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Abstract—In power systems, various control engineering algorithms
are instrumented to regulate voltages and frequencies. One of these
algorithms is load frequency control (LFC). Thanks to developments in
control theory and convex optimization, numerous LFC strategies have
been proposed. However, many rely on a reduced, linearized model
of power systems where: (i) load and renewables buses are eliminated,
(ii) only synchronous machines are modeled, (iii) nonlinear network
transients are replaced with their linear approximations around tight
operating regions, and (iv) algebraic power flows are eliminated. In
contrast, the increased penetration of renewables from wind and solar
introduces significant uncertainty which can only be captured explicitly
via a nonlinear differential algebraic equation (NDAE) model that
incorporates loads, renewables, and nonlinear machine and power flow
transients. As it is demonstrated herein, such vintage, linearization-
based approaches may be inadequate. They can be easily overwhelmed
by high degree of uncertainty, thereby failing to stabilize power
systems post-disturbance. To that end, we showcase the limitations of
some widely utilized linearization-based LFC methods and offer a new
solution which manifests through a simple, linearization-free approach
that can handle large disturbances in power systems originating from
a sudden reduction of renewables generation and increase of demands.

Keywords—Power systems, load frequency control, differential
algebraic equations, linear quadratic regulator, robust H∞ control.

I. INTRODUCTION

FREQUENCY regulation constitutes one of the main control
problems in modern multi-machine power systems. The load

frequency control (LFC) problem is associated with the capability
to preserve the power balance between the total generated power
against the total load demand [1] in near real-time. Future,
renewables-dominant power systems face great challenges due to
the increased participation of renewable energy resources especially
wind and photovoltaic (PV) solar farms. The high variability
of electric power generated by renewables, in addition to load
fluctuations, makes frequency regulation even more challenging.

Several approaches have been proposed in the literature to pro-
vide frequency regulation services. In multi-area power networks,
automatic generation control (AGC) is a secondary, inter-area
control architecture that regulates the network’s frequency as well
as the interchange of power flows [2]; note that AGC and LFC
can be used interchangeably. AGC commonly implements conven-
tional/classical controllers to control the turbine governor such that
the total area control error (ACE) is minimized. The developments
of convex optimization methods encourage the design of more ad-
vanced control strategies particularly for power system applications.
Many optimal control methods have been proposed accordingly,
e.g., to perform LFC in a two-area power systems [3], [4]. A recent
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study conducted in [5] investigates the joint optimal power flow
problem with LFC using linear quadratic regulator (LQR). A robust
H∞ LFC method for an interconnected two-area power systems is
developed in [6] to specifically handle disturbances from the tie-line
interconnections. As a departure from the H∞ control, the concept
of L∞ stability is utilized in [7] to implement a robust control
architecture for LFC. The behavior of power networks pertaining to
the increasing penetration of distributed energy resources (DERs)
including renewables is recently studied in [8], where the authors
showcase how power system control becomes harder (in the control-
theoretic sense) as more renewable energy is added.

It is noteworthy that the majority of these approaches rely
on power systems models linearized with respect to a certain
operating point—we refer to such controllers as linearization-based
controllers. As such, the resulting stability and performance
guarantees only apply on confined neighborhoods around the
operating point. This simply follows from linear dynamic systems
theory. Furthermore, and to derive such linearization-based
controllers, the algebraic equations that govern network power
flows are eliminated and only the dynamics of the generators
(through linear differential equations) are captured. This results in
only penalizing deviations from the nominal operating point of the
dynamic states of generators—the algebraic states (i.e., voltages
and currents) are hence not explicitly controlled.

With that in mind, many studies [5], [7]–[9] have demonstrated
that when applying the linearization-based controller to the more
comprehensive, nonlinear differential algebraic equation (NDAE)
model of power network, such controllers are able to stabilize both
dynamic generator and algebraic states. One might add that this is a
fortunate coincidence, as the aforementioned linear systems theory
is not designed to guarantee stabilization NDAE models. Conse-
quently, a significant disturbance—for instance, due to uncertainties
induced by faults and the variability of renewables and loads—may
be strong enough to kick the system out of the desired operating re-
gion. This implies that a controller gain matrix (computed as a func-
tion of the original operating point) has to be updated whenever a
large disturbance moves the network to a different operating region.
Although there exist some LFC strategies that do not involve any lin-
earization, e.g. [2], [10] only equations pertaining to generator buses
and active power flows are considered to derive the controller gains.

The paper’s objective is two-fold: (i) to showcase the limitations
of traditional linear systems theory tools in performing LFC in
the presence of disturbances from renewables; (ii) to offer a new
linearization-free controller that is more robust despite being as
simple as its aforementioned counterparts. Towards that end goal,
the paper’s contributions are:
• Through numerical simulations, we demonstrate that vintage
linearization-based methods, specifically LQR, AGC, and H∞



controllers when implemented to perform LFC on an NDAE
model of power networks, could perform poorly and eventually
fail to stabilize the network even under moderate disturbances.
• We propose a novel linearization-free controller, derived based
on the NDAE models of power networks, which controller gain
can be computed by solving a convex optimization problem
involving linear matrix inequalities (LMIs).
• We show the superiority of the proposed linearization-free
controller against LQR, AGC, and H∞ controllers in maintaining
system-wide frequency on the event of sudden changes in
renewables generation and power demands.

The remainder of the paper is organized as follows. Section II
presents the NDAE models of power networks while Section III
reviews the most common linear systems theory-based control
algorithms. Section IV discusses the design of the proposed state
feedback control strategy for the stabilization of NDAE models
of power systems. Thorough numerical studies are provided in
Section V. The paper is concluded in Section VI.

II. DYNAMICS OF MULTI-MACHINE POWER SYSTEMS

We consider a power network consisting N number of buses,
modeled by a graph (N , E) where N is the set of nodes
and E is the set of edges. Note that N consists of traditional
synchronous generator, renewable energy resources, and load buses,
i.e., N =G∪R∪L where G collects G generator buses, R collects
the buses containing R renewables, while L collects L load buses.
The 4th-order dynamics of synchronous generators are given as [11]

δ̇i=ωi−ω0 (1a)
Miω̇i=TMi−PGi−Di(ωi−ω0) (1b)

T ′
d0iĖ

′
i=−xdi

x′
di
E′

i+
xdi−x′

di

x′
di

vicos(δi−θi)+Efdi (1c)

TCHiṪMi=−TMi− 1
RDi

(ωi−ω0)+Tri. (1d)

where δi, ωi, E′
i, TMi are generator’s internal states and Efdi, Tri

are generator’s inputs. Despite that these states and inputs are
time-varying, its time dependence indicator (t) is dropped here
for brevity (we do this in the subsequent sections to save space).
The constant terms in (1) are as follows: Mi is the rotor’s inertia
constant (pu×s2), Di is the damping coefficient (pu×s), xdi is
the direct-axis synchronous reactance (pu), x′di is the direct-axis
transient reactance (pu), T ′

d0i is the direct-axis open-circuit time
constant (s), TCHi is the chest valve time constant, RDi is the
regulation constant for the speed-governing mechanism, and ω0

denotes the rotor’s synchronous speed (rad/s). The relations among
generator’s internal states (δi,ωi,E

′
i,TMi), generator’s supplied

power (PGi,QGi), and terminal voltage v̄i are given by [7]

PGi=
1

x′
di
E′

ivisin(δi−θi)− xqi−x′
di

2x′
dixqi

v2i sin(2(δi−θi)) (2a)

QGi=
1

x′
di
E′

ivicos(δi−θi)− x′
di+xqi

2x′
dixqi

v2i

− xqi−x′
di

2x′
dixqi

v2i cos(2(δi−θi)).
(2b)

The power flow equations, for i ∈ G ∩R∩L, representing the
distribution of real and reactive power are [11]

PGi+PRi+PLi=

N∑
j=1

vivj(Gijcosθij+Bijsinθij) (3a)

QGi+QRi+QLi=

N∑
j=1

vivj(Gijsinθij−Bijcosθij), (3b)

where θij :=θi−θj. In (3), (PRi,QRi) denote the active and reac-
tive power generated by renewables, while (PLi,QLi) denote the ac-
tive and reactive power consumed by the loads. In order to construct
the nonlinear state-space representation of the multi-machine power
networks (1)-(3), define xd as the vector populating all dynamic
states of the network such that xd :=

[
δ⊤ ω⊤ E′⊤ T⊤

M

]⊤
in which

δ :={δi}i∈G, ω :={ωi}i∈G, E′ :={E′
i}i∈G, TM :={TMi}i∈G; a as

the algebraic state corresponding to generator’s power such that
a :=

[
P⊤
G Q⊤

G

]⊤
where PG :={PGi}i∈G, QG :={QGi}i∈G; and

ṽ as the algebraic state representing the network’s complex bus
voltages such that ṽ :=

[
v⊤ θ⊤]⊤ where v:={vi}i∈N, θ:={θi}i∈N.

The input of the system is considered to be u :=
[
E⊤

fd T
⊤
r

]⊤
where Efd := {Efdi}i∈G and Tr := {Tri}i∈G. In addition, define
the vector q as q :=

[
P⊤
R Q⊤

R P⊤
L Q⊤

L

]⊤
where PR:={PRi}i∈R,

QR :={QRi}i∈R, PL :={PLi}i∈L, QL :={QLi}i∈L. The above
notations allow (1)-(3) to be written into a compact, nonlinear
differential algebraic equation (NDAE) state space model:

NDAE: ẋd=Adxd+Gdfd(xd,xa)+Bdu+hω0 (4a)
0=Aaxa+Gafa(xd,xa)+Baq, (4b)

where xd∈Rnd , xa :=
[
a⊤ ṽ⊤]⊤∈Rna , u∈Rnu , and q∈Rnq .

The functions fd :Rnd ×Rna →Rnfd , fa :Rnd ×Rna →Rnfa ,
constant matrices Ad ∈Rnd×nd , Aa ∈Rna×na , Gd ∈Rnfd×nd ,
Ga∈Rnfa×na , Bd∈Rnu×nd , Ba∈Rnq×na , and vector h∈Rnd

are all detailed in Appendix A of [12].
Notice that the state space equation (4) represents the NDAEs

of power networks, which cannot be utilized by linearization-based
controllers. To that end, we perform linearization to (4) using the
first order Taylor approximation to obtain a linear model. Let δ0i ,
ω0
i , e′0qi e

′0
di, P

0
Gi, Q

0
Gi, T

0
Mi, E

0
fdi for i ∈ G, P0

L,i and Q0
L,i for

i∈L, P0
R,i and Q0

R,i for i∈L, and ṽ0
i for i∈N be the operating

point of the system. Linearizing (4) around this point gives the
following equations

∆ẋd=Ãdd∆xd+Ãda∆xa+Bd∆u (5a)

0=Ãad∆xd+Ãaa∆xa+Ba∆q, (5b)

where ∆xd := xd − x0
d, ∆xa := xa − x0

a, ∆u := u − u0,
and ∆q := q − q0, which respectively denote the deviations
of the current dynamic state xd, algebraic state xa, input
u, and renewable-load power q to the given operating point
(x0

d,x
0
a,u

0,q0). Assuming that Ãaa is a nonsingular matrix (see
[13]), the linear DAE (5) can be reduced to a linearized ordinary
differential (LODE) state space model

LODE: ∆ẋd=Ã∆xd+Bd∆u+B̃a∆q, (6)

where Ã := Ãdd−ÃdaÃ
−1
aa Ãad and B̃a :=−ÃdaÃ

−1
aaBa. The

equation in (6) describes the dynamical behavior of the network
around the given operating point. It is noteworthy that: (1) the
algebraic state ∆xa is eliminated while the dynamic state ∆xd



remains and (2) the linearized model (6) does depend on the
operating point while the nonlinear DAE (4) does not.

III. LINEARIZATION-BASED APPROACHES FOR LFC

The power generated by renewables and consumed by loads
are inherently time-varying and highly fluctuating. Although these
power figures follow some certain patterns (e.g., daily aggregate
power consumption of residential buildings, seasonal weather pat-
terns), precise prediction on minute-to-minute basis is still difficult
to perform. Indeed, the scheduling of synchronous generators—that
is, determining the amount of power that needs to be produced—
is dependent on the available day-ahead loads and renewables
forecasts, which provide hourly figures of power demand and
production [14]. Provided with such information, the independent
system operator solves the power flow (PF) or optimal power
flow (OPF) problem repeatedly for every certain time interval,
typically 15 minutes [15]—this is referred to as the dispatch
period. The resulting solutions are then employed to aid primary,
secondary and tertiary controls [15]. Let qk be the predicted
demand and renewable generation at the k-th dispatch period. Since
q(t) fluctuates, then at any time instance, it will be likely that
qk ≠q(t). The difference between qk (prediction) and q(t) (actual)
acts as a disturbance on the power system. In the LODE model,
∆q represents this particular disturbance and thus, the objective
of the controller is to provide control action ∆u that minimizes
the deviation of frequency ωi−ω0 for all i∈G. The next section
summarizes two LFC methods, that determine ∆u(t) essentially,
which utilize linearized ODE representations of power networks.

A. The Linear-Quadratic Regulator (LQR)

Consider a simplified representation of (6) with ∆q=0 (that
is, the disturbance is assumed to be absent)

∆ẋd(t)=Ã∆xd(t)+Bd∆u(t), (7)

where ∆xd ∈ Rn and ∆xd,0 = ∆xd(t0) is the corresponding
initial condition. The optimal control problem seeks for the best
(optimal) control action ∆u∈Rm for all t≥ 0 that minimizes a
certain predefined cost. For that purpose, it is assumed that the pair
(Ã,Bd) is controllable. Using a linear state feedback control policy
∆u=K∆xd where K∈Rm×n is the controller gain matrix, the
optimal control problem can be reduced to the search of stabilizing
K that minimizes

J∞ :=

∫ ∞

t0

∆x⊤
d (t)Q∆xd(t)+∆u⊤(t)R∆u(t)dt, (8)

where Q ⪰ 0 and R ≻ 0 are weight matrices for the state and
input. It is known that the optimal solution of such problem can
be obtained by solving the continuous-time, Algebraic Riccati
Equation (ARE)

Ã⊤P+PÃ−PBdR
−1B⊤

d P+Q=0, (9)

for some P ≻ 0 [16]. The optimal control gain is then given by
K=−R−1B⊤

d P with minimum cost J∞=∆x⊤
d,0P∆xd,0.

B. Robust H∞ Control

The robust H∞ control is mainly employed to control systems in
which disturbances are explicitly taken into account. Now consider

an extension of LODE (6) with controlled output z∈Rz written as

∆ẋd(t)=Ã∆xd(t)+Bd∆u(t)+B̃a∆q(t), (10a)
z(t)=Zx∆xd(t)+Zu∆u(t), (10b)

where Zx and Zu are user-designed weighting matrices with
appropriate dimensions. For simplicity, a linear full state feedback
control policy ∆u = K∆xd where K ∈ Rm×n is considered.
Using Linear Fractional Transformation (LFT) [17], it can be
shown that the transfer function of system (10) from ∆q(s) to z(s),
where s∈C is the complex Laplace variable, can be expressed as

G(s)=

[
Ã+BdK B̃a

Zx+ZuK O

]
.

Assuming that there exists such K such that the system G(s) is
stable, the H∞ norm of G(s) is defined as the L2-induced norm
of the input-output operator G :∆q→z such that

∥G∥H∞
:= sup

∆q∈L2

{
∥z∥L2

∥∆q∥L2

,∆q≠0

}
.

It can be shown from the bounded-real lemma [18] that the H∞
norm of the closed-loop system G(s) is minimized and bounded
by γ>0 if there exists a solution to the problem

minimize
γ,P ,X

γ (11a)

s.t.

ÃP+PÃ⊤+X⊤B⊤
d +BdX ∗ ∗

B̃⊤
a −γI ∗

ZxP+ZuX O −γI

≺0

(11b)
P ≻0,γ>0. (11c)

After the problem given in (11) is solved, the optimal controller
gain matrix can be computed as K=XP−1.

IV. A NEW LINEARIZATION-FREE CONTROLLER

The goal of the linearization-free controller is to maintain
frequency stability of the system despite the unpredictable,
uncontrollable variations of power generated by renewables as
well as power demands. However, this particular controller uses
the power network’s NDAE model (4). Let qk be the predicted
power generated by the renewables as well as the predicted power
consumed by the loads during the k-th dispatch period—that is,
for any time t such that kT ≤ t ≤ (k+1)T for a fixed T > 0,
which is typically 15 minutes [15]. This quantity is available for
most system operators and is routinely published online. Let uk

ref

be the reference (baseline) input for the generators which, for a
given prediction of renewables and demands qk, brings the power
system (4) to the predicted operating point during this time period.
Define (xk

d,x
k
a) as the corresponding steady state dynamic and

algebraic states. By defining uLFC as the proposed control input
during the k-th dispatch period such that

uLFC :=uLRFC(t)=uk
ref+Kd

(
xd(t)−xk

d

)
,

the power network’s dynamics (4) with the proposed control
framework can be written as

ẋd=Adxd+Gdfd(xd,xa)+BduLFC+hω0 (12a)
0=Aaxa+Gafa(xd,xa)+Baq, (12b)



where Kd∈Rnu×nd is the corresponding controller gain matrix.
The design of gain Kd is given later in this section.

Now define the states x̃d∈Rnd and x̃a∈Rna as the deviations
of the dynamic and algebraic states of the perturbed system around
(xk

d,x
k
a), respectively, and they are given as x̃d := xd−xk

d and
x̃a :=xa−xk

a. From (12) and letting q̃ := q−qk, the perturbed
network’s dynamics can be derived as

˙̃xd=(Ad+BdKd)x̃d+Gdf̃d(x̃d,x̃a) (13a)

0=Aa∆xa+Gaf̃a(x̃d,x̃a)+Baq̃, (13b)

where the mapping f̃d(·) is nothing but f̃d (x̃d(t),x̃a(t)) :=
fd (xd(t),xa(t)) − fd

(
xk
d,x

k
a

)
(likewise for f̃a(·)). In (13), q̃

represents the deviations of the current demand and renewables
generation q from the predicted value qk during this dispatch
period. Our objective herein is to design the gain matrix Kd such
that all trajectories of the solutions of the NDAE (13) converge
asymptotically towards the zero equilibrium of (13), despite the
presence of nonzero disturbance caused by q̃ (that is, the mismatch
between the predicted and the actual power from renewables and
loads). Note that (a) the shifting of the coordinates is performed
for theoretical convenience—the proposed controller is not
operating-point or linearization dependent and (b) the proposed
controller is designed assuming an ideal case, i.e., the disturbance
is assumed to be zero such that q̃=0. Despite this assumption, in
Section V we assess the performance of the proposed controller
in performing LFC against a significant nonzero disturbance.

Let us define Xd and Xa as the sets representing the operating
region(s) of the system and describe the solution manifold of (13)
such that x̃d ∈Xd ⊆ Rnd and x̃a ∈Xa ⊆ Rna . Assuming that
the functions f̃d(·) and f̃a(·) are bounded for all x̃d ∈Xd and
x̃a∈Xa and the NDAE (12) is of index one [12], the stabilizing
controller gain matrix Kd can be synthesized by solving the
following optimization problem with LMIs [12]

(P) minimize
ϵ̄,X1,X2,R,Y ,W

κ∥W∥2 (14a)

subject to X1≻0, ϵ̄>0, (14b)
Ψ ∗ ∗ ∗

AaX2E
⊤
d +AaY Θ ∗ ∗

H̄
1
2

d X1E
⊤
d O −ϵ̄I ∗

H̄
1
2
a X2E

⊤
d +H̄

1
2
a Y H̄

1
2

d R O −ϵ̄I

 ≺0, (14c)

where:

• the variables in (14) are positive definite matrix X1 ∈Snd
++,

and real-valued matrices X2 ∈ Rna×nd , R ∈ Rna×na ,
Y ∈Rnd×na , W ∈Rnu×nd , and scalar ϵ̄∈R++;

• the scalar κ∈R++ is a predefined constant whereas ∥W∥2
denotes the induced 2-norm of matrix W ;

• matrices Ψ and Θ are given as

Ψ :=EdX1A
⊤
d +AdX1E

⊤
d

+EdW
⊤B⊤

d +BdWE⊤
d +ϵ̄GdG

⊤
d

Θ :=R⊤A⊤
a +AaR+ϵ̄GaG

⊤
a

• matrices Hd
d ,H

d
a ,H

a
d , and Ha

a bound the functions f̃d(·)
and f̃a(·);

• controller gain is given as Kd :=WX−1.

• P is a convex semidefinite program (SDP) that can be solved
via a variety of convex programming tools;

The extended version of this manuscript [12] presents theoretical
motivations to solve P, the corresponding mathematical proofs,
and more details including the non-restrictive assumptions
(boundedness of the vector valued nonlinearities). In short, after
solving P for matrix Kd, the NDAE (13) can be shown to be
asymptotically stable. That is, we show that under this control law
limt→∞∥x̃d(t)∥2=0 and limt→∞∥x̃a(t)∥2=0.

V. NUMERICAL EXPERIMENTS

A. Simulation Parameters & Setup

This section focuses on comparing the aforementioned
methods to perform LFC on the modified IEEE 14-bus network.
The network is comprised of 14 buses, 5 generators with
G = {1,2,3,6,8}, and 11 loads. All numerical simulations are
performed using MATLAB R2020b running on a 64-bit Windows
10 with a 3.0GHz AMD RyzenTM 9 4900HS processor and 16 GB
of RAM, whereas all convex SDPs are solved through YALMIP
[19] optimization interface along with MOSEK [20] solver. The
NDAE model of the power network is simulated using MATLAB’s
index-one DAEs solver ode15i. All electrical loads are assumed
to be of constant power type. For renewable power plants—such
as wind farms and solar PVs—are simply modeled as loads with
negative power, thereby injecting active power to the network. The
initial conditions as well as steady-state values of the power network
before any disturbance is applied are computed from the solutions
of power flow equations, which is obtained from MATPOWER [21]
function runpf. The power base for this system is 100 MVA. The
synchronous generator parameters are obtained from Power System
Toolbox (PST) [11]. The regulation and chest time constants are
set to be RDi=0.02Hz/pu and TCHi=0.2sec, respectively [7].

B. Limitations of Linearization-Based Controllers

In the first instances of numerical simulations, we study the
performance of LQR, AGC, and H∞ controllers to stabilize
the system following a step disturbance, which is triggered by a
sudden step change in power generation and demand. The AGC
is implemented with KG chosen to be equal to 1000 (see [12,
Section IV-B]). The internal filed voltage for each generator when
AGC is used is computed with the aid from the LQR control. The
LQR cost matrices are set to Q= I and R= I. The controller
gain matrix for the robust H∞ control is obtained from solving
(11) with Zx=10−1I and Zu=10−21.

The numerical simulations are performed by executing the
following steps. Initially, the system operates with total load of
P0
L=2.59pu and Q0

L=0.735pu and total generated power from
renewables of P0

R=−0.6243pu (the negative sign indicates that
the power is produced instead of consumed) and Q0

R=0pu. Im-
mediately after t>0, the loads and renewables are experiencing an
abrupt step change in the amount of consumed and produced power,
which triggers a sudden shift in the system’s equilibrium. The con-
troller then tries to bring the system frequency back to 60 Hz. The
new value of complex power for loads and renewables are specified
as (1+ρL)(P

0
L+jQ0

L) and (1−ρR)(P
0
R+jQ0

R) (these translate to
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Figure 1. The normalized rotor speed (frequency) of Generator 1 with respect to
different levels of disturbance with LQR, AGC, and robust H∞ control.

the addition of loads and the reduction of generation from renew-
ables) where ρL,ρR∈R determine the quantity of the disturbance.
The amount of disturbance acting on the loads and renewables is
varied with five different levels ranging from 10% to 30% such
that ρL ∈{0.10,0.15,0.20,0.30} and ρR ∈{0.10,0.15,0.20,0.30}.
Here we define ParR as the percentage of (average) real power
generated by renewables, which gives a numerical figure for the
amount of renewables participation and is formulated as

ParR=average

( ∑
i∈RPRi(t)∑

i∈GPGi(t)+
∑

i∈RPRi(t)

)
×100%,

where PGi for all i∈G is computed from the solution of (12) using
the proposed linearization-free controller—see Section V-C. At
steady state (before the disturbance is applied), ParR = 46.9%.
Five buses are connected to renewables such that R={2,3,4,9,14}.
It is assumed that the power generated by the renewables
contains random Gaussian noise with zero mean and variance of
0.01(P0

Ri+jQ0
Ri) for each i∈R such that

P e
Ri+jQe

Ri :=(1+ρR)(P
0
Ri+jQ0

Ri)+(1+j)vi(t), ∀i∈R,

where vi(t) represents the noise associated with i∈R.
The simulation results of are given in Fig. 1, where it is shown

the resulting frequency of Generator 1 (in Hz). It appears that these
controllers fail to stabilize the frequency when the disturbance is
large. In particular, the AGC, LQR, and H∞ control fail when the

0 5 10 15 20 25 30 35 40

59.985

59.99

59.995

60

60.005

(a)

0 5 10 15 20 25 30 35 40

59.985

59.99

59.995

60

60.005

(b)

0 5 10 15 20 25 30 35 40

59.985

59.99

59.995

60

60.005

(c)

0 5 10 15 20 25 30 35 40

59.985

59.99

59.995

60

60.005

(d)
Figure 2. The normalized rotor speed (frequency) of Generator 3 with 30%
disturbance and different configurations of renewables.

disturbance is larger than 10%, 20%, and 30%, respectively. This
indicates that the AGC performs worst among the three controllers
since it cannot handle 10% of disturbance level while, in contrast,
the H∞ control performs the best due to its ability in preserving
frequency stability against 20% disturbance.

C. Linearization-Free vs Linearization-Based Controllers

Herein we showcase the proposed linearization-free controller
developed using the NDAE representation of power networks—
referred to as the NDAE control from now on—in maintaining the
frequency despite the variety of disturbances. The controller gain
for the NDAE control is obtained from solving problem P with κ=
10−3. The bounding matrices for fd(·) and fa(·) are chosen to be(

Hd
d

)2
=I,

(
Hd

a

)2
=I,(Ha

d )
2
=I,(Ha

a)
2
=I.

In this simulation, we consider a high disturbance level such that
ρL∈{0.30} and ρR∈{0.30}. In addition to this, we also consider
four distinct locations with different number of renewables
that are exist in the network specified as R5 = {2,3,4,9,14},
R7=R5∪{6,13}, R9=R7∪{5,10}, R11=R7∪{11,12} (notice
that the subscript index i indicates the number of renewables for
any given Ri).

Fig. 2 shows the rotor speed trajectory of Generator 3 with
different penetration levels of renewables and 30% disturbance
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Figure 3. All generators’ rotor speed with 11 renewables connected to the grid
(R11) and 30% disturbance level.

level. Notice that neither AGC nor LQR is able to stabilize the
network—likewise the robust H∞ control, although it is able to
do so only when the renewables are configured with R7. However,
the proposed controller is able to control the frequencies for all
cases. The trajectories of all generators’ rotor speed with R11 are
depicted in Fig. 3. Notice that only the proposed NDAE controller
is able to maintain system-wide stability—this is indicated by
the converging generators’ rotor speed to the nominal value. The
oscillations of generators’ rotor speed shown in Fig. (3a) are
caused by the noise. More results are included in [12].

VI. PAPER SUMMARY, LIMITATIONS, AND FUTURE WORK

The paper offers an educational summary of multi-machine
power network models and the most commonly used linear system
theory control algorithms for LFC and frequency regulation. We
showcase how and when such algorithms fail in stabilizing power
network models and offer simple solution based on nonlinear DAE
system theory and convex programming. We demonstrate that
the proposed solution outperforms the vintage control theoretic
methods, enabling a more robust notion of grid stability amidst
significant uncertainty from loads and renewables.

We notice in the simulations that the proposed control law of
NDAEs is in fact sparse: the controller gain only requires local
measurements from each measurements. We also point out here
that a more robust version of the proposed LFC has the potential
to perform better. Future work will focus on these investigations
and incorporating dynamic models of renewables.
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