
UV Grid Generation on 3D Freeform Surfaces for Constrained Robotic
Coverage Path Planning

Sean McGovern1 and Jing Xiao1

Abstract— There are many industrial robotic applications
which require a manipulator’s end-effector to fully cover a 3D
surface region in a constrained motion, such as painting, spray
coating, abrasive blasting, polishing, shotcreting, etc. The ma-
nipulator must satisfy surface task constraints imposed on the
end-effector while maintaining manipulator joint constraints.
Coverage path planning (CPP) in this context generally involves
placing commonly used coverage patterns (such as raster, spiral,
or dual-spiral) onto the surface. There is substantial research
for CPP on 2D surfaces, however, the problem of generating
surface task constraints and evenly spaced coverage paths
becomes particularly difficult when considering 3D freeform
surfaces. Previous research concerning CPP on 3D surfaces
consider parametric surfaces with limited surface curvature
or produce unevenly spaced coverage paths. In this paper,
we introduce a novel method to generate a uv grid on a
3D freeform surface (represented as a 3D polygon mesh) to
facilitate feasibility checking for constrained coverage motion
under task and manipulator constraints and to significantly ease
the creation of more evenly spaced coverage paths for optimal
application of task requirements. We applied our method to
example 3D freeform surfaces to demonstrate its effectiveness.

I. INTRODUCTION
Certain industrial manipulator applications (such as spray

coating, abrasive blasting, polishing, shotcrete, laser ablation,
etc.) require a manipulator’s end-effector to traverse the
surface once while satisfying task criteria in terms of spray
thickness, cycle time, and material waste [1]–[9]. Surface
coverage is often treated as an offline coverage path plan-
ning (CPP) problem on predefined surfaces with constraints.
Methods for CPP on 2D surfaces are commonly online
and intended for mobile robots [10]–[14]. Many previous
methods for CPP on 3D surfaces apply to sensor coverage
for aerial or submersible robots (i.e. view planning) [15]–
[17], others relate to agriculture [18], [19], while some
consider CPP for manipulator end-effector coverage [20]–
[22]. Additionally, there is substantial work on constrained
manipulator motion planning [23]–[27], which focuses on
finding a feasible path connecting two configurations while
the end-effector remains constrained, with the assumption
that such a path exists prior to planning.

A feasible coverage path over a surface may not exist given
certain manipulator and task constraints. Previous methods
for constrained coverage path planning do not consider such
feasibility issues. In [28], we introduced a general method to
inform on coverage path feasibility, which uses a uv grid de-
termined through parametric surface parameters to represent

1The authors are affiliated with the Robotics Engineering Depart-
ment, Worcester Polytechnic Institute. smmcgovern@wpi.edu,
jxiao2@wpi.edu. This work is funded by US Army Research Lab
Contract W911NF1920108.

task constraints on 3D parametric surfaces. However, it is
often difficult and not always possible to represent freeform
surfaces with parametric equations. Moreover, there is little
to no other work on uv grid generation on freeform surfaces
for constrained CPP.

For coverage path planning on a constrained surface,
some coverage path patterns (such as horizontal or vertical
raster scan patterns) are used to ensure complete and even
coverage. However, previous methods that place a coverage
path pattern on a spatial surface are either limited to certain
types of 3D surfaces (such as parametric, certain spline
surfaces) or produce unevenly spaced coverage path patterns
[2]–[5]. Whereas, evenly spaced coverage path patterns are
necessary for optimal application of task requirements (e.g.,
even layer thickness) [13].

In this paper, we introduce a novel method to generate an
evenly spaced 2D uv grid directly on 3D freeform surfaces
represented as 3D polygon meshes. The uv grid contains
cells to facilitate derivation of task constraint equations for
coverage feasibility checking and makes it possible to place
evenly spaced coverage path patterns on a 3D freeform sur-
face. We derive geometric task constraint equations directly
from 3D polygon meshes of freeform surfaces and convert
generated constrained coverage paths from the uv grid onto
3D freeform surfaces using polygon mesh topology. Surfaces
that are considered in this paper are found abundantly in
industrial applications.

The rest of the paper is as follows. In Section II, we
introduce notations and assumptions. We describe the method
in Section III. We present implementation, testing results and
discussions in Section IV and conclusions in Section V.

II. ASSUMPTIONS AND NOTATIONS

The physical surface of an object can be scanned using
modern 3D scanning technology and approximated with a 3D
polygon mesh, which is the most common way to represent
a general surface when there is no other more precise model.
We consider surfaces represented as 3D polygon meshes.

Let C be a planar, non self-intersecting, freeform curve. In
this paper, we consider three types of 3D freeform surfaces
created from C (see Fig. 1, which cover many surfaces in
real world):

• Surface of translation (SoT): translation of C, along
one axis.

• Surface of rotation (SoR): rotation of C, about one
axis.

• Surface of translation(s) and rotation(s) (SoTR):
combinations of SoTs and SoRs from a single C, such



Fig. 1: Illustrations of 3D freeform surfaces (embedded polygon meshes). Curve C0 for each definition is highlighted in
yellow. (a) Freeform surface of translation (green arrow is direction of translation). (b) Freeform surface of rotation. (c)
Freeform surface of rotation and translation.

that all rotation axes of C are parallel and all translation
axes of C are on a plane normal to the rotation axes.
The connecting curve between an SoT and an SoR sub-
surfaces remains C.

We assume that the axes for the above surfaces and curve
C can be known or approximated from the input of a
human operator. Note that the above surface types share an
important property that curve C remains the same along each
axis of translation or about each axis of rotation. For an
SoTR surface, the surface can be a continuous combination
of translations and rotations of curve C which may occur
simultaneously, as long as the rotation axis remains in the
same direction, and the translation axis is always orthogonal
to the rotation axis.

III. METHODOLOGY

We first describe our method to generate a 2D surface rep-
resentation (a uv grid) for each freeform surface type defined
above. We then discuss our method for deriving surface task
constraints using the polygon mesh in the Cartesian space,
which are used to inform on coverage feasibility checking.
If a coverage path is feasible for the surface, we generate
a commonly used coverage path pattern on the uv grid and
convert it to Cartesian space onto the 3D freeform surface.

A. Generating uv Grid for 3D Freeform Surfaces

A uv grid that is evenly spaced on the 2D uv space may
not result in an evenly spaced grid when it is projected to
a 3D freeform surface, as illustrated in Fig. 2(a), and it is
not trivial to find a uv grid that remains evenly spaced when
projected to the 3D freeform surface. For a 3D freeform
surface of one of the three types defined earlier, our idea is to
let one of the parameters, say v, be a curve length parameter
along the freeform curve C to achieve even spacing of the
freeform surface along C, as illustrated in Fig. 2(b). In the
following, we define and generate the uv space for each type
of the freeform surfaces in detail, utilizing this idea.

1) Surfaces of Translation (SoT): A coordinate frame is
attached to the SoT such that the z-axis is along the direction
of translation, see Fig. 1(a). Let C0 be the curve C on the
xy plane at the beginning of translation. Let (xi, yi, zi) be

(a) Discretization along an axis re-
sults in uneven spacing on curve C.

(b) Even discretization of curve C
with v as a length parameter.

Fig. 2: Illustration of uneven discretization along C (a) and
even discretization along C (b).

.

the local coordinates of the ith triangle vertex on the curve
C0 or intersection point of a triangle edge with C0, i =
0, ...,m. For the ith point, we can compute the corresponding
ui coordinate in uv:

ui = z0 = 0 (1)

Let ∆xi = xi−xi−1 and ∆yi = yi−yi−1. We can compute
vi by initializing v0 = 0 and:

vi = vi−1 +
√

∆x2
i +∆y2i , (2)

for i = 1, ...,m, thus:

vi =

i∑
j=1

√
∆x2

j +∆y2j (3)

Now, by incrementing z from z0 to z1, z2, ..., zn, we can
obtain corresponding C0, C1, ..., Cn, which are the same
curve as C but at different z coordinates.

2) Surfaces of Rotation (SoR): A coordinate frame is
attached to the SoR such that the z-axis is along the axis of
rotation, see Fig. 1(b). We denote the angle of rotation as ϕ
and radius (i.e. vertex distance from axis of rotation) as r(z),
which is an unknown function of z due to the freeform curve
C. Let C0 indicate the curve C on the plane of ϕ = ϕ0.



Let (xi, yi, zi) be the local coordinates of the ith triangle
vertex on the curve C0 or intersection point of the triangle
edge with C0, for i = 0, ...,m. For the ith point, we
compute ϕi and r(zi). Let u = r(z) · ϕ, where u is in
[ϕminrmin, ϕmaxrmax], with the range determined by the
size of the surface. We can compute:

ui = r(zi) · ϕi. (4)

Let ∆zi = zi − zi−1 and ∆ri = ri − ri−1. We can compute
vi by initializing v0 = 0 and:

vi = vi−1 +
√
∆z2i +∆r2i , (5)

for i = 1, . . . , m, thus:

vi =

i∑
j=1

√
∆z2j +∆r2j (6)

Now, by incrementing ϕ from ϕ0 to ϕ1, ϕ2, ..., ϕn, we can
obtain corresponding C0, C1, ..., Cn, which are the same
curve as C but correspond to different ϕ values.

3) Surfaces of Translation and Rotation (SoTR): Denote
the curve C at one edge of the SoTR as C0. A coordinate
frame is attached to the SoTR such that curve C0 lies on the
plane created by the yz-axes, all rotation axes are parallel
to the z-axis, and all translation axes are orthogonal to the
z-axis, see Fig. 1(c). We can create uv coordinates across
the surface using the following method.

The SoTR surface and the xy plane intersects at curve
U , which intersects C0 at point p0. Let (xi, yi, 0) be the
coordinates of the ith triangle vertex or edge intersection
point on U , i = 0, ..., n, starting from p0. Unlike in the case
of SoT, where the u axis is a straight-line axis, here the u
parameter is along the curve U , defined in the following way.
Let ∆xi = xi−xi−1 and ∆yi = yi−yi−1. We can compute
ui by initializing u0 = 0 (at p0) and:

ui = ui−1 +
√
∆x2

i +∆y2i , (7)

for i = 1, ..., n, thus:

ui =

i∑
k=1

√
∆x2

k +∆y2k (8)

Recall that curve C remains the same shape along the
curve U . Denote C corresponding to u1, u2, ... un and
perpendicular to U at those ui point as C0, C1, C2, ...,
Cn, such that: for the curve Ci, i = 0, ..., n. Let ∆xi,j =
xi,j − xi,j−1, ∆yi,j = yi,j − yi,j−1, ∆zj = zj − zj−1,
j = 0, ...,m. vi,j can be computed by initializing vi,0 = 0
and:

vi,j = vi,j−1 +
√
∆x2

i,j +∆y2i,j +∆z2j , (9)

for i = 1, ..., n, j = 1, ...m, thus:

vi,j =

j∑
k=1

√
∆x2

i,k +∆y2i,k +∆z2k (10)

4) Discretization of uv space: We now have (u1, v1),
(u2, v2), . . . , (um, vm), which are based on the order of
the triangle vertices or edge intersections with C, could
be sparsely distributed, and are NOT evenly distributed.
Next, let ∆u and ∆v be the desired interval between two
adjacent u values and v values respectively, such that ∆u ≤
min(ui−ui−1), and ∆v ≤ min(vi−vi−1), i = 1, ...,m. We
can interpolate between ui−1 and ui and between vi−1 and
vi to create new uv points for an even discretization of the
uv space. Note that our method used to obtain (ui−1, vi−1)
and (ui, vi) makes sure that the two points are on the same
triangle in the 3D surface mesh. Hence, linear interpolation
between the two points creates new uv points on the same
triangle too, and the 3D coordinates of the new uv points
can be determined in the Cartesian space easily.

We now achieve an evenly distributed uv grid, and each
(uj , vk) point (j = 1, ..., J and k = 1, ...,K) corresponds to
a 3D point in the surface Cartesian coordinate system.

B. Deriving Constraint Equations for 3D Freeform Surfaces

With the uv grid established, we can relate each uv cell in
the grid to a robot end-effector position and orientation cell,
called an E cell [28], taking into account the task constraints
on the end-effector position and orientation. Unlike in [28],
which maps a uv cell to 3D Cartesian coordinates using
parametric surface equations, here we need to map a uv
cell directly to the triangle mesh of the surface to obtain
its 3D Cartesian coordinates, which in turn can be used to
constrain the robot end-effector position in the corresponding
E cell. Next, the end-effector orientation in the E cell can
be determined and constrained by applying task constraints.

1) Position Constraint on the End-effector:
Let T denote the triangle a uv-cell is located on the 3D
polygon mesh, which is described by vertices with 3D
position vectors τ1, τ2, and τ3 in Cartesian space and
with 2D position vectors µ1, µ2, and µ3 in uv space. A
point inside the triangle can be checked through those vertex
positions [29].

We denote µc as the center position of the E-cell corre-
sponding to the uv-cell in uv space. Let µ12 = (µ2 −µ1),
µ23 = (µ3 − µ2), µ31 = (µ1 − µ3), µc1 = (µ1 − µc),
µc2 = (µ2 − µc), and µc3 = (µ3 − µc). The E-cell is
within the triangle face T in uv space if (illustrated in Fig.
3(a)):

0 <


µ12 × µc1

µ23 × µc2

µ31 × µc3

or 0 >


µ12 × µc1

µ23 × µc2

µ31 × µc3

(11)

Next, with the triangle face T and its corresponding vertex
positions τ1, τ2, and τ3 and A as the surface area of T , we
can compute:

A = ∥(τ2 − τ1)× (τ3 − τ1)∥/2 (12)

We denote the end-effector position in Cartesian space with
respect to the surface coordinate frame as ε. Let δε << 1



(a) Cross products (green), center
(red), and vertices µ1, µ2, and µ3

in uv space.

(b) Subtriangles β, γ, and λ created
by vertex position vectors τ1, τ2,
and τ3 and end-effector position ε
(red) in Cartesian space.

Fig. 3: Illustration for eq. 11, 12, and 13 on triangle T in
uv space and Cartesian space.

be the allowable error for ε by the positional task constraint,
cp. We now compute the area of the three subtriangles, λ,
β, and γ, created by the ε and the triangle face vertices τ1,
τ2, and τ3 (illustrated in Fig. 3(b)):

λ =
∥(τ2 − ε)× (τ3 − ε)∥

2 ·A
, β =

∥(τ3 − ε)× (τ1 − ε)∥
2 ·A

,

γ =
∥(τ1 − ε)× (τ2 − ε)∥

2 ·A
(13)

The position task constraint, cp, on the end-effector is:

1− δε ≤ λ+ β + γ ≤ 1 + δε. (14)

In some manipulator applications, the end-effector tip is not
placed directly on the surface but is offset from the surface
at a distance d, with unit normal b at each vertex position
defining the offset direction. Let bi, the unit normal of the
vertex with position τi, be the average of the normals of the
triangle faces that contain the vertex τi. Since the surface
application area of the end-effector is still constrained by
the plane created by T , we adjust eq. 13:

λ =
∥((τ2 + b2 · d)− ε)× ((τ3 + b3 · d)− ε)∥

2 ·A
,

β =
∥((τ3 + b3 · d)− ε)× ((τ1 + b1 · d)− ε)∥

2 ·A
,

γ =
∥((τ1 + b1 · d)− ε)× ((τ2 + b2 · d)− ε)∥

2 ·A

(15)

2) Orientation Constraint on the End-Effector: The
end-effector orientation is constrained by the triangle face
normal of T in Cartesian space. We denote the end-effector
approach vector as the unit approach vector a (along the z
axis of the end-effector) and the desired approach direction
to the surface as b, such that:

a = [r13, r23, r33]
T (16)

where r∗∗ is from the rotation matrix of the manipulator
transformation matrix, and b is the normal of triangle face
T created by τ1, τ2, and τ3. The orientation task constraint

(a) Vertical raster scan pattern can-
not cover the entire uv space.

(b) Horizontal raster scan pattern
can cover the entire uv space.

Fig. 4: Different coverage patterns on concave surface in uv
space.

allows a to deviate from b within a small angle α at
each position. Thus, we have the following orientation task
constraint, co:

−b · a ≤ cosα (17)

Now, with the position and orientation task constraints
cp and co on the robot end-effector expressed in terms of
3D coordinates of mesh vertices, they can be further related
to the robot manipulator constraints on link parameters and
joint variables via forward kinematics [28], which can then
be used by the method in [28] to check coverage motion
feasibility on the freeform surface.

C. Converting Coverage Pattern from uv space to Cartesian
space

Once a 3D freeform surface is checked feasible for con-
strained coverage motion given the task constraints and a
robot manipulator, a suitable coverage path pattern can be
put on the surface through the uv grid on the surface.

The 2D uv grid makes it easy to detect if a coverage
pattern is suitable. The convexity of a flattened (planar) uv
space can be used to decide whether a coverage pattern can
be applied, since for some concave planar region, certain
coverage patterns cannot provide entire surface coverage
(Fig. 4). Such a concave region can be decomposed into
convex regions [30] so that each convex region can be
covered by a desired coverage pattern.

Now, we denote H as a coverage path on the uv grid
with hi being the ith waypoint on the path such that H =
[h1,h2, ...,hm]. Every point in the uv grid that is within a
triangle face (use eq. 11) is a viable location for hi.

Algorithm 1 outlines how to create a horizontal raster
pattern H in the uv space. Let ω be the interval between two
discrete (u, v) points and ω

2 be the distance between viable
(u, v) points and polygon mesh edges. ω can be determined
based on the task constraint in an application, such as the
spray width in spray painting. We can rediscretize the uv
grid using ω. The algorithm begins setting variables u∗ and
v∗ to those of the top-left viable point coordinates in the
uv grid. The algorithm then iterates through each v to put
the coordinates of all viable points between the minimum
and maximum u values for each v into the H in the order of



Algorithm 1: Create horizontal raster H in uv space
Input uv grid; i = 0; direction = Right;
(u∗, v∗) = (umin(vmax), vmax) ∀ u, v ∈ uv grid;
while v∗ ≥ vmin do

H(i) = (u∗, v∗); i++;
if direction == Right then

direction = Left;
While u∗ < umax(v

∗) do:
u∗ = u∗ + ω ; H(i) = (u∗, v∗); i++;

else
direction = Right;
While u∗ < umin(v

∗) do:
u∗ = u∗ − ω ; H(i) = (u∗, v∗); i++;

end
H(i) = (u∗, v∗); i++;
v∗ = v∗ − ω;

end

alternating right and left scan directions. To generate vertical
raster scans, Algorithm 1 is altered by swapping u and v
coordinates values, and after the algorithm finishes, swap
the u and v coordinates for each waypoint in H.

We now have a pattern H covering a 3D freeform surface
in the uv space and need to convert the waypoints to Carte-
sian space. For each waypoint hi, we find the corresponding
triangle face T whose vertices enclose the waypoint (eq. 11).
Once a triangle face T is assigned to every waypoint hi, the
corresponding vertices µ1, µ2, and µ3 are used to compute
baycentric coordinates bu and bv:

bubv
1

=

µ2u − µ1u µ3u − µ1u µ1u

µ2v − µ1v µ3v − µ1v µ1v

0 0 1

−1

hu

hv

1

 (18)

We denote P as the coverage path in Cartesian space with
pi being the ith waypoint on the path such that P =
[p1,p2, ...,pm]. Finally, the baycentric coordinates with the
corresponding triangle face vertices in Cartesian space, τ1,
τ2, and τ3, are used to transform the waypoints hi into 3D
cartesian space, pi:.

px = τ1x + (τ2x − τ1x) · bu+ (τ3x − τ1x) · bv
py = τ1y + (τ2y − τ1y) · bu+ (τ3y − τ1y) · bv
pz = τ1z + (τ2z − τ1z) · bu+ (τ3z − τ1z) · bv

(19)

In applications where the robot end-effector position is not
located directly on the surface, an offset d needs to be applied
to each waypoint pi. The corresponding triangle face normal
b (unit vector) for each waypoint may be used to compute
new offset path P:

pi = pi + b · d (20)

IV. IMPLEMENTATION AND RESULTS

To test our method, we used Solidworks to generate
polygon meshes of a SoT, SoR, and SoTR, see Fig. 5,
containing 68, 3743, and 9200 triangle faces respectively.
The meshes were transformed into evenly spaced uv grids,
which were used for feasibility checking and generating
coverage patterns. The coverage patterns were then converted
from the uv space to Cartesian space.

(a) Polygon mesh of SoT. (b) Polygon mesh of SoR.

(c) Polygon mesh of SoTR.

Fig. 5: Polygon meshes of (a) SoT, (b) SoR, and (c) SoTR,
as shown in Fig. 1.

A. Results of uv Grid Generation and Constrained Motion
Feasibility Checking

The mesh vertices of each surface were transformed
into the uv space and corresponding triangle faces were
reconstructed in the uv space to give a 2D representation
of the polygon mesh. See Fig. 6 for resulting polygon
mesh in uv space. To check coverage feasibility, we used
a Franka Emika Panda manipulator which contains seven
revolute joints, with the joint vector q = [θ1, θ2, ..., θ7]

T and
link parameters l = [d1, d3, a4, a5, d5, a7] = [0.3, 0.3, 0.08,-
0.08, 0.3, 0.08](m). Values for the link parameters and value
ranges for the joint variables are expressed in the end-effector
positions and orientations via forward kinematics, which are
then related to the task constraints in the joint-space task
constraint equations. The end-effector orientation constraint
parameter α is set to 20◦. Equations 14 and 17 were used
as constraint equations in Alg. 2 in [28].

B. Coverage Pattern Results

We create coverage path patterns in the uv space using
an application parameter ω. Fig. 6 shows the uv grid re-
descretized using ω, the generated raster coverage pattern,



(a) uv gird on SoT with coverage pattern. (b) uv grid on SoR with coverage pattern. (c) uv grid on SoTR with coverage pattern.

Fig. 6: Generated uv grid (blue) with applied horizontal raster coverage patterns H (red) of the three freeform surfaces.

H, and surface uv polygon mesh. Fig. 7 shows the resulting
coverage patterns on the 3D freeform surfaces.

Fig. 8 shows an example result of a coverage pattern that
was generated on a cone surface using our method. This
pattern is not trivial to generate using other methods but is
easily generated and evenly spaced using our uv grid. The
vertical raster pattern is straight near the center yet spiral
on either side. This is a simple example to demonstrate
that using the uv grid generated by our method, non-trivial
coverage patterns may be produced on 3D freeform surfaces.

Recall that these patterns provide end-effector coverage
paths that are feasible to produce continuous manipulator
joint paths for successful execution of the coverage (see
Section III B and C).

C. Discussion

In the figures shown, we flattened the uv space and used
straight-line axes to represent u and v. This results in some
distortion of the polygon meshes, however, surface area
is approximately maintained using the topology of the 3D
polygon mesh.

Although we only showed the raster scan pattern in the
examples, other suitable coverage patterns can be applied
depending on the surface. For example, for the SoT example
surface, a raster scan pattern perpendicular to the one shown
can also be applied. The key point is that our generation
of the uv grid allows evenly spaced application of coverage
patterns.

Pattern waypoints can be further interpolated between uv
cells and at the turns of a raster pattern in H to produce a
coverage path P that follows the surface more smoothly.

V. CONCLUSIONS

This paper introduced a novel method for generating a uv
grid on a 3D freeform surface to facilitate coverage motion
feasibility checking and application of more evenly spaced
coverage path patterns. Our method converted polygon mesh
vertices from 3D Cartesian space to the uv space and
discretize the uv space evenly. The points in uv space

(a) Raster scan pattern on SoT. (b) Raster scan pattern on SoR.

(c) Raster scan pattern on SoTR.

Fig. 7: Raster scan coverage patterns on different surfaces.

were also mapped back to the 3D Cartesian space. Our
method further used the surface’s polygon mesh to derive
task constraint equations on a robot end-effector position and
orientation to be used during coverage feasibility checking.
Finally, coverage patterns were applied in the uv space and
converted to the Cartesian space onto the freeform surface.

The introduced methods have been implemented and tested
on example surfaces of three defined types: surface of
translation, surface of rotation, and surface of combined
translation and rotation.

Future research includes expanding the approach to more
types of complex freeform surfaces, those that do not fall
within the three categories described, and to include methods



(a) Polygon mesh of cone surface
(SoR) in Cartesian space.

(b) Spiral 3D raster scan coverage
pattern on cone surface (SoR).

(c) Polygon mesh of cone surface (SoR) with vertical raster
scan coverage pattern.

Fig. 8: Spiral coverage pattern results on cone surface (SoR).

of human interaction to divide an arbitrary freeform surface
into well-defined surface types.

REFERENCES

[1] C. Chen, S. Gojon, Y. Xie, S. Yin, C. Verdy, Z. Ren, H. Liao, S. Deng,
“A novel spiral trajectory for damage component recovery with cold
spray,” Surface and Coatings Technology 309, vol. 309, pp. 719-728,
2017.

[2] W. Chen, J. Liu, Y. Tang, H. Ge, “Automatic Spray Trajectory
Optimization on Bezier Surface,” Electronics, vol.8, no. 2, pp. 168-
184, 2019.

[3] M. Andulkar, S. Chiddarwar,“Incremental approach for trajectory
generation of spray painting robot,” Industrial Robot: An International
Journal, vol. 42, no. 3, pp.228-241, 2015.

[4] H.Chen, N.Xi, W. Sheng, M. Song, Y. Chen, “CAD-based automated
robot trajectory planning for spray painting of free-form surfaces,”
Industrial Robot: An International Journal, vol. 29, no.5, pp. 426-
433, 2002.

[5] G. Teodora, G. Florin, M. Gheorghe, “Virtual Planning of Robot
Trajectories for Spray Painting Applications,” Applied Mechanics and
Materials, vol. 658, pp. 632-637, 2014.

[6] G.Trigatti, P.Boscariol, L. Scalera, D. Pillan, A. Gasparetto, “A
new path-constrained trajectory planning strategy for spray painting
robots,” The International Journal of Advanced Manufacturing Tech-
nology, vol. 98, pp. 2287-2296, 2018.

[7] H.Chen, T. Fuhlbrigge, X. Li, “A review of CAD-based robot path
planning for spray painting,” Industrial Robot: An International Jour-
nal, vol. 36, no. 1, pp. 45-50, 2009.

[8] G. Liu, X. Sun, Y. Liu, C. Li, X. Zhang, “Automatic spraying motion
planning of a shotcrete manipulator,” Intelligent Service Robotics
(2021), https://doi.org/10.1007/s11370-021-00348-9.

[9] X. Ye, L. Lui, L. Hou, Y. Duan, Y. Wu, “Laser Ablation Manipulator
Coverage Path Planning Method Based on an Improved Ant Colony
Algorithm,” Applied Sciences, vol.10, no. 23, pp.8641, 2020.

[10] Chen, C.H.; Song, K.T, “Complete coverage motion control of a
cleaning robot using infrared sensors,” in Proc. IEEE International
Conference on Mechatronics (ICM), Taipei, Taiwan, pp. 543–548, July
2005.

[11] T. Lee, S. Baek, Y. Choi, S. Oh, “Smooth coverage path planning
and control of mobile robots based on high-resolution grid map
representation,” Robotics and Autonomous Systems, vol. 59, no. 10,
pp. 801-812, 2011.

[12] J.Song, S. Gupta,“ε*: An Online Coverage Path Planning Algorithm,”
IEEE Transactions on Robotics, vol. 34, no.2, pp. 526-533, 2018.

[13] E. Galceran, M. Carreras, “A survey on coverage path planning for
robotics,” Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1258-
1276, 2013.

[14] C. Tan, R. Mohd-mokhtar, M. Arshad, “A Comprehensive Review of
Coverage Path Planning in Robotics Using Classical and Heuristic
Algorithms,” IEEE Access, vol. 9, pp. 119310-119342, 2021.

[15] K. Schid, H. Hirshmuller, A. Domel, ”View Planning for multi-stereo
3D Reconstruction using an autonomous multicopter,” Journal of
Intelligent and Robotic Systems, vol. 65, no. 1-4, pp. 309-323, 2012.

[16] J. Mooney, E. Johnson, ”A Comparison of Automatic Nap-of-the-Earth
Guidance Strategies for Helicopters,” Journal of Field Robotics, Vol.
33, no. 1, pp. 1-17, 2014.

[17] M. Na, J. Hyun, J. Song, ”CAD-based View Planning with Globally
Consistent Registration for Robotic Inspection,”International Journal
of Precision Engineering and Manufacturing, vol. 22, no. 8, pp. 1391-
1399, 2021.

[18] J. Jin, L. Tang, “Coverage Path Planning on Three-Dimensional
Terrain for Arable Farming,” Journal of Field Robotics, vol. 22,
pp.424-440, 2011.

[19] L. Santos, F. Santos,S. Pires, E.J. Pires, A. Valente, P. Costa, “Planning
for ground robots in agriculture: A short review,” in Proc. of the 2020
IEEE International Conference on Autonomous Robot Systems and
Competitions (ICARSC), Ponta Delgada, Portugal, pp. 61–66, April
2020.

[20] P. Atkar, H. Choset, A. Rizzi, E. Acar, “Exact Cellular Decompo-
sition of Closed Orientable Surfaces Embedded in R,” International
Conference on Robotics and Automation, vol. 1, pp. 699 - 704, 2001.

[21] T. Yang, J. Miro, Q. Lai, “Cellular Decomposition for Nonrepetitive
Coverage Task with Minimum Discontinuities,” in IEEE/ASME Trans-
actions on Mechatronics, vol. 25, No. 4, pp. 1698-1708, August 2020.

[22] P. Atkar, H. Choset, A. Rizzi, “Towards Optimal Coverage of 2-
Dimensional Surfaces Embedded in R: Choice of start Curve,” in Proc.
International Conference on Intelligent Robotics and Systems, vol. 4,
pp. 3581-3587, Oct. 2003.

[23] Z. Kingston, M. Moll, and L. E. Kavraki, “Decoupling constraints
from sampling-based planners,” in Proc. Int. Symp. of Robot. Res.,
vol. 38, no. 10-11, pp. 1151-1178, 2017.

[24] M. Stilman, “Task constrained motion planning in robot joint space,”
in Proc. IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 3074–3081, 2007.

[25] D. Berenson, S. S. Srinivasa, D. Ferguson, and J. J. Kuffner, “Manip-
ulation planning on constraint manifolds,” Proc. IEEE International
Conference on Robotics and Automation, IEEE, pp. 625–632, 2009.

[26] L. Jaillet and J. M. Porta, “Path planning under kinematic constraints
by rapidly exploring manifolds,” IEEE Transactions on Robotics, vol.
29, no. 1, pp. 105–117, 2013.

[27] T. McMahon, S. Thomas, and N. M. Amato, “Sampling-based motion
planning with reachable volumes: Theoretical foundations,” in Proc.
IEEE International Conference on Robotics and Automation, pp.
6514–6521, 2014.

[28] S. McGovern, J. Xiao, “Efficient Feasibility Checking on Continuous
Coverage Motion for Constrained Manipulation,” IEEE 17th Interna-
tional Conference on Automation Science and Engineering (2021)

[29] E. Angel, D. Shreiner, Interactive Computer Graphics: A Top-down
Approach with Shader-Based OPENGL 6th edition, Addison-Wesley
2012.

[30] L Nielson, I. Sung, P. Nielson, “Convex Decomposition for a Coverage
Path Planning for Autonomous Vehicles: Interior Extension of Edges,”
Sensors (Basel, Switzerland), vol. 19, iss.19, 2019.


