Published as a workshop paper at DL4C @ ICLR 2022

PATCH GENERATION WITH LANGUAGE MODELS:
FEASIBILITY AND SCALING BEHAVIOR

Sophia Kolak, Ruben Martins, Claire Le Goues & Vincent J. Hellendoorn
Department of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213, USA

{sophiakolak, rubenm, clegoues, vhellendoorn}@cmu .edu

ABSTRACT

Large language models have shown a propensity for generating correct, multi-
line programs from natural language prompts. Given past findings highlighting
that bugs and patches can be distinguished by predictability according to simple
language models, it is natural to ask if modern, large neural options lend them-
selves especially well to program repair without any calibration. We study this
in the context of one-line bugs, by providing a series of models of varying scales
(from 160M to 12B parameters) with the context preceding a buggy line in 72 Java
and Python programs, and then analyze the rank at which the correct patch (and
original buggy line) is generated, if at all. Our results highlight a noticeable cor-
relation of model size with test-passing accuracy and patch ranking quality, and
the propensity for especially the largest models to generate candidate patches that
closely resemble (if not exactly match), the original developer patch.

1 INTRODUCTION

In recent years, language models have proven to be highly effective tools for a wide variety of code
and text generation tasks Allamanis et al. (2018). A strong correlation between model size and
performance has also emerged Kaplan et al. (2020); Chen et al. (2021); Austin et al. (2021), encour-
aging the use of multi-billion parameter models in research tools like codex (12B parameters Chen
etal. (2021)) and GPT-3 (175B parameters Brown et al. (2020)). However, large language models do
not achieve their performance improvements without cost. GPT3, co-BERT, and many other large
language models powering popular new technologies have received both research and media atten-
tion for their environmental costs, security risks Pearce et al. (2021), and potentially biased training
data Bender et al. (2021). Researchers, therefore, have a vested interest in understanding the extent
to which a model’s size impacts its performance. For instance Kaplan et al. (2020) evaluate the
relationship between model size and loss, and Chen et al. (2021) study a similar relationship with
respect to a model’s success at a code generation task.

Here, we extend this work on the impact of language model size to a new domain: patch genera-
tion. This is a key part of Automated Program Repair (APR), for which language models can be
highly useful by generating “natural”, and ideally plausible, candidate patches for failing programs.
As such, APR research is increasingly looking to language models for patch generation, yet, most
current work focuses on learning from supervised datasets of buggy programs and their repairs.
Datasets of real mistakes are typically limited in size (on the order of 100Ks of samples), so syn-
thetic fault injection is often used to enrich these datasets Hellendoorn et al. (2020), which can lead
to unrealistic and overly simplistic training samples. Long-standing evidence holds that even tra-
ditional, n-gram based language models of code can discriminate between buggy and correct lines
Ray et al. (2016). In this paper, we revisit the use of language models for patch generation in the era
of large language models.

To evaluate the potential in this space comprehensively, we include models spanning a wide range of
sizes, including GPT-2 style models trained with 160M, 0.4B, and 2.7B parameters, and OpenAI’s
Codex (12B parameters Chen et al. (2021)). We point these models at a dataset of programs con-
taining a known, single line bug (in both Java and Python), querying each for 100 one-line candidate

Published as a workshop paper at DL4C @ ICLR 2022

patches. We then evaluate key properties of the results, including the number of functionally correct
patches, the number that matches the real-world patch exactly, and rates of syntactic similarity to
the ground-truth patch. This simple series of experiments allows us to understand the base proba-
bility of a model generating a patch or reproducing a bug, as well as the variance of these trends
with respect to scale. Our results show that overall, larger models are better patch generators, with
significant gains in the number of successfully patched programs emerging between 2.7B and 12B
parameters, and between 0.4B and 2.7B parameters for entropy rankings. We also observe that all
models perform better at patch generation in Python than in Java, regardless of scale. Lastly, we find
that larger models tend to generate more “natural” solutions than smaller ones, and are generally
better at distinguishing between bugs and patches in their rankings.

2 METHODOLOGY

Our experiments use language models of different sizes to generate candidate patches for buggy Java
and Python programs. We evaluate patch generation for four models ranging in size from 160M to
12B parameters. We begin by describing our data sources (Section 2.1); next, we describe how
we prompt each model to generate candidate patches from that data (Section 2.2); and finally, we
describe details of each model relevant for patch generation (Section 2.3).

2.1 DATA

We evaluate language models using the Quixbugs program repair benchmark Lin et al. (2017). This
dataset contains 40 programs, each with a one line bug, implemented in both Java and Python (for
a total of 80 buggy programs). For each buggy program, Quixbugs also provides a correct version
of the program and a series of associated test cases. Originally, these programs were designed
to challenge humans; the goal was for developers to quickly find and fix a one-line bug in the
implementation of a classic algorithm. As such, each program is a stand-alone function or class.

We selected the Quixbugs benchmark for two reasons: first, because it provides analogous data
across two popular programming languages (helping us generalize from our results), and second,
because each program contains only a single line bug, which we assume has been localized, that
requires a one line patch. We specifically sought out such bugs to study the relationship between the
scale and patch generation capabilities of language models. That is, we are not assessing a language
model’s capabilities holistically across the entire process of program repair. Dynamic or test-driven
program repair more generally comprises several stages: fault identification, fault localization, patch
generation, and patch evaluation Le Goues et al. (2019). Although it is conceivable that a language
model could contribute to any of these phases, we focus on their most promising usages (patch
generation), and thus assume that the fault has already been localized Liu et al. (2020). Focusing on
already localized one-line bugs and patches abstracts away the impact of other phases of the repair
pipeline, and assures us that it is always possible for the model to generate a passing candidate
program.

We note that while the Quixbugs data includes 40 programs, we excluded 4 programs from our anal-
ysis: depth_first_search.py, reverse_linked_list.py, shunting.yard.py and
wrap.py (and their Java equivalents), because their “patches” merely involved deleting a line of
code. Including bugs of this kind would complicate each of the metrics described above. Again, our
goal is to study the impact of scale (as opposed to the quality of this particular methodology), so we
chose to ignore these cases for the sake of simplicity and consistency.

2.2 PROMPTING TECHNIQUE & OVERVIEW

Figure 1 shows a high-level overview of our method for patch generation and evaluation. Phase 1
takes a correct and buggy version of the same program as input. Figure 2 shows an example of such
an input from the dataset, viz. the correct and buggy version of bitcount . py. With the exception
of one character in the highlighted line, the two programs are identical.

To represent the program as shown in phase 2, we need to determine where the buggy line is located.
We do so by removing comments (if they are present) and then di f fing the buggy and correct files
line by line. Because all Quixbugs bugs are one line long, the delta between files reveals the location

Published as a workshop paper at DL4C @ ICLR 2022

© @ _
{ { — — > |

} 1

Correct program P Buggy program P

Model of size x

l

/Candidate Patch / : | =————— N

Extract
‘ Candidate Patch 77 ;| e e 1
KCandidale Patch 100 : 1 == I/
0-X —_—
{ }
- o-x
Prefix Context P Suffix Context P — {
1 —_ 1 —_ { ey
— — — ——
C—=™ -
Patch P Bug P — }
}
Combine Candidate program Pn

Figure 1: Visualization of the prompt extraction and patch generation procedure that is repeated
for each of the models (GPT-2 160M, GTP-2 0.4B, GTP-2 2.7B, and GTP-3 12B). Each model
generates 100 candidate patches per program in Java and Python (respectively).

correct bitcount.py buggy bitcount.py
def bitcount(n): 1 def bitcount(n):
count = 0 2 count = 0
while n: 3 while n:
n& n -1 4 n A=n -1
count += 1 5 count += 1
return count 6 return count

Figure 2: Example of buggy and correct version of bitcount . py from the Quixbugs benchmark.

of the bug. In this figure, for instance, a diff clearly shows that the bug in bitcount is located at
line 4. Using this information, we extract the lines before the bug, the bug, the patch, and the lines
following the bug, which correspond to the four fields shown in phase 2. In bitcount . py, since
the bug appears on line 4, we refer to lines 1-3 as the prefix context, to the buggy version of line 4 as
bug, to the correct version of line 4 as patch, and to lines 5-6 as the suffix context. This information
is then used to prompt the model and evaluate its responses in phases 3 and 4.

When prompting a model in phase 3, we give it only the prefix context as a prompt, meaning it
has no knowledge of the bug, patch, or the suffix context. We then allow the model to generate 100
“patch candidates”, and ensure that each candidate is exactly one line long by specifying the newline
character as a stop token. In phase 4, we replace the buggy line with each of these 100 candidate
patches, resulting in 100 candidate programs. We then record the candidate patch’s similarity to
the “ground-truth” patch, and whether it passes the provided test cases. We repeat phases 1-4 with
each of the four models ranging from 160M to 12B parameters. Across all four models and all 72
program pairs (36 Java, 36 Python), there were 7,200 candidate patches and programs generated per
model, and thus, 28,800 programs total were evaluated in this study.

Statement similarity was computed using BLEU score, a method originally designed for testing
the quality of machine translation Papineni et al. (2002). While BLEU score is an imperfect metric
overall Tran et al. (2019), it provides an approximation to syntactic similarity that may be informa-
tive when compared to test case passing behavior, as also done by Chen et al. (2021).

Published as a workshop paper at DL4C @ ICLR 2022

Table 1: Model Configurations

Hidden Context Tokens Training
Model Parameters Layers Dimension Window per batch Steps
Small 160M 12 768 2,048 262K 150K
Medium 0.4B 24 1,024 2,048 262K 150K
Large 2.7B 32 2,560 2,048 262K 150K
Codex 12B 40 5,120 4,096 2M 50K*

*Codex was initialized from a GPT-3 model trained on a natural language corpus.

Functional plausibility was evaluated by running the candidate program on its tests, provided in the
Quixbugs dataset. A patched program that passes all provided test cases is considered a plausible
patch for a given bug. This measure does not perfectly capture correctness (see threats), but it is
an important indication of the potential quality of the proposed patch, especially given the relative
completeness of the QuixBugs tests.

Since all models return their candidates in order of likelihood, we processed the candidate programs
as such: i.e., if the candidate at rank 3 for bitcount . py passed all test cases, then we do not test
candidates 4-100 (though we still compute their similarity). In our results, we report the first-found
(lowest ranked) candidate patch that is functionally plausible, if any, as well as the number of pro-
grams “solved” by each model per language (where “solved” means that at least one of the candidate
patches the model generated passed all test cases). Rank is relevant to this analysis because it cap-
tures the sampling efficiency of a model for patching a program. In this case, rank 1 corresponds to
the first and most probable candidate returned. Additionally, if a model generates duplicate patches
for a given program, we test only the one returned first.

2.3 MODELS

We now describe each of the four language models used to generate candidate patches in our exper-
iments. The smaller three, ranging from 160M to 2.7B parameters, are described together and with
more specificity, as they are open-source and largely similar. The last model (Codex) is described
briefly in a second subsection.

2.3.1 POLYCODER

We use the three publicly available versions of PolyCoder, with 160M, 0.4B, and 2.7B parameterss,
which is a multi-lingual model trained solely on code that was created and open-sourced by Hel-
lendoorn and described in Xu et al. Xu et al. (2022). Each of these is a Transformer model Vaswani
et al. (2017) based on the GPT-2 architecture Radford et al. (2019), using the GPT-NeoX toolkit
provided by Andonian et al. (2021). The model sizes (in terms of parameters, layers, dimensions),
and training details (tokens per batch, context window, training steps, all identical) are listed in Table
1 for reference.

All three models were trained on the same large multi-lingual corpus of code spanning twelve pop-
ular programming languages and including a total of 249GB of data across 24.1M files. Java makes
up the third largest proportion of these (41GB), compared to 16GB of Python data.

For this work, we modify only the text generation portion of the models, which initially returned
sequences in an arbitrary order. Since Codex returns its sequences in order of decreasing likelihood,
we adjusted the text generation code to do the same by summing the entropy (negative log probabil-
ities) of all generated tokens in each sample, and then sorting the sequences to be returned in order
of increasing entropy.

With respect to text generation in these experiments, for each model, we sample with a temperature
of 0.8, a sample size of 100, and a prompt generated by the method outlined in the previous sub-
section (i.e., with all code up to the buggy line). As mentioned, we also restrict our responses to a
maximum length of one line by using the newline character as a stop token.

Published as a workshop paper at DL4C @ ICLR 2022

2.3.2 CODEX

We refer to Codex as the largest (12B parameter version) of the family of GPT-3 based models
trained on code by OpenAl, a version of which powers the Copilot VS-code plugin Chen et al.
(2021). While developers can currently prompt and sample from a beta release of Codex via a
restricted API, the source code and training data itself remain private. As such, certain details of
Codex are not known to us in full.

This is relevant when comparing the amount of training code per language across models. Per the
original paper (Chen et al., 2021), Codex was fine-tuned for code on a corpus with 159GB of unique
Python files, a substantially larger dataset than the 16GB of Python data the other models were
trained on. The only information provided about the full dataset, on which the current, multi-lingual
release of Codex was trained, is that it was derived from 54 million public software repositories
hosted on GitHub. It is unclear how what volume of Java and Python data this translates into. Still,
going by the size of the aforementioned Python corpus alone (roughly the size of the other three
models’ entire multi-lingual corpus), we can reasonably assume that Codex was also trained on a far
larger number of Java samples than the smaller models.

With respect to ranking, it is also somewhat opaque how the currently accessible version of Codex
ranks the solutions returned for a given prompt. In our experiments, we record the sum of the entropy
over each sequence that Codex returns and use that for ranking comparisons with the other models.
In general, albeit with some exceptions, these solutions are returned in order of increasing entropy
(or decreasing likelihood).!

For text generation with the Codex API, we replicated the previously described procedure as closely
as possible, again setting the number of samples to 100, sampling with temperature 0.8, specifying
newline as a stop token, and passing it the same prompts given to the other models.

3 RELATED WORK

Chen et al. (2021) introduce the Codex model and evaluate the Python programs it synthesizes using
only doc-strings. Notably, they find that Codex generates a functionally plausible solution to 70.2%
of the programs in their benchmark within 100 samples. Loss and pass-rate were analyzed with
respect to scale specifically for Codex and compared against models trained only on natural language
at some points in this paper, suggesting that the patterns observed by Kaplan et al. (2020) carry over
for synthesis tasks, and that fine-tuning on code is a powerful technique for code generation.

Our work is comparatively more specifically targeted towards program repair. Whereas Chen et al.
(2021) generate complete programs from natural language documentation, we synthesize only a
repair for an already-localized bug based on a partial program (specifically, the prefix context).
We also evaluate the impact of scale with respect to one-line patch generation (as opposed to full
program synthesis), and compare performance on Java as well to offer results that generalize across
languages.

Prenner & Robbes (2021) is perhaps the most similar pre-existing work to ours, as it also uses
language models to patch programs in the Quixbugs Lin et al. (2017) dataset. There are two major
differences between our work and this one. The first is that, like the authors of Chen et al. (2021),
Prenner & Robbes (2021) attempt to generate full functions from a prompt, as opposed to attempting
to repair one line at a time. The second major difference is that their work only uses Codex for
program repair. We include Codex in our study, but also use three versions of open-source models
trained with different parameter budgets. The benefit of this choice is two-fold: first, it allows us
to conduct the subsequent scale analysis, and second, it allows us to sprovide information regarding
the performance of publicly available models of code that are accessible to the research community.

Several of our findings complement those of Prenner & Robbes (2021). They found that Codex
solved between 47-57% of Quixbugs programs (for Python) and between 35-45% of programs (for
Java) when tasked with providing complete functions. In our case, the models are only tasked
with generating a single patching line. This helps Codex solve 88.9% of programs in Python, and

"We note that the API tended to return slightly different log-likelihood scores for the same completion,
varying by around 0.01 bits.

Published as a workshop paper at DL4C @ ICLR 2022

88.9 %

N
[&)]

33.3 %

n
(4]

pe]

[0

>

[e]

U) o

2 50 0% Language
o [Java
g’ I Python
a

ks

X

11.1 %

160M 0.4B 2.7B 12B
Number of Parameters

Figure 3: The percentage of programs successfully patched (test-passing) per model and language.

50% in Java. Most notably for Python, generating single line patches is nearly twice as accurate
as generating a full function, whereas the Java repair rate increased comparatively less. While
some increase is expected, since generating one line is comparatively simpler than generating a full
function, these results provide helpful datapoints to direct this new and active area of research.

4 RESULTS

We break our results into the following three research questions, each one of which evaluates a
different aspect of the feasibility and scaling behavior of patch generation with the four models.

* RQ1: Are larger models better patch generators?
* RQ2: Do larger models consider test-passing patches more predictable?

* RQ3: Do larger models prefer developer patches?

4.1 RQI1 - ARE LARGER MODELS BETTER PATCH GENERATORS?

To answer RQ1, we first discuss the number of programs that were successfully patched by each
model across languages. We considered a program “successfully patched” if any one of the 100
candidate programs was functionally plausible (i.e., passed all of its test cases).

Figure 3 shows percentages of Python and Java programs successfully patched, according to their
test suites by model. In both languages, the GPT-3 model (Codex) performs substantially better than
the GPT-2 models, as shown by the visible jump in performance between 2.7B and 12B parameters.
While the three smaller models solved up to 36% of Python programs and 19% of Java programs,
Codex solved 89% of Python programs, and 50% of Java programs.

Curiously, whereas the number of Java programs solved monotonically increases as model size
does (albeit, less dramatically for the GPT-2 models), for Python the 0.4B parameter model solves
more than 2.7B one. In part, this may simply be a result of the small sample size. Still, there is
a significant difference between the percentage of programs solved by each of the GPT-2 models
when compared with GPT-3, suggesting that the size of the underlying natural language model is a
highly relevant factor for performance on code related tasks, echoing recent findings from Google’s
PalLM (Chowdhery et al., 2022).

In contrast to overall performance, which notably improves as size does, the ratio of performance
between Python and Java programs is largely independent of scale: each model solved between a
third and half as many programs in Java as it did in Python regardless of its size.

Published as a workshop paper at DL4C @ ICLR 2022

Key Insight: Overall, larger models were more successful patch generators. A significant
leap in performance was observed between 2.7B parameters (GPT-2) and 12B parameters
(GPT-3). The largest and most successful model patched 89% of Python programs, and
all models patched 2-3 times more programs in Python than Java.

4.2 RQ2 -DO LARGER MODELS CONSIDER TEST-PASSING PATCHES MORE PREDICTABLE?

The previous research question discussed the rate at which any one of a model’s 100 solutions passed
all tests. Here we analyze the entropy ranking of fest-passing solutions only. Entropy captures how
“surprising” or “unnatural” a model finds a solution, allowing us to examine the relationship between
scale and and the naturalness of patches. Prior work showed that n-gram language models generally
consider bugs less natural Ray et al. (2016). We evaluate whether the inverse is true with respect to
transformer models.

As described in Section 2, each model ranks its solutions according to entropy, where a rank 1
solution is least entropic (most likely, returned first), and rank 100 is most entropic (least likely,
returned last). By examining how “natural” or likely each model considered its test-passing patches,
we can evaluate its sampling efficiency, as well as the extent to which its rankings are meaningful in
the context of patch generation.

Figure 4 shows the distribution of the ranks of all test-passing programs generated by each model
(median ranks emphasized for clarity). In Python, when the larger two models did produce a test-
passing patch, they often did so with only one attempt (72% of the time by Codex, 73% of the time
by the 2.7B parameter model). This rate was much lower for the smaller two models (25% at 0.4B,
27% by 160M), suggesting that larger models are better able to differentiate bugs from patches via
entropy rankings.

In Java, the smallest two models solve very few programs (11.1% and 13.9% of programs, respec-
tively), but when they did produce a passing patch, these solutions were typically also ranked near
or at the top by these models. Due to the extremely small set of successful Java patches generated
by the two smaller models, their rank distribution is interesting but not particularly meaningful.

In Python, we previously observed that the number of programs solved by the GTP-2 models was
practically identical. Here, however, we see that the median rank of their test-passing patches
changed substantially between 0.4B and 2.7B parameters — the latter ranks test patching patches sub-
stantially higher than the former. Unlike functional plausibility 4.1, where the major leap emerged
between GPT-2 and GPT-3, here we observe that “meaningful” entropy rankings (with respect to
patch generation) emerge at GPT-2 with 2.7B parameters.

Key Insight: Larger models generally considered patches more natural. A significant
decline in the entropy of test-passing patches emerged between 0.4B (GTP-2) and 2.7B
(GTP-2) in Python, demonstrating that sampling efficiency increases with model size.

4.3 RQ3 - DO LARGER MODELS PREFER DEVELOPER PATCHES?

For the final research question, we discuss the BLEU score similarity of the candidate patches gen-
erated by each model to the ground-truth (the original human-created bug and patch from the bench-
mark). While BLEU scores in the range (0-99) are not necessarily meaningful, a BLEU score of 1
is relevant as it means a model perfectly recreated the original bug or patch. We analyze the rank of
the candidates with a BLEU score of 1 compared to the GT bug as well as those with a BLEU score
of 1 compared to the GT patch. The results of this comparison are shown in figure 5.

A distinction again emerges according to scale, with the two larger models ascribing a lower entropy
to the developer patch than to the bug in both languages. In Java, all models prefer (as in, rank
higher) the Ground Truth (GT) patch, whereas in Python, only the larger two models do so. Still,
true bugs were rarely assigned a lower entropy than true patches by any model for either language,

Published as a workshop paper at DL4C @ ICLR 2022

100 ° °
o ° ©
o (] °
75 4
° o
o
ol : o
1
~ 1, %o ° o | Language
< 50 °
I:ttﬁ ° 8 @ Java
1 1 @ Python
Q
o ° I 1 °
<]
° 1 1 1 °
25 ° I o | 1
1 1 1 1
1 1 1 1 1
o b b b
160M 0.4B 2.7B 12B

Number of Parameters
Figure 4: Rank distribution for the test-passing patches generated by each of the four models per

language. Each point corresponds to the rank of one correct candidate patch, and diamonds corre-
spond to the median of these points.

Java Python

100+

754

Type

50 Z Bug
Patch

25+

Rank

160M 0.4B 2.7B 12B 160M 0.4B 2.7B 12B
Number of Parameters

Figure 5: The distribution of ranks for candidate patches that had a BLEU score of 1 (i.e., matched
perfectly) with either the ground truth patch or bug for Java and Python samples (respectively).

further supporting the notion that patches tend to be more “natural”, and that these patterns are
emphasized as model size increases.

Figure 6 shows the BLEU scores for all 100 candidates (whereas figure 5 includes only candidates
with a BLEU score of 1). Candidates at each rank were compared to both the GT bug and patch,
and then averaged over the total number of programs. Java is excluded from this plot for the sake of
visibility, however the results were similar.

Note that as entropy increases, both patch and bug BLEU score also decline. Notably, however,
while the 12B parameter model and 2.7B parameter model both consistently generate solutions more

similar to the true patch than the true bug, as represented by the triangular points, this relationship
flips for the two smaller models.

Key Insight: Larger models tend to consider developer patches more natural. In Python,
the larger two models (12B and 2.7B) assign true patches lower entropy than bugs, whereas
the smaller two (0.4B and 160M) assign true bugs lower entropy.

Published as a workshop paper at DL4C @ ICLR 2022

0.351
0.30
0.25 0.301 "= # Parameters
o 0.25- 160M
5 0201 - 0.4B
5 0.20- - 278
5 0.34 0.75 - 128
4
a 0.651 Type
] + Bug
0-55 -~ Patch

0.45

0 25 50 75 100
Rank

Figure 6: The average BLEU score of all 100 candidates generated per model compared to the GT
patch and bug in Python. On average, the larger two models (12B and 2.7B) generate solutions more
similar to the patch, whereas the smaller two generate solutions more similar to the bug.

S THREATS TO VALIDITY

Fault Localization: Our analysis sought to isolate patch generation from other phases of program
repair. As such, we assumed fault localization had already been conducted prior to this phase. Still,
it is debatable whether or not patch-generation can or should be treated as a stand alone technique,
and whether or not these scaling results would hold if combined with fault localization is unclear.

One line bugs: Additionally, we study only one line bugs, which comes from a dataset of relatively
simple programs. In practice, bugs are rarely so neatly localized to a single location. While a robust
methodology for program repair was not the intention of this paper, we do draw a conclusion about
the likelihood of bug versus patch generation that may not generalize to more complex cases where
the “ground-truth” is unclear or a patch alters multiple statements in the program.

Functional plausibility: A candidate program was deemed “functionally plausible” when it suc-
ceeded in passing its associated test cases, however, the extent to which functional correctness corre-
sponds to expected behavior is always dependent on test quality. While we did not write or manually
evaluate these test cases, they have been used in numerous APR studies, so we assume they are a
sufficient approximation for correctness. Still, if the tests are flawed, it is possible that some of the
“functionally correct” programs do not behave as expected in all cases.

6 CONCLUSION

We presented an analysis of large language models for program patch generation. By focusing
specifically on one line bugs and patches, we shed light on the impact of model scale on both the
rate and rank of test-passing patches, which correlate with size and climb especially quickly for the
largest models, and on the remarkable relationships between model size and proclivity for echoing
the original, human-written patch. It is perhaps not coincidental that, compared to other test-passing
tests, the latter is guaranteed to generalize and arguably the most natural — a property that language
models naturally achieve. These results show the promising role of especially very large (10B+
parameter) language models in guiding patch selection in Automated Program Repair work.

ACKNOWLEDGEMENTS

This work was partially supported under NSF Grant No. CCF-1762363, and CMU-Portugal project
ANI 045917 funded by FEDER and FCT.

Published as a workshop paper at DL4C @ ICLR 2022

REFERENCES

Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. A survey of machine
learning for big code and naturalness. ACM Computing Surveys (CSUR), 51(4):1-37, 2018.

Alex Andonian, Quentin Anthony, Stella Biderman, Sid Black, Preetham Gali, Leo Gao, Eric Hal-
lahan, Josh Levy-Kramer, Connor Leahy, Lucas Nestler, Kip Parker, Michael Pieler, Shivanshu
Purohit, Tri Songz, Phil Wang, and Samuel Weinbach. GPT-NeoX: Large scale autoregressive lan-
guage modeling in pytorch, 2021. URL http://github.com/eleutherai/gpt-neox.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
dangers of stochastic parrots: Can language models be too big? . In Proceedings of the 2021
ACM Conference on Fairness, Accountability, and Transparency, FAccT °21, pp. 610-623, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383097. doi: 10.
1145/3442188.3445922. URL https://doi.org/10.1145/3442188.3445922.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Vincent J. Hellendoorn. Large Models of Source Code. URL https://github.com/
VHellendoorn/Code-LMs.

Vincent J Hellendoorn, Petros Maniatis, Rishabh Singh, Charles Sutton, and David Bieber. Global
relational models of source code. In 8th International Conference on Learning Representations
(ICLR), 2020.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. Automated program repair. Commu-
nications of the ACM, 62(12):56-65, 2019.

Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. Quixbugs: A multi-
lingual program repair benchmark set based on the quixey challenge. SPLASH Companion
2017, pp. 55-56, New York, NY, USA, 2017. Association for Computing Machinery. ISBN
9781450355148. doi: 10.1145/3135932.3135941. URL https://doi.org/10.1145/
3135932.3135941.

Kui Liu, Shangwen Wang, Anil Koyuncu, Kisub Kim, Tegawendé F. Bissyandé, Dongsun Kim, Peng
Wau, Jacques Klein, Xiaoguang Mao, and Yves Le Traon. On the efficiency of test suite based
program repair: A systematic assessment of 16 automated repair systems for java programs. In
Gregg Rothermel and Doo-Hwan Bae (eds.), International Conference on Software Engineering
(ICSE’20), pp. 615-627. ACM, 2020.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: A method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting on Association
for Computational Linguistics, ACL *02, pp. 311-318, USA, 2002. Association for Computa-
tional Linguistics. doi: 10.3115/1073083.1073135. URL https://doi.org/10.3115/
1073083.1073135.

10

Published as a workshop paper at DL4C @ ICLR 2022

Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and Ramesh Karri.
An empirical cybersecurity evaluation of github copilot’s code contributions. arXiv preprint
arXiv:2108.09293, 2021.

Julian Aron Prenner and Romain Robbes. Automatic program repair with openai’s codex: Evaluat-
ing quixbugs, 2021.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto Bacchelli, and
Premkumar Devanbu. On the “naturalness” of buggy code. In Proceedings of the 38th Interna-
tional Conference on Software Engineering, ICSE *16, pp. 428-439, New York, NY, USA, 2016.
Association for Computing Machinery. ISBN 9781450339001. doi: 10.1145/2884781.2884848.
URL https://doi.org/10.1145/2884781.2884848.

Ngoc Tran, Hieu Tran, Son Nguyen, Hoan Nguyen, and Tien N. Nguyen. Does bleu score work
for code migration? In Proceedings of the 27th International Conference on Program Com-
prehension, ICPC 19, pp. 165-176. IEEE Press, 2019. doi: 10.1109/ICPC.2019.00034. URL
https://doi.org/10.1109/ICPC.2019.00034.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of NeurlPS,
2017.

Frank F Xu, Uri Alon, Graham Neubig, and Vincent J Hellendoorn. A systematic evaluation of large
language models of code. arXiv preprint arXiv:2202.13169, 2022.

11

	introduction
	methodology
	Data
	Prompting Technique & Overview
	Models
	PolyCoder
	Codex

	related work
	Results
	RQ1 - Are larger models better patch generators?
	RQ2 - Do larger models consider test-passing patches more predictable?
	RQ3 - Do larger models prefer developer patches?

	threats to validity
	conclusion

