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Abstract—Due to the widespread installation of stochastic
and inertia-less renewable generation the operating point of
the power grid changes more rapidly and thus tracking sys-
tem state variables is becoming more crucial. In this regard,
dynamic state estimation (DSE) can play a key role in future
power systems since it can provide an accurate estimate of
state variables in realtime. However, the consideration of an
appropriate power system model is critical to effectively capture
renewable uncertainty in the DSE of power systems. In the
current literature of power systems DSE usually a linearized or
nonlinear ordinary differential equation model of power systems
is used which cannot capture the uncertainties associated with
renewables. These uncertainties can only be taken into account
via the nonlinear differential-algebraic (NL-DAE) model of power
systems. In this paper, we present an estimator for the complete
NL-DAE representation of the power system which can provide
robust state estimation in the presence of uncertainties from
renewables, and investigate the impact of renewables on state
estimation performance.

Keywords—H . stability, state estimation, power system non-
linear DAE, phasor measurement units

I. INTRODUCTION

URRENT electrical power systems are rapidly transitioning
from fossil fuel power generation (gas and coal-based power
plants) to solar and wind-based renewable energy resources
(RERs) mainly because of the global decarbonization policies,
decrease in the cost of RERs technologies and rapidly in-
creasing energy demand. As the share of these converter-based
technologies increases in the power grid, it creates three main
challenges, flexibility, adequacy and stability. The solution to
these challenges can be found in the applications of dynamic
state estimation (DSE) [1]. In particular, DSE can provide
estimates of all the states of power system using just a few
measurements from phasor measurement units (PMUs). And
since PMUs can provide synchronized measurements at a very
high sampling rate (60 samples/s), DSE can be performed in
realtime and in a synchronized fashion [2].

In the past two decades extensive research has been carried
out to effectually capture the dynamic states (i.e., generator
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rotor angle, frequency, transient voltages) of the conventional,
synchronous generator-dominated power system using PMU
measurements. In literature, DSE is mainly performed using
two methodologies 1) stochastic estimators 2) deterministic
observers. Stochastic estimators (e.g., Kalman filters and their
derivatives) are recursive and they mainly exploit the statistical
properties of the disturbances to minimize their impact on
the state estimation. Inherently, Kalman filters are not able to
handle nonlinearities and power system is a highly nonlinear
system, hence extended Kalman filter (EKF) has been pro-
posed in [3]. EKF linearizes the nonlinearities in the system
around a certain equilibrium point and then treats the system
as a linear system. To avoid linearization, unscented Kalman
filter (UKF) has been proposed in [4]. In [5] researchers have
proposed extended particle filter (EPF) for DSE. The EPF is
implemented on a fourth-order nonlinear synchronous machine
model with non-Gaussian noises and has shown enhanced
performance in estimating rotor angles and frequencies as
compared to UKF and EKF. A comprehensive study to analyze
the different pros and cons of various stochastic estimators is
also presented in [6], [7].

On the other hand, deterministic observers are designed
using Luenberger criteria [8]. For example, in [9] researchers
have proposed an observer for a simplified single machine
nonlinear model of a power system. In [10] a multiplier-
based deterministic observer design has been proposed for a
multi-machine power system. A thorough summary of all the
techniques used to perform DSE in power systems can be seen
in the following recent survey paper [11].

Despite all these advancements, the uncertainties from
RERs have not been taken into account in power systems
DSE. The is because in most of the DSE literature, a simplified
ordinary differential equation (ODE) model of a power system
is used, mainly because of the complexity of performing DSE
for the complete NL-DAE representation of power system.
And since in the ODE model the dynamics associated with
load and renewables are eliminated, hence their effect on DSE
cannot be studied [12]. Moreover, currently most of the DSE
literature is based on stochastic estimators and as discussed



previously these estimators require statistical properties (such
as Gaussian distribution) of the disturbances to work properly.
And since the disturbances associated with renewables are
random and do not follow any probabilistic distribution, hence
these estimators cannot be applied to handle uncertainties from
RERs.

To that end, in this paper we investigate the impact of
renewables uncertainty on DSE for NL-DAE model of power
systems through an observer that can provide accurate state
estimation for renewables-heavy power systems.

The remainder of the paper is structured as follows. Section
IT describes the NL-DAE model of power systems. Section III
presents the theory of the proposed observer design. Simu-
lation studies are presented in Section IV and conclusion is
presented in Section V

II. NONLINEAR MULTI-MACHINE DAE MODEL OF POWER
SYSTEMS

We consider a graphical representation of a power system
having a total of N'= GU L UR buses with G denoting gen-
erator buses £ denoting load buses and R representing buses
connected with renewables. The total number of transmission
lines/edges are represented using &.

We are representing synchronous generator with a standard
two-axis fourth order model having total of four states given
as [13]: Rotor angle & = {4;};cg, rotor speed w = {w; }ica
transient voltages along g-axis E; = {E},}icc and transient
voltages along d-axis E!, = {E/,};,cc. All these dynamic
states of the generator can be lumped into one vector x; =

S
[5T wl E:IT E' ﬂ € R™. Field voltage and mechanical
torque are considered as inputs to the synchronous generator
and is represented by vector u = [T;[ EJ‘Td} T e R,

To capture the topological effects of power system the
relationship of the states of the generator with the rest of the
power network need to be considered in the model. To that
end, the equations for the power generated by the synchronous
generator and the models describing power flow/balance equa-
tions are considered as algebraic constraints in the model.
Hence the algebraic states of the power system are considered
as: Total active and reactive power supplied by the generator
P ={Pg;}icg Qc ={Qq¢i}icg and buses terminal voltages
v={v; }ienand angels @ = {0; } ;c o~ We can combine all these
algebraic variables in one vector ¢, = [Pl Qv 67] Te
R™, Moreover, let us lump the total active and reactive
load P, = {Pri}ier, QL = {Qri}icc and power supplied
by renewables Pr = {Pgi}icr. Qr = {Qrilicr in a
vector ¢ = [P Qf P/ QZ]T € R"™. Then the NL-DAE
representation of power system can be written as follows [13]:

g = Agxq+ Fafq(xa, z,) + Bau (1a)

0=A.x, + F,fo (xq,x,) + Bagq (1b)

where A, € R"*" B, € R"*"d B, € R"*" A, €
Rnraxnd -y e R"#4%"d and F, € R"fa*"a gre all constant

matrices and there overall structure is omitted for brevity.
The vector valued functions f; : R™¢ x R™ — R"/¢ and

fo : R™ x R" — R™f« group together all the nonlinearities
associated with the NL-DAE model of a power system. Notice
that in this work RERs are considered as a negative load and
they are injecting power into the electrical network.

As we are performing DSE using PMU measurements, so let
us define y € RP as the measurement received from PMUs,
x =[x, chT € R™ as the overall state vector then from
Eq. (1) the NL-DAE model of power systems with PMUs
measurements can be written as follows:

Ex = Az +Ff(z)+ By,u+B,qg

y=Cx

(2a)
(2b)

where matrix E encodes the algebraic equations with rows of
zeros and matrix C' maps system states x to what typically
PMUs measure (i.e., voltage and current phasors). The overall
structure of C' can be obtained from [14].

III. ESTIMATOR DESIGN

Herein, we showcase a simple estimator design for (2)
under uncertainty. First, we focus on modeling renewables
(and uncertainty associated with them) as well as bounding
the nonlinear transients in the system dynamics.

A. Modeling Renewables and Bounding Nonlinearities

In Eq. (2) all the nonlinearities associated with NL-DAE
model of a power system are lumped in f(.). To capture this
nonlinear effect of a power system in a better way in the
DSE we are assuming that f(.) is Lipschitz bounded. This
assumption is realistic and holds in the case of electrical power
systems as there are indeed upper and lower bounds on all the
states of the power system [9].

To calculate the appropriate Lipschitz bound for f(.) with
respect to its variables x, we use the method presented in [15].
This method can be summarized as follows: Initially, appro-
priate bounds for all the states in x4 and x, are determined
(notice that these bounds on the states can be determined
through operator knowledge of the grid, for example the upper
and lower bounds of voltages can be chosen as +5% of
the steady-state values vice versa). Then to approximate the
Lipschitz matrix from the defined bounds, Halton sequence is
used to produce evenly distributed points inside the bounds
and finally, the maximum value for the Jacobian norm of f(.)
is determined to estimate the Lipschitz matrix for f(.).

As for uncertainty from renewables and loads, notice that
the vector q in Eq. (2) encapsulate Pgr,Qpgr,P; and Q
and all these quantities are varying with respect to time and
fluctuating. Albeit load demands and power generated by
renewables follow certain patterns (e.g., overall load demand
of residential house holds, seasonal patterns) and the grid
operators record and publish hour and minute head predic-
tion for both these quantities (see California independent
system operator (CAISO) [16] daily minute and hour-ahead
predictions for load demand and renewable productions) the
prediction may not be accurate, specifically high fidelity esti-
mates for the renewables are difficult to obtain. Accordingly
one can write ¢ = q + q,, where g is the known or the



predicted values of loads and renewables and q,, lumps all
the fluctuations/disturbances. The objective of the proposed
observer is to provide accurate estimates of all the states of the
power system in the presence of unknown disturbance vector
g To that end we can rewrite the NL-DAE model (2) as
follows:

Ei = Az +F f (x) + B,u+B;4+Byq,
y=Cx.

(3a)
(3b)

The overall power system model (3) is governed by two
sets of equations, differential equations (la) and algebraic
equations (1b), the total states that we want to estimate are
{6 w Ez/; E; P; Qg 0}, none of the states are assumed to
be available locally (unless PMU is connected on that bus for
the overall observability requirement of the system) all need
to be estimated using PMUs measurements. PMUs need to be
deployed in a way such that the whole system is observable.

B. Estimator Design for NL-DAE Power System

In this work we are designing Luenberger type observer for
NL-DAE model depicted in (3). The overall observer design
is mainly based on Lyapunov stability criteria and we use
H_, notion to achieve a robust performance of the observer
under unknown renewable disturbances. In state estimation
theory H., notion was first proposed in [17] to devise a
robust state observer for a linear system with unknown random
disturbances. The basic concept in H, based observer design
is that the disturbances are considered as random unknown
quantities and then in the observer design a particular H,
performance is achieved for the error dynamics. In H, based
observer design the observer always make sure that the norm
of the error dynamics remains less than a constant time the
norm of the disturbances; such that ||e||2L2 < 7||w|@2, where
e is the error between estimated and original states, v denotes
the performance level and w lumps all the disturbances. While
performing state estimation we try to minimize -y so that robust
performance from the observer can be ensured.

With that in mind the observer dynamics for the power
system model presented in (3) can be expressed as follows:

Ex=Az+Ff (&) + L(y—§)+B,ut+B,qg
y=Ci

(4a)
(4b)

where @ are the estimated states, ¢ are the estimated out-
puts and L is the Luenberger gain matrix. Even though if
observer starts from different initial conditions, with the help
of provided PMUs measurements y, the matrix L guarantees
the convergence of estimated states & to the original states
x as t —> oo. Notice that from Eq. (4) we can see that the
disturbances from renewables q,, are unknown to the observer.
The observer is only aware of the steady state or predicted
values of loads and renewables denoted by q.

Designing appropriate gain matrix L in the observer dynam-
ics (4) is the primary goal and it should satisfy the following
three main objectives:(1) The observer gain L needs to be
designed in a way such that robust performance from the

observer under unknown disturbances can be achieved, (2) the
gain matrix L should ensure quick convergence of x to &
and, (3) the size of the gain matrix L should be of reasonable
magnitude because high gain observers are undesirable as they
increase the sensitivity of the system to the disturbances/noise.
To that end, in this work we propose a systematic way by
posing the calculation of observer gain L as convex linear
matrix inequality (LMI) based optimization problem given as
follows:
P; minimiz
e,k,v,X,RY

subject to LMI (5), X >~ 0, ¢ > 0,7 > 0,k > 0,
kI —E"XE >0

cik + coy + c3|| R,

where c1, co and c3 are weighting constants and LMI (5) is as
follows:

Q * *
(XE+EYY)'F —el  x
B (XE+EY'Y)-D)R O —~I
 is given as:
Q=A"XE+E'Y)+(XE+E!'Y)"A-
C'R-R'C+G'G+T'T.
After solving P; the observer gain matrix can be retrieved as
L =P TRT. Notice that the % in the LMI (5) indicate that
value at Y15 = T; and vice versa.

For brevity the proof of P; is omitted. After solving P4 the
computed observer gain matrix L ensures that the error be-
tween original states « and estimated states & (e.g., e = £ —&)
converges asymptotically to zero. In P; minimizing v make
sure that the impact of the disturbance gq,, can be minimized
on the performance of the state estimation. Minimizing &
guarantees quick convergence of estimated states & to true
states . Also, as L = P~"R" thus minimizing ||R||, in
P, provides observer gain matrix L of reasonable magnitude.

To that end in the following section we present simulation
studies to showcase the performance of the proposed observer
under various severity of unknown renewable disturbances.

Y= <0 (5

IV. CASE STUDIES

The presented observer is tested on IEEE—14 bus system.
All the simulations are carried out on MATLAB 2021a running
on windows 10 64bit with 64Gb RAM and 11 Gen Intel
core-19-11980HK processor. Both the NL-DAE and observer
models are simulated using MATLAB DAEs solver ode151.
To ensure full observability of IEEE—14 bus system four
PMUs are placed at Buses 2,6,7 and 9. The power base
is selected as 100 MVA while all the synchronous machine
parameters are extracted from power system toolbox [13].
All the states of the observer are initialized randomly having
7% maximum deviation from steady state values except for
the generator frequency whose value is kept the same as
synchronous frequency (2760 rad/s). To calculate the observer
gain matrix L optimization problem P is solved in YALMIP
[18] interfaced with MOSEK [19] as a solver. The calculated
observer gain matrix is then fed to observer dynamics (4)



to perform state estimation. The steady-state values and the
initial conditions of the power system are calculated using
power flow solution, which is obtained using function runpf
in MATPOWER [20].

The simulation studies are carried out as follows: At first
the power system operates with total active and reactive load
of Pr, = 2.49 pu and @1, = 0.725 pu respectively and
with renewable power generation of Pry = —0.6113 pu.
Then immediately after ¢ > O the power generated by RERs
experiences a step disturbance.

Their new values can be written as: Pr, = Pr, + APg,.
In this work different severity of step disturbances for re-
newables have been simulated ranging from 3% to 35%
such that APg, € {0.03Pg,,0.15Pg,, 0.35Pg,}. Moreover
to mimic realistic uncertainties from renewables we also
assume that there exists noise, such that Pr, = Pg, +
APg, + gr(t), where gr(t) is Gaussian noise with zero
mean. Similar to the step disturbance random amount of
Gaussian noise has been added and variance of the Gaussian
noise has been changed, such that; variance of ggr(t) €
{0.01APg,,0.056APg,,0.08APg,}. Notice that in all the
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Figure 1. Estimation results for Generator-2 frequency and transient voltage
with 3% disturbance in power supplied by renewables.

case studies the observer is not aware of the disturbances from
renewables, this can be validated by looking at the structure
of the proposed observer presented in (4), we can clearly see
that the observer has only access to the ¢ which contain the
steady-state or predicted values of renewables.

The estimation results are presented in Figs. 1, 2 and
3. For 3% disturbance in renewable power generation, we
can see from Fig. 1 that although the observer started from
different initial conditions and is completely unaware of the
disturbances it provides accurate state estimation. This can
also be validated from the estimation error norm depicted in
Fig. 4. We can see that observer is driving the error between
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Figure 2. Estimation results for Generator-2 real power generation and
frequency with 15% disturbance in power supplied by renewables.
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Figure 3. Estimation results for Generator-2 real power generation and
frequency with 35% disturbance in power supplied by renewables.

true and estimated values of the states variables asymptotically
near zero. Notice that this is mainly because of the robust
H, stability notion which is utilized in our observer design.
As discussed in Section II in H, based design the observer
try to keep the norm of the error e less then a constant
time the norm of the disturbance and and by looking at
the error norm given in Fig. 4 we can advocate that this
criterion is indeed satisfied. For 3% renewable disturbances
we get [|qu ||, = 0.1013 while after solving P; we obtained
v = 0.98 hence 7||qu |, = 0.0993. And we can clearly see
from Fig. 4 that after 1.5s value of the |[e]|, is less then 0.05



thus the observer is providing accurate estimation results.
However, we can see from Figs. 2 and 3 as we increase
the amount of disturbances from renewables the estimation
results are getting poorer. This is because for 15% and 35%
disturbances we obtained value for the performance level
v = 0.792 and 0.7013 and for [|qyl[;, = 0.6025 and 1.381
we obtain the value for 7|[qyl|;, for both case studies as:
0.4773 and 0.9685. From Fig. 4 we can see that after 1s
although the value of |le|, is less than 0.4773, 0.9685 and
thus satisfying the H., stability definition, there exist too
much wiggle room for the observer to provide poor estimates.
Because here the H,, criteria is not strict enough and the
observer only has to keep the value of | e||, less than 0.4773
and 0.9685 respectively and thus can provide poor estimates.
This is indeed a drawback of using H., criteria and H.,
stability-based observers can only provide good estimation
results when the magnitude of unknown disturbances is small.
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Figure 4. Estimation error norm for all the scenarios.
V. CONCLUSION AND FUTURE RESEARCH WORK

This technical note presents a novel observer which can
provide robust state estimation for the NL-DAE representation
of power systems subject to unknown renewable uncertainties.
The overall concept of the observer design is presented as a
simple convex linear optimization problem and thus can be
easily solved using many commercial optimization solvers.
The proposed observer does not require any statistical prop-
erties of the disturbances and it considers the uncertainties
associated with renewables as unknown bounded signals. The
performance of the observer has been tested under various
severity of load and renewable disturbances. Simulation stud-
ies show that even though only steady-state or predicted
values of renewables are available to the observer it can still
track the original states and drive the estimation error norm
asymptotically to zero. Future research work will focus on the
inclusion of the actual converter-based model of renewable
energy resources in NL-DAE representation of power systems.
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