∑

(s,a)∼Btrue

[logDw(s, a)] +

1

|Bfake|
∑

(s,a)∼Bfake

[log (1−Dw(s, a))] ,

(7)

and adding the generator loss Lg(φ) defined as

Lg(φ) := 1
|Bfake|

∑
(s,a)∈Bfake

[log (1−Dw (s, a))] (8)

as the regularizer into the policy optimization objective. In
the ablation study (Section 5.3), we compare our JSD imple-
mentation with minimizing the dual form of Wasserstein-1
distance, a special instance of IPM.

Critic Training. Motivated by Fujimoto et al. (2019) and

Kumar et al. (2019), we use the following critic target:

Q̃ (s, a) , r(s, a).clamp(rmin, rmax)+

γEa′∼πφ′ (· | s′)

[
c min
j=1,2

Qθ′j (s′, a′) + (1− c) max
j=1,2

Qθ′j (s′, a′)

]
(9)

with c = 0.75 as in prior work, rmin = r0 − 3σr and
rmax = r1 + 3σr, where r0, r1, σr respectively denote
the minimum, maximum, and standard deviation of the
rewards in the offline dataset. Here we adopt similar reward-
clipping strategy as Hishinuma & Senda (2021) to mitigate
the inaccuracy in the reward model. Each of the double
critic networks is trained to minimize the critic loss over
(s, a) ∈ B ∼ D, i.e., ∀ j = 1, 2,

minθj
1
|B|
∑

(s,a)∈B Huber
(
Qθj (s, a)− Q̃(s, a)

)
, (10)

where we replace the usual mean-square-error with the Hu-
ber loss Huber(·) for training stability.

Policy Training. We follow Kumar et al. (2019) to define
the policy optimization objective as

arg min
φ
−λ· 1

|B|
∑

s∈B,a∼πφ(· | s)

[
min
j=1,2

Qθj (s, a)

]
+Lg(φ),

(11)
where the regularization coefficient λ is constructed similar
to Fujimoto & Gu (2021) as

λ = α/Qavg,

with soft-updated Qavg. We use α = 10 across all datasets
in our main results in Section 5.2.

Implicit Policy. To better approximate the maximizer of the
action-value function, instead of the classical deterministic
or Gaussian policy, in this paper we use a richer function
class, the class of implicit distributions, to define our policy.
Specifically, similar to the generator in the conditional GAN
(CGAN, Mirza & Osindero (2014)), our implicit policy
uses a deterministic neural network to transform a given
noise distribution pz(z) into the state-conditional action
distribution. Concretely, given state s,

a ∼ πφ(· | s) = πφ(s, z), with z iid∼ pz(z),

where πφ is a deterministic network. Section 5.1 conducts
a toy experiment to show the efficacy of the implicit policy,
particularly when fitting distributions with multimodality.

We summarize the main steps of our method Algorithm 1,
which is implemented by approximately minimizing JSD
via GAN and is dubbed as Stationary Distribution Matching
via GAN (SDM-GAN). Further implementation details are
provided in Appendix C.2.
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Algorithm1SDM-GAN,MainSteps

InitializedynamicmodelP,policynetworkπφ,critic
networkQθ1andQθ2,discriminatornetworkDw.

TrainPusingmaximumlikelihoodestimationEq.(3)
foreachiterationdo
RolloutπφonP,addthesyntheticdataintoDmodel.
Samplemini-batchB∼D=fDenv+(1−f)Dmodel.
GetcritictargetviaEq.(9)andtraincriticsbyEq.(10).
ConstructBfakeviaEq.(6)andsampleBtrue∼Denv.
OptimizethediscriminatorDwusingEq.(7).
CalculategeneratorlossLg(φ)usingEq.(8).
OptimizepolicynetworkπφbyEq.(11).
endfor

4.RelatedWork

Model-freeOfflineRL.Thispaperisrelatedtoaclassical
yetpersistentideainmodel-freeofflineRL,i.e.,match-
ingthelearnedpolicywiththebehaviorpolicysothatthe
learnedpolicymostlyvisitsstate-actionpairssimilartothe
offlinedataset.Inliterature,severaldesignshavebeenpro-
posedforthispurpose,suchasconstrainingthelearned
policytowardsanestimatedbehaviorpolicy(Kumaretal.,
2019;Wuetal.,2019;Jaquesetal.,2019),atactfuldecom-
positionoftheactionortheaction-valuefunctionintoa
behavior-cloningpartandanoffset(Fujimotoetal.,2019;
Kostrikovetal.,2021b),modificationofthecritic-learning
objective(Nachumetal.,2019b;Kumaretal.,2020).Our
paperaddstotheliteraturebydirectlymatchingtheundis-
countedstationarydistributionofthelearnedpolicytowards
theofflinedataset.Toachievethis,wedeveloptheundis-
countedversionofthechangeofvariabletricktoderivea
tractableregularizerforpolicyoptimization,whichhasbeen
exploredonlyinthediscountedcase(Nachumetal.,2019a)
intheoff-policyevaluation(OPE)literature(Jiang&Li,
2016;Liuetal.,2018;Zhangetal.,2020).Differentfrom
thegoalofestimatingtheperformanceofsomepolicies
usingofflinedata,ourgoalhereistoconstructatractable
regularizationforpolicyoptimization,whichinvolvesa
learnedtransitionmodeltrainedbyMLE.Yangetal.(2022)
recentlyproposethedesignofanimplicitpolicyviathe
CGANstructure,togetherwithseveraladditionalenhancing
techniques.Ourpaperimprovesonthispriorworkbyadopt-
ingamodel-basedapproach,whichfacilitatesregularizer
constructionandmitigatesdistributionmismatch.

Model-basedOfflineRL. Similarnotionofguidingthe
policyawayfromtheOODstate-actionpairsalsopersists
inmodel-basedofflineRL.Inliterature,suchguidancehas
beenimplementedbymodel-output-baseduncertaintyquan-
tification(Yuetal.,2020;Kidambietal.,2020),estimation
ofaconservativeaction-valuefunction(Yuetal.,2021
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Figure1.Performanceofapproximatingthebehaviorpolicyon
thecircledataset.Adeterministic-generatorconditionalGAN(“D-
CGAN”),aGaussian-generatorconditionalGAN(“G-CGAN”)
andaconditionalGAN(“CGAN”)arefittedusingtheclassical
policy(conditionaldistribution)matchingapproachsimilartoWu
etal.(2019).MoredetailsareprovidedinAppendixC.1.

possibly-adaptivebehaviorprior(Cangetal.,2021;Mat-
sushimaetal.,2021). Recently,techniquesintheOPE
literarturehasbeenadoptedintopolicytrainingandmodel
learning.Hishinuma&Senda(2021)proposeanEM-style
iterativetrainingofmodelandpolicy,withadensity-ratio-
basedweightedmodelestimation.Similartoourwork,Lee
etal.(2021a)utilizethechangeofvariabletechniquetotrain
thedynamic,whichcanpotentiallyimprovethequalityof
therepresentationsofthedynamicduringthemodeltraining.
Bycontrast,ourpaperusesthemodel-generatedrolloutsto
implementatractableboundfordirectlyconstrainingthe
undiscountedstationarydistributionofthelearnedpolicy
towardstheofflinedatasetduringthepolicyoptimization
step.Foralgorithmicsimplicity,ourpaperdoesnotapply
thetechniqueofuncertaintyquantification,learnablebehav-
iorprior,advanceddesignofthedynamicmodelviathe
GPT-Transformer(Radford&Sutskever,2018;Fanetal.,
2020;Janneretal.,2021;Zhangetal.,2022),etc.These
areorthogonaltoourmethodandmayfurtherimprovethe
empiricalperformance.

5.Experiments

Inwhatfollows,wefirstshowtheeffectivenessofanim-
plicitpolicythroughatoyexample(Section5.1). We
thenpresentanempiricalevaluationofouralgorithm(Sec-
tion5.2),followedbyanablationstudy(Section5.3).
Sourcecodefortheexperimentsispubliclyavailable.

5.1.ToyExperiments

Asamotivationtotrainaflexibleimplicitpolicyinsteadof
theclassicaldeterministicorGaussianpolicy,weconducta
toybehavior-cloningexperiment,asshownonFigure1.We
remarkthatthesimplestformofofflinebehaviorcloning
isessentiallyasupervisedlearningtask,withthereward
functionandtheterminationconditionbeingunnecessary.
ThroughoutFigure1,weusethex-axistorepresentthestate
andy-axistheaction.Figure1aplotsthestate-actiondistri-
butionthatweseektoclone,whichpresentsmultimodality
onalmostallstates.Suchanofflinedatasetmaycomefrom
multipledata-collectingpoliciesorfromthemultiplemax-

https://github.com/Shentao-YANG/SDM-GAN_ICML2022


Model-based Stationary Distribution Regularization

ima of the action-value function on the action space. We
hence expect the learned policy to capture the targeted state-
action distribution, which can translate into a better capture
of the rewarding actions and an improved generalization
beyond the static dataset in offline RL tasks. Figures 1b-1d
plot the state-action distributions of the learned policies on
the testset, in which we compare the implicit policy imple-
mented by conditional GAN (Figure 1d) with its variants of
changing the implicit generator to deterministic transforma-
tion (Figure 1b) and to the Gaussian generator (Figure 1c).
Experimental details are discussed in Appendix C.1.

We see from Figures 1b and 1c that both the deterministic
and the Gaussian policy fail to capture necessary action
modes, which directly relates to their less flexible structures.
By contrast, as shown in Figure 1d, the implicit policy de-
fined by conditional GAN does capture all the action modes
on each state and fits well onto the targeted distribution. This
toy example motivates our algorithmic design of training an
implicit policy via the conditional GAN structure.

5.2. Main Results

As discussed in Section 3.2, we implement our algorithm
by approximately matching the JSD between the stationary
distributions via the conditional GAN, which we dub as Sta-
tionary Distribution Matching via GAN (SDM-GAN). We
compare our algorithm with three state-of-the-art (SOTA)
model-free offline-RL algorithms: CQL (Kumar et al.,
2020), FisherBRC (Kostrikov et al., 2021b), and TD3+BC
(Fujimoto & Gu, 2021); three SOTA model-based offline-
RL algorithms: MOPO (Yu et al., 2020), COMBO (Yu
et al., 2021), and WMOPO (Hishinuma & Senda, 2021); and
two “DICE-style” algorithms: AlgaeDICE (Nachum et al.,
2019b) and OptiDICE (Lee et al., 2021b). For WMOPO,
we use the version of α = 0.2, which is the paper’s pro-
posal. Experimental details and hyperparameter setups are
discussed in detail in Appendix C.3. We remark that un-
like our algorithm, the three model-based RL baselines as-
sume known termination function and possibly also known
reward function, which potentially limits their applicabil-
ity. Except AlgaeDICE, we rerun each baseline method
using the official source code under the recommended hy-
perparameters. The results of AlgaeDICE (“aDICE”) is
obtained from the D4RL whitepaper (Fu et al., 2020). We
compare our algorithm with the baselines on a diverse set
of continuous-control offline-RL datasets (discussed in de-
tail in Appendix C.3), ranging across the Gym-Mojoco,
Maze2D, and Adroit domains in the D4RL benchmark. Note
that the three model-based RL baselines do not provide hy-
perparameter configurations for the Maze2D and Adroit
domains, and therefore we do not evaluate them on these
datasets. Table 1 shows the mean and standard deviation of
each algorithm on each tested dataset.

In Table 1, our algorithm shows competitive and relatively-
stable performance across a diverse array of datasets. Specif-
ically, compared to the baselines, our algorithm shows better
and more robust performance on the two task domains that
are traditionally considered as challenging in offline-RL
(Fu et al., 2020): the Adroit domain featured by high di-
mensionality and narrow data-distribution; and the Maze2D
domain collected by non-Markovian policies. On these two
domains, behavioral-cloning (BC) based algorithms, such
as FisherBRC and TD3+BC, are likely to fail. Concretely,
on the Adroit datasets, a main difficulty is estimating the
behavior policy and regularizing the current policy towards
it in a high-dimensional space with limited data. On the
Maze2D datasets, policy learning is challenged by the error
of using a Markovian policy to clone the non-Markovian
data-collecting policy. The complexity of these datasets and
underlying environments may also call for a more flexible
policy class, and thus excels our design of an implicit policy
over the classical deterministic or Gaussian policy. On the
Gym-Mojoco domain, our algorithm is able to learn from
median-quality datasets and from samples collected by a
mixture of data-collecting policies, which are closer to the
real-world settings.

Comparing SDM-GAN with AlgaeDICE and OptiDICE
reveals the overall benefit of our approach over the “DICE-
style” method. As an example, OptiDICE requires BC,
which is implemented by a Gaussian-mixture policy with
several components. While this BC strategy may be ben-
eficial on relatively-lower dimensional Maze2D datasets,
it may not generalize onto the higher-dimensional Adroit
datasets. This may be a direct result of the previously-stated
difficulty of BC-based methods on the Adroit datasets.

Additionally, we notice that some of the designs in these
SOTA baselines are orthogonal to our algorithm, such as a
tactful estimation of the action-value function (CQL, Fisher-
BRC, COMBO), an incorporation of uncertainty quantifi-
cation into the estimated dynamic (MOPO), and a density-
ratio-based weighted model estimation (WMOPO). These
designs may be easily incorporated into our algorithm, leav-
ing future work and potentials for further improvement.

5.3. Ablation Study

In the ablation study we seek to answer the following ques-
tions: (a) Does the rollout dataset Dmodel help the perfor-
mance? (b) Is our algorithm sensitive to the choice of the
regularization coefficient α? (c) Does approximately match-
ing the JSD between the stationary distributions perform
better than matching the IPM? Unless stated otherwise, ex-
perimental details for all algorithmic variants follow the
main results (stated in Appendix C.3).

(a). To investigate whether rollout data are helpful for policy
training, we follow Yu et al. (2021) to compare our algo-
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Table1.NormalizedreturnsfortheexperimentsontheD4RLdatasets.Weusethe“v0”versionofthedatasetsintheGym-MuJoCoand
Adroitdomains.OntheGym-Mojocodomain,weboldboththehighestscoreoverallalgorithmsandthehighestscoreofmodel-based
algorithms.OntheMaze2DandAdroittasks,weboldthebestscores.

TaskName aDICE CQL FisherBRC TD3+BC OptiDICE MOPO COMBO WMOPO SDM-GAN

halfcheetah-medium -2.2 39.0±0.8 41.1±0.6 43.0±0.5 38.2±0.5 47.2±1.0 53.7±2.1 55.6±1.3 42.5±0.5
walker2d-medium 0.3 60.2±30.8 78.4±1.8 77.3±4.0 14.3±15.0 0.0±0.1 40.9±28.9 22.7±27.7 66.7±1.8
hopper-medium 1.2 34.5±11.7 99.2±0.3 99.6±0.6 92.3±16.9 23.4±7.2 51.8±32.8 66.5±46.0 62.8±14.3
halfcheetah-medium-replay -2.1 43.4±0.8 43.2±1.3 41.9±2.0 39.8±0.8 52.5±1.4 51.8±1.6 51.8±5.6 41.7±0.4
walker2d-medium-replay 0.6 16.4±6.6 38.4±16.6 24.6±6.7 20.2±5.8 51.9±15.8 14.2±11.9 54.8±12.3 20.3±4.0
hopper-medium-replay 1.1 29.5±2.3 33.4±2.8 31.4±2.7 29.0±4.9 47.1±16.2 34.5±2.0 93.9±1.9 30.6±2.8
halfcheetah-medium-expert -0.8 34.5±15.8 92.5±8.5 90.1±6.9 91.2±16.6 92.1±8.3 90.0±10.5 42.7±13.0 89.1±6.6
walker2d-medium-expert 0.4 79.8±22.7 98.2±13.1 96.1±15.8 67.1±30.2 36.0±49.6 61.3±36.1 48.6±37.0 97.9±4.9
hopper-medium-expert 1.1 103.5±20.2 112.3±0.3 111.9±0.3 101.8±18.5 27.8±3.6 112.6±1.8 97.8±19.3 104.5±5.4
maze2d-large -0.1 43.7±18.6 -2.1±0.4 87.6±15.4 130.7±56.1 - - - 207.7±11.7
maze2d-medium 10.0 30.7±9.8 4.6±20.4 59.1±47.7 140.8±44.0 - - - 115.4±34.2
maze2d-umaze -15.7 50.5±7.9 -2.3±17.9 13.8±22.8 107.6±33.1 - - - 36.1±28.4
pen-human -3.3 2.1±13.7 0.0±3.9 -1.7±3.8 -0.1±5.6 - - - 17.8±1.7
pen-cloned -2.9 1.5±6.2 -2.0±0.8 -2.4±1.4 1.4±6.8 - - - 40.6±6.1
pen-expert -3.5 95.9±18.1 31.6±24.4 32.4±24.3 -1.1±4.7 - - - 135.8±11.7
door-expert 0.0 87.9±21.6 57.6±37.7 -0.3±0.0 87.9±25.8 - - - 93.5±6.7
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Figure2.Averagescore(x-axis)overthetesteddatasetsforeachofthecomparisonintheablationstudy(Section5.3).

rithmusedinSection5.2(f=0.5)withitsvariantoffewer
andmorerolloutdata,respectivelyf=0.8andf=0.05,
withallothersettingskeptthesame.Additionally,wecon-
siderthevariantsofnorolloutdata(f=1)andonlyrollout
data(f=0).

Figure2aplotstheaveragescoreoverthetesteddatasets
foreachvariant,withdetailcomparisonprovidedinTable3.
On11outof16datasets,thef=0.5versionhashigher
meanreturnsthanthef=0.8version,showingtheefficacy
ofusingmorerolloutdata.Thisempiricalresultalignswith
ourintuitionthatrolloutdatacanbetterapproximatethe
stationarystate-actiondistributionofthelearnedpolicy,es-
peciallywhenthelearnedpolicydeviatesfromthebehavior.
Theefficacyofmodel-basedrolloutisfurthercorroborated
bythegenerallyworseperformanceofthef=1variant,
comparedwithf=0.8andf=0.5.Nevertheless,us-
ingtoo-manyrolloutdatacanbeharmful,asshownbythe
comparisonbetweenthef=0,f=0.05,andf=0.5
variants.InTable3,thescoresforthef=0andf=0.05
variantsaregenerallylowerthanf=0.5,andthestan-
darddeviationsrelativetothescoresaregenerallyhigher.
Thiscomparisonshowsthegainofaddingofflinedatafor
combatingtheinaccuracyintheestimateddynamic.

(b).Wetestouralgorithmonbothasmallerandalarger

valueoftheregularizationcoefficientα∈{2.5,25},to-
getherwiththevariantwithouttheproposedregularization
term(denotedas“NoReg.”).Figure2bplotstheaverage
scoresandTable4presentstheresults. Weseethatona
largeportionofdatasets,ourmethodisrelativelyrobustto
thechoiceofα,especiallywhenusingalargervalueofα.

Asmallvalueofα,e.g.,α=2.5inFujimoto&Gu(2021),
canbetooconservativeforouralgorithm,limitingtheim-
provementofthepolicy.Alargervalueofα=25,which
putsmoreweightonpolicyoptimizationthanthedefault
α=10,overalldoesnotleadtosignificantdeterioration
intheperformance,thoughtheresultsdoingeneralpos-
sesshighervariance.Theinferiorperformanceofthe“No
Reg.”variantshowsthenecessityofproperregularization,
especiallyontheMaze2DandAdroitdatasets.

(c).Wecompareourdefaultalgorithmofapproximately
matchingtheJSDbetweenthestationarydistributions
(SDM-GAN)withthevariantofapproximatelymatchingthe
dualformoftheWasserstein-1metric,whichisaninstance
oftheIPM(Müller,1997;Sriperumbuduretal.,2009)and
isdubbedas“SDM-WGAN.”SDM-WGANisimplemented
bychangingtheCGANstructureinSDM-GANwiththe
WGAN-GPstructure(Gulrajanietal.,2017).Wevarythe
strengthoftheLipschitz-1constraintλGPinWGAN-GP
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over λGP ∈ {1, 10, 50}, with 10 being the original default.
All other hyperparameters of SDM-WGAN remain the same
as in SDM-GAN. Detail results are presented in Table 2.

From the plot of average scores, Figure 2c, we see that
the performance of SDM-WGAN is relatively robust to
the choice of λGP. Compared with SDM-GAN, the three
variants of SDM-WGAN overall perform worse, and the per-
formances exhibit relatively larger variation across datasets.
Furthermore, the performances of SDM-WGAN are less
stable than SDM-GAN, as shown by the relatively larger
variance in the results on many tested datasets. We believe
that a thorough guidance to the hyperparameter setups and
training schemes for WGAN-GP could potentially improve
the performance of SDM-WGAN. Such guidance is cur-
rently missing from the literature. The investigation onto
other instances of IPM, such as the Maximum Mean Dis-
crepancy (Gretton et al., 2012), is left as future work.

Table 2. Normalized returns for comparing the default algorithm
with variants of approximately matching the Wasserstein-1 dual
via WGAN-GP. We vary λGP ∈ {1, 10, 50}. Here “med” denotes
medium, “rep” for replay, and “exp” for expert.

Tasks/SDM Variants GAN λGP = 1 λGP = 10 λGP = 50

maze2d-umaze 36.1 ± 28.4 26.7 ± 42.2 28.4 ± 45.2 56.7 ± 15.0
maze2d-med 115.4 ± 34.2 99.8 ± 8.0 75.1 ± 10.9 96.0 ± 10.1
maze2d-large 207.7 ± 11.7 26.2 ± 30.0 44.3 ± 63.9 1.5 ± 9.5
halfcheetah-med 42.5 ± 0.5 44.3 ± 1.0 45.5 ± 0.2 44.4 ± 0.6
walker2d-med 66.7 ± 1.8 9.6 ± 12.7 21.6 ± 10.7 11.7 ± 12.7
hopper-med 62.8 ± 14.3 9.8 ± 9.2 3.5 ± 2.9 2.7 ± 3.4
halfcheetah-med-rep 41.7 ± 0.4 49.3 ± 0.9 49.3 ± 0.6 48.6 ± 0.5
walker2d-med-rep 20.3 ± 4.0 16.2 ± 10.7 6.6 ± 8.4 8.0 ± 6.2
hopper-med-rep 30.6 ± 2.8 37.2 ± 3.1 33.3 ± 4.2 28.1 ± 3.7
halfcheetah-med-exp 89.1 ± 6.6 17.1 ± 4.7 15.9 ± 3.9 22.1 ± 6.1
walker2d-med-exp 97.9 ± 4.9 66.2 ± 18.7 56.6 ± 23.9 55.3 ± 7.8
hopper-med-exp 104.5 ± 5.4 25.5 ± 2.5 25.6 ± 5.0 21.3 ± 6.3
pen-human 17.8 ± 1.7 27.4 ± 2.6 24.0 ± 7.8 18.7 ± 2.9
pen-cloned 40.6 ± 6.1 46.9 ± 18.1 44.0 ± 17.4 44.1 ± 11.3
pen-expert 135.8 ± 11.7 63.7 ± 26.7 67.1 ± 20.7 72.4 ± 22.9
door-expert 93.5 ± 6.7 63.5 ± 27.4 50.2 ± 36.4 59.1 ± 28.8

Average Score 75.2 39.3 36.9 36.9

6. Conclusion
In this paper, we directly approach a central difficulty in
offline RL, i.e., the mismatch between the distribution of the
offline dataset and the undiscounted stationary state-action
distribution of the learned policy. Specifically, we derive
a tractable bound for the difference between the stationary
distribution of the behavior policy in the underlying environ-
mental dynamic and that of the learned policy w.r.t. the IPM.
Based on the theoretical derivation, we design a practical
model-based algorithm that uses this tractable bound as a
regularizer in the policy improvement step. Our practical
implementation is tested on a diverse array of continuous-
control offline-RL datasets and shows competitive perfor-
mance compared with several state-of-the-art model-based
and model-free baselines. Ablation study is also provided
to validate some of the key algorithmic choices.
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Appendix

A. Additional Tables
Tables 3 - 4 correspond to the results for the first two ablation study in Section 5.3.

Table 3. Normalized returns for comparing the performance of our algorithm under different real data percentage f ∈ {0, 0.05, 0.5, 0.8, 1}.
The reported numbers are the means and standard deviation across three random seeds {0, 1, 2}.

Task Name SDM-GAN(f = 0) SDM-GAN(f = 0.05) SDM-GAN(f = 0.5) SDM-GAN(f = 0.8) SDM-GAN(f = 1)

maze2d-umaze 41.1 ± 33.2 22.5 ± 29.6 36.1 ± 28.4 39.3 ± 20.8 89.8 ± 49.2
maze2d-medium 79.2 ± 27.6 71.5 ± 17.0 115.4 ± 34.2 90.8 ± 49.6 89.3 ± 38.8
maze2d-large 96.8 ± 60.8 52.0 ± 63.2 207.7 ± 11.7 127.1 ± 62.1 101.4 ± 73.6
halfcheetah-medium 39.7 ± 0.6 39.8 ± 1.3 42.5 ± 0.5 43.1 ± 0.3 43.9 ± 0.1
walker2d-medium 52.6 ± 12.9 49.6 ± 2.3 66.7 ± 1.8 58.9 ± 12.4 58.3 ± 10.7
hopper-medium 44.6 ± 19.7 44.5 ± 32.0 62.8 ± 14.3 68.2 ± 22.3 54.5 ± 6.2
halfcheetah-medium-replay 41.1 ± 0.4 41.3 ± 0.5 41.7 ± 0.4 40.5 ± 0.8 36.6 ± 2.7
walker2d-medium-replay 13.2 ± 2.7 14.0 ± 2.2 20.3 ± 4.0 18.4 ± 3.6 4.0 ± 2.0
hopper-medium-replay 21.6 ± 0.8 23.7 ± 2.2 30.6 ± 2.8 28.2 ± 1.6 34.8 ± 9.4
halfcheetah-medium-expert 69.2 ± 11.1 90.2 ± 6.2 89.1 ± 6.6 91.2 ± 7.9 71.0 ± 11.0
walker2d-medium-expert 26.6 ± 28.4 61.5 ± 21.8 97.9 ± 4.9 83.5 ± 16.1 67.8 ± 16.0
hopper-medium-expert 33.0 ± 25.4 32.8 ± 17.3 104.5 ± 5.4 99.9 ± 9.7 80.7 ± 10.6
pen-human 10.6 ± 8.0 23.8 ± 18.1 17.8 ± 1.7 19.3 ± 10.1 6.8 ± 3.8
pen-cloned 17.9 ± 14.8 30.5 ± 12.8 40.6 ± 6.1 28.7 ± 7.4 20.5 ± 11.9
pen-expert 116.3 ± 21.0 125.0 ± 7.1 135.8 ± 11.7 114.8 ± 19.2 113.5 ± 14.0
door-expert 35.8 ± 43.2 61.1 ± 42.8 93.5 ± 6.7 68.0 ± 26.2 70.3 ± 14.2

Average Score 46.2 49 75.2 63.7 59

Table 4. Normalized returns for comparing our algorithm under different regularization coefficient α ∈ {2.5, 10, 25} and without
regularization (No Reg.). The reported number are the means and standard deviation across three random seeds {0, 1, 2}.

Task Name SDM-GAN(α = 2.5) SDM-GAN(α = 10) SDM-GAN(α = 25) SDM-GAN(No Reg.)

maze2d-umaze 37.2 ± 30.8 36.1 ± 28.4 66.1 ± 24.3 35.0 ± 64.6
maze2d-medium 95.3 ± 39.1 115.4 ± 34.2 93.0 ± 45.2 65.8 ± 53.1
maze2d-large 103.7 ± 6.6 207.7 ± 11.7 162.7 ± 46.1 -1.4 ± 1.4
halfcheetah-medium 42.2 ± 0.6 42.5 ± 0.5 43.0 ± 0.5 52.6 ± 2.9
walker2d-medium 58.7 ± 7.5 66.7 ± 1.8 58.7 ± 9.0 1.2 ± 2.4
hopper-medium 46.8 ± 23.0 62.8 ± 14.3 44.4 ± 14.6 1.5 ± 0.7
halfcheetah-medium-replay 39.6 ± 0.3 41.7 ± 0.4 43.0 ± 0.4 56.3 ± 2.4
walker2d-medium-replay 15.9 ± 3.8 20.3 ± 4.0 22.7 ± 0.8 16.3 ± 12.5
hopper-medium-replay 28.4 ± 3.0 30.6 ± 2.8 30.9 ± 3.1 44.6 ± 38.4
halfcheetah-medium-expert 62.2 ± 10.5 89.1 ± 6.6 89.6 ± 7.8 41.1 ± 10.0
walker2d-medium-expert 69.4 ± 39.4 97.9 ± 4.9 90.9 ± 12.4 25.4 ± 16.4
hopper-medium-expert 96.1 ± 15.9 104.5 ± 5.4 79.9 ± 31.3 32.9 ± 13.4
pen-human 17.1 ± 11.4 17.8 ± 1.7 23.3 ± 12.8 -2.7 ± 1.6
pen-cloned 29.8 ± 14.6 40.6 ± 6.1 34.9 ± 19.5 -0.3 ± 4.5
pen-expert 115.4 ± 14.9 135.8 ± 11.7 114.2 ± 18.6 -2.6 ± 1.8
door-expert 62.0 ± 34.4 93.5 ± 6.7 81.4 ± 28.2 -0.2 ± 0.1

Average Score 57.5 75.2 67.4 22.8

B. Theoretical Analysis and Proofs
B.1. Preliminary on Average Reward Markov Decision Process

Our proof largely relies on the preliminary knowledge on average (undiscounted) reward Markov decision process (Puterman,
2014), so we will briefly introduce the general background on the undiscounted reward infinite-horizon RL.
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Assumptions on Markov Decision Process (MDP). Follow the classic RL settings (Puterman, 2014), we model RL
problem as as a Markov Decision Process, which consists ofM = (S,A, P, r), where S denots the state space, A the
action space, P (s′|s, a) the transition probability, which we assume to be time independent; r(s, a) the intermediate reward
function, which we assume to be deterministic and bounded (|r(s, a)| ≤ rmax).

Consider a time-stationary, Markov policy π, which specifies a distribution of actions given states, and π(a|s) denotes the
probability of selecting a given s. The average reward of the policy π is defined as

ηπ(s) := lim
T→∞

Eπ,P

[
1

T + 1

T∑
t=0

rt | s0 = s

]
, (12)

where the expectation Eπ,P is with respect to the distribution of the trajectories where the states evolve according to P and
the actions are chosen by π(a|s). When the states of the MDP is finite and the reward is bounded, the limit in Eq. (12) always
exists (Puterman, 2014). The policy induces a Markov chain of states with the transition as Pπ(s′|s) =

∑
a π(a|s)P (s′|s, a).

When Pπ is irreducible, it can be shown that the stationary distribution of Pπ exists and is unique (denoted by dπ), and the
average reward, ηπ(s) in Eq. (12) is independent of the initial state s (e.g., Puterman, 2014), thus we have

ηπ = ηπ(s) =
∑
s,a

dπ(s)π(a|s)r(s, a) . (13)

Also dπ(s, a) = dπ(s)π(a|s) is the stationary state-action distribution induced by policy π under the transition P (s′|s, a),
which satisfy

dπ(s′, a′) =
∑
s,a

π(a′|s′)P (s′|s, a)dπ(s, a), ∀(s′, a′) ∈ S× A . (14)

From previous assumption we know the fixed point solution of Eq. (14) exists and is unique. If we introduce a discriminative
test function g(s, a) ∈ G, with G := {g : S× A→ R, ‖g‖∞ ≤ Gmax} as previous off-policy evaluation literature (e.g., Liu
et al., 2018; Zhang et al., 2020; Tang et al., 2020), we can show

E(s,a)∼dπ [g(s, a)] = E(s,a)∼dπ,s′∼P (·|s,a),a′∼π(·|s′) [g(s′, a′)] , ∀g ∈ G . (15)

Differential Value Function. Unlike the discounted case where we define the value function Qπ(s, a) as the expected
total discounted reward when the initial state action pair is (s, a): Qπ(s, a) := Eπ,P [

∑∞
t=0 γ

trt|s0 = s, a0 = a], in the
average case, Qπ(s, a) represents the expected total difference between the reward and the average reward ηπ under the
policy π, which is called differential (state-action) value function1 in Sutton & Barto (2018):

Qπ(s, a) := Eπ,P

[ ∞∑
t=0

(rt − ηπ) | s0 = s, a0 = a

]
.

The differential value function Qπ(s, a) and the average reward ηπ are closely related via the Bellman equation:

Qπ(s, a) = r(s, a) + Es′∼P (·|s,a),a′∼π(·|s′) [Qπ(s′, a′)]− ηπ , ∀(s, a) ∈ S× A . (16)

For more details of the average reward RL, we refer the reader to classical RL books (e.g., Puterman, 2014; Sutton & Barto,
2018).

B.2. Proof of Theorem 3.1

Theorem (Restatement of Theorem 3.1). Suppose the distance metric D is the integral probability metrics (IPM) w.r.t some
function class G = {g : S× A→ R}, defined as

DG

(
dP
∗

πb
, dP̂π

)
:= sup

g∈G

∣∣∣EdP∗πb [g(s, a)]− EdP̂π [g(s, a)]
∣∣∣ ,

1It is also referred as relative value function in some RL literature.
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then there exists a function class G such that we can rewrite DG(dP
∗

πb
, dP̂π ) as:

DG(dP
∗

πb
, dP̂π ) = RF (dP

∗

πb
, π, P̂ ) := sup

f∈F

∣∣∣∣E(s,a)∼dP∗πb
[f(s, a)]− E s′∼P̂ (·|s,a),a′∼π(·|s′)

(s,a)∼dP∗πb

[f(s′, a′)]

∣∣∣∣ ,
where

F :=

{
f : f(s, a) = Eπ,P̂

[ ∞∑
t=0

(g(st, at)− η̂π) | a0 = a

s0 = s

]
η̂π = lim

T→∞
Eπ,P̂

[
1

T + 1

T∑
t=0

g(st, at)

]
, g ∈ G

}
.

Proof. Based on the preliminary introduction in Section. B.1, we introduce a new MDP M̂ = (S,A, P̂ , g),
where P̂ is the learned dynamics optimized by maximum likelihood estimation, and g ∈ G, with G :=
{g : S× A→ R, ‖g(s, a)‖∞ ≤ Gmax}.

Suppose the policy π is a time-stationary, Markov policy, and P̂π(s′|s) :=
∑
a P̂ (s′|s, a)π(a|s) is finite state and ergodic.

dP̂π (s, a) is the stationary state-action distribution induced by policy π under the learned transition P̂ . Then we have the
definition of the average reward η̂π and differential value function Q̂π(s, a) for the MDP M̂:

η̂π = lim
T→∞

Eπ,P̂

[
1

T + 1

T∑
t=0

g(st, at)

]
= E(s,a)∼dP̂π

[g(s, a)] , (17)

Q̂π(s, a) := Eπ,P̂

[ ∞∑
t=0

(g(st, at)− η̂π) | s0 = s, a0 = a

]
, (18)

Q̂π(s, a) = g(s, a) + Es′∼P̂ (·|s,a),a′∼π(·|s′)

[
Q̂π(s′, a′)

]
− η̂π , ∀ (s, a) ∈ S× A . (19)

We next introduce a new function class F such that for each function g ∈ G, we have a corresponding function f ∈ F ,
which can represent the differential value function Q̂π given the reward function g and the dynamics P̂ :

F :=

{
f : f(s, a) = Eπ,P̂

[ ∞∑
t=0

(g(st, at)− η̂π) | a0 = a

s0 = s

]
, η̂π = lim

T→∞
Eπ,P̂

[
1

T + 1

T∑
t=0

g(st, at)

]
, g ∈ G

}
. (20)

Moreover, under classical regularity conditions made in Section B.1, if we fix the model dynamics P̂ , for each reward
function g(s, a), we have a unique one-to-one corresponding function f ∈ F because the differential value function is
the unique solution of the corresponding Bellman equation. Besides, since the reward function is bounded, we assume
supf∈F ‖f‖∞ ≤ Fmax, such that F is a bounded function class (Liao et al., 2020). Then we have

DG

(
dP
∗

πb
, dP̂π

)
= sup

g∈G

∣∣∣∣EdP∗πb [g(s, a)]− EdP̂π [g(s, a)]︸ ︷︷ ︸
η̂π

∣∣∣∣
= sup
f∈F

∣∣∣E(s,a)∼dP∗πb

[
f(s, a)− Es′∼P̂ (·|s,a),a′∼π(·|s′) [f(s′, a′)] + η̂π

]
− η̂π

∣∣∣
= sup
f∈F

∣∣∣∣∣E(s,a)∼dP∗πb
[f(s, a)]− E s′∼P̂ (·|s,a),a′∼π(·|s′)

(s,a)∼dP∗πb

[f(s′, a′)]

∣∣∣∣∣
:= RF (dP

∗

πb
, π, P̂ ) .

If we choose the function class F to be a parameterized neural network, then it should be rich enough to contain the
true differential value function Q̂π(s, a) induced by dynamics P̂ and the deterministic reward function g(s, a), because in
practice we usually use a neural network to learn the value function Q̂π(s, a) .
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B.3. Proof of Theorem 3.2

Before we prove Theorem 3.2, we introduce the following lemma that will be used in the latter proof.

Lemma B.1. Denote P as an arbitrary probability measure, Y an arbitrary set. Let X ∼ P, y ∈ Y , we have

sup
y∈Y

EX∼P [f(X, y)] ≤ EX∼P
[

sup
y∈Y

f(X, y)

]
.

Proof. ∀ y ∈ Y, f(x, y) ≤ supy∈Y f(x, y),∀x =⇒ ∀ y ∈ Y,EX∼P [f(X, y)] ≤ EX∼P
[
supy∈Y f(X, y)

]
. Taking sup

on the left-hand-side, we have supy∈Y EX∼P [f(X, y)] ≤ EX∼P
[
supy∈Y f(X, y)

]
.

Theorem (Restatement of Theorem 3.2). Let P ∗ be the true dynamics, DG the IPM with the same G as Theorem 3.1 and P̂
the estimated dynamics. There exist a constant C ≥ 0 and a function class Ψ = {ψ : S× A→ R} such that for any policy
π,

DG(dP̂π , d
P∗

π ) ≤ C · E(s,a)∼dP∗πb

[√
1

2
KL
(
P ∗(s′|s, a)‖P̂ (s′|s, a)

)]
+RΨ(dP

∗

πb
, π) ,

where

RΨ(dP
∗

πb
, π) := sup

ψ∈Ψ

∣∣∣∣∣E(s,a)∼dP∗πb
[ψ(s, a)]− E s∼dP∗πb

a∼π(·|s)

[ψ(s, a)]

∣∣∣∣∣ .
Proof. Still, we will use the proof technique when we prove Proposition 3.1.

We construct a new MDP M̂ = (S,A, P̂ , g), where P̂ is the learned dynamics and g ∈ G is an intermediate reward function,
with G := {g : S× A→ R, ‖g(s, a)‖∞ ≤ Gmax}. The definition of average reward η̂π, stationary distribution dP̂π (s, a),
differential value function Q̂π(s, a), and the function class F are the same as in Section B.2. if the distance metric is the
integral probability metric (IPM) defined on test function class G, then we have

DG

(
dP̂π , d

P∗

π

)
:= sup

g∈G

∣∣∣∣EdP̂π [g(s, a)− EdP∗π [g(s, a)]

∣∣∣∣ .
Before we take the supremum over the function class G, we first rewrite the term inside the sup:∣∣∣∣EdP̂π [g(s, a)− EdP∗π [g(s, a)]

∣∣∣∣ =

∣∣∣∣EdP̂π [g(s, a)]︸ ︷︷ ︸
η̂π

−EdP∗π [g(s, a)]

∣∣∣∣
=
∣∣∣η̂π − EdP∗π

[
Q̂π(s, a)

]
+ EdP∗π

[
Q̂π(s, a)

]
− EdP∗π [g(s, a)]

∣∣∣ // Q̂π(s, a) defined in (18)

=
∣∣∣−EdP∗π [

Q̂π(s, a)
]

+ EdP∗π
[
Q̂π(s, a)− g(s, a) + η̂π

]∣∣∣
=
∣∣∣−EdP∗π [

Q̂π(s, a)
]

+ E(s,a)∼dP∗π

[
Es′∼P̂ (·|s,a),a′∼π(·|s′)

[
Q̂π(s′, a′)

]]∣∣∣ // use (19)

=

∣∣∣∣∣− E(s,a)∼dP∗π

[
E a′∼π(·|s′)
s′∼P∗(·|s,a)

[
Q̂π(s′, a′)

]]
︸ ︷︷ ︸

use (15)

+E(s,a)∼dP∗π

[
E a′∼π(·|s′)
s′∼P̂ (·|s,a)

[
Q̂π(s′, a′)

]] ∣∣∣∣∣
=

∣∣∣∣∣E(s,a)∼dP∗π

[
E a′∼π(·|s′)
s′∼P̂ (·|s,a)

[
Q̂π(s′, a′)

]
− E a′∼π(·|s′)

s′∼P∗(·|s,a)

[
Q̂π(s′, a′)

]
︸ ︷︷ ︸

def
= E(s,a;P̂ )

]∣∣∣∣∣
=
∣∣∣E(s,a)∼dP∗π

[
E(s, a; P̂ )

]∣∣∣ .
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Similarly, for each reward function g(s, a) ∈ G, we have a unique one-to-to corresponding function f ∈ F , with the function
class F defined in Eq. (20). Then we can change from taking sup w.r.t. the function class G to w.r.t. the function class F :

DG

(
dP̂π , d

P∗

π

)
= sup
f∈F

∣∣∣E(s,a)∼dP∗π

[
E(s, a; P̂ )

]∣∣∣
= sup
f∈F

∣∣∣∣∫ ∫ E(s, a; P̂ )
(
dP
∗

π (s, a)− dP
∗

πb
(s, a) + dP

∗

πb
(s, a)

)
dads

∣∣∣∣
≤ sup
f∈F

∣∣∣∣∫ ∫ E(s, a; P̂ )dP
∗

πb
(s, a)dads

∣∣∣∣︸ ︷︷ ︸
def
= 1©

+ sup
f∈F

∣∣∣∣∫ ∫ E(s, a; P̂ )
(
dP
∗

π (s, a)− dP
∗

πb
(s, a)

)
dads

∣∣∣∣︸ ︷︷ ︸
def
= 2©

.

Next we are going to analyze 1© and 2© separately.

Analysis on 1©. Based on the definition of function class F , we introduce a new function class V , which is defined as

V ,
{
v : v(s) = Ea∼π(·|s)[f(s, a)], f ∈ F

}
,

where v(s) can be viewed as the state value function under the MDP M̂ = (S,A, P̂ , g), and f(s, a) is the state-action value
function under the definition, and ‖v‖∞ ≤ Fmax since ‖f‖∞ ≤ Fmax. Recall that the total variation distance is a special
instance of the integral probability metrics DG when the function class G = {g : ‖g‖∞ ≤ 1}. (Sriperumbudur et al., 2009;
Binkowski et al., 2018). Thus we have

1© = sup
f∈F

∣∣∣∣∫ ∫ E(s, a; P̂ )dP
∗

πb
(s, a)dads

∣∣∣∣
= sup
f∈F

∣∣∣∣E(s,a)∼dP∗πb

[
E a′∼π(·|s′)
s′∼P̂ (·|s,a)

[f(s′, a′)]− E a′∼π(·|s′)
s′∼P∗(·|s,a)

[f(s′, a′)]

]∣∣∣∣
= sup
v∈V

∣∣∣E(s,a)∼dP∗πb

[
Es′∼P̂ (·|s,a) [v(s′)]− Es′∼P∗(·|s,a) [v(s′)]

]∣∣∣
≤ E(s,a)∼dP∗πb

[
sup
v∈V

∣∣∣Es′∼P̂ (·|s,a) [v(s′)]− Es′∼P∗(·|s,a) [v(s′)]
∣∣∣]

= FmaxE(s,a)∼dP∗πb

[
sup
v∈V

∣∣∣∣Es′∼P̂ (·|s,a)

[
v(s′)

Fmax

]
− Es′∼P∗(·|s,a)

[
v(s′)

Fmax

]∣∣∣∣]
= FmaxE(s,a)∼dP∗πb

[
TV

(
P ∗(· | s, a)‖P̂ (· | s, a)

)]
≤ FmaxE(s,a)∼dP∗πb

[√
1

2
KL
(
P ∗(· | s, a)‖P̂ (· | s, a)

)]
.

(21)

since supv∈V

∥∥∥ v
Fmax

∥∥∥
∞
≤ 1, where we use Lemma B.1 to exchange order between sup and E[·], and the last bound is from

the Pinsker’s inequality.

Analysis on 2©. From previous assumption we know supv∈V ‖v‖∞ ≤ Fmax, then we can bound E(s, a; P̂ ) by∣∣∣E(s, a; P̂ )
∣∣∣ =

∣∣∣Es′∼P̂ (·|s,a)[v(s′)]− Es′∼P∗(·|s,a)[v(s′)]
∣∣∣

≤
∣∣∣Es′∼P̂ (·|s,a)[v(s′)]

∣∣∣+
∣∣Es′∼P∗(·|s,a)[v(s′)]

∣∣
≤ 2Fmax .

Denote the function class for E(s, a; P̂ ) as B :=
{
E(s, a; P̂ ), P̂ ∈ P

}
, which is a bounded function class since



Model-based Stationary Distribution Regularization∣∣∣E(s, a; P̂ )
∣∣∣ ≤ 2Fmax,∀ E(s, a; P̂ ) ∈ B. Since E(s, a; P̂ ) is linear w.r.t. f , we have

2© = sup
f∈F

∣∣∣∣∫ ∫ E(s, a; P̂ )
(
dP
∗

π (s, a)− dP
∗

πb
(s, a)

)
dads

∣∣∣∣
= sup
E(s,a;P̂ )∈B

∣∣∣EdP∗πb [E(s, a; P̂ )]− EdP∗π [E(s, a; P̂ )]
∣∣∣ .

Still, we will use change of the variable trick as we use in the proof of Proposition 3.1 to make 2© tractable. Define function
class Ψ:

Ψ :=

{
ψ : ψ(s, a) = Eπ,P∗

[ ∞∑
t=0

(
E(st, at; P̂ )− ηπ

)
| a0 = a

s0 = s

]
, ηπ = lim

T→∞
Eπ,P∗

[
1

T + 1

T∑
t=0

E(st, at; P̂ )

]
, E(s, a; P̂ ) ∈ B

}
.

Under classical regularity conditions made in Section B.1, if we fix the true dynamics P ∗, for each reward function
E(s, a; P̂ ) ∈ B, we have a unique one-to-one corresponding function ψ ∈ Ψ, because the differential value function is
the unique solution of the corresponding Bellman equation. Besides, since the reward function is bounded, we assume
supψ∈Ψ ‖ψ‖∞ ≤ Ψmax, such that Ψ is a bounded function class (Liao et al., 2020). So we can rewrite 2© as

2© = sup
E(s,a;P̂ )∈B

∣∣∣EdP∗πb [E(s, a; P̂ )]− EdP∗π [E(s, a; P̂ )]
∣∣∣

= sup
ψ∈Ψ

∣∣∣E(s,a)∼dP∗πb

[
ψ(s, a)− Es′∼P∗(·|s,a),a′∼π(·|s′) [ψ(s′, a′)] + ηπ

]
− ηπ

∣∣∣
= sup
ψ∈Ψ

∣∣∣∣∣E(s,a)∼dP∗πb
[ψ(s, a)]− E s′∼P∗(·|s,a),a′∼π(·|s′)

(s,a)∼dP∗πb

[ψ(s′, a′)]

∣∣∣∣∣
= sup
ψ∈Ψ

∣∣∣E(s,a)∼dP∗πb
[ψ(s, a)]− Es∼dP∗πb ,a∼π(·|s) [ψ(s, a)]

∣∣∣ . (22)

The last equality comes from the fact that for offline datasets collected by sequential rollouts, the marginal distribution of s
and s′ are the same. In other words, if we randomly draw s ∼ dP∗π (·), s will almost always be the “next state” of some other
state in the dataset.

Combining analysis of 1© and 2©. Combing Eq. (21) and Eq. (22), we have the final results

DG(dP̂π , d
P∗

π ) ≤ C · E(s,a)∼dP∗πb

[√
1
2KL

(
P ∗(s′|s, a)‖P̂ (s′|s, a)

)]
+ supψ∈Ψ

∣∣∣E(s,a)∼dP∗πb
[ψ(s, a)]− Es∼dP∗πb ,a∼π(·|s) [ψ(s, a)]

∣∣∣ ,

where C is a constant, which may require tuning when implemented in practise. The proof of Theorem 3.2 is completed.

Proposition B.2. An upper bound of 1©, the last term of Eq. (21), can be minimized via the maximum likelihood estimation
for P̂ .
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Proof. Based on Eq. (21), we would like to minimize the last equation w.r.t. P̂ , and by Jensen’s inequality, we have,

min
P̂

FmaxE(s,a)∼dP∗πb

[√
1

2
KL
(
P ∗(· | s, a)‖P̂ (· | s, a)

)]

≤min
P̂

Fmax

√
1

2
E(s,a)∼dP∗πb

[
KL
(
P ∗(· | s, a)‖P̂ (· | s, a)

)]
= min

P̂
Fmax

√
1

2
E(s,a)∼dP∗πb

[∫
P ∗(s′ | s, a)

(
logP ∗(s′ | s, a)− log P̂ (s′ | s, a)

)
ds′
]

= min
P̂

Fmax

√
1

2

{
E(s,a)∼dP∗πb

[∫
P ∗(s′ | s, a) logP ∗(s′ | s, a)ds′

]
− E(s,a)∼dP∗πb

[∫
P ∗(s′ | s, a) log P̂ (s′ | s, a)ds′

]}

=Fmax

√
1

2

{
E(s,a,s′)∼dP∗πb

[logP ∗(s′ | s, a)] + min
P̂

{
−E(s,a,s′)∼dP∗πb

[
log P̂ (s′ | s, a)

]}}
,

where both Fmax and the first term inside
√
· are constants w.r.t. P̂ , and

arg min
P̂

{
−E(s,a,s′)∼dP∗πb

[
log P̂ (s′ | s, a)

]}
= arg max

P̂
E(s,a,s′)∼dP∗πb

[
log P̂ (s′ | s, a)

]
which is exactly the maximum-likelihood model-training objective Eq. (3).

B.4. Proof of Theorem 3.4

Theorem (Restatement of Theorem 3.4). Combining Theorem 3.1, 3.2 and Proposition 3.3, and suppose the dynamics model
P̂ is trained by the MLE objective (Eq. (3)), then for the same G and any policy π, up to some constants w.r.t. π and P̂ ,

DG(dP
∗

πb
, dP

∗

π ) ≤ RF (dP
∗

πb
, π, P̂ ) +RΨ(dP

∗

πb
, π) + Emodel,

where Emodel is the error associated with the maximum likelihood training, and is independent of the policy π.

Proof. From Eq. (4) we have

DG(dP
∗

πb
, dP

∗

π ) ≤ DG(dP
∗

πb
, dP̂π ) +DG(dP̂π , d

P∗

π ) . (23)

From Theorem 3.1, we have

DG(dP
∗

πb
, dP̂π ) = RF (dP

∗

πb
, π, P̂ ) := sup

f∈F

∣∣∣∣E(s,a)∼dP∗πb
[f(s, a)]− E s′∼P̂ (·|s,a),a′∼π(·|s′)

(s,a)∼dP∗πb

[f(s′, a′)]

∣∣∣∣ ,
From Theorem 3.2 we have,

DG(dP̂π , d
P∗

π ) ≤ C · E(s,a)∼dP∗πb

[√
1

2
KL
(
P ∗(s′|s, a)‖P̂ (s′|s, a)

)]
+RΨ(dP

∗

πb
, π) ,

where

RΨ(dP
∗

πb
, π) := sup

ψ∈Ψ

∣∣∣∣∣E(s,a)∼dP∗πb
[ψ(s, a)]− E s∼dP∗πb

a∼π(·|s)

[ψ(s, a)]

∣∣∣∣∣ ,
C is some constant depending on the function class G and the model error Emodel is

C · Emodel = E(s,a)∼dP∗πb

[√
1

2
KL
(
P ∗(s′|s, a)‖P̂ (s′|s, a)

)]
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From Proposition 3.3, we have an upper bound for Emodel,

Emodel ≤
√

1
2

{
E(s,a,s′)∼dP∗πb

[logP ∗(s′ | s, a)] +
{
−E(s,a,s′)∼dP∗πb

[
log P̂ (s′ | s, a)

]}}
where for a given true MDPM, E(s,a,s′)∼dP∗πb

[logP ∗(s′ | s, a)] is a constant w.r.t. the policy π and the learned dynamics P̂
and the upper bound is essentially determined by

Emodel ≤ O

(√
−E(s,a,s′)∼dP∗πb

[
log P̂ (s′ | s, a)

])
,

where minimizing this upper bound amounts to the maximum likelihood training for P̂ and does not involve the policy π.

Putting everything together, we get the desired inequality.

C. Technical Details
C.1. Details for the Toy Experiment

We conduct the toy experiment following Gulrajani et al. (2017). We set up the total sample size asNtotal asNtotal = 100000,
radius r as 4, and standard deviation σ for the Gaussian noise as 0.05. The dataset is randomly split into a training and
testing set with the size of 5000. Details are outlined in Algorithm 2, where � denotes element-wise multiplication.

Algorithm 2 Constructing the Circle Dataset

Input: Total sample size Ntotal, radius r.
Output: Generated dataset DCircle.
Sample angles θ ∼ Unif(0, 2π), sample noise ε ∼ N (0, σ2), r ← r + ε.
Sample data point (x, y) as (x, y) = (r � cos(θ), r � sin(θ)).

To interpret the circle dataset as an offline reinforcement learning task, we define x as state and the corresponding y as action.
Note that in the behavior cloning task, the information of reward, next state, and the episodic termination is unnecessary.

Hence, the generated dataset DCircle can serve as an offline RL dataset which is applicable to train behavior cloning policies.
the circle dataset at here is able to indicate multimodality in almost all the states, i.e., the conditional distribution p (y |x) is
multi-modal in almost all x. Therefore, a good policy is expected to capture all the action modes.

To show the advantage of using a flexible implicit policy to approximate the behavior policy, we fit a conditional GAN
(Mirza & Osindero, 2014) (“CGAN”), Gaussian generator conditional GAN (“G-CGAN”), and a deterministic-generator
conditional GAN (“D-CGAN”). All these CGAN variants are fitted using the conditional-distribution matching approach
similar to Wu et al. (2019). Following Gulrajani et al. (2017) and Goodfellow (2016), we use DIM = 128, noise dim = 2,
batch size 256, critic iteration 5, one-side label smoothing of 0.9, and total training iterations 100000. In Figure 1, we show
the kernel-density-estimate plots on the test set for each method using random seed 1. We have experimented on several
other random seeds and the results do not significantly alter. The detailed architecture of our generators and discriminator
are shown as follows.

Implicit Generator

Linear(state_dim+noise_dim, DIM),
ReLU(),
Linear(DIM, DIM),
ReLU(),
Linear(DIM, DIM),
ReLU(),
Linear(DIM, action_dim)

Deterministic Generator

Linear(state_dim, DIM),
ReLU(),
Linear(DIM, DIM),
ReLU(),
Linear(DIM, DIM),
ReLU(),
Linear(DIM, action_dim)
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Gaussian Generator

Linear(state_dim, DIM),
ReLU(),
Linear(DIM, DIM),
ReLU(),
Linear(DIM, DIM),
ReLU()
mean=Linear(DIM, action_dim)
logstd=Linear(DIM,action_dim).clamp(-5,5)

Discriminator

Linear(state_dim+action_dim, DIM),
ReLU(),
Linear(DIM, DIM),
ReLU(),
Linear(DIM, DIM),
ReLU(),
Linear(DIM, 1),
Sigmoid()

C.2. Details for the Main Algorithm

As in prior model-based offline RL algorithms, our main algorithm can be divided into two parts: model training (Ap-
pendix C.2.1) and actor-critic training (Appendix C.2.2).

C.2.1. MODEL TRAINING

In this paper, we assume no prior knowledge about the reward function and the termination condition. Hence we use neural
network to approximate transition dynamics, reward function and the termination condition. We follow prior work (Chua
et al., 2018; Janner et al., 2019; Yu et al., 2020) to construct our model as an ensemble of Gaussian probabilistic networks.
We use the same model architecture, ensemble size (=7), number of elite model (=5), train-test set split, optimizer setting,
elite-model selection criterion, and sampling strategy as in Yu et al. (2020).

As in Yu et al. (2020), the input to our model is
(
(s, a)− µ(s,a)

)
/σ(s,a), where µ(s,a) and σ(s,a) are respectively mean and

standard deviation of (s, a) in the offline dataset. We follow Kidambi et al. (2020) and Matsushima et al. (2021) to define the
learning target as

(
(r,∆s)− µ(r,∆s)

)
/σ(r,∆s), where ∆s denote s′ − s , µ(r,∆s) and σ(r,∆s) denote the mean and standard

deviation of (r,∆s) in the offline dataset. As in prior model-based RL using Gaussian probabilistic ensemble (Chua et al.,
2018; Janner et al., 2019; Yu et al., 2020; Cang et al., 2021; Yu et al., 2021), the output of our model is double-headed,
respectively outputting the mean and log-standard-deviation of the normal distribution of the estimated output. As in Yu
et al. (2020), the loss function is maximum likelihood, independently for each model in the ensemble.

We augment the mean-head of the output layer to further output the probability of the input satisfying the termination
condition, which we model as a deterministic function of the input and is trained using weighted binary-cross entropy
(WBCE) loss with class-weight inverse-proportional to the ratio between the number of terminated and non-terminated
samples in the offline dataset. This WBCE loss is added to the losses of the probabilistic networks in both model training
and elite-model selection. We use a cutoff value of 0.5 for deciding termination.

C.2.2. ACTOR-CRITIC TRAINING

Our training process for actor and critic can be divided into the follow parts.

Generate synthetic data using dynamics model. Perform h-step rollouts using the learned model P̂ and the current policy
πφ by branching from the offline datasetDenv, and adding the generated data to a separate replay bufferDmodel, as in Janner
et al. (2019) and Yu et al. (2020).

For computational efficiency, we perform model rollout every rollout generation freq iterations.

Critic Training. With hyperparameter f ∈ [0, 1], sample mini-batch B from D = f · Denv + (1− f) · Dmodel.

To smooth the discrete δs′ transition kernel recorded in the offline dataset, we apply the state-smoothing trick in Yang et al.
(2022) in calculating the value of the next state. Specifically, for each s′ ∈ B sample NB ŝ with noise standard deviation σB
for state-smoothing via,

ŝ = s′ + ε, ε ∼ N (0, σ2
BI).

Sample Na corresponding actions â ∼ πφ′(· | ŝ) for each ŝ. Calculate the estimated value of next state,

Q̃ (s, a) ,
1

NB ×Na

∑
(ŝ,â)

[
c min
j=1,2

Qθ′j (ŝ, â) + (1− c) max
j=1,2

Qθ′j (ŝ, â)

]
.
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Calculate the critic-learning target defined as

Q̃ (s, a)← r(s, a).clamp(rmin, rmax) + γ · Q̃ (s, a) ·
(∣∣∣Q̃ (s, a)

∣∣∣ < 2000
)
, (24)

where rmin = r0 − 3σr, rmax = r1 + 3σr for r0, r1, σr the minimum, maximum and standard deviation of rewards in the
offline dataset, similar to the reward-clapping strategy in Hishinuma & Senda (2021); 2000 is some convenient number as
an augmentation to the termination condition recorded in B.

Minimize the critic loss with respect to θj , j = 1, 2, over (s, a) ∈ B, with learning rate ηθ,

arg minθj
1
|B|
∑

(s,a)∈B Huber
(
Qθj (s, a)− Q̃(s, a)

)
,

where Huber(·) denote the Huber-loss function, with threshold conveniently chosen as 500.

In actual implemention, we choose to skip critic update for the i-th iteration when its critic loss Lcritic,i exceed the critic
loss threshold `critic.

We remark that the mentioned reward-clapping, augmented termination condition, Huber loss and critic-update skipping are
mainly engineering tricks for improving training stablity in compensation for not knowing the true reward function and the
true termination condition.

Discriminator Training. To form the “fake” sample Bfake for training the discriminator, we first sample |B| states s ∼ D,
and remove the terminal states. Second, we apply the state-smoothing trick in Yang et al. (2022) to s with noise standard
deviation σJ using ε ∼ N

(
0, σ2

JI
)
, s← s+ ε. Third, get a corresponding action using a ∼ πφ (· | s) for each s. Fourth,

get a sample of the next state s′ using the learned dynamics P̂ as s′ ∼ P̂ (· | s, a), with terminal states removed. Fifth,
sample one next action a′ for each next state s′ via a′ ∼ πφ (· | s′). Finally, the “fake” sample Bfake is defined as

Bfake ,

[
(s, a)
(s′, a′)

]
.

The “true” sample Btrue is formed by sampling |Bfake| state-action tuples from Denv.

Optimize the discriminator Dw to maximize

1

|Btrue|
∑

(s,a)∼Btrue

[logDw(s, a)] +
1

|Bfake|
∑

(s,a)∼Bfake

[log (1−Dw(s, a))] ,

with respect to w with learning rate ηw.

We remark that the state-smoothing trick is applied here to smooth the discrete state-distribution manifested in D and to
provide a better coverage of the state space, which is similar to a kernel density approximation (Wasserman, 2006) of
d (s, a) = f · dP∗πb (s, a) + (1− f) · dP̂πφ

(s, a) using data points s ∈ D and with radial basis kernel of bandwidth σJ . The
terminal states are removed since no action choice occurs on them by definition.

Actor Training. We update the policy every k iterations. In training the actor, we first calculate the generator loss

Lg(φ) =
1

|Bfake|
∑

(s,a)∈Bfake

[log (1−Dw (s, a))]

using the “fake” sample Bfake and discriminator Dw.

Then we optimize policy with learning rate ηφ for the target

arg min
φ
−λ · 1

|B|
∑

s∈B,a∼πφ(· | s)

[
min
j=1,2

Qθj (s, a)

]
+ Lg(φ),

where the regularization coefficient λ is defined similar to Fujimoto & Gu (2021) as λ = α/Qavg , with soft-updated Qavg
and α = 10 across all datasets.
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Soft updates. Similar to Fujimoto et al. (2018), we perform soft-update on the target-network parameter, the Qavg and the
critic loss threshold `critic. The first three is soft-updated after each iteration while the last is updated after each epoch.

φ′ ← βφ+ (1− β)φ′,

θ′j ← βθj + (1− β)θ′j , ∀ j = 1, 2,

Qavg ← β · 1

|B|
∑

(s,a)∈B

|Q (s, a)|+ (1− β) ·Qavg,

`critic ← 0.05 ·
(
µLcritic,i

+ 3σLcritic,i

)
+ (1− 0.05) · `critic, for Lcritic,i in current epoch,

where 0.05 and 3 in the last equation are some conveniently chosen numbers.

Warm-start step. We follow Kumar et al. (2020) and Yue et al. (2020) to devote the first 40 epochs of training for warm
start. In this phase, we sample B ∼ Denv. We do not train the critic during the warm-start phase and optimize policy with
respect to the generator loss Lg(φ) only, with the same learning rate ηφ, i.e., arg minφ Lg(φ).

C.3. Details for the Reinforcement Learning Experiment

Datasets. We use the continuous control tasks provided by the D4RL dataset (Fu et al., 2020) to conduct algorithmic
evaluations. Due to limited computational resources, we follow the literature to select the “medium-expert,” “medium-
replay,” and “medium” datasets for the Hopper, HalfCheetah, Walker2d tasks in the Gym-MuJoCo domain, which are
commonly used benchmarks in prior work (Fujimoto et al., 2019; Kumar et al., 2019; Wu et al., 2019; Kumar et al., 2020).
We follow the literature (Cang et al., 2021; Chen et al., 2021; Kostrikov et al., 2021a) to not test on the “random” and
“expert” datasets as these datasets are less practical (Matsushima et al., 2021) and can be respectively solved by directly using
standard off-policy RL algorithms (Agarwal et al., 2020) and the behavior cloning algorithms. We note that a comprehensive
benchmarking of prior offline-RL algorithms on the “expert” datasets is currently unavailable in the literature, which is out
of the scope of this paper. Apart from the Gym-MuJoCo, we also consider the Maze2D tasks2 for their non-Markovian
data-collecting policy and the Adroit tasks3 (Rajeswaran et al., 2018) for their sparse reward-signal and high dimensionality.

Due to limited computational resources, we choose not to evaluate methods on the full set of Adriot datasets. From the
benchmarking results in the D4RL whitepaper, most of other Adroit datasets are out of the scope of current offline RL
algorithms. As an example, we evaluate our method and some baselines on the other two “door” datasets and present the
results in Table 5. We hypothesize that obtaining good performance on these datasets requires specially-designed methods
and a deeper investigation onto the quality of those datasets. Similar hypothesis may also be applied to other Adroit datasets,
and thus we do not test on those datasets.

Table 5. Average scores of some baselines and our SDM-GAN on the other two “door” datasets.

Task Name FisherBRC TD3+BC WMOPO SDM-GAN

door-cloned 0 ± 0.1 -0.3 ± 0 -0.1 ± 0.1 0 ± 0.1
door-human 0.1 ± 0 -0.3 ± 0 -0.2 ± 0.2 0.2 ± 0.6

Evaluation Protocol. In all the experiments, we follow Fu et al. (2020) to use 3 random seeds for evaluation and to use
the “v0” version of the datasets in the Gym-MuJoCo and Adroit domains. In our preliminary study, we find that the rollout
results of some existing algorithms can be unstable across epochs, even towards the end of training. To reduce the instability
during the evaluation, for our algorithm, we report the mean and standard deviation of the last five rollouts, conducted at the
end of the last five training epochs, across three random seeds {0, 1, 2}. We train our algorithm for 1000 epochs, where each
epoch consists of 1000 mini-batch stochastic gradient descent steps. For evaluation, We rollout our agent and the baselines
for 10 episodes after each epoch of training.

Source Code. The design of our source code for the RL experiments is motivated by the codebase of Lu et al. (2021).

C.3.1. DETAILS FOR THE IMPLEMENTATION VIA GAN

In practice, the rollouts contained in the offline dataset have finite horizon, and thus in calculating the Bellman update target,
special treatment is needed per appearance of the terminal states. We follow the standard treatment (Mnih et al., 2013;

2We use the tasks “maze2d-umaze,” “maze2d-medium,” and “maze2d-large.”
3We use the tasks “pen-human,” “pen-cloned,” “pen-expert,” and “door-expert.”

https://github.com/Shentao-YANG/SDM-GAN_ICML2022
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Sutton & Barto, 2018) to modify the critic update target Equation (24) as

Q̃ (s,a) =

{
r(s, a).clamp(rmin, rmax) + γ · Q̃ (s, a) ·

(∣∣∣Q̃ (s, a)
∣∣∣ < 2000

)
if s is a non-terminal state

r(s, a).clamp(rmin, rmax) if s is a terminal state
.

This modification removes the contribution of the next state when reaching the terminal state.

Following White (2016), we choose the noise distribution pz (z) as the multivariate standard normal distribution, where the
dimension of z is defaulted as dim (z) = min(10, state dim//2). To sample from the implicit policy, for each state s, we
first independently sample z ∼ N (0, I). We then concatenate s with z and feed the resulting [s, z] into the deterministic
policy network to generate stochastic actions. To sample from a small region around the next state s′ (Appendix C.2.2), we
keep the original s′ and repeat it additionally NB − 1 times. For each of the NB − 1 replications, we add an independent
Gaussian noise ε ∼ N (0, σ2

BI). The original s′ and its NB − 1 noisy replications are then fed into the implicit policy to
sample the corresponding actions.

For fair comparison, we use the same network architecture as the implementation of the BCQ (Fujimoto et al., 2019), which
will be presented in details in Appendix C.3.1. Due to limited computational resources, we leave a fine-tuning of the noise
distribution pz (z), the network architectures, and the optimization hyperparameters for future work.

To approximately match the Jensen–Shannon divergence between the current and the behavior policies via GAN, a crucial
step is to stably and effectively train the GAN structure. Together, we adopt the following technique from the literature.

• Following Goodfellow et al. (2014), we train πφ to maximize E(s,a)∈Bfake
[log (Dw(s, a))] .

• Motivated by Radford et al. (2016), we use the LeakyReLU activation in both the generator and discriminator, under the
default negative slope=0.01.

• To stabilize the training, we follow Radford et al. (2016) to use a reduced momentum term β1 = 0.4 in the Adam optimizer
(Kingma & Ba, 2014) of the policy network and the discriminator network, with learning rate 2× 10−4.

• To avoid overfitting of the discriminator, we are motivated by Salimans et al. (2016) and Goodfellow (2016) to use
one-sided label smoothing with soft and noisy labels. Specifically, the labels for the “true” sample Btrue is replaced with a
random number between 0.8 and 1.0. No label smoothing is applied for the “fake” sample Bfake, and therefore their labels
are all 0.

• The loss function for training the discriminator in GAN is the binary cross entropy between the labels and the outputs
from the discriminator.

• Motivated by TD3 (Fujimoto et al., 2018) and GAN, we update πφ(· | s) once per k updates of the critics and discriminator.

Table 6 shows the hyperparameters shared across all datasets for our empirical study. Note that several simplifications are
made to minimize hyperparameter tuning, such as fixing ηφ = ηw as in Radford et al. (2016) and σB = σJ . We also fix
Na = 1 to ease computation. We comment that many of these hyperparameters can be set based on literature, for example,
we use ηφ = ηw = 2 × 10−4 as in Radford et al. (2016), ηθ = 3 × 10−4 and Nwarm = 40 as in Kumar et al. (2020),
c = 0.75 as in Fujimoto et al. (2019), policy frequency k = 2 as in Fujimoto et al. (2018), f = 0.5 as in Yu et al. (2021) and
model learning rate ηP̂ = 0.001 as in Yu et al. (2020). Unless specified otherwise, the same hyperparameters, shared and
non-shared, are used for both the main results and the ablation study.

Due to the diverse nature of the tested datasets, we follow the common practice in model-based offline RL to perform gentle
hyperparameter tuning for each task. Specifically, we tune the dimension of the noise distribution pz(z) for controlling the
stochasticity of the learned policy, and the rollout horizon h for mitigating model estimation error.

As shown in Zheng & Zhou (2021) and Zhang et al. (2021), a larger noise dimension, such as 50, can facilitate learning a
more flexible distribution. Hence we use the default noise dimension for the tasks: halfcheetah-medium-expert, hopper-
medium-expert, halfcheetah-medium, walker2d-medium, maze2d-umaze, pen-cloned, door-expert, pen-human; and noise
dimension 50 for the tasks:walker2d-medium-expert, hopper-medium, halfcheetah-medium-replay, hopper-medium-replay,
walker2d-medium-replay, maze2d-medium, maze2d-large, pen-expert.
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Table 6. Shared hyperparameters for the GAN implementation.

Hyperparameter Value

Optimizer Adam (Kingma & Ba, 2014)
Learning rate ηθ 3× 10−4

Learning rate ηφ, ηw 2× 10−4

Learning rate ηP̂ 1× 10−3

Penalty coefficient α 10.0
Evaluation frequency (epoch length) 103

Training iterations 106

Batch size 512
Discount factor γ 0.99
Target network update rate β 0.005
Weighting for clipped double Q-learning c 0.75
Noise distribution pz(z) N (0, I)
Standard deviations for state smoothing σB , σJ 3× 10−4

Number of smoothed states in Bellman backup NB 50
Number of actions â at each ŝ Na 1
Policy frequency k 2
Rollout generation frequency per 250 iterations
Number of model-rollout samples per iteration 128
Rollout retain epochs 5
Real data percentage f 0.5
Random seeds {0, 1, 2}

Similar to Janner et al. (2019) and Yu et al. (2020) we consider the rollout horizon h ∈ {1, 3, 5}. We use h = 1 for
hopper-medium, walker2d-medium, hopper-medium-replay, pen-cloned; h = 3 for halfcheetah-medium-expert, halfcheetah-
medium, halfcheetah-medium-replay, maze2d-umaze, maze2d-medium, maze2d-large, pen-expert, door-expert, pen-human;
and h = 5 for hopper-medium-expert, walker2d-medium-expert, walker2d-medium-replay.

Below, we state the network architectures of the actor, critic, and the discriminator in the implementation via GAN. Note
that we use two critic networks with the same architecture to perform clipped double Q-learning.

Actor

Linear(state_dim+noise_dim, 400)
LeakyReLU
Linear(400, 300)
LeakyReLU
Linear(300, action_dim)
max_action * tanh

Critic

Linear(state_dim+action_dim, 400)
LeakyReLU
Linear(400, 300)
LeakyReLU
Linear(300, 1)

Discriminator in GAN

Linear(state_dim+action_dim, 400)
LeakyReLU
Linear(400, 300)
LeakyReLU
Linear(300, 1)
Sigmoid

Discriminator in WGAN (Ablation Study in Section 5.3)

Linear(state_dim+action_dim, 400)
LeakyReLU
Linear(400, 300)
LeakyReLU
Linear(300, 1)

C.3.2. RESULTS OF CQL

We note that the official CQL GitHub repository does not provide hyperparameter settings for the Maze2D and Adroit domain
of tasks. For datasets in these two domains, we train CQL agents using five hyperparameter settings: the four recommended
Gym-MuJoCo settings and the one recommended Ant-Maze setting. We then calculate the average normalized-return
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over the random seeds {0, 1, 2} for each hyperparameter settings and per-dataset select the best result from these five
settings. We comment that this per-dataset tuning may give CQL some advantage on the Maze2D and Adroit domains,
and is a compensation for the missing of recommended hyperparameters. For the Gym-MuJoCo domain, we follow the
recommendation by Kumar et al. (2020).


