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Abstract

Emphatic temporal difference (ETD) learning [26] is a successful method to conduct the off-policy
value function evaluation with function approximation. Although ETD has been shown to converge
asymptotically to a desirable value function, it is well-known that ETD often encounters a large variance
so that its sample complexity can increase exponentially fast with the number of iterations. In this work,
we propose a new ETD method, called PER-ETD (i.e., PEriodically Restarted-ETD), which restarts
and updates the follow-on trace only for a finite period for each iteration of the evaluation parameter.
Further, PER-ETD features a design of the logarithmical increase of the restart period with the number
of iterations, which guarantees the best trade-off between the variance and bias and keeps both vanishing
sublinearly. We show that PER-ETD converges to the same desirable fixed point as ETD, but improves
the exponential sample complexity of ETD to be polynomials. Our experiments validate the superior
performance of PER-ETD and its advantage over ETD.

1 Introduction

As a major value function evaluation method, temporal difference (TD) learning [23, 6] has been widely
used in various planning problems in reinforcement learning. Although TD learning performs successfully
in the on-policy settings, where an agent can interact with environments under the target policy, it can
perform poorly or even diverge under the off-policy settings when the agent only has access to data sampled
by a behavior policy [1, 27, 20]. To address such an issue, the gradient temporal-difference (GTD) [25] and
least-squares temporal difference (LSTD) [32] algorithms have been proposed, which have been shown to
converge in the off-policy settings. However, since GTD and LSTD consider an objective function based
on the behavior policy, which adjusts only the distribution mismatch of the action and does not adjust the
distribution mismatch of the state, their converging points can be largely biased from the true value function
due to the distribution mismatch between the target and behavior policies, even when the express power of
the function approximation class is arbitrarily large [16].
In order to provide a more accurate evaluation, [26] proposed the emphatic temporal difference (ETD)
algorithm, which introduces the follow-on trace to address the distribution mismatch issue and thus adjusts
both state and action distribution mismatch. The stability of ETD was then shown in [26, 20], and the
asymptotic convergence guarantee for ETD was established in [33], it has also achieved great success in
many tasks [8, 21]. However, although ETD can address the distribution mismatch issue to yield a more
accurate evaluation, it often suffers from very large variance error due to the follow-on trace estimation over
a long or infinite time horizon [10]. Consequently, the convergence of ETD can be unstable. It can be shown
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that the variance of ETD can grow exponentially fast as the number of iterations grow so that ETD requires
exponentially large number of samples to converge. [10] proposed an ETD method to keep the follow-on
trace bounded but at the cost of a possibly large bias error. This thus poses the following intriguing question:
Can we design a new ETD method, which overcomes its large variance without introducing a large bias error,
and improves its exponential sample complexity to be polynomial at the same time?
In this work, we provide an affirmative answer.

1.1 Main Contributions

We propose a novel ETD approach, called PER-ETD (i.e., PEriodically Restarted-ETD), in which for each
update of the value function parameter we restart the follow-on trace iteration and update it only for b
times (where we call b as the period length). Such a periodic restart effectively reduces the variance of
the follow-on trace. More importantly, with the design of the period length b to increase logarithmically
with the number of iterations, PER-ETD attains the polynomial rather than exponential sample complexity
required by ETD.
We provide the theoretical guarantee of the sample efficiency of PER-ETD via the finite-time analysis. We
show that PER-ETD (both PER-ETD(0) and PER-ETD(λ)) converges to the same fixed points of ETD(0)
and ETD(λ), respectively, but with only polynomial sample complexity (whereas ETD takes exponential
sample complexity). Our analysis features the following key insights. (a) The period length b plays the role
of trading off between the variance (of the follow-on trace) and bias error (with respect to the fixed point
of ETD), and its optimal choice of logarithmical increase with the number of iterations achieves the best
tradeoff and keeps both errors vanishing sublinearly. (b) Our analysis captures how the mismatch between
the behavior and target policies affects the convergence rate of PER-ETD. Interestingly, the mismatch
level determines a phase-transition phenomenon of PER-ETD: as long as the mismatch is below a certain
threshold, then PER-ETD achieves the same convergence rate as the on-policy TD algorithm; and if the
mismatch is above the threshold, the converge rate of PER-ETD gradually decays as the level of mismatch
increases.
Experimentally, we demonstrate that PER-ETD converges in the case that neither TD nor ETD converges.
Further, our experiments provide the following two interesting observations. (a) There does exist a choice
of the period length for PER-ETD, which attains the best tradeoff between the variance and bias errors.
Below such a choice, the bias error is large so that evaluation is not accurate, and above it the variance error
is large so that the convergence is unstable. (b) Under a small period length b, it is not always the case that
PER-ETD(λ) with λ = 1 attains the smallest error with respect to the ground truth value function. The
best λ depends on the geometry of the locations of fixed points of PER-ETD(λ) for 0 ≤ λ ≤ 1, which is
determined by chosen features.

1.2 Related Works

TD learning and GTD: The asymptotic convergence of TD learning was established by [23, 13, 7, 27],
and its non-asymptotic convergence rate was further characterized recently in [4, 2, 17, 3, 15, 11, 22]. The
gradient temporal-difference (GTD) was proposed in [25] for off-policy evaluation and was shown to converge
asymptotically. Then, [5, 9, 29, 31, 30] provided the finite-time analysis of GTD and its variants.
Emphatic Temporal Difference (ETD) Learning: The ETD approach was originally proposed in the
seminal work [26], which introduced the follow-on trace to overcome the distribution mismatch between
the behavior and target policies. [33] provided the asymptotic convergence guarantee for ETD. [10] showed
that the variance of the follow-on trace may be unbounded. They further proposed an ETD method with
a variable decay rate to keep the follow-on trace bounded but at the cost of a possibly large bias error.
Our approach is different and keeps both the variance and bias vanishing sublinearly with the number of
iterations. [12] developed a new policy gradient theorem, where the emphatic weight is used to correct the
distribution shift. [36] provided a new variant of ETD, where the emphatic weights are estimated through
function approximation. [28, 14] studied ETD with deep neural function class.
Comparison to concurrent work: During our preparation of this paper, a concurrent work [35] was posted
on arXiv, and proposed a truncated ETD (which we refer to as T-ETD for short here), which truncates the
update of the follow-on trace to reduce the variance of ETD. While T-ETD and our PER-ETD share a similar
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design idea, there are several critical differences between our work from [35]. (a) Our PER-ETD features a
design of the logarithmical increase of the restart period with the number of iterations, which guarantees the
convergence to the original fixed point of ETD, with both the variance and bias errors vanishing sublinearly.
However, T-ETD is guaranteed to converge only to a truncation-length-dependent fixed point, where the
convergence is obtained by treating the truncation length as a constant. A careful review of the convergence
proof indicates that the variance term scales exponentially fast with the truncation length, and hence the
polynomial efficiency is not guaranteed as the truncation length becomes large. (b) Our convergence rate for
PER-ETD does not depend on the cardinality of the state space and has only polynomial dependence on the
mismatch parameter of the behavior and target policies. However, the convergence rate in [35] scales with
the cardinality of the state space, and increases exponentially fast with the mismatch parameter of behavior
and target policies. (c) This paper further studies PER-ETD(λ) and the impact of λ on the converge rate and
variance and bias errors, whereas [35] considers further the application of T-ETD to the control problem.

2 Background and Preliminaries

2.1 Markov Decision Process

We consider the infinite-horizon Markov decision process (MDP) defined by the five tuple (S,A, r,P, γ).
Here, S and A denote the state and action spaces respectively, which are both assumed to be finite sets,
r : S × A → R denotes the reward function, P : S × A → ∆(S) denotes the transition kernel, where ∆(S)
denotes the probability simplex over the state space S, and γ ∈ (0, 1) is the discount factor.
A policy π : S → ∆(A) of an agent maps from the state space to the probability simplex over the action
space A, i.e., π(a|s) represents the probability of taking the action a under the state s. At any time t, given
that the system is at the state st, the agent takes an action at with the probability π(at|st), and receives a
reward r(st, at). The system then takes a transition to the next state st+1 at time t+ 1 with the probability
P(st+1|st, at).
For a given policy π, we define the value function corresponding to an initial state s0 = s ∈ S as Vπ(s) =
E [
∑∞
t=0 γ

tr(st, at)|s0 = s, π]. Then the value function over the state space can be expressed as a vector

Vπ = (Vπ(1), Vπ(2), . . . , Vπ(|S|))> ∈ R|S|. Here, Vπ is a deterministic function of the policy π. We use
capitalized characters to be consistent with the literature.
When the state space is large, we approximate the value function Vπ via a linear function class as Vθ(s) =
φ>(s)θ, where φ(s) ∈ Rd denotes the feature vector, and θ ∈ Rd denotes the parameter vector to be learned.
We further let Φ = [φ(1), φ(2), . . . , φ(|S|)]> denote the feature matrix, and then Vθ = Φθ. We assume that
the feature matrix Φ has linearly independent columns and each feature vector has bounded `2-norm, i.e.,
‖φ(s)‖2 ≤ Bφ for all s ∈ S.

2.2 Temporal Difference (TD) Learning for On-policy Evaluation

In order to evaluate the value function for a given target policy π (i.e., find the linear function approximation
parameter θ), the temporal difference (TD) learning can be employed based on a sampling trajectory, which
takes the following update rule at each time t:

θt+1 = θt + ηt
(
r(st, at) + γθ>t φ(st+1)− θ>t φ(st)

)
φ(st), (1)

where ηt is the stepsize at time t. The main idea here is to follow the Bellman operation update to approach
its fixed point, and the above sampled version update can be viewed as the so-called semi-gradient descent
update. If the trajectory is sampled by the target policy π, then the above TD algorithm can be shown to
converge to the fixed point solution, where the convergence is guaranteed by the negative definiteness of the
so-called key matrix A := limt→∞ E

[
(γφ(st + 1)− φ(st))φ

>(st)
]
.

2.3 Emphatic TD (ETD) Learning for Off-policy Evaluation

Consider the off-policy setting, where the goal is still to evaluate the value function for a given target policy
π, but the agent has access only to trajectories sampled under a behavior policy µ. Namely, at each time t,
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the probability of taking an action at given st is µ(at|st). Let dµ denote the stationary distribution of the
Markov chain induced by the behavior policy µ, i.e., dµ satisfies d>µ = d>µPπ. We assume that dµ(s) > 0
for all states. The mismatch between the target and behavior policies can be addressed by incorporating

the importance sampling factor ρ(s, a) := π(a|s)
µ(a|s) into eq. (1) to adjust the TD learning update direction.

However, with such modification, the key matrix A may not be negative definite so that the algorithm is no
longer guaranteed to converge.
In order to address this divergence issue, the emphatic temporal difference (ETD) algorithm has been
proposed by [26], which takes the following update

θt+1 = θt + ηtρ(st, at)Ft
(
r(st, at) + γθ>t φ(st+1)− θ>t φ(st)

)
φ(st). (2)

In eq. (2), in addition to the importance sampling factor ρ, a follow-on trace coefficient Ft is introduced as
a calibration factor, which is updated as

Ft = γρ(st−1, at−1)Ft−1 + 1, (3)

with initialization F0 = 1. With such a follow-on trace factor, the key matrix becomes negative definite, and
ETD has been shown to converge asymptotically in [33] to the fixed point

θ∗ =
(
Φ>F (I − γPπ)Φ

)−1
Φ>Frπ, (4)

where F = diag(f(1), f(2), . . . , f(|S|)) and f(i) = dµ(i) limt→∞ E [Ft|st = i].
Similarly, the ETD(λ) algorithm can be further derived, which has the following update

θt+1 = θt + ηtρ(st, at)
(
r(st, at) + γθ>t φ(st+1)− θ>t φ(st)

)
et,

where et is updated as et = γλρ(st−1, at−1)et−1 + Mtφ(st) and Mt = λ + (1 − λ)Ft, where M0 = 1 and
e0 = φ(s0). It has been shown that with a diminishing stepsize [33], ETD(λ) converges to the fixed point given

by θ∗λ =
(
Φ>M(I − γλPπ)−1(I − γPπ)Φθ

)−1
Φ>M(I−γλPπ)−1rπ, where M = diag(m(1),m(2), . . . ,m(|S|))

and m(i) = dµ(i) limt→∞ E [Mt|st = i].

2.4 Notations

For the simplicity of expression, we adopt the following shorthand notations. For a fixed integer b, let

sτt := st(b+1)+τ , aτt := at(b+1)+τ , ρτt =
π(aτt |s

τ
t )

µ(aτt |sτt ) and φτt = φ(sτt ). We also define the filtration Ft =

σ
(
s0, a0, s1, a1, . . . , st(b+1)+b, at(b+1)+b, st(b+1)+b+1

)
. Further, let rπ ∈ R|S|, where rπ(s) =

∑
a∈A r(s, a)π(a|s).

Let Pπ ∈ R|S|×|S|, where Pπ(s′|s) =
∑
a∈A π(a|s)P(s′|s, a). For a matrix M ∈ RN×N , M(s,·) denotes its s-th

row and M(·,s) denotes its s-th column. We define Bφ := maxs ‖φ(s)‖2 as the upper bound on the feature

vectors, and define ρmax := maxs,a
π(a|s)
µ(a|s) as the maximum of the distribution mismatch over all state-action

pairs.

3 Proposed PER-ETD Algorithms

Drawbacks of ETD: In the original design of ETD [26] described in Section 2.3, the follow-on trace
coefficient Ft is updated throughout the execution of the algorithm. As a result, its variance can increase
exponentially with the number of iterations, which causes the algorithm to be unstable and diverge, as
observed in [10] (also see our experiment in Section 5).
In order to overcome the divergence issue of ETD, we propose to PEriodically Restart the follow-on trace
update for ETD, which we call as the PER-ETD algorithm (see Algorithm 1). At iteration t, PER-ETD
reinitiates the follow-on trace F and update it for b iterations to obtain an estimate F bt , where we call b as
the period length. The emphatic update operator at t is then given by

T̂t(θ) = F bt ρ
b
tφ
b
t(φ

b
t − γφb+1

t )>θ − F bt ρbtφbtrbt , (5)
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Algorithm 1 PER-ETD(0)

1: Input: Parameters T , b, and ηt.
2: Initialize: θ0 = 0.
3: for t = 0, 1, ..., T do
4: F update: F τ+1

t = γρτt F
τ
t + 1, where τ = 0, 1, . . . , b− 1 and F 0

t = 1;
5: θ update: θt+1 = ΠΘ

(
θt + ηtF

b
t ρ
b
t(r

b
t + γθ>t φ

b+1
t − θ>t φbt)φbt

)
6: end for

and PER-ETD updates the value function parameter θt as θt+1 = ΠΘ

(
θt − ηtT̂t(θt)

)
, where the pro-

jection onto an bounded closed convex set Θ helps to stabilize the algorithm. It can be shown that
limb→∞ E[T̂t(θ)|Ft−1] = T (θ) where T (θ) :=

(
Φ>F (I − γPπ)Φ

)
θ − Φ>Frπ. The fixed point of the op-

erator T (θ) is θ∗ defined in eq. (4), which is exactly the fixed point of original ETD.

Definition 1 (Optimal point and ε-accurate convergence). We call the unique fixed point θ∗ of T (θ) as the
optimal point (which is the same as the fixed point of ETD). The algorithm attains an ε-accurate optimal
point if its output θT satisfies ‖θT − θ∗‖22 ≤ ε.

The goal of PER-ETD is to find the original optimal point θ∗ of ETD, which is independent from the period
length b. Our analysis will provide a guidance to choose the period length b in order for PER-ETD to keep
both the variance and bias errors below the target ε-accuracy with polynomial sample efficiency.

Algorithm 2 PER-ETD(λ)

1: Input: Parameters T , b, and ηt.
2: Initialize: θ0 = 0.
3: for t = 0, 1, . . . , T do
4: Set F 0

t = M0
t = 1 and e0

t = φ0
t

5: for τ = 1, . . . , b do
6: F τt = ρτ−1

t γF τ−1
t + 1, Mτ

t = λ+ (1− λ)F τt , eτt = γλρτ−1
t eτ−1

t +Mτ
t φ

τ
t

7: end for
8: θ update: θt+1 = ΠΘ

(
θt + ηtρ

b
t

(
rbt + γθ>t φ

b+1
t − θ>t φbt

)
ebt
)

9: end for

We then extend PER-ETD(0) to PER-ETD(λ) (see Algorithm 2), which incorporates the eligible trace.
Specifically, at each iteration t, PER-ETD(λ) reinitiates the follow-on trace Ft and updates it together with
Mt and the eligible trace et for b iterations to obtain an estimate ebt . Then the emphatic update operator at
t is given by

T̂ λt (θ) = ρbte
b
t

(
φbt − γφb+1

t

)>
θ − ρbtrbtebt , (6)

and the value function parameter θt is updated as θt+1 = ΠΘ

(
θt − ηtT̂ λt (θt)

)
. It can be shown that

limb→∞ E
[
T̂ λt (θ)

∣∣∣Ft−1

]
= T λ(θ), where T λ(θ) = Φ>M(I − γλPπ)−1(I − γPπ)Φθ − Φ>M(I − γλPπ)−1rπ,

which takes a unique fixed point θ∗λ as the original ETD(λ). The optimal point and the ε-accurate convergence
can be defined in the same fashion as in Definition 1. It has been shown in [10] that θ∗λ is exactly the
orthogonal projection of Vπ to the function space when λ = 1, and thus is the optimal approximation to the
value function.

4 Finite-Time Analysis of PER-ETD Algorithms

4.1 Technical Assumptions

We take the following standard assumptions for analyzing the TD-type algorithms in the literature [14, 35,
33].
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Assumption 1 (Coverage of behavior policy). For all s ∈ S and a ∈ A, the behavior policy µ satisfies
µ(a|s) > 0 as long as π(a|s) > 0.

Assumption 2. The Markov chain induced by the behavior policy µ is irreducible and recurrent.

The following lemma on the geometric ergodicity has been established.

Lemma 1 (Geometric ergodicity). [19, Thm. 4.9] Suppose Assumption 2 holds. Then the Markov chain
induced by the behavior policy µ has a unique stationary distribution dµ over the state space S. Moreover,
the Markov chain is uniformly geometric ergodic, i.e., there exist constants CM ≥ 0 and 0 < χ < 1 such
that for every initial state s0 ∈ S, the state distribution dµ,t(s) = P (st = s|s0) after t transitions satisfies
‖dµ,t − dµ‖1 ≤ CMχt.

4.2 Finite-time Analysis of PER-ETD(0)

In PER-ETD(0), the update of the value function parameter is fully determined by the empirical emphatic

operator T̂t(θ) defined in eq. (5). Thus, we first characterize the bias and variance errors of T̂t(θ), which
serve the central role in establishing the convergence rate for PER-ETD(0).

Proposition 1 (Bias bound). Suppose Assumptions 1 and 2 hold. Then we have

E
[∥∥∥T (θt)− E

[
T̂t(θt)

∣∣∣Ft−1

]∥∥∥
2

]
≤ Cb (Bφ‖θt − θ∗‖2 + εapprox) ξb,

where εapprox = ‖Φθ∗ − Vπ‖∞ is the approximation error of the fixed point, ξ = max {γ, χ} < 1, Bφ =
maxs ‖φ(s)‖2, and Cb > 0 is a constant whose exact form can be found in the proof.

Proposition 1 characterizes the conditional expectation of the bias error of the empirical emphatic operator
T̂t(θ). Since ξ = max {γ, χ} < 1, such a bias error decays exponentially fast as b increases.

Proposition 2 (Variance bound). Suppose Assumptions 1 and 2 hold. Then we have

E
[∥∥∥T̂t(θt)∥∥∥2

2

∣∣∣∣Ft−1

]
≤ σ2, where σ2 =


O(1), if γ2ρmax < 1,

O(b), if γ2ρmax = 1,

O
(
(γ2ρmax)b

)
, if γ2ρmax > 1,

(7)

where O(·) is with respect to the scaling of b, and ρmax = maxs,a
π(a|s)
µ(a|s) .

Proposition 2 captures the variance bound of the empirical emphatic operator. It can be seen that if the
distribution mismatch is large (i.e., γ2ρmax > 1), the variance bound grows exponentially large as b increases,
which is consistent with the finding in [10]. However, as we show below, as long as b is controlled to grow only
logarithmically with the number of iterations, such a variance error will decay sublinearly with the number
of iterations. At the same time, the bias error can also be controlled to decay sublinearly, so that the overall
convergence of PER-ETD can be guaranteed with polynomial sample complexity efficiency.

Theorem 1. Suppose Assumptions 1 and 2 hold. Consider PER-ETD(0) specified in Algorithm 1. Let
the stepsize ηt = O

(
1
t

)
and suppose the period length b and the projection set Θ are properly chosen (see

Appendix D.3 for the precise conditions). Then the output θT of PER-ETD(0) falls into the following two
cases.

(a) If γ2ρmax ≤ 1, then E
[
‖θT − θ∗‖22

]
≤ Õ

(
1
T

)
.

(b) If γ2ρmax > 1, then E
[
‖θT − θ∗‖22

]
≤ O

(
1
Ta

)
, where a = 1/(log1/ξ(γ

2ρmax) + 1) < 1.

Thus, PER-ETD(0) attains an ε-accurate solution with Õ
(

1
ε

)
samples if γ2ρmax ≤ 1, and with Õ

(
1

ε1/a

)
samples if γ2ρmax > 1.
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Theorem 1 captures how the convergence rate depends on the mismatch between the behavior and target
policies via the parameter ρmax (where ρmax ≥ 1). (a) If γ2ρmax ≤ 1, i.e., the mismatch is less than a
threshold, then PER-ETD(0) converges at the rate of Õ

(
1
T

)
, which is the same as that of on-policy TD

learning [2]. This result indicates that even under a mild mismatch 1 < ρmax ≤ 1/γ2, PER-ETD achieves
the same convergence rate as on-policy TD learning. (b) If γ2ρmax ≥ 1, i.e., the mismatch is above the
threshold, then PER-ETD(0) converges at a slower rate of Õ

(
1
Ta

)
because a < 1. Further, as the mismatch

parameter ρmax gets larger, the converge becomes slower, because a becomes smaller.
Bias and variance tradeoff: Theorem 1 also indicates that although PER-ETD(0) updates the follow-on
trace only over a finite period length b, it still converges to the optimal fixed point θ∗. This benefits from the
proper choice of the period length, which achieves the best bias and variance tradeoff as we explain as follows.
The proof of Theorem 1 shows that the output θT of PER-ETD(0) satisfies the following convergence rate:

E
[
‖θT − θ∗‖22

]
≤ O

(
‖θ0−θ∗‖22

T 2

)
+O

(
σ2

T

)
︸ ︷︷ ︸
variance

+O
(
ξ2b

T

)
+O

(
ξb
)

︸ ︷︷ ︸
bias

. (8)

If γ2ρmax ≤ 1, then σ2 in the variance term in eq. (8) satisfies σ2 ≤ O(b) as given in eq. (7), which increases

at most linearly fast with b. Then we set b = O
(

log T
log(1/ξ)

)
so that both the variance and the bias terms in

eq. (8) achieve the same order of O
(

1
T

)
, which dominates the overall convergence.

If γ2ρmax > 1, then σ2 in the variance term in eq. (8) satisfies σ2 = O
(
(γ2ρmax)b

)
as given in eq. (7), Now,

we need to set b as b = O
(

log(T )
log(γ2ρmax)+log(1/ξ)

)
, where the increase with log T has a smaller coefficient than

the previous case, so that both the variance and the bias terms in eq. (8) achieve the same order of O
(

1
Ta

)
.

Such a choice of b balances the exponentially increasing variance and exponentially decaying bias to achieve
the same rate.

4.3 Finite-time Analysis of PER-ETD(λ)

In PER-ETD(λ), the update of the value function parameter is determined by the empirical emphatic

operator T̂ λt (θ) defined in eq. (6). Thus, we first obtain the bias and variance errors of T̂ λt (θ), which
facilitate the analysis of the convergence rate for PER-ETD(λ).

Proposition 3. Suppose Assumptions 1 and 2 hold. Then we have∥∥∥E [T̂ λt (θt)
∣∣∣Ft−1

]
− T λ(θt)

∥∥∥
2
≤ Cb,λ (Bφ‖θt − θ∗λ‖2 + εapprox) ξb,

where εapprox = ‖Φθ∗λ − Vπ‖∞ is the approximation error of the fixed point, ξ = max{χ, γ} < 1, Bφ =
maxs ‖φ(s)‖2, and Cb,λ is a constant given a fixed λ whose exact form can be found in proof.

The above proposition shows that the bias error of the empirical emphatic operator T̂ λt (θ) in PER-ETD(λ)
decays exponentially fast as b increases, because ξ = max {γ, χ} < 1.

Proposition 4. Suppose Assumptions 1 and 2 hold. Then we have E
[ ∥∥∥T̂ λt (θt)

∥∥∥2

2

∣∣∣Ft−1

]
≤ σ2

λ, where

σ2
λ = O

(
ρbmax

)
.

Compared with Proposition 2 of PER-ETD(0), Proposition 4 indicates that ETD(λ) has a larger variance,
which always increases exponentially with b when ρmax > 1. This is due to the fact that the eligible trace
ebt carries the historical information and is less stable than φbt .

Theorem 2. Suppose Assumptions 1 and 2 hold. Consider PER-ETD(λ) specified in Algorithm 2. Let
the stepsize ηt = O

(
1
t

)
and suppose the period length b and the projection set Θ are properly chosen (see

Appendix E.3 for the precise conditions). Then the output θT of PER-ETD(λ) satisfies E
[
‖θT − θ∗λ‖22

]
≤

O
(

1
Taλ

)
, where aλ = 1

log1/ξ(ρmax)+1 . PER-ETD(λ) attains an ε-accurate solution with Õ
(

1
ε1/aλ

)
samples.
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Theorem 2 indicates that PER-ETD(λ) converges to the optimal fixed point θ∗λ determined by the infinite-

length update of the follow-on trace. Furthermore, PER-ETD(λ) converges at the rate of Õ
(

1
Taλ

)
which is

slower than PER-ETD(0) (as aλ < a) due to the larger variance of PER-ETD(λ).
Bias and variance tradeoff: We next explain how the period length b achieves the best tradeoff between
the bias and variance errors and thus yields polynomial sample efficiency. The proof of Theorem 2 shows
that the output θT of PER-ETD(λ) satisfies the following convergence rate:

E
[
‖θT − θ∗λ‖22

]
≤ O

(
‖θ0−θ∗λ‖

2
2

T 2

)
+O

(
σ2
λ

T

)
︸ ︷︷ ︸
variance

+O
(
ξ2b

T

)
+O

(
ξb
)

︸ ︷︷ ︸
bias

. (9)

In eq. (9), σ2
λ in the variance term takes the form σ2

λ = O
(
ρbmax

)
as given in Proposition 4. We need to set

b = O
(

log(T )
log(ρmax)+log(1/ξ)

)
so that both the variance and the bias terms in eq. (9) achieve the same order of

O
(

1
Taλ

)
. Thus, such a choice of b balances the exponentially increasing variance and exponentially decaying

bias to achieve the same rate.
Impact of the eligible trace (via the parameter λ) on error bound: It has been shown that with the
aid of eligible trace, both TD and ETD achieve smaller error bounds [24, 10]. However, this is not always
the case for PER-ETD. Since PER-ETD applies a finite period length b, the fixed point of PER-ETD(1) is
generally not the same as the projection of the ground truth to the function approximation space. Thus, as
λ changes from 0 to 1, depending on the geometrical locations of the fixed points of PER-ETD(λ) for all
λ (determined by chosen features) with respect to the ground truth projection, any value 0 ≤ λ ≤ 1 may
achieve the smallest bias error. We illustrate this further by experiments in Section 5.2.

5 Experiments

5.1 Performance of PER-ETD(0)

We consider the BAIRD counter-example. The details of the MDP setting and behavior and target poli-
cies could be found in Appendix A.1. We adopt a constant learning rate for both PER-ETD(0) and
PER-ETD(λ) and all experiments take an average over 20 random initialization. We set the stepsize
η = 2−9 for all algorithms for fair comparison. For PER-ETD(0), we adopt one-dimensional features Φ1 =
(0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.37)>. The ground truth value function Vπ = (10, 10, 10, 10, 10, 10, 10)> and
does not lie inside the linear function class.

(a) Comparison of TD, ETD, PER-ETD(0) (b) Tradeoff between bias and variance by b

Figure 1: Performance of PER-ETD(0) and comparison

In Figure 1(a), we compare the performance of of TD, vanilla ETD(0) and PER-ETD(0) with b = 2, 4, 8 in
terms of the distance between the ground truth and the learned value functions. It can be observed that
our proposed PER-ETD(0) converges close to the ground truth at a properly chosen period length such as
b = 4 and b = 8, whereas TD diverges due to no treatment on off-policy data historically, and ETD (0) also
diverges due to the very large variance.
In Figure 1(b), we plot how the bias and the variance of PER-ETD(0) change as the period length b changes.
Clearly, small b (e.g., b = 4) yields a small variance but a large bias. Then as b increases from 4 to 6, bias
is substantially reduced. As b continues to increase from 8 to 20, there is a significant increase in variance.
This demonstrates a clear tradeoff between the bias and variance as we capture in our theory.
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5.2 Performance of PER-ETD(λ)

(a) Feature Φ1 (b) Feature Φ2 (c) Feature Φ3

Figure 2: Performance of PER-ETD(λ) and dependence on features

(a) Feature Φ1 (b) Feature Φ2 (c) Feature Φ3

Figure 3: Fixed points of PER-ETD(λ) and project of the value function. (a): θ lies in 1-dimensional
Euclidean space R1 along horizontal direction; (b), (c): θ lies in 2-dimensional Euclidean space R2.

We next focus on PER-ETD(λ) under the same experiment setting as in Section 5.1 and study how λ
affects the performance. We conduct our experiments under three features Φ1, Φ2, and Φ3 specified in
Appendix A.2. Figure 2 shows how the bias error with respect to the ground truth changes as λ increases
under the three chosen features. As shown in Figure 2 (a), (b), and (c), λ = 0, 1, and some value between
0 and 1 respectively achieve the smallest error under the corresponding feature. This is in contrast to the
general understanding that λ = 1 typically achieves the smallest error. In fact, each case can be explained
by the plot in Figure 3 under the same feature. Each plot in Figure 3 illustrates how the fixed points of
PER-ETD(λ) are located with respect to the ground truth projection (as Vπ projection) for b = 4. Since
the period length b is finite, the fixed point of PER-ETD(1) is not located at the same point as the ground
truth projection. The geometric locations of the fixed points of PER-ETD(λ) for 0 ≤ λ ≤ 1 are determined
by chosen features. The bias error corresponds to the distance between the fixed point of PER-ETD(λ) and
the Vπ projection. Then under each feature, the value of λ that attains the smallest error with respect to
the Vπ projection can be readily seen from the plot in Figure 3. For example, under the feature Φ3, Figure 3
(c) suggests that neither λ = 0 nor λ = 1, but some λ between 0 and 1 achieves the smallest error. This
explains the result in Figure 2 (c) that λ = 0.4 achieves the smallest error among other curves.
As a summary, our experiment suggests that the best λ, under which PER-ETD(λ) attains the smallest
error, depends on the geometry of the problem determined by chosen features. In practice, if PER-ETD(λ)
is used as a critic in policy optimization problems, λ may be tuned via the final reward achieved by the
algorithm.

6 Conclusion

In this paper, we proposed a novel PER-ETD algorithm, which uses a periodic restart technique to control
the variance of follow-on trace update. Our analysis shows that by selecting the period length properly, both
bias and variance of PER-ETD vanishes sublinearly with the number of iterations, leading to the polyno-
mial sample efficiency to the desired unique fixed point of ETD, whereas ETD requires exponential sample
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complexity. Our experiments verified the advantage of PER-ETD against both TD and ETD. Moreover,
our experiments of PER-ETD(λ) illustrated that under the finite period length in practice, the best λ that
achieves the smallest bias error is feature dependent. We anticipate that PER-ETD can be applied to various
off-policy optimal control algorithms such as actor-critic algorithms and multi-agent reinforcement learning
algorithms.
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Supplementary Materials

A Specification of Experiments in Section 5

A.1 Experiment settings

The BAIRD counter-example is illustrated in Figure 4, which has 7 states and 2 actions. If the first action
(illustrated as dashed lines) is taken, then the environment transitions from the current state to states 1 to
6 following the uniform distribution and returns a reward 0; and if the second action (illustrated as solid
lines) is taken, the environment transitions from the current state to state 7 with probability 1 and returns
a reward 1. We choose the target policy as π(0|s) = 0.1 and π(1|s) = 0.9 for all states; and choose the
behavior policy as µ(0|s) = 6/7 and µ(1|s) = 1/7 for all states. Moreover, we specify the discount factor
γ = 0.99.

Figure 4: BAIRD example [24]

A.2 Features for Experiments in Section 5.2

In the experiment in Section 5.2, we choose the following features:

Φ1 =(0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.37)>;

Φ2 =((0.3425, 0.0171)>, (0.1902, 0.4248)>, (0.1354, 0.76)>, (0.1357, 0.7973)>,

(0.8674, 0.8774)>, (0.5166, 0.9493)>, (0.3094, 0.8535)>)>;

Φ3 =((0.5162, 0.9013)>, (0.5128, 0.5999)>, (0.289, 0.4649)>, (0.3399, 0.5334)>,

(0.315, 0.2278)>, (0.667, 0.461)>, (0.3706, 0.1457)>)>.

A.3 Computation of the fixed point of PER-ETD(λ)

In this section, we provide the steps to compute the fixed point of PER-ETD(λ) in Figure 3. We first define
the matrix A and c as follows

A := lim
t→∞

E
[
At

(
:=
(
ρbte

b
t(φ

b
t − γφb+1

t

)>)]
,

c := lim
t→∞

E
[
ct
(
:= ρbtr

b
te
b
t

)]
.

It can be shown that, the fixed point of PER-ETD(λ) algorithm is θ∗ = A−1c.
We next show how to derive the formulation of the matrix A and vector c. As we will show later in eqs. (51),
(53) and (55), we have

A = lim
t→∞

E [At|Ft−1] = β̄b(I − γPπ)Φ, (10)

c = lim
t→∞

E [ct|Ft−1] = β̄brπ, (11)
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where β̄b := limt→∞ E [βb] and

βb(s) = λΦ>Dµ,b + (1− λ)Φ>Fb + γλβb−1Pπ, (12)

where Dµ,τ = diag(dµ,τ ), dµ,τ (s) = P(sτt = s|Ft−1), Fb = diag(fb), and fb is determined iteratively by
eq. (25) as follows

fb = dµ,b + γP>π fb−1, with f0 = dµ,0. (13)

Taking expectation on both sides of eqs. (12) and (13) with respect to Ft−1 and letting t→∞ yield

f̄b = dµ + γP>π f̄b−1, with f̄0 = dµ, (14)

β̄b = λΦ>Dµ + (1− λ)Φ>F̄b + γλβ̄b−1Pπ, with β̄0 = Φ>Dµ (15)

where f̄b := limt→∞ E[fb] and F̄b = diag(f̄b). The explicit formulation of β̄b can be derived by applying
eqs. (14) and (15) iteratively. We can then obtain A and c by substituting the obtained formulation of β̄b
into eq. (10) and eq. (11), respectively.

A.4 Replotted Figures 1 and 2 with Variance Bars

In this subsection, we replotted Figures 1 and 2 with variance bars (rather than error bands) in Figures 5
and 6, respectively.

(a) Comparison of TD, ETD, PER-ETD(0) (b) Tradeoff between bias and variance by b

Figure 5: Performance of PER-ETD(0) and comparison

(a) Feature Φ1 (b) Feature Φ2 (c) Feature Φ3

Figure 6: Performance of PER-ETD(λ) and dependence on features
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(a) ρmax = 1.17 (b) ρmax = 5.60

Figure 7: Comparisons of TD, ETD, PER-ETD(0) with different target policies

(a) b = 4 (b) b = 6

Figure 8: Performance of PER-ETD(0) under different target policies (marked by their different resulting
distribution mismatch parameter ρmax). The behavior policy is kept the same.

(a) b = 4 (b) b = 6

Figure 9: Performance of PER-ETD(0) under different behavior policies (marked by their different resulting
distribution mismatch parameter ρmax). The target policy is kept the same.

B More Experiments

In this section, we conduct further experiments to answer the following two intriguing questions:

• If the distribution mismatch parameter ρmax changes, how will different approaches perform and
compare with each other?
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• Focusing on our algorithm PER-ETD, how do the choices of behavior policy and target policy affect
its convergence?

We focus on the MDP environment in Appendix A.1. In our experiments, the performance of every algorithm
is averaged over 20 random initializations and the error band in our plots captures the actual variation of
the performance during these experimental runs (which can be viewed as the variance of the algorithms).
In Figure 7, we consider two settings with the distribution mismatch parameter ρmax = 1.17 and 5.60,
respectively, and compare the performance of three off-policy algorithms: TD, vanilla ETD and our PER-
ETD. More specifically, we choose the behavior policy as µ(1|s) = 6

7 and µ(2|s) = 1
7 for all states, and choose

two target polices, whose probabilities to take the second action are 0.167 and 0.8, respectively, on all states.
(Then their probabilities to take the first action are determined automatically through π(1|s) + π(2|s) = 1).
Therefore, the maximum distribution mismatch ρmax for the these two target policies are 1.17 and 5.60,
respectively. Figure 7 (a) shows that under only slightly mismatch (i.e., ρmax = 1.17), TD suffers from
a large convergence error (i.e., the error with respect to the ground truth value function at the point of
convergence) and converges slowly. Vanilla ETD converges with the fastest rate and achieves a smaller
convergence error than TD, but suffers from a relatively large variance. Our PER-ETD achieves a better
tradeoff between the convergence rate and the variance (faster rate than TD, almost the same convergence
error as ETD but with smaller variance). Figure 7 (b) shows that under a large distribution mismatch (i.e.,
ρmax = 5.6), TD does not converge, and vanilla ETD experiences a substantially large variance. However, our
PER-ETD still convergences fast as long as the period length b is chosen properly, e.g., b = 4, 6, 8. Further
note that PER-ETD has a smaller convergence error as the period length b increases, but the variance gets
larger; which are consistent with our theorem.
In Figure 8, we focus on our PER-ETD, and study how different target policies affect the performance. We
choose the same behavior policy as the above experiment, i.e., µ(1|s) = 6

7 and µ(2|s) = 1
7 for all states. We

choose 5 target polices, whose probabilities to take the second action are 0.167, 0.2, 0.4, 0.6, 0.8 for all states,
respectively. These different target policies affect the performance via their resulting distribution mismatch
ρmax = 1.17, 1.40, 2.80, 4.20, 5.60, respectively. For both b = 4 and b = 6, Figure 8 indicates that larger
mismatch causes slower convergence rate, larger convergence error and larger variance, which agrees with
our theorem.
In Figure 9, we also focus on our PER-ETD, and study how different behavior policies affect the performance.
We pick the target policy to be π(1|s) = 0.1 and π(2|s) = 0.9 for all states, and 5 different behavior policies
with µ(2|s) = 0.2, 0.4, 0.6, 0.7 and 0.8 for all state, respectively. These different behavior policies affect the
performance via their different resulting distribution mismatch ρmax = 1.12, 1.29, 1.5, 2.25, 4.5, respectively.
Figure 9 clearly demonstrates that larger distribution mismatch results in slower convergence rate, larger
convergence error and larger variance, which is in the same nature as changing the target policy shown in
Figure 8 and is consistent with our theorem.

C Supporting Lemmas

The following lemma is well-known. We include it for the convenience of our proof.

Lemma 2. Consider a transition matrix P ∈ RN×N , where
∑
j P(i,j) = 1 for all i and 0 ≤ P(i,j) ≤ 1 for all

j. We have for any n ∈ N, ‖Pn‖∞ = 1, and ‖(P>)n‖1 = 1.

Lemma 3. Consider 0 < p, q < 1, with p 6= q. We have
∑n−1
k=0 p

kqn−k ≤ 1
|p−q|ξ

n, where ξ = max{p, q}.

Proof of Lemma 3. If p > q, we have

n−1∑
k=0

pkqn−k ≤
n−1∑
k=0

pk+1qn−1−k ≤
n−1∑
m=0

pn−mqm.

Without loss of generality, we assume p < q and ξ = q. We have

n−1∑
k=0

pkqn−k = qn ·
n−1∑
k=0

(pq )k = qn · 1− (p/q)n

1− p/q
≤ 1

q − p
· qn =

1

|p− q|
· ξn.
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Lemma 4. Consider a matrix P ∈ RN×N where
∑
j P(i,j) ≤ C for all i and 0 ≤ P(i,j) ≤ 1 for all j, and a

positive vector x where x ∈ RN and xi ≥ 0 for all i. We have

1>Px ≤ C1>x.

Proof of Lemma 4. We have

1>Px =
∑

1≤i,j≤N

Pi,jxi =
∑

1≤i≤N

xi

 ∑
1≤j≤N

Pi,j

 ≤ C ∑
1≤i≤N

xi = C1>x.

Lemma 5. Consider a diagonal matrix D ∈ R|S|×|S|, where D = diag(d(1), d(2), . . . , d(|S|)). a transition
matrix P ∈ R|S|×|S| where

∑
j Pi,j = 1 for all i = 1, 2, . . . , |S| and Pi,j ≥ 0 for all j, and an arbitrary vector

x ∈ R|S|. We have

‖Φ>DPx‖2 ≤ Bφ‖d‖1‖x‖∞.

Proof of Lemma 5. We have

Φ>D = (d(1)φ(1), d(2)φ(2), . . . , d(|S|)φ(|S|)) ,

and (
Φ>DP

)
(·,s) =

∑
s̃

Ps̃,sd(s̃)φ(s̃),

which implies

Φ>DPx =
∑
s

x(s)

(∑
s̃

Ps̃,sd(s̃)φ(s̃)

)
=
∑
s̃

(∑
s

x(s)Ps̃,s

)
d(s̃)φ(s̃).

Taking `2 norm on both sides of the above equality yields

∥∥Φ>DPx
∥∥

2
=

∥∥∥∥∥∑
s̃

(∑
s

x(s)Ps̃,s

)
d(s̃)φ(s̃)

∥∥∥∥∥
2

≤
∑
s̃

∣∣∣∣∣∑
s

x(s)Ps̃,s

∣∣∣∣∣ · |d(s̃)| · ‖φ(s̃)‖2

= Bφ‖d‖1 ·max
s̃

∣∣∣∣∣∑
s

x(s)Ps̃,s

∣∣∣∣∣ ≤ Bφ‖d‖1‖x‖∞max
s̃

∣∣∣∣∣∑
s

Ps̃,s

∣∣∣∣∣ = Bφ‖d‖1‖x‖∞.

Lemma 6. Consider a diagonal matrix D ∈ R|S|×|S| where D = diag(d(1), d(2), . . . , d(|S|)), a transition
matrix P ∈ R|S|×|S| where

∑
j Pi,j = 1 for all i = 1, 2, . . . , |S| and Pi,j ≥ 0 for all j, a matrix Q ∈ R|S|×|S|

that satisfies 0 ≤ Qi,j ≤ CPi,j, where C > 1 is a constant, and an arbitrary vector x ∈ R|S|. We have

trace
(
QmPnΦΦ>D

)
≤ CmB2

φ‖d‖1,

and,

trace
(
PnQmΦΦ>D

)
≤ CmB2

φ‖d‖1,

for any m and n ∈ N≥0.
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Proof of Lemma 6. For any given τ ≥ m ≥ 0 and n ≥ 0,∣∣(QmPnΦΦ>)(i,j)

∣∣ =
∣∣〈(Qm)(i,·), (P

nΦΦ>)(·,j)
〉∣∣ (i)

≤ ‖(Qm)(i,·)‖1‖(PnΦΦ>)(·,j)‖∞, (16)

where (i) follows from the Hölder’s inequality.
Furthermore, for the term of (P nΦΦ>)(·,j), we have,

‖(PnΦΦ>)(·,j)‖∞ ≤ ‖Pn‖∞‖(ΦΦ>)(·,j)‖∞
(i)
= ‖(ΦΦ>)(·,j)‖∞,

where (i) follows from Lemma 2.
Moreover, for the ith entry of (ΦΦ>)(·,j), we have∣∣(ΦΦ>)(i,j)

∣∣ =
∣∣φ(i)>φ(j)

∣∣ ≤ ‖φ(i)‖2‖φ(j)‖2 ≤ B2
φ

The above uniform bounds over all i imply that ‖(ΦΦ>)(·,j)‖∞ ≤ B2
φ. Hence,

‖(PnΦΦ>)(·,j)‖∞ ≤ B2
φ.

Substituting the above inequality back into eq. (16), we obtain∣∣(QmPnΦΦ>)(i,j)

∣∣ ≤ B2
φ‖(Qm)(i,·)‖1

(i)

≤ Cm‖(P τ−m)(i,·)‖1B2
φ ≤ CmB2

φ

∑
j

P τ−m(j|i) = CmB2
φ, (17)

where (i) follows by the condition of Q, Q(i,j) ≤ CP(i,j) for all i, j.
Finally, we have

trace
(
QmPnΦΦ>D

)
=
∑
i

d(i)(QmPnΦΦ>)(i,i) ≤
∑
i

|d(i)|
∣∣(QmPnΦΦ>)(i,i)

∣∣
≤ ‖d‖1 max

i

∣∣(QmPnΦΦ>)(i,i)

∣∣ (i)

≤ CmB2
φ‖d‖1, (18)

where (i) follows from eq. (17). Following steps similar to those in eqs. (16) to (18), we can obtain

trace
(
PnQmΦΦ>D

)
≤ CmB2

φ‖d‖1.

Lemma 7. The operators T (θ) and T λ(θ) satisfy the generalized monotone variational inequality. There
exist µ0, µλ > 0, s.t., 〈T (θ), θ − θ∗〉 ≥ µ0‖θ − θ∗‖22 ,and

〈
T λ(θ), θ − θ∗

〉
≥ µλ‖θ − θ∗‖22.

Proof of Lemma 7. We have

〈T (θ), θ − θ∗〉 (i)
=
〈(

Φ>F (I − γPπ)Φ
)

(θ − θ∗), θ − θ∗
〉

= (θ − θ∗)>
(
Φ>F (I − γPπ)Φ

)
(θ − θ∗)

≥ λmin
(
Φ>F (I − γPπ)Φ

)
‖θ − θ∗‖22, (19)

where (i) follows from the definition of the T and θ∗.
Recall that F (I − γPπ) is positive definite[26, 20] and Φ has linearly independent columns. For any x ∈ Rd
with x 6= 0, we have Φx 6= 0 and

x>Φ>F (I − γPπ)Φx = (Φx)>F (I − γPπ)(Φx) > 0.

The above inequality shows that Φ>F (I − γPπ)Φ is positive definite and thus, there exists µ0 > 0 such that
µ0 = λmin

(
Φ>F (I − γPπ)Φ

)
.

Following steps similar to those in eq. (19) and applying the positive definiteness of M(I−γλPπ)−1(I−γPπ)
[26, 20] yield 〈

T λ(θ), θ − θ∗
〉
≥ µλ‖θ − θ∗‖22.
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Lemma 8. The operators T (θ) and T λ(θ) satisfy the Lipschitz condition. There exist L0, Lλ > 0, such that,
‖T (θ1)− T (θ2)‖2 ≤ L0‖θ1 − θ2‖2, and

∥∥T λ(θ1)− T λ(θ2)
∥∥

2
≤ Lλ‖θ1 − θ2‖2.

Proof of lemma 8. We have

‖T (θ1)− T (θ2)‖2 =
∥∥(Φ>F (I − γPπ)Φ

)
(θ1 − θ2)

∥∥
2
≤
∥∥Φ>F (I − γPπ)Φ

∥∥
2
‖θ1 − θ2‖2. (20)

Let L0 :=
∥∥Φ>F (I − γPπ)Φ

∥∥
2
, eq. (20) completes the proof of the first inequality in the Lemma. Let

Lλ := ‖Φ>M(I − γλPπ)−1(I − γPπ)Φ‖2, the steps similar to those in eq. (20) finalizes the proof of the
second inequality in the Lemma.

Lemma 9 (Three point lemma). Suppose Θ is a closed and bounded subset of Rd, and θ∗ is the solution
of the following maximization problem, maxθ∈Θ η 〈G, θ〉 + 1

2‖θ − θ0‖22, where G ∈ Rd is a vector. Then, we
have, for any θ ∈ Θ,

η 〈G, θ∗ − θ〉+
1

2
‖θ0 − θ∗‖22 ≤

1

2
‖θ0 − θ‖22 −

1

2
‖θ∗ − θ‖22.

Proof. The proof can be found in [18].

D Proofs of Propositions and Theorem for PER-ETD(0)

D.1 Proof of Proposition 1

First, by the definition of T̂t(θt), we have

E
[
T̂t(θt)

∣∣∣Ft−1

]
(i)
=
∑
s∈S

∑
a∈A

∑
s′∈S

P
(
sbt = s, abt = a, sb+1

t = s′
∣∣Ft−1

)
E
[
T̂t(θt)

∣∣∣Ft−1, s
b
t = s, abt = a, sb+1

t = s′
]

(ii)
=
∑
s∈S

∑
a∈A

∑
s′∈S

P
(
sbt = s

∣∣Ft−1

)
µ(a|s)P(s′|s, a)

· E
[
ρbtF

b
t φ(s)[φ>(s)θt − r(s, a)− γφ>(s′)θt]

∣∣Ft−1, s
b
t = s, abt = a, sb+1

t = s′
]

(iii)
=
∑
s∈S

∑
a∈A

∑
s′∈S

P
(
sbt = s

∣∣Ft−1

)
π(a|s)P(s′|s, a)φ(s)[φ>(s)θt − r(s, a)− γφ>(s′)θt] · E

[
F bt
∣∣Ft−1, s

b
t = s

]
=
∑
s∈S

P
(
sbt = s

∣∣Ft−1

)
E
[
F bt
∣∣Ft−1, s

b
t = s

]
φ(s)

[
φ>(s)θt − γ[PπΦ](s,·)θt − rπ(s)

]
, (21)

where (i) follows from the law of total probability, (ii) follows from rewriting P
(
sbt = s, abt = a, sb+1

t = s′
∣∣Ft−1

)
,

and (iii) follows from the facts that F bt only depends on (s0, a0, s1, a1, . . . , st(b+1)+b−1, at(b+1)+b−1) and the
chain is Markov.
Recall the definition of T (θt), we have

T (θt) = Φ>F [(I − γPπ)Φθt − rπ] =
∑
s∈S

f(s)
(
φ>(s)θt − γ[PπΦ](s,·)θt − rπ(s)

)
φ(s). (22)

Equations (21) and (22) together imply the following,

T (θt)− E
[
T̂t(θt)

∣∣∣Ft−1

]
=
∑
s∈S

(
f(s)− P

(
sbt = s

∣∣Ft−1

)
E
[
F bt
∣∣Ft−1, s

b
t = s

])
·
(
φ>(s)θt − γ [PπΦ](s,·) θt − rπ(s)

)
φ(s)

(i)
=
∑
s∈S

(f(s)− fb(s))
(
φ>(s)θt − γ [PπΦ](s,·) θt − rπ(s)

)
φ(s)
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=
∑
s∈S

(f(s)− fb(s)) ((I − γPπ) Φθt − rπ)s φ(s),

where in (i) We define fb(s) := P
(
sbt = s

∣∣Ft−1

)
E
[
F bt
∣∣Ft−1, s

b
t = s

]
. Taking `2 norm on both sides of the

above equality yields∥∥∥T (θt)− E
[
T̂t(θt)

∣∣∣Ft−1

]∥∥∥
2
≤

∥∥∥∥∥∑
s∈S

(f(s)− fb(s)) ((I − γPπ) Φθt − rπ)s φ(s)

∥∥∥∥∥
2

≤
∑
s∈S
|f(s)− fb(s)| · |((I − γPπ) Φθt − rπ)s| · ‖φ(s)‖2

≤ max
s∈S
{‖φ(s)‖2}max

s∈S
{|((I − γPπ) Φθt − rπ)s|}

∑
s∈S
|f(s)− fb(s)|

= Bφ‖(I − γPπ)Φθt − rπ‖∞‖f − fb‖1. (23)

We next proceed to bound ‖f − fb‖1. Consider fb(s), we have

fb(s) = P
(
sbt = s

∣∣Ft−1

)
E
[
F bt
∣∣sbt = s,Ft−1

]
(i)
= P

(
sbt = s

∣∣Ft−1

)∑
s̃∈S,ã∈A

P
(
sb−1
t = s̃, ab−1

t = ã
∣∣sbt = s,Ft−1

)
· E
[
γρb−1

t F b−1
t + 1

∣∣Ft−1, s
b
t = s, sb−1

t = s̃, ab−1
t = ã

]
(ii)
= P

(
sbt = s

∣∣Ft−1

)1 +
∑

s̃∈S,ã∈A

P
(
sb−1
t = s̃

∣∣Ft−1

)
µ(ã|s̃)P(s|s̃, ã)

P
(
sbt = s

∣∣Ft−1

) E
[
γ
π(ã|s̃)
µ(ã|s̃)

F b−1
t

∣∣∣∣Ft−1, s
b−1
t = s̃

]
= P

(
sbt = s

∣∣Ft−1

)
+ γ

∑
s̃∈S

P(sb−1
t = s̃|Ft−1)Pπ(s|s̃)E

[
F b−1
t

∣∣Ft−1, s
b−1
t = s

]
,

where (i) follows from the law of total probability and (ii) follows from the Bayes rule and the facts that
F b−1
t only depends on the chain elements (s0

t , a
0
t , s

1
t , . . . , s

b−1
t , ab−1

t ) and the Markov property.
Define dµ,b(s) = P

(
sbt = s

∣∣Ft−1

)
, the above equality can be rewritten as

fb(s) = dµ,b(s) + γ
∑
s̃

Pπ(s|s̃)fb−1(s̃). (24)

Since eq. (24) holds for all s ∈ S, we have

fb = dµ,b + γP>π fb−1. (25)

Note that for f we have the following holds [26, 34]

f = dµ + γP>π f. (26)

Equations (25) and (26) imply

f − fb = dµ − dµ,b + γP>π (f − fb−1).

Applying the above equality recursively yields

f − fb =

b−1∑
τ=0

(γP>π )τ (dµ − dµ,b−τ ) + γb(P>π )b(f − f0).

Take `1 norm on both sides of the above equality, we have

‖f − fb‖1 =

∥∥∥∥∥
b−1∑
τ=0

γτ (P>π )τ (dµ − dµ,b−τ ) + γb(P>π )b(f − f0)

∥∥∥∥∥
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≤
b−1∑
τ=0

γτ
∥∥(P>π )τ (dµ − dµ,b−τ )

∥∥
1

+ γb
∥∥(P>π )b(f − f0)

∥∥
1

≤
b−1∑
τ=0

γτ
∥∥(P>π )τ

∥∥
1
‖dµ − dµ,b−τ‖1 + γb

∥∥(P>π )b
∥∥ ‖f − f0‖1

(i)

≤
b−1∑
τ=0

γτ ‖dµ − dµ,b−τ‖1 + γb ‖f − f0‖1

(ii)

≤
b−1∑
τ=0

CMγ
τχb−τ + γb‖f − f0‖1

(ii)

≤ 1

|χ− γ|
· CMξb + γb(1 + ‖f‖1), (27)

where (i) follows from Lemma 2, (ii) follows from Lemma 1 , and (iii) follows from Lemma 3 and defining
ξ := max{χ, γ}.
To bound the term ‖(I − γPπ)Φθt − rπ‖∞, we proceed as following

‖(I − γPπ)Φθt − rπ‖∞
(i)
= ‖(I − γPπ)(Φθt − Vπ)‖∞
= ‖(I − γPπ)(Φθt − Φθ∗ + Φθ∗ − Vπ)‖∞
≤ ‖I − γPπ‖∞(‖Φθt − Φθ∗‖∞ + ‖Φθ∗ − Vπ‖∞)

(ii)

≤ (1 + γ)Bφ‖θt − θ∗‖2 + (1 + γ)εapprox, (28)

where (i) follows from the fact Vπ = (I − γPπ)−1rπ and (ii) follows from the facts that ‖I − γPπ‖∞ =
maxi{1− (Pπ)(i,i) + γ

∑
j 6=i(Pπ)(i,j)} ≤ 1 + γ, εapprox := ‖Φθ∗ − Vπ‖∞, and

‖Φθt − Φθ∗‖∞ = max
s∈S

φ>(s)(θt − θ∗) ≤ Bφ‖θt − θ∗‖2.

Substituting eqs. (27) and (28) into eq. (23) yields∥∥∥T (θt)− E
[
T̂t(θt)

∣∣∣Ft−1

]∥∥∥
2
≤
(
B2
φ‖θt − θ∗‖2 +Bφεapprox

)
(1 + γ)

(
CMξ

b

|χ−γ| + γb(1 + ‖f‖1)
)

≤ Cb (Bφ‖θt − θ∗‖2 + εapprox) ξb,

where ξ = max {χ, γ} and Cb = Bφ(1 + γ)
(

CM
|χ−γ| + (1 + ‖f‖1)

)
.

D.2 Proof of Proposition 2

According to the definition of T̂t(θt), we have

E
[∥∥∥T̂t(θt)∥∥∥2

∣∣∣∣Ft−1

]
= E

[(
ρbtF

b
t

)2 (
θ>t φ

b
t − rbt − γθ>t φb+1

t

)2 ‖φbt‖22∣∣∣Ft−1

]
(i)
=
∑
s∈S

∑
a∈A

∑
s′∈S

P
(
sbt = s, abt = a, sb+1

t = s′
∣∣Ft−1

)
·
(
θ>t φ(s)− r(s, a)− γθ>t φ(s′)

)2
· ‖φ(s)‖22 · E

[
(ρbtF

b
t )2
∣∣Ft−1, s

b
t = s, abt = a, sb+1

t = s′
]

(ii)
=
∑
s∈S

∑
a∈A

∑
s′∈S

P
(
sbt = s

∣∣Ft−1

)
µ(a|s)P(s′|s, a) ·

(
θ>t φ(s)− r(s, a)− γθ>t φ(s′)

)2
· ‖φ(s)‖22 ·

π2(a|s)
µ2(a|s)

E
[
(F bt )2

∣∣Ft−1, s
b
t = s, abt = a, sb+1

t = s′
]
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=
∑
s∈S

P
(
sbt = s

∣∣Ft−1

)
E
[
(F bt )2

∣∣Ft−1, s
b
t = s

]
‖φ(s)‖22

·
∑
a∈A

∑
s′∈S

π2(a|s)
µ(a|s)

P(s′|s, a)(φ>(s)θt − r(s, a)− γφ>(s′)θt)
2, (29)

where (i) follows from the law of total probability and (ii) follows from the fact that F bt is independent from
previous states and actions given sbt .
Note that ‖φ(s)‖2 ≤ Bφ for all s ∈ S, r(s, a) ≤ rmax for all (s, a) ∈ S × A, and ‖θt‖2 ≤ Bθ for all t due to
projection. We have

(φ>(s)θt − r(s, a)− γφ>(s′)θt)
2 ≤ 2[(φ(s)− γφ(s′))>θt]

2 + 2r2(s, a)

≤ 2‖φ(s)− γφ(s′)‖22‖θt‖22 + 2r2
max

≤ 4(‖φ(s)‖22 + γ2‖φ(s′)‖22)‖θt‖22 + 2r2
max

≤ 4(1 + γ2)B2
φB

2
θ + 2r2

max. (30)

We also have ∑
a∈A

∑
s′∈S

π2(a|s)
µ(a|s)

P(s′|s, a) ≤ ρmax ·
∑
a∈A

∑
s′∈S

π(a|s)P(s′|s, a) = ρmax.

Substituting the above two inequalities into eq. (29) yields

E
[∥∥∥T̂t(θt)∥∥∥2

∣∣∣∣Ft−1

]
≤ ρmax

(
4(1 + γ2)B2

φB
2
θ + 2r2

max

)
B2
φ

∑
s∈S

P
(
sbt = s

∣∣Ft−1

)
E
[
(F bt )2

∣∣Ft−1, s
b
t = s

]
. (31)

Define rb(s) := P
(
sbt = s

∣∣Ft−1

)
E
[
(F bt )2

∣∣Ft−1, s
b
t = s

]
= dµ,b(s)E

[
(F bt )2

∣∣Ft−1, s
b
t = s

]
.

We have the following equations hold for rb(s):

rb(s) = P(sbt = s|Ft−1)E
[(
γρb−1

t F b−1
t + 1

)2∣∣∣Ft−1, s
b
t = s

]
= dµ,b(s)E

[
1 + 2γρb−1

t F b−1
t + γ2(ρb−1

t )2(F b−1
t )2

∣∣Ft−1, s
b
t = s

]
= dµ,b(s) + 2γdµ,b(s)E

[
ρb−1
t F b−1

t

∣∣Ft−1, s
b
t = s

]
+ γ2dµ,b(s)E

[
(ρb−1
t )2(F b−1

t )2
∣∣Ft−1, s

b
t = s

]
. (32)

For the second term in the RHS of eq. (32), we have

dµ,b(s)E
[
ρb−1
t F b−1

t

∣∣Ft−1, s
b
t = s

]
(i)
= dµ,b(s)

∑
s̃∈S,ã∈A

P
(
sb−1
t = s̃, ab−1

t = ã
∣∣sbt = s,Ft−1

)
· E
[
ρb−1
t F b−1

t

∣∣Ft−1, s
b
t = s, sb−1

t = s̃, ab−1
t = ã

]
(ii)
= dµ,b(s)

∑
s̃,ã

dµ,b−1(s̃)µ(ã|s̃)P(s|s̃, ã)

dµ,b(s)
· E
[
ρb−1
t F b−1

t

∣∣Ft−1, s
b
t = s, sb−1

t = s̃, ab−1
t = ã

]
(iii)
=

∑
s̃∈S,ã∈A

dµ,b−1(s̃)µ(ã|s̃)P(s|s̃, ã) · π(ã|s̃)
µ(ã|s̃)

E
[
F b−1
t

∣∣Ft−1, s
b−1
t = s̃

]
=
∑
s̃∈S

Pπ(s|s̃) · dµ,b−1(s̃)E
[
F b−1
t

∣∣Ft−1, s
b−1
t = s̃

]
(iv)
= (P>π fb−1)s, (33)

where (i) follows from the law of total probability, (ii) follows from the Bayes rule, (iii) follows from Markov
property and (iv) follow from the definition of fb which is given above eq. (23).
For the third term on the RHS of eq. (32), we have

dµ,b(s)E
[
(ρb−1
t F b−1

b )2
∣∣Ft−1, s

b
t = s

]
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(i)
= dµ,b(s)

∑
s̃∈S,ã∈A

P
(
sb−1
t = s̃, ab−1

t = ã
∣∣sbt = s,Ft−1

)
· E
[
(ρb−1
t F b−1

b )2
∣∣Ft−1, s

b
t = s, sb−1

t = s̃, ab−1
t = ã

]
(ii)
= dµ,b(s)

∑
s̃,ã

dµ,b−1(s̃)µ(ã|s̃)P(s|s̃, ã)

dµ,b(s)
· E
[
(ρb−1
t F b−1

t )2
∣∣Ft−1, s

b
t = s, sb−1

t = s̃, ab−1
t = ã

]
=

∑
s̃∈S,ã∈A

dµ,b−1(s̃)µ(ã|s̃)P(s|s̃, ã) · π
2(ã|s̃)
µ2(ã|s̃)

· E
[
(F b−1
t )2

∣∣Ft−1, s
b−1
t = s̃

]
(iii)
=
∑
s̃∈S

Pµ,π(s|s̃)rb−1(s̃)

= (P>µ,πrb−1)s, (34)

where (i) follows from the law of total probability, (ii) follows from the Bayes’ rule, and in (iii) we define

Pµ,π ∈ R|S|×|S| where (Pµ,π)s,s̃ =
∑
ã∈A

π2(ã|s̃)
µ(ã|s̃) P(s|s̃, ã) for each (s, s̃) ∈ S × S.

Substituting eqs. (33) and (34) into eq. (32) yields

rb = dµ,b + 2γP>π fb−1 + γ2P>µ,πrb−1.

We also have the following inequality holds

1>rb = 1>dµ,b + 2γ1>P>π fb−1 + γ21>P>µ,πrb−1
(i)
= 1 + 2γ1>fb−1 + γ21>P>µ,πrb−1

(ii)

≤ 1 + 2γ1>fb−1 + γ2ρmax1
>rb−1, (35)

where (i) follows from 1>P>π = (Pπ1)> = 1>, and (ii) follows from the facts that rb−1 � 0 and

1>P>µ,π = (Pµ,π1)> = vec

(∑
s∈S

∑
ã∈A

π2(ã|s̃)
µ(ã|s̃)

P(s|s̃, ã)

)
= vec

(∑
ã∈A

π2(ã|s̃)
µ(ã|s̃)

)
� ρmax1>.

Recursively applying eq. (35) yields

1>rb ≤
b−1∑
τ=0

(γ2ρmax)τ (1 + 2γ1>fb−τ−1) + (γ2ρmax)b1>r0
(i)
=

b−1∑
τ=0

(γ2ρmax)τ (1 + 2γ1>fb−τ−1) + (γ2ρmax)b,

(36)

where (i) follows from the fact that 1>r0 = 1.
Recall that fb = dµ,b + γP>π fb−1 and f = dµ + γP>π f . We have

1>(fτ − f) = 1>(dµ,τ − dµ) + γ1>P>π (fτ−1 − f)
(i)
= γ1>(fτ−1 − f)

(ii)
= γτ1>(f0 − f),

where (i) follows from the facts that dµ,τ and dµ are both probability distributions and 1>dµ,τ = 1>dµ = 1
and 1>P>π = 1> and (ii) follows from recursively applying (i).
Thus, we have

|1>fτ | = |(1− γτ )1>f + γτ1>f0| ≤ |(1− γτ )1>f |+ γτ ≤ ‖f‖1 + 1. (37)

Substituting eq. (37) into eq. (36) yields

1>rb ≤
b−1∑
τ=0

(γ2ρmax)τ (3 + 2γ‖f‖1) + (γ2ρmax)b.

Under different conditions of ρmax, the term 1>rb is upper bounded differently as following:
(a). γ2ρmax > 1

1>rb ≤
(

3 + 2γ‖f‖1
γ2ρmax − 1

+ 1

)
γ2bρbmax. (38)
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(b). γ2ρmax = 1

1>rb ≤ (3 + 2γ‖f‖1) b+ 1. (39)

(c). γ2ρmax < 1

1>rb ≤
3 + 2γ‖f‖1
1− γ2ρmax

+ 1. (40)

Substituting the above inequalities into eq. (31), we can upper-bound the term E
[∥∥∥T̂t(θt)∥∥∥2

2

∣∣∣∣Ft−1

]
under

different conditions accordingly:
(a). γ2ρmax > 1

E
[∥∥∥T̂t(θt)∥∥∥2

2

∣∣∣∣Ft−1

]
≤ ρmax

(
4(1 + γ2)B2

φB
2
θ + 2r2

max

)
B2
φ

(
3 + 2γ‖f‖1
γ2ρmax − 1

+ 1

)
γ2bρbmax = Cσ,1γ

2bρbmax,

where we specify Cσ,1 = ρmax

(
4(1 + γ2)B2

φB
2
θ + 2r2

max

)
B2
φ

(
3+2γ‖f‖1
γ2ρmax−1 + 1

)
.

(b). γ2ρmax = 1

E
[∥∥∥T̂t(θt)∥∥∥2

2

∣∣∣∣Ft−1

]
≤ ρmax

(
4(1 + γ2)B2

φB
2
θ + 2r2

max

)
B2
φ ((3 + 2γ‖f‖1) b+ 1) = Cσ,2b,

where we specify Cσ,2 = ρmax

(
4(1 + γ2)B2

φB
2
θ + 2r2

max

)
B2
φ (4 + 2γ‖f‖1).

(c). γ2ρmax < 1

E
[∥∥∥T̂t(θt)∥∥∥2

2

∣∣∣∣Ft−1

]
≤ ρmax

(
4(1 + γ2)B2

φB
2
θ + 2r2

max

)
B2
φ

(
3 + 2γ‖f‖1
1− γ2ρmax

+ 1

)
:= Cσ,3.

where we specify Cσ,3 = ρmax

(
4(1 + γ2)B2

φB
2
θ + 2r2

max

)
B2
φ

(
3+2γ‖f‖1
1−γ2ρmax

+ 1
)

.

To summarize, the variance term
∥∥∥T̂t(θt)∥∥∥2

2
can be bounded as following

E
[∥∥∥T̂t(θt)∥∥∥2

2

∣∣∣∣Ft−1

]
≤ σ2,

where

σ2 =


O(1), if γ2ρmax < 1.

O(b), if γ2ρmax = 1.

O((γ2ρmax)b), if γ2ρmax > 1.

D.3 Proof of Theorem 1

Theorem 3 (Formal Statement of Theorem 1). Suppose Assumptions 1 and 2 hold. Consider PER-ETD(0)

specified in Algorithm 1. Let the stepsize ηt = 2
µ0(t+t0) , where t0 =

8L2
0

µ2
0

, µ0 is defined in Lemma 7, and L0 is

defined in Lemma 8 in Appendix C. Let the projection set Θ =
{
θ ∈ Rd : ‖θ‖2 ≤ Bθ

}
, where Bθ = ‖Φ>‖2rmax

(1−γ)µ0

(which implies θ∗ ∈ Θ). Then the convergence guarantee falls into the following two cases depending on the
value of ρmax.

(a) If γ2ρmax ≤ 1, let b = max
{⌈

log(µ0)−log(5CbBφ)
log(ξ)

⌉
, log T

log(1/ξ)

}
, where Cb is a constant defined in the proof

of Proposition 1 in Appendix D.1, Bφ := maxs∈S ‖φ(s)‖2, and ξ := max{γ, χ}. Then the output θT satisfies

E
[
‖θT − θ∗‖22

]
≤ Õ

(
1

T

)
.
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(b) If γ2ρmax > 1, let b = max
{⌈

log(µ0)−log(5CbBφ)
log(ξ)

⌉
, log(T )

log(γ2ρmax)+log(1/ξ)

}
, where Cb is a constant whose

definition could be found in the proof of Proposition 1 in Appendix D.1, Bφ := maxs∈S ‖φ(s)‖2, and ξ :=
max{γ, χ}. Then the output θT satisfies

E
[
‖θT − θ∗‖22

]
≤ O

(
1

T a

)
,

where a = 1
log1/ξ(γ

2ρmax)+1 < 1.

Thus, PER-ETD(0) attains an ε-accurate solution with Õ
(

1
ε

)
samples if γ2ρmax ≤ 1, and with Õ

(
1

ε1/a

)
samples if γ2ρmax > 1.

Proof. Note the θ update specified in Algorithm 1 is the closed form solution of the following maximization
problem.

θt+1 = argmax
θ∈Θ

ηt

〈
T̂t(θt), θ

〉
+

1

2
‖θ − θt‖22.

Applying Lemma 9 with θ∗ = θt+1, η = ηt, G = T̂t(θt), and θ0 = θt yields, for any θ ∈ Θ,

ηt

〈
T̂t(θt), θt+1 − θ

〉
+

1

2
‖θt − θt+1‖22 ≤

1

2
‖θt − θ‖22 −

1

2
‖θt+1 − θ‖22. (41)

Proceed with the first term in the above inequality as follows〈
T̂t(θt), θt+1 − θ

〉
= 〈T (θt+1), θt+1 − θ〉+ 〈T (θt)− T (θt+1), θt+1 − θ〉+

〈
T̂t(θt)− T (θt), θt+1 − θ

〉
(i)

≥ 〈T (θt+1), θt+1 − θ〉 − L0‖θt − θt+1‖2‖θt+1 − θ‖2 +
〈
T̂t(θt)− T (θt), θt+1 − θ

〉
= 〈T (θt+1), θt+1 − θ〉 − L0‖θt − θt+1‖2‖θt+1 − θ‖2 +

〈
T̂t(θt)− T (θt), θt+1 − θt

〉
+
〈
T̂t(θt)− T (θt), θt − θ

〉
≥ 〈T (θt+1), θt+1 − θ〉 − L0‖θt − θt+1‖2‖θt+1 − θ‖2 −

∥∥∥T̂t(θt)− T (θt)
∥∥∥

2
· ‖θt+1 − θt‖2

+
〈
T̂t(θt)− T (θt), θt − θ

〉
,

where (i) follows from the Cauchy-Schwartz inequality and Lemma 8.
Substituting the above inequality into eq. (41) yields

ηt 〈T (θt+1), θt+1 − θ〉 − ηtL0‖θt − θt+1‖2‖θt+1 − θ‖2 − ηt
∥∥∥T̂t(θt)− T (θt)

∥∥∥
2
· ‖θt+1 − θt‖2

+ ηt

〈
T̂t(θt)− T (θt), θt − θ

〉
+

1

2
‖θt − θt+1‖22 ≤

1

2
‖θt − θ‖22 −

1

2
‖θt+1 − θ‖22. (42)

Applying Young’s inequality to ηt

∥∥∥T̂t(θt)− T (θt)
∥∥∥

2
· ‖θt+1 − θt‖2 yields

η
∥∥∥T̂t(θt)− T (θt)

∥∥∥
2
· ‖θt+1 − θt‖2 ≤

1

4
‖θt+1 − θt‖22 + η2

t

∥∥∥T̂t(θt)− T (θt)
∥∥∥2

2
,

and applying Young’s inequality to ηtL0‖θt − θt+1‖2‖θt+1 − θ‖2 yields

ηtL0‖θt − θt+1‖2‖θt+1 − θ‖2 ≤
1

4
‖θt − θt+1‖22 + η2

tL
2
0‖θt+1 − θ‖22.

Substituting the above two inequalities into eq. (42) yields

1

2
‖θt − θ‖22 ≥ ηt 〈T (θt+1), θt+1 − θ〉+

(
1

2
− η2

tL
2
0

)
‖θt+1 − θ‖22 + ηt

〈
T̂t(θt)− T (θt), θt − θ

〉
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− η2
t

∥∥∥T̂t(θt)− T (θt)
∥∥∥2

2
.

Taking expectation conditioned on Ft−1 on the both sides of the above inequality, we obtain

1

2
‖θt − θ‖22 ≥ ηtE [〈T (θt+1), θt+1 − θ〉|Ft−1] +

(
1

2
− η2

tL
2
0

)
E
[
‖θt+1 − θ‖22

∣∣Ft−1

]
+ ηt

〈
E
[
T̂t(θt)− T (θt)

∣∣∣Ft−1

]
, θt − θ

〉
− η2

tE
[∥∥∥T̂t(θt)− T (θt)

∥∥∥2

2

∣∣∣∣Ft−1

]
. (43)

Letting θ = θ∗ and applying Lemma 7 to eq. (43) yields

1

2
‖θt − θ∗‖22 ≥

(
1

2
+ µ0ηt − η2

tL
2
0

)
E
[
‖θt+1 − θ∗‖22

∣∣Ft−1

]
− ηtCbBφξb ‖θt − θ∗‖22 − ηtCbεapproxξ

b‖θt − θ∗‖2 − η2
tE
[∥∥∥T̂t(θt)− T (θt)

∥∥∥2

2

∣∣∣∣Ft−1

]
(i)

≥
(

1

2
+ µ0ηt − η2

tL
2
0

)
E
[
‖θt+1 − θ∗‖22

∣∣Ft−1

]
− ηtCbBφξb ‖θt − θ∗‖22 − ηtCbεapproxξ

b‖θt − θ∗‖2 − 4η2
tC

2
bB

2
φξ

2b‖θt − θ∗‖22
− 4η2

tC
2
b ξ

2bε2approx − 2σ2η2
t , (44)

where (i) follows from Propositions 1 and 2, and the facts that (x+ y)2 ≤ 2x2 + 2y2 and∥∥∥T̂t(θt)− T (θt)
∥∥∥2

2
≤ 2

∥∥∥E [T̂t(θt)∣∣∣Ft−1

]
− T (θt)

∥∥∥2

2
+ 2

∥∥∥E [T̂t(θt)∣∣∣Ft−1

]
− T̂t(θt)

∥∥∥2

2

≤ 2
∥∥∥T̂ (θt)

∥∥∥2

2
+ 2

∥∥∥E [T̂t(θt)∣∣∣Ft−1

]
− T̂t(θt)

∥∥∥2

2
.

Taking expectation on both sides of the above inequality yields(
1

2
+ µ0ηt − η2

tL
2
0

)
E
[
‖θt+1 − θ∗‖22

]
≤
(

1

2
+ CbBφξ

bηt + 4C2
bB

2
φξ

2bη2
t

)
E
[
‖θt − θ∗‖22

]
+ ηtCbBθεapproxξ

b

+ 4η2
tC

2
b ξ

2bε2approx + 2σ2η2
t .

Recall that we set t0 =
8L2

0

µ2
0

. Let αt = (t + t0 + 1)(t + t0 + 2). Multiplying 2αt on both sides of the above

inequality and telescoping from t = 0, 1, 2, . . . , T − 1 yields

T−1∑
t=0

αt
(
1 + 2µ0ηt − 2η2

tL
2
0

)
E
[
‖θt+1 − θ∗‖22

]
≤
T−1∑
t=0

αt
(
1 + 2CbBφξ

bηt + 8C2
bB

2
φξ

2bη2
t

)
E
[
‖θt − θ∗‖22

]
+
(
4σ2 + 8C2

b ξ
2bε2approx

) T−1∑
t=0

αtη
2
t

+ 2CbBθεapproxξ
b
T−1∑
t=0

αtηt. (45)

Recall the setting of ηt, we have

1 + 2µ0ηt − 2η2
tL

2
0 = 1 +

3µ0ηt
2

(
4

3
− 4

3µ0
ηtL

2
0

)
= 1 +

3µ0ηt
2

(
1 +

1

3

(
1− 4

µ0
ηtL

2
0

))
(i)

≥ 1 +
3µ0ηt

2
,

where (i) follows from the fact that 1 − 4ηtL
2
0

µ0
≥ 1 − 8L2

0

µ2
0t0
≥ 0. Multiplying αt on both sides of the above

inequality yields

αt(1 + 2µ0ηt − 2η2
tL

2
0) ≥ (t+ t0 + 1)(t+ t0 + 2)

(
1 +

3µ0

2

2

µ0(t+ t0)

)
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= (t+ t0 + 1)(t+ t0 + 2)(t+ t0 + 3)/(t+ t0). (46)

Under appropriate value of b, we have CbBφξ
b ≤ µ0

5 . Which implies that

2CbBφξ
bηt + 8C2

bB
2
φξ

2bη2
t =

µ0ηt
2

+
µ0ηt

2

(
4CbBφξ

b

µ0
+

16C2
bB

2
φξ

2bηt

µ0
− 1

)
≤ µ0ηt

2
+
µ0ηt

2

(
4

5
+

16µ0ηt
25

− 1

)
≤ µ0ηt

2
+
µ0ηt

2

(
4µ2

0

25L2
0

− 1

5

)
≤ µ0ηt

2
.

Multiplying αt+1 on both sides of the above inequality yields

αt+1(1 + 2CbBφξ
bηt+1 + 8C2

bB
2
φξ

2bη2
t+1)

≤ αt+1

(
1 +

µ0ηt+1

2

)
= (t+ t0 + 2)(t+ t0 + 3)

(
1 +

µ0

2

2

µ0(t+ t0 + 1)

)
= (t+ t0 + 2)2(t+ t0 + 3)/(t+ t0 + 1). (47)

Equations (46) and (47) together imply that

αt(1 + 2µ0ηt − 2η2
tL

2
0)− αt+1(1 + 2CbBφξ

bηt + 8C2
bB

2
φξ

2bη2
t )

≥ (t+ t0 + 1)(t+ t0 + 2)(t+ t0 + 3)

t+ t0
− (t+ t0 + 2)2(t+ t0 + 3)

t+ t0 + 1

=
(t+ t0 + 2)(t+ t0 + 3)

(t+ t0)(t+ t0 + 1)

(
(t+ t0 + 1)2 − (t+ t0)(t+ t0 + 2)

)
=

(t+ t0 + 2)(t+ t0 + 3)

(t+ t0)(t+ t0 + 1)

> 0.

The above inequality shows that the ‖θt − θ∗‖22, t = 1, . . . , T − 1, terms on both sides of eq. (45) can be
canceled, which indicates the following

(T + t0)(T + t0 + 1)
(
1 + 2µ0ηT−1 − 2η2

T−1L
2
0

)
E
[
‖θT − θ∗‖22

]
≤ (t0 + 1)(t0 + 2)

(
1 + 2CbBφξ

bη0 + 8C2
bB

2
φξ

2bη2
0

)
‖θ0 − θ∗‖22 +

(
4σ2 + 8C2

b ξ
2bε2approx

) T−1∑
t=0

αtη
2
t

+ 2CbBθεapproxξ
b
T−1∑
t=0

αtηt. (48)

Note that
∑T−1
t=0 αtη

2
t ≤

∑T−1
t=0

6
µ2
0
≤ 6T

µ2
0

, 1 + 2µ0ηT−1 − 2η2
T−1L

2
0 ≥ 1, and

T−1∑
t=0

αtηt ≤
4

µ0

T−1∑
t=0

(t+ t0 + 2) ≤ 2

µ0
(T + t0 + 2)2.

Dividing (T + t0)(T + t0 + 1)
(
1 + 2µ0ηT−1 − 2η2

T−1L
2
0

)
on both sides of eq. (48) yields

E
[
‖θT − θ∗‖22

]
≤ (t0 + 1)(t0 + 2)

(T + t0)(T + t0 + 1)

(
1 +

µ0η0

2

)
‖θ0 − θ∗‖22

+
24σ2 + 48C2

b ξ
2bε2approx

µ2
0

1

T + t0 + 1
+

4CbBθεapproxξ
b

µ0

(T + t0 + 2)2

(T + t0 + 1)(T + t0)

= O
(
‖θ0 − θ2‖22

T 2

)
+O

(
σ2

T

)
+O

(
C2
b ξ

2b

T

)
+O

(
Cbξ

b
)
. (49)

Based on different conditions of σ2, we pick different b and the convergence rate is as follows.
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(a). γ2ρmax ≤ 1, Proposition 2 show that σ2 ≤ O(b). We specify

b = max

{⌈
log(µ0)−log(5CbBφ)

log(ξ)

⌉
,

log T

log(1/ξ)

}
≤ O(log(T )).

Equation (49) yields,

E
[
‖θT − θ∗‖22

]
= O

(
‖θ0 − θ2‖22

T 2

)
+O

(
log(T )

T

)
+O

(
1

T 2

)
+O

(
1

T

)
= Õ

(
1

T

)
.

(b). γ2ρmax > 1, Proposition 2 show that σ2 = O
(
(γ2ρmax)b

)
. We specify

b = max
{⌈

log(µ0)−log(5CbBφ)
log(ξ)

⌉
, log(T )

log(γ2ρmax)+log(1/ξ)

}
.

Equation (49) yields

E
[
‖θT − θ∗‖22

]
= O

(
‖θ0 − θ2‖22

T 2

)
+O

(
T 1−a

T

)
+O

(
C2
b

T 1+a

)
+O

(
Cb
T a

)
= O

(
1

T a

)
.

E Proofs of Propositions and Theorem for PER-ETD(λ)

E.1 Proof of Proposition 3

Define the matrix At := ρbte
b
t(φ

b
t − γφb+1

t ) and ct := rbtρ
b
te
b
t . We have

T̂ λt (θt) = Atθt − ct. (50)

Recall that θt is Ft−1-measurable. We have

E
[
T̂ λt (θt)

∣∣∣Ft−1

]
= E [At|Ft−1] θt − E [ct|Ft−1] .

To bound the bias error term
∥∥∥E [T̂ λt (θt)

∣∣∣Ft−1

]
− T λ(θt)

∥∥∥
2
, we first take conditional expectations on At and

ct, respectively, as following

E [At|Ft−1] = E
[
ρbte

b
t(φ

b
t − γφb+1

t )>
∣∣Ft−1

]
(i)
=

∑
s∈S,a∈A,s′∈S

P
(
sbt = s, abt = a, sb+1

t = s′
∣∣Ft−1

)
· E
[
ρbte

b
t(φ

b
t − γφb+1

t )>
∣∣Ft−1, s

b
t = s, abt = a, sb+1

t = s′
]

(ii)
=
∑
s,a,s′

P
(
sbt = s

∣∣Ft−1

)
µ(a|s)P(s′|s, a) · π(a|s)

µ(a|s)
E
[
ebt
∣∣sbt = s,Ft−1

]
(φ(s)− γφ(s′))>

=
∑
s∈S

P
(
sbt = s

∣∣Ft−1

)
E
[
ebt
∣∣Ft−1, s

b
t = s

] ∑
a∈A,s′∈S

π(a|s)P(s′|s, a) (φ(s)− γφ(s′))
>

=
∑
s∈S

P
(
sbt = s

∣∣Ft−1

)
E
[
ebt
∣∣Ft−1, s

b
t = s

]
·
(
(Φ)(s,·) − γ(PπΦ)(s,·)

)
, (51)

where (i) follows from the law of total probability and (ii) follows from the Markov property and the fact
that ebt only depends on (s0

t , a
0
t , s

1
t , . . . , s

b
t).

Define βτ (s) = P (sτt = s|Ft−1)E
[
ebt
∣∣Ft−1, s

τ
t = s

]
. We have

βb(s) = P
(
sbt = s

∣∣Ft−1

)
E
[
ebt
∣∣sbt = s,Ft−1

]
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(i)
= P

(
sbt = s

∣∣Ft−1

)
·
∑

s̃∈S,ã∈A
P
(
sb−1
t = s̃, ab−1

t = ã
∣∣sbt = s,Ft−1

)
· E
[
γλρb−1

t eb−1
t + (λ+ (1− λ)(1 + ρb−1

t γF b−1
t )φbt)

∣∣sb−1
t = s̃, ab−1

t = ã, sbt = s,Ft−1

]
(ii)
= P

(
sbt = s

∣∣Ft−1

)
φ(s)

+ P
(
sbt = s

∣∣Ft−1

) ∑
s̃∈S,ã∈A

P
(
sb−1
t = s̃

∣∣Ft−1

)
µ(ã|s̃)P(s|s̃, ã)

P
(
sbt = s

∣∣Ft−1

)
· π(ã|s̃)
µ(ã|s̃)

· E
[
γλeb−1

t + (1− λ)γF b−1
t φ(s)

∣∣sb−1
t = s̃,Ft−1

]
= P

(
sbt = s

∣∣Ft−1

)
φ(s) +

∑
s̃∈S

P
(
sb−1
t = s̃

∣∣Ft−1

)
Pπ(s|s̃) · E

[
γλeb−1

t + (1− λ)γF b−1
t φ(s)

∣∣sb−1
t = s̃,Ft−1

]
(iii)
= (λdµ,b(s) + (1− λ)fb(s)) · φ(s) + γλ(P>π βb−1)s, (52)

where (i) follows from the law of total probability, (ii) follows from the Bayes rule and the Markov property,
and (iii) follows from the following definitions: dµ,b(s) = P

(
sbt = s|Ft−1

)
, fb(s) = dµ,b(s)E

[
F bt = s|sbt = s,Ft−1

]
,

fb = dµ,b + γP>π fb−1, and βτ (s) = P (sτt = s|Ft−1)E
[
ebt
∣∣Ft−1, s

τ
t = s

]
.

Define the matrix βτ ∈ Rd×|S|, where βτ = (βτ (1), βτ (2), . . . , βτ (|S|)). Then, eq. (52) implies that

βb = λΦ>Dµ,b + (1− λ)Φ>Fb + γλβb−1Pπ, (53)

where Dµ,b := diag(dµ,b(1), dµ,b(2), . . . , dµ,b(|S|)) and Fb = diag(fb).
Recursively applying the above equality yields

βb = (γλ)bβ0P
b
π + λ

b−1∑
τ=0

(γλ)τΦ>Dµ,b−τP
τ
π + (1− λ)

b−1∑
τ=0

(γλ)τΦ>Fb−τP
τ
π . (54)

Taking expectation of ct conditioned on Ft−1, we have

E [ct|Ft−1] = E
[
ρbte

b
tr
b
t

∣∣Ft−1

]
=

∑
s∈S,a∈A

P
(
sbt = s, abt = a

∣∣Ft−1

)
E
[
ρbte

b
tr
b
t

∣∣sbt = s, abt = a,Ft−1

]
=

∑
s∈S,a∈A

P
(
sbt = s

∣∣Ft−1

)
µ(a|s) · π(a|s)

µ(a|s)
r(s, a)E

[
ebt
∣∣sbt = s,Ft−1

]
=
∑
s∈S

rπ(s)P
(
sbt = s

∣∣Ft−1

)
E
[
ebt
∣∣sbt = s,Ft−1

]
=
∑
s∈S

rπ(s)βb(s). (55)

Substituting eqs. (51) and (55) into eq. (50) yields

E
[
T̂ λt (θt)

∣∣∣Ft−1

]
=
∑
s∈S

βb(s) (Φθt − γPπΦθt − rπ)s = βb (Φθt − γPπΦθt − rπ) .

Recall the definition of T λ(θ). We have

T λ(θt)− E
[
T̂ λt (θt)

∣∣∣Ft−1

]
=
(
Φ>M(I − γλPπ)−1 − βb

)
(Φθt − γPπΦθt − rπ) . (56)

We then proceed to bound the term Φ>M(I − γλPπ)−1 − βb

Φ>M(I − γλPπ)−1 − βb
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(i)
= Φ>M

( ∞∑
τ=0

(γλ)τP τπ

)
− βb

(ii)
= Φ> (λDµ + (1− λ)F )

( ∞∑
τ=0

(γλ)τP τπ

)

−

(
(γλ)bβ0P

b
π + λ

b−1∑
τ=0

(γλ)τΦ>Dµ,b−τP
τ
π + (1− λ)

b−1∑
τ=0

(γλ)τΦ>Fb−τP
τ
π

)

= λ
b−1∑
τ=0

(γλ)τΦ> (Dµ −Dµ,b−τ )P τπ + (1− λ)
b−1∑
τ=0

(γλ)τΦ> (F − Fb−τ )P τπ − λ(γλ)bΦ>Dµ,0P
b
π

+
∞∑
τ=b

(γλ)τΦ>(λDµ + (1− λ)F )P τπ ,

where (i) follows from the fact that (I − γPπ)−1 =
∑∞
τ=0 γ

τP τπ , and (ii) follows from eq. (54). Substituting
the above equality into eq. (56) and taking `2 norm on the both sides yield∥∥∥T λ(θt)− E

[
T̂ λt (θt)

∣∣∣Ft−1

]∥∥∥
2

=

∥∥∥∥∥
(
λ
b−1∑
τ=0

(γλ)τΦ> (Dµ −Dµ,b−τ )P τπ + (1− λ)
b−1∑
τ=0

(γλ)τΦ> (F − Fb−τ )P τπ

+
∞∑
τ=b

(γλ)τΦ>(λDµ + (1− λ)F )P τπ − λ(γλ)bΦ>Dµ,0P
b
π

)
(Φθt − γPπθt − rπ)

∥∥∥∥∥
2

≤ λ
b−1∑
τ=0

(γλ)τ
∥∥Φ> (Dµ −Dµ,b−τ )P τπ (Φθt − γPπΦθt − rπ)

∥∥
2

+ (1− λ)
b−1∑
τ=0

(γλ)τ
∥∥Φ> (F − Fb−τ )P τπ (Φθt − γPπΦθt − rπ)

∥∥
2

+
∞∑
τ=b

(γλ)τ
∥∥Φ> (λDµ + (1− λ)F )P τπ (Φθt − γPπΦθt − rπ)

∥∥
2

+ λ(γλ)b
∥∥Φ>Dµ,0P

b
π (Φθt − γPπΦθt − rπ)

∥∥
2

(i)

≤ λ
b−1∑
τ=0

(γλ)τBφ‖dµ − dµ,b−τ‖1(1 + γ) (Bφ‖θt − θ∗λ‖2 + εapprox)

+ (1− λ)
b−1∑
τ=0

(γλ)τBφ ‖f − fb−τ‖1 (1 + γ) (Bφ‖θt − θ∗λ‖2 + Cεapprox)

+
∞∑
τ=b

(γλ)τBφ (λ‖dµ‖1 + (1− λ)‖f‖1) (1 + γ) (Bφ‖θt − θ∗λ‖2 + εapprox)

+ λ(γλ)bBφ‖dµ,0‖1(1 + γ) (Bφ‖θt − θ∗λ‖2 + εapprox)

(ii)

≤
(
B2
φ‖θt − θ∗λ‖2 +Bφεapprox

)
·

(
b−1∑
τ=0

(γλ)τ
(
λ(1 + γ)CMχ

b−τ + (1− λ)(1 + γ)
(

CM
|γ−χ|ξ

b−τ + γb−τ (1 + ‖f‖1)
)))

+ (1 + γ)
(
B2
φ‖θt − θ∗λ‖2 +Bφεapprox

)((λ+ (1− λ)‖f‖1
1− γλ

+ λ

)
(γλ)b

)
(iii)

≤
(
B2
φ‖θt − θ∗λ‖2 +Bφεapprox

)
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· (1 + γ)
(

λ
|χ−γλ|CMξ

b + CM (1−λ)
|γ−χ|(ξ−γλ)ξ

b +(1 + ‖f‖1)γb +
(
λ+(1−λ)‖f‖1

1−γλ + λ
)

(γλ)b
)

(iv)

≤ Cb,λ (Bφ‖θt − θ∗λ‖2 + εapprox) ξb,

where (i) follows from Lemma 5 and eq. (28), (ii) follows from Lemma 1 and eq. (27), in (iii) we define

Cb,λ := Bφ(1 + γ)
(

λ
|χ−γλ|CM + CM (1−λ)

|γ−χ|(ξ−γλ) + 1 + ‖f‖1 +
(
λ+(1−λ)‖f‖1

1−γλ + λ
))

,

and (iv) follows from Lemma 3.

E.2 Proof of Proposition 4

According to the definition of T̂ λt , we have

E
[∥∥∥T̂ λt (θt)

∥∥∥2

2

∣∣∣∣Ft−1

]
= E

[
(ρbt)

2
(
rbt + γθ>t φ

b+1
t − θ>t φbt

)2
(ebt)

>ebt

∣∣∣Ft−1

]
(i)
=

∑
s∈S,a∈A,s′∈S

P
(
sbt = s, abt = a, sb+1

t = s′
∣∣Ft−1

)
· E
[
(ρbt)

2
(
rbt + γθ>t φ

b+1
t − θ>t φbt

)2
(ebt)

>ebt

∣∣∣sbt = s, abt = a, sb+1
t = s′,Ft−1

]
(ii)
=

∑
s∈S,a∈A,s′∈S

P
(
sbt = s

∣∣Ft−1

)
µ(a|s)P(s′|s, a)

· π
2(a|s)
µ2(a|s)

(r(s, a) + γθ>t φ(s′)− θ>t φ(s))2E
[
(ebt)

>ebt
∣∣sbt = s,Ft−1

]
(iii)

≤
∑
s∈S

P
(
sbt = s

∣∣Ft−1

)
E
[
(ebt)

>ebt
∣∣sbt = s,Ft−1

]
·
∑
s′∈S

Pµ,π(s′|s)(r(s, a) + γφ(s′)>θt − φ(s)>θt)
2

(iv)

≤ ρmax
(
4(1 + γ2)B2

φB
2
θ + 2r2

max

)
B2
φ

∑
s∈S

P
(
sbt = s

∣∣Ft−1

)
E
[
(ebt)

>ebt
∣∣sbt = s,Ft−1

]
, (57)

where (i) follows from the law of total probability, (ii) follows from the Markov property and the fact that
ebt only depends on (s0

t , a
0
t , . . . , s

b
t), and (iii) follows from eq. (30) and the fact

∑
s′ Pµ,π(s′|s) ≤ ρmax.

Define ∆b(s) = P
(
sbt = s|Ft−1

)
E
[
(ebt)

>ebt
∣∣sbt = s,Ft−1

]
. We then proceed to bound the term ∆b(s). We

have

∆b(s)

(i)
= P

(
sbt = s|Ft−1

) ∑
s̃∈S,ã∈A

P
(
sb−1
t = s̃, ab−1

t = ã
∣∣sbt = s,Ft−1

)
E
[
(ebt)

>ebt
∣∣sb−1
t = s̃, ab−1

t = ã, sbt = s,Ft−1

]
(ii)
= P

(
sbt = s|Ft−1

) ∑
s̃∈S,ã∈A

P
(
sb−1
t = s̃

∣∣Ft−1

)
µ(ã|s̃)P(s|s̃, ã)

P
(
sbt = s|Ft−1

) E
[
(ebt)

>ebt
∣∣sb−1
t = s̃, ab−1

t = ã, sbt = s,Ft−1

]
(iii)
=

∑
s̃∈S,ã∈A

P
(
sb−1
t = s̃

∣∣Ft−1

)
µ(ã|s̃)P(s|s̃, ã) · E

[(
γλρb−1

t eb−1
t +

(
λ+ (1− λ)

(
γρb−1

t F b−1
t + 1

))
φbt
)>

·
(
γλρb−1

t eb−1
t +

(
λ+ (1− λ)

(
γρb−1

t F b−1
t + 1

))
φbt
)∣∣sb−1

t = s̃, ab−1
t = ã, sbt = s,Ft−1

]
=

∑
s̃∈S,ã∈A

P
(
sb−1
t = s̃

∣∣Ft−1

)
µ(ã|s̃)P(s|s̃, ã)

E
[
(γλ)2(ρb−1

t )2(eb−1
t )>eb−1

t + (1− λ)2γ2(ρb−1
t F b−1

t )2φ(s)>φ(s) + φ(s)>φ(s)

+2γ2λ(1− λ)(ρb−1
t )2F b−1

t φ(s)>eb−1
t + 2γλρb−1

t φ(s)>eb−1
t
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+2(1− λ)γρb−1
t F b−1

t φ(s)>φ(s)
∣∣sb−1
t = s̃, ab−1

t = ã, sbt = s,Ft−1

]
= P

(
sbt = s|Ft−1

)
‖φ(s)‖22

+ φ>(s)
∑
s̃∈S

Pπ(s|s̃)P
(
sb−1
t = s̃

∣∣Ft−1

)
E
[
2γλeb−1

t + 2γ(1− λ)F b−1
t φ(s)

∣∣sb−1
t = s̃,Ft−1

]
+ λ2γ2

∑
s̃∈S

Pµ,π(s|s̃)P
(
sb−1
t = s̃

∣∣Ft−1

)
E
[
(eb−1
t )>eb−1

t

∣∣sb−1
t = s̃,Ft−1

]
+ 2γ2λ(1− λ)

∑
s̃∈S

Pµ,π(s|s̃)P
(
sb−1
t = s̃

∣∣Ft−1

)
E
[
F b−1
t φ(s)>eb−1

t

∣∣sb−1
t = s̃,Ft−1

]
+ ‖φ(s)‖22γ2(1− λ)2

∑
s̃∈S

Pµ,π(s|s̃)P
(
sb−1
t = s̃

∣∣Ft−1

)
E
[
(F b−1
t )2

∣∣sb−1
t = s̃,Ft−1

]
≤ B2

φdµ,b(s) + 2γλφ>(s)(βb−1Pπ)(·,s) + 2γ(1− λ)B2
φ(P>π fb−1)s

+ λ2γ2(P>µ,π∆b−1)s + γ2(1− λ)2B2
φ(P>µ,πrb−1)s

+ 2γ2λ(1− λ)
∑
s̃∈S

Pµ,π(s|s̃)P
(
sb−1
t = s̃

∣∣Ft−1

)
E
[
F b−1
t φ(s)>eb−1

t

∣∣sb−1
t = s̃,Ft−1

]
(iv)
= B2

φdµ,b(s) + λ2γ2(P>µ,π∆b−1)s + 2γ(1− λ)B2
φ(P>π fb−1)s + 2γλφ>(s)(βb−1Pπ)(·,s)

+ γ2(1− λ)2B2
φ(P>µ,πrb−1)s + 2γ2λ(1− λ)φ(s)>(δb−1Pµ,π)(·,s), (58)

where (i) follows from the law of total probability, (ii) follows from the Bayes rule, (iii) follows the update
rule of ebt and in (iv) we define

δτ (s) = P (sτt = s|Ft−1)E [F τt e
τ
t |sτt = s,Ft−1] .

Summing eq. (58) over S yields

1>∆b =
∑
s

∆b(s)

≤ B2
φ1
>dµ,b(s) + λ2γ21>P>µ,π∆b−1 + 2γ(1− λ)B2

φ1
>P>π fb−1 + 2γλtrace (Φβb−1Pπ)

+ γ2(1− λ)2B2
φ1
>P>µ,πrb−1 + 2γ2λ(1− λ)trace (Φδb−1Pµ,π)

(i)

≤ λ2γ2ρmax1
>∆b−1 +B2

φ + 2γ(1− λ)B2
φ1
>fb−1 + 2γλtrace (Φβb−1Pπ)

+ γ2(1− λ)2B2
φρmax1

>rb−1 + 2γ2λ(1− λ)trace (Φδb−1Pµ,π) ,

where (i) follows from Lemma 4 with P = Pµ,π.
Recursively applying the above inequality, we have

1>∆b ≤ (λ2γ2)bρbmax1
>∆0 +

b∑
τ=1

(λ2γ2)b−τ (ρmax)b−τ
(
B2
φ + 2γ(1− λ)B2

φ1
>fτ−1

+2γλtrace (Φβτ−1Pπ) + γ2(1− λ)2B2
φρmax1

>rτ−1 + 2γ2λ(1− λ)trace (Φδτ−1Pµ,π)
)
. (59)

Substituting eq. (54) into trace (ΦβτPπ) with b and τ replaced by τ and m respectively yields

trace (ΦβτPπ)

(i)
= (γλ)τ trace

(
Φβ0P

τ+1
π

)
+ λ

τ−1∑
m=0

(γλ)m
(
trace

(
ΦΦ>Dµ,τ−mP

m+1
π

)
+ (1− λ)trace

(
ΦΦ>Fτ−mP

m+1
π

))
(ii)
= (γλ)τ trace

(
P τ+1
π ΦΦ>Dµ,0

)
+ λ

τ−1∑
m=0

(γλ)m
(
trace

(
Pm+1
π ΦΦ>Dµ,τ−m

)
+ (1− λ)trace

(
Pm+1
π ΦΦ>Fτ−m

))
(iii)

≤ (γλ)τB2
φ1
>dµ,0 +B2

φ

τ−1∑
m=0

(γλ)m (λ‖dµ,τ−m‖1 + (1− λ)‖fτ−m‖1)
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(iv)

≤ (γλ)τB2
φ +

1− (γλ)τ

1− γλ
(λ+ (1− λ)(1 + ‖f‖1))B2

φ

≤
B2
φ

1− γλ
(1 + (1− λ)‖f‖1) , (60)

where (i) follows from eq. (54), (ii) follows from the facts that trace(AB) = trace(BA) and δ0 = Φ>Dµ,0,
(iii) follows from Lemma 6 with P = Pπ, and (iv) follows from eq. (37).
Next, we proceed to bound the term trace

(
Φ>δτ−1Pµ,π

)
.

δb−1(s̃)
(i)
= P

(
sb−1
t = s̃

∣∣Ft−1

)
E
[
F b−1
t

(
γλρb−2

t eb−2
t + (λ+ (1− λ)F b−1

t )φ(s̃)
)∣∣sb−1

t = s̃,Ft−1

]
(ii)
= (1− λ)P

(
sb−1
t = s̃

∣∣Ft−1

)
E
[
(F b−1
t )2

∣∣sb−1
t = s̃,Ft−1

]
φ(s̃)

+ λP
(
sb−1
t = s̃

∣∣Ft−1

)
E
[
F b−1
t

∣∣sb−1
t = s̃,Ft−1

]
φ(s̃)

+ γλP
(
sb−1
t = s̃

∣∣Ft−1

)
E
[
ρb−2
t eb−2

t

∣∣sb−1
t = s̃,Ft−1

]
φ(s̃)

+ γ2λP
(
sb−1
t = s̃

∣∣Ft−1

)
E
[
(ρb−2
t )2F b−2

t eb−2
t

∣∣sb−1
t = s̃,Ft−1

]
φ(s̃)

(iii)
= (1− λ)rb−1(s̃)φ(s̃) + λfb−1(s̃)φ(s̃)

+ P
(
sb−1
t = s̃

∣∣Ft−1

) ∑
s′′,a′′

P
(
sb−2
t = s′′, ab−2

t = a′′
∣∣sb−1
t = s̃,Ft−1

)
· E
[
γλρb−2

t eb−2
t + γ2λ(ρb−2

t )2F b−2
t eb−2

t

∣∣sb−2
t = s′′, ab−2

t = a′′, sb−1
t = s̃,Ft−1

]
= (1− λ)rb−1(s̃)φ(s̃) + λfb−1(s̃)φ(s̃)

+ P
(
sb−1
t = s̃

∣∣Ft−1

) ∑
s′′,a′′

P
(
sb−2
t = s′′

∣∣Ft−1

)
µ(a′′|s′′)P(s̃|s′′, a′′)

P
(
sb−1
t = s̃

∣∣Ft−1

)
· E
[
γλ
π(a′′|s′′)
µ(a′′|s′′)

eb−2
t + γ2λ

π2(a′′|s′′)
µ2(a′′|s′′)

F b−2
t eb−2

t

∣∣∣∣sb−2
t = s′′,Ft−1

]
= (1− λ)rb−1(s̃)φ(s̃) + λfb−1(s̃)φ(s̃) + γλ(βb−2Pπ)(·,s) + γ2λ(δb−2Pµ,π)(·,s),

where (i) follows from the update of eb−1
t , (ii) follows from the update rule of F b−1

t , and (iii) follows from
the law of total probability.
The above equality implies that

δb−1 = (1− λ)Φ>diag(rb−1) + λΦ>diag(fb−1) + γλβb−2Pπ + γ2λδb−2Pπ,µ.

Recursively applying the above equality yields

δb−1 =
b−1∑
m=1

(Φ>((1− λ)diag(rm) + λdiag(fm)) + γλβm−1Pπ)(Pπ,µ)b−1−m + (γ2λ)b−1δ0(Pπ,µ)b−1.

Note that the above inequality holds for any fixed b >= 2. As a result, by changing of notation, for all τ ≥ 1,
we have

δτ =
τ∑

m=1

(Φ>((1− λ)diag(rm) + λdiag(fm)) + γλβm−1Pπ)(Pπ,µ)τ−m + (γ2λ)τδ0(Pπ,µ)τ . (61)

Substituting eq. (61) into trace (ΦδτPµ,π), we have

trace (ΦδτPµ,π)

= trace

(
Φ

(
τ∑

m=1

(Φ>((1− λ)diag(rm) + λdiag(fm)) + γλβm−1Pπ)(Pπ,µ)τ−m + (γ2λ)τδ0(Pπ,µ)τ

)
Pµ,π

)
(i)
=

τ∑
m=1

trace
(
(Pπ,µ)τ−m+1

(
ΦΦ>((1− λ)diag(rm) + λdiag(fm)) + γλΦβm−1Pπ

))
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+ trace
(
(γ2λ)τ (Pπ,µ)τ+1Φδ0

)
, (62)

where (i) follows from the fact that trace(AB) = trace(BA) and trace(A +B) = trace(A) + trace(B).
Applying Lemma 6 with Q = Pµ,π, C = ρmax, P = Pπ and D = (1− λ)diag(rm), we have

trace
(
(Pπ,µ)τ−m+1ΦΦ>(1− λ)diag(rm)

)
≤ (1− λ)ρτ−m+1

max B2
φ‖rm‖1. (63)

Applying Lemma 6 with Q = Pµ,π, C = ρmax, P = Pπ and D = λdiag(fm), we have

trace
(
(Pπ,µ)τ+1−mΦΦ>λdiag(fm)

)
≤ λρτ+1−m

max B2
φ‖fm‖1

(i)

≤ λρτ+1−m
max B2

φ(1 + ‖f‖1), (64)

where (i) follows from eq. (37).
For the term trace

(
(Pπ,µ)τ+1−mΦβm−1Pπ

)
, we have

trace
(
(Pπ,µ)τ+1−mΦβm−1Pπ

)
(i)
= (γλ)m−1trace

(
Pmπ (Pπ,µ)τ+1−mΦΦ>Dµ,0

)
+
m−2∑
l=0

(γλ)l
(
λtrace

(
P l+1
π (Pπ,µ)τ+1−mΦΦ>Dµ,m−1−l

)
+(1− λ)trace

(
P l+1
π (Pπ,µ)τ−m+1ΦΦ>Fπ,m−1−l

))
(ii)

≤ B2
φρ
τ+1−m
max

(
(γλ)m−11>dµ,0 +

m−2∑
l=0

(γλ)l
(
λ1>dµ,m−1−l + (1− λ)1>fm−1−l

))
(iii)

≤
B2
φρ
τ+1−m
max

1− γλ
(1 + (1− λ)‖f‖1) , (65)

where (i) follows from eq. (54) and the facts that trace(A + B) = trace(A) + trace(B) and trace(AB) =
trace(BA), (ii) follows from Lemma 6 with Q = Pµ,π, P = Pπ, and D = Fm−1−l and Dπ,m−1−l respectively,
and (iii) follow from the eq. (37).
Recall δ0 = Φ>Dµ,0. Applying Lemma 6 with Q = Pµ,π and D = Dµ,0 yields

trace
(
(γ2λ)τ (Pπ,µ)τ+1Φδ0

)
≤ (γ2λ)τB2

φρ
τ+1
max. (66)

Substituting eqs. (63) to (66) into eq. (62), we have

trace (ΦδτPµ,π)

≤ (γ2λ)τB2
φρ
τ+1
max +

τ∑
m=1

B2
φρ
τ−m+1
max

(
λ(‖f‖1 + 1) +

1 + (1− λ)‖f‖1
1− γλ

)
+

τ∑
m=1

(1− λ)ρτ−m+1
max B2

φ‖rm‖1.

(67)

Substituting eqs. (60) and (67) into eq. (59), we have

1>∆b ≤ λ2bγ2bρbmaxB
2
φ + (1 + 2γ(1− λ)(1 + ‖f‖1) + 2γλCβ)B2

φ

b∑
τ=1

λ2(b−τ)γ2(b−τ)ρb−τmax

+ γ2(1− λ)2ρb+1
maxB

2
φ

b∑
τ=1

λ2b−2τγ2b−2τρ−τmax‖rτ−1‖1 + 2λbγ2b(1− λ)ρbmaxB
2
φ

b∑
τ=1

λb−τ

+ 2γ2λ(1− λ)B2
φ

(
λ‖f‖1 + 1 +

1 + (1− λ)‖f‖1
1− γλ

)
ρbmax

b∑
τ=1

γ2b−2τλ2b−2τ
τ−1∑
m=1

ρ−mmax

+ 2γ2λ(1− λ)2ρbmaxB
2
φ

b∑
τ=1

γ2b−2τλ2b−2τ
τ−1∑
m=1

ρ−mmax‖rm‖1, (68)

where we let Cβ :=
B2
φ

1−γλ (1 + (1− λ)‖f‖1).
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Under different conditions of ρmax, the term 1>∆b and E
[∥∥∥T̂ λt (θt)

∥∥∥2

2

∣∣∣∣Ft−1

]
can be upper bounded differently

as following:
(a). γ2ρmax < 1, substituting eq. (40) into eq. (68) yields

1>∆b ≤ λ2bγ2bρbmaxB
2
φ + (1 + 2γ(1− λ)(1 + ‖f‖1) + 2γλCβ)B2

φ

b∑
τ=1

λ2(b−τ)γ2(b−τ)ρb−τmax

+ γ2(1− λ)2ρb+1
maxB

2
φ

b∑
τ=1

λ2b−2τγ2b−2τρ−τmax

(
3 + 2γ‖f‖1

1− γ2
+ 1

)
+ 2λbγ2b(1− λ)ρbmaxB

2
φ

b∑
τ=1

λb−τ

+ 2γ2λ(1− λ)B2
φ

(
λ‖f‖1 + 1 +

1 + (1− λ)‖f‖1
1− γλ

)
ρbmax ·

b∑
τ=1

γ2b−2τλ2b−2τ
τ−1∑
m=1

ρ−mmax

+ 2γ2λ(1− λ)2ρbmaxB
2
φ

b∑
τ=1

γ2b−2τλ2b−2τ
τ−1∑
m=1

ρ−mmax

(
3 + 2γ‖f‖1

1− γ2
+ 1

)

≤ λ2bγ2bρbmaxB
2
φ +

(1 + 2γ(1− λ)(1 + ‖f‖1) + 2γλCβ)B2
φ

1− γ2ρmaxλ

+
γ2(1− λ)2ρmaxB

2
φ

1− γ2ρmaxλ

(
3 + 2γ‖f‖1

1− γ2
+ 1

)
+ 2λ2bγbρbmaxB

2
φ

+
2γ2λ(1− λ)B2

φ

(1− γ2λ2)(1− ρ−1
max)

(
λ‖f‖1 + 1 +

1 + (1− λ)‖f‖1
1− γλ

)
ρb+1
max

+
2γ2λ(1− λ)2B2

φ

(1− γ2λ2)(1− ρ−1
max)

(
3 + 2γ‖f‖1

1− γ2
+ 1

)
ρb+1
max, (69)

where the last two terms of the above inequality are of the order O
(
ρbmax

)
. Therefore, we have 1>∆b ≤

Cρbmax for some C > 0. Substituting eq. (69) into eq. (57) yields

E
[∥∥∥T̂ λt (θt)

∥∥∥2

2

∣∣∣∣Ft−1

]
≤ Cσ,λ,1ρbmax,

where Cσ,λ,1 > 0 is a constant and is determined by eq. (69).
(b). γ2ρmax = 1, substituting eq. (39) into eq. (68) yields

1>∆b ≤ λ2bB2
φ + (1 + 2γ(1− λ)(1 + ‖f‖1) + 2γλCβ)B2

φ

b∑
τ=1

λ2(b−τ)

+ γ2(1− λ)2ρmaxB
2
φ

b∑
τ=1

λ2b−2τ (4 + 2γ‖f‖1) τ + 2λb(1− λ)B2
φ

b∑
τ=1

λb−τ

+ 2γ2λ(1− λ)B2
φ

(
λ‖f‖1 + 1 +

1 + (1− λ)‖f‖1
1− γλ

)
ρbmax

b∑
τ=1

γ2b−2τλ2b−2τ
τ∑

m=1

ρ−mmax

+ 2γ2λ(1− λ)2 (4 + 2γ‖f‖1)B2
φ

b∑
τ=1

λ2b−2τ
τ∑

m=1

ρτ−mmaxm

≤ λ2bB2
φ +

(1 + 2γ(1− λ)(1 + ‖f‖1) + 2γλCβ)B2
φ

1− λ2
+ 2λbB2

φ

+

(
γ2(1− λ)2ρmaxB

2
φ

1− λ2
(4 + 2γ‖f‖1) +

2γ2λ(1− λ)2 (4 + 2γ‖f‖1)B2
φ

(1− λ2)(1− ρ−1
max)

)
b

+
2γ2λ(1− λ)B2

φ

(1− γ2λ2)(1− ρ−1
max)

(
λ‖f‖1 + 1 +

1 + (1− λ)‖f‖1
1− γλ

)
ρb+1
max, (70)
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where the last term of the above inequality is of the order O
(
ρbmax

)
. Therefore, we have 1>∆b ≤ Cρbmax for

some C > 0. Substituting eq. (70) into eq. (57) yields

E
[∥∥∥T̂ λt (θt)

∥∥∥2

2

∣∣∣∣Ft−1

]
≤ Cσ,λ,2ρbmax,

where Cσ,λ,2 > 0 is a constant and is determined by eq. (70).
(c). γ2ρmax > 1, substituting eq. (38) into eq. (68) yields

1>∆b ≤ λ2bγ2bρbmaxB
2
φ + (1 + 2γ(1− λ)(1 + ‖f‖1) + 2γλCβ)B2

φ

b∑
τ=1

λ2(b−τ)γ2(b−τ)ρb−τmax

+ γ2b+2(1− λ)2ρb+1
maxB

2
φ

(
3 + 2γ‖f‖1
γ2ρmax − 1

+ 1

) b∑
τ=1

λ2b−2τ + 2λbγ2b(1− λ)ρbmaxB
2
φ

b∑
τ=1

λb−τ

+ 2γ2λ(1− λ)B2
φ

(
λ‖f‖1 + 1 +

1 + (1− λ)‖f‖1
1− γλ

)
ρbmax

b∑
τ=1

γ2b−2τλ2b−2τ
τ−1∑
m=1

ρ−mmax

+ 2γ2λ(1− λ)2ρbmaxB
2
φ

(
3 + 2γ‖f‖1
γ2ρmax − 1

+ 1

) b∑
τ=1

γ2b−2τλ2b−2τ
τ−1∑
m=1

γ2m

≤ λ2bγ2bρbmaxB
2
φ +

(1 + 2γ(1− λ)(1 + ‖f‖1) + 2γλCβ)B2
φ

γ2ρmax − 1
· γ2bρbmax

+
γ2b+2(1− λ)2ρb+1

maxB
2
φ

1− λ2

(
3 + 2γ‖f‖1
γ2ρmax − 1

+ 1

)
+ 2λbγ2bρbmaxB

2
φ

+
2γ2λ(1− λ)B2

φ

(1− γ2λ2)(1− ρ−1
max)

(
λ‖f‖1 + 1 +

1 + (1− λ)‖f‖1
1− γλ

)
ρb+1
max

+
2γ2λ(1− λ)2

(1− γ2)(1− γ2λ2)
B2
φ

(
3 + 2γ‖f‖1
γ2ρmax − 1

+ 1

)
ρbmax, (71)

where the last term of the above inequality is of the order O
(
ρbmax

)
. Therefore, we have 1>∆b ≤ Cρbmax for

some C > 0. Substituting eq. (71) into eq. (57) yields

E
[∥∥∥T̂ λt (θt)

∥∥∥2

2

∣∣∣∣Ft−1

]
≤ Cσ,λ,3ρbmax,

where Cσ,λ,3 > 0 is a constant and is determined by eq. (71).

To summarize, the variance term E
[∥∥∥T̂t(θt)∥∥∥2

2

∣∣∣∣Ft−1

]
can be bounded by σ2

λ = O(ρbmax).

E.3 Proof of Theorem 2

Theorem 4 (Formal Statement of Theorem 2). Suppose Assumptions 1 and 2 hold. Consider PER-ETD(λ)

specified in Algorithm 2. Let the stepsize ηt = 2
µλ(t+tλ) , tλ =

8L2
λ

µ2
λ

, where µλ is defined in Lemma 7 and Lλ

is defined in Lemma 8 in Appendix C. Further let

b = max
{⌈

log(µλ)−log(5Cb,λBφ)
log(ξ)

⌉
, log(T )

log(ρmax)+log(1/ξ)

}
,

where Cb,λ is a constant defined in the proof of Proposition 3 in Appendix E.1, Bφ := maxs∈S ‖φ(s)‖2, and

ξ := max{γ, χ}. Let the projection set Θ =
{
θ ∈ Rd : ‖θ‖2 ≤ Bθ

}
, where Bθ = ‖Φ>‖2rmax

(1−γ)µλ
(which implies

θ∗λ ∈ Θ). Then the output θT of PER-ETD(λ) satisfies

E
[
‖θT − θ∗λ‖22

]
≤ O

(
1

T aλ

)
,

where aλ = 1
log1/ξ(ρmax)+1 . Further, PER-ETD(λ) attains an ε-accurate solution with Õ

(
1

ε1/aλ

)
samples.
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Proof. The proof follows the same steps as Theorem 1 by replacing the terms T̂t, T , t0, L0, µ0, Cb, σ
2 and

θ∗ with T̂ λt , T λ, tλ, Lλ, µλ, Cb,λ, σ2
λ and θ∗λ respectively. Specifically, Propositions 3 and 4 are applied to

bound the bias and variance over the steps similarly to eq. (44). We then have the convergence as follows.

E
[
‖θT − θ∗λ‖22

]
≤ O

(
‖θ0 − θ∗λ‖22

T 2

)
+O

(
σ2
λ

T

)
+O

(
ξ2b

T

)
+O

(
ξb
)

= O
(
‖θ0 − θ∗λ‖22

T 2

)
+O

(
ρbmax
T

)
+O

(
ξ2b

T

)
+O

(
ξb
)
. (72)

We further specify b =
{⌈

log(µ0)−log(5CbBφ)
log(ξ)

⌉
, log(T )

log(ρmax)+log(1/ξ)

}
. Then Equation (72) yields

E
[
‖θT − θ∗λ‖22

]
≤ O

(
‖θ0 − θ∗λ‖22

T 2

)
+O

(
T 1−aλ

T

)
+O

(
1

T 1+aλ

)
+O

(
1

T aλ

)
= O

(
1

T aλ

)
.
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