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Abstract

We analyze the spectral clustering procedure for identifying coarse structure in a data set
x1, . . . ,xn, and in particular study the geometry of graph Laplacian embeddings which
form the basis for spectral clustering algorithms. More precisely, we assume that the data
are sampled from a mixture model supported on a manifold M embedded in Rd, and pick
a connectivity length-scale ε > 0 to construct a kernelized graph Laplacian. We introduce
a notion of a well-separated mixture model which only depends on the model itself, and
prove that when the model is well separated, with high probability the embedded data
set concentrates on cones that are centered around orthogonal vectors. Our results are
meaningful in the regime where ε = ε(n) is allowed to decay to zero at a slow enough rate
as the number of data points grows. This rate depends on the intrinsic dimension of the
manifold on which the data is supported.

Keywords: Unsupervised learning, spectral clustering, graph Laplacian, mixture models,
continuum limit

1. Introduction

The goal of this article is to analyze the spectral clustering procedure for identifying coarse
structure in a data set by means of appropriate spectral embeddings. Specifically, we com-
bine ideas from spectral geometry, metastability, optimal transport, and spectral analysis of
elliptic operators to describe the geometry of the embeddings that form the basis of spectral
clustering in the case where the data generating model is sufficiently “well-separated”.

Throughout this article we assume the data set Mn = {x1, . . . ,xn} consists of points
that are distributed according to an underlying probability measure ν supported on a m-
dimensional manifold M embedded in some Euclidean space Rd. The first step in spectral
clustering is to construct a similarity graph G := {Mn,Wn} with vertices Mn and edge
weight matrix Wn whose entries indicate how similar two points in Mn are; typical con-
structions are proximity graphs, where a length scale ε > 0 is chosen and high weights are
given to pairs of points that are within distance ε from each other. Once the graph has been
constructed a graph Laplacian operator is introduced, and its first few eigenvectors are used
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to define an embedding that maps the data points Mn into a low-dimensional Euclidean
space. More precisely, the low-lying spectrum of the graph Laplacian induces an embedding
Fn : {x1, . . . ,xn} → RN mapping a data point xi into a vector Fn(xi) in RN whose entries
are the first N eigenfunctions of the graph Laplacian evaluated at xi. Here we refer to the
map Fn as the Laplacian embedding. The embedding step is the crucial step in spectral
clustering, which afterwards will typically proceed by running an algorithm like k-means
so as to recover the clustering structure of the data set (see von Luxburg (2007)). While
k-means is a standard choice in the literature, our analysis will be agnostic to the actual
algorithm used to cluster the embedded data set, and we will only focus on the geometry
of the embedded data set. We refer the reader to Section 1.2 and in particular to Ling and
Strohmer (2019) for alternatives to k-means.

How can one motivate the use of the previous spectral clustering algorithm? Consider
the simple scenario where the manifold M has N connected components. For a data set
consisting of uniform samples from such M one can build the proximity graph G (at least
for n large enough) in such a way that its associated graph Laplacian has N connected
components and whose corresponding first N eigenvectors coincide with rescaled versions
of indicator functions of the N connected components ofM restricted toMn. The resulting
Laplacian embedding Fn is seen to map the original data set into a set of N orthogonal
vectors in RN . The simple geometric structure of the embedded data set allows one to
readily identify the “true” coarse structure of the original data set. The key question that
we attempt to answer in this work is the following: what is the geometric structure of graph
Laplacian embeddings in more general settings where M is connected, but only weakly?
We attempt to answer this question by:

1. Relaxing the notion of N connected components ofM, and replacing it with a notion
of well-separatedness for the mixture model ν as defined in terms of three quantities
described in Section 2.2 . We highlight that our notion of well-separatedness only
depends on the mixture model ν and not on extrinsic objects like a user chosen kernel
in the construction of the graph G.

2. Describing the geometry of the Laplacian embedding in terms of what we will call
an orthogonal cone structure, a generalization of the orthogonality condition of the
embedded data set observed whenM has N connected components. We consider this
notion for arbitrary probability measures and not just for point clouds, thus extending
the notion introduced in Schiebinger et al. (2015).

In order to study the geometry of the embedded data set, we split our analysis into two
parts. First, we study the geometry of a continuum analogue Laplacian embedding by using
techniques from spectral theory of elliptic PDEs. The continuum Laplacian embedding can
be thought as an ideal object that is recovered (spectrally) from the graph Laplacian in
the limit n → ∞, ε = ε(n) → 0 (at a slow enough rate). In the second part, we quantify
the difference between the two embeddings, the graph based and its continuum analogue.
To achieve this we use recent results quantifying the approximation error of the spectra of
continuum Laplacian operators with the spectra of appropriate graph Laplacians. It is only
in the second step that we study statistical properties of random objects. The first part
of the paper is, to some extent, of independent interest in connection to theory of diffu-
sion processes and PDE analysis. The structure of our analysis illustrates a more general
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approach for the analysis of learning methods that rely on the construction of proximity
graphs. Namely, first study the ideal “continuum” problem and then use approximating
results to show that the graph problem inherits properties from its continuum counterpart.

Overall, our ideas, definitions, and results provide new theoretical insights on spectral
clustering. They further justify the use of spectral clustering beyond the trivial setting where
a manifold is disconnected. In particular, we show that when the ground-truth measure ν
has well-separated components, the geometry of the embedded data set Fn(Mn) is simple
enough so that an algorithm like k-means can successfully identify the coarse structure of
the data set.

1.1 Overview of main results

Let us make our setup more precise. We assume that M is a connected manifold and
that ν is a mixture model with N components supported on M (see Section 2 for detailed
assumptions on this model). We work in a non-parametric setting and assume that the
components of ν have sufficiently regular densities with respect to the volume form of
M. We will primarily work with graph Laplacian operators corresponding to kernelized
Laplacians (see (4) for the definition and Section 4.2.2 for some reasons behind this choice
where in particular we observe that the kernelized Laplacian already covers many other cases
of interest). Before describing the geometry of the embedded data set Fn(Mn) we study
a continuum limit analogue of spectral clustering which we refer to as measure clustering.
This can be thought as an ideal clustering problem where an infinite amount of data is
available. Studying this continuum analogue is motivated by recent results concerning the
convergence of graph Laplacian operators to differential operators in the large data limit as
n, the number of vertices, goes to infinity and ε, the connectivity length scale specifying G,
goes to zero sufficiently slowly. The low-lying spectrum of the limiting differential operator
induces an embedding F :M→ RN in a manner similar to Fn, but now at the continuum
level. We characterize the geometry of the measure F]ν (i.e. the push-forward of ν through
the continuum limit Laplacian embedding F ) which forms the basis of the measure clustering
procedure. In particular, we identify conditions on the ground-truth model that ensure that
the measure F]ν has an orthogonal cone structure. This is the content of our first key result
Theorem 10 which is informally stated below.

Theorem 1 (Informal) If the mixture ν has well-separated components (see Definition 4),
then F]ν, the push forward of ν through the Laplacian embedding F , has an orthogonal cone
structure, i.e., most of its mass is concentrated within disjoint cones centered at orthogonal
vectors (see Definition 8).

Let us now turn our attention to the geometry of the embedded point cloud Fn(Mn).
As mentioned above, when constructing the graph G from the data Mn, one often scales ε
with n in such a way that when n → ∞, ε → 0 (i.e. the weight matrix Wn localizes) at
a slow enough rate. Analyzing this regime is motivated by the desire to balance between
graph connectivity and computational efficiency. Recent results in the literature provide
explicit rates of convergence for the spectra of graph Laplacians towards the spectrum of
an elliptic differential operator (see (6) and Section A.3 below) in such regimes. Moreover,
the convergence of the eigenvectors is with respect to a strong enough topology, implying
that the empirical measure of Fn(Mn) and the measure F]ν get closer in the Wasserstein
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sense as n grows. In turn, this convergence guarantees that if F]ν has an orthogonal
cone structure, then Fn(Mn) will have one as well (i.e., orthogonal cone structures are
stable under Wasserstein perturbations). In Theorem 15 we make the previous discussion
mathematically precise. For the moment we provide an informal statement of that result.

Theorem 2 (Informal) Under suitable conditions, if F]ν has an orthogonal cone structure
then, with very high-probability, the empirical measure of the embedded cloud Fn(Mn) also
has an orthogonal cone structure.

1.2 Related work

In this paper we focus on clustering. More specifically, clustering by means of appropriate
embeddings using the spectrum of a graph Laplacian operator. In the geometric graph
setting (our setting) von Luxburg et al. (2008) were the first to rigorously establish a
statistical consistency result for graph-based spectral embeddings when the number of data
points n goes to infinity and the connectivity ε > 0 remains constant. Up until then most
papers focused on proving pointwise convergence estimates (see Belkin and Niyogi (2008);
Hein et al. (2005) and references within). The work of von Luxburg et al. (2008) however,
did not address the question of determining scalings for ε := ε(n)→ 0 that implied spectral
convergence towards differential operators in the continuum limit. Moreover, it was still a
pending task to analyze the entire spectral clustering algorithm, and in particular study
the geometry of the resulting spectral embedding.

Garćıa Trillos and Slepčev (2015) introduced a framework using notions from optimal
transport and the calculus of variations to study large data limits of optimization prob-
lems defined on random geometric graphs. Many large data limits of relevant functionals
for machine learning have been studied using similar approaches: Slepcěv and Thorpe
(2019); Dunlop et al. (2019); Garćıa Trillos and Murray (2017); Garćıa Trillos and Sanz-
Alonso (2018). In particular, the optimal transport framework was used by Garćıa Trillos
and Slepčev (2018) to analyze the entire spectral clustering procedure (embedding step
and k-means step) and the authors were able to show statistical consistency for scalings
log(n)pm/n1/m � ε� 1 where m is the intrinsic dimension of the manifold M and pm > 0
is an appropriate constant depending on m. Nevertheless, the spectral convergence was
asymptotic and no rate was provided until Tao and Shi (2020). Burago et al. (2014) took a
somewhat similar approach to Garćıa Trillos and Slepčev (2018), and in a non-probabilistic
setting, conducted a careful analysis which ultimately allowed to provide very precise rates
of convergence for the spectrum of graph Laplacians. Garćıa Trillos et al. (2020) extended
this analysis to cover the relevant probabilistic setting where point clouds are samples from
a ground truth measure supported on a manifold. The rates obtained by Garćıa Trillos et al.
(2020) were recently improved in Calder and Garćıa Trillos (2019): these are to the best
of our knowledge the best rates of spectral convergence available. The work of Calder and
Garćıa Trillos (2019) relies on a priori convergence rates (such as the ones in Garćıa Trillos
et al. (2020)) which are then cleverly improved by relying on pointwise consistency of graph
Laplacians for smooth enough functions. In Appendix A.3 we revisit some of the results
and ideas introduced by Garćıa Trillos et al. (2020); as a matter of fact, the probabilistic
estimates that we use in this paper are proved in a similar fashion to the work of Garćıa Tril-
los et al. (2020) after making some slight modifications that are discussed in the appendix.
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In principle, we could pursue the improvement of these rates following the framework pre-
sented by Calder and Garćıa Trillos (2019), but we decided not to do so in order to avoid
making the already lengthy exposition much longer and tedious: this is technical work that
in our opinion is out of the scope of this paper.

All of the publications listed above focus on spectral convergence of graph Laplacians,
but do not study the geometry of Laplacian embeddings themselves, i.e., what is the geom-
etry of the embedded data set, and how such geometry may affect the subsequent clustering
step. Schiebinger et al. (2015) formulates this problem in a precise mathematical setting, by
introducing a notion of a well-separated data generating mixture model. Roughly speaking,
the authors obtain a result that, in spirit, reads similarly to our Theorem 2. However, the
notion of a well-separated model introduced in that work depends on extrinsic quantities
such as the kernel used to construct the graph at the finite data level, and in particular con-
siders the regime where n is thought to be large, but the length-scale ε remains constant. In
other words, the average number of neighbors per point is comparable to the total number
of points. The work of Schiebinger et al. (2015) has inspired and motivated our work.

Different scenarios where one can define a notion of well-separated components were
studied by Little et al. (2020) and Ling and Strohmer (2019). Both of these papers are
closely related to our work, and we believe are complementary of each other. In both works,
the respective notion of “well-separated components” is used to help validate proposed
methodologies for clustering. Little et al. (2020) focus on understanding the stability of
spectral embeddings in situations where the original data set has a geometric structure
that is highly anisotropic. The authors propose the use of a general family of distances
(other than the Euclidean one) to construct graphs which ultimately induce corresponding
spectral embeddings. The model considered in that paper is more geometric in nature than
the one we consider here. Ling and Strohmer (2019) introduce a notion of well-separated
components at the finite data level and use it to validate a new algorithm for clustering
which is based on a convex relaxation for a multi-way cut problem and does not require a
k-means step, making it quite appealing.

We believe further exploration of the connections between the various mathematical
ideas and models presented by Little et al. (2020) and Ling and Strohmer (2019) with the
ones we present here is a worthwhile avenue of future research.

Finally, it is worth reiterating that this work assumes a random geometric graph model
for the data, i.e. randomness comes from the fact that nodes in the graph are assumed to
be random draws from some underlying distribution supported on a manifold, and edges
are directly determined from the distance relationship between these nodes. This type of
model should be contrasted to other random graph models such as Erdős-Rényi type graphs
or planted partition models. Several authors have investigated spectral clustering in those
settings (e.g., see Rohe et al. (2011); Chaudhuri et al. (2012) and references within). In a
way, an analysis of spectral clustering for any random graph model relies on an application,
whether direct or indirect, of a Davis-Kahan type argument (see Davis and Kahan (1970));
the only distinction being the operator norms that are feasible in each setting and the use
of some specific tools to build a bridge between the sample and population settings. In our
case for example, the theory developed by Garćıa Trillos et al. (2020) allows us to provide
a discrete-to-continuum link, and the Davis-Kahan like argument comes from analyzing a
suitable elliptic PDE operator.
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1.3 Outline

The rest of the paper is divided as follows. Section 2 covers the preliminaries required for
our theory and introduces the precise set-up of the paper. In particular, in Section 2.2
we introduce our notion of well-separated mixture models. We present our main results
in Section 3. Theorem 10 on the geometry of continuum Laplacian embeddings (i.e. the
measure clustering embedding) and Theorem 15 describing the geometry of graph Laplacian
embeddings, are presented in Subsections 3.1 and 3.2 respectively. The proofs of these
results are postponed to the appendix.

Section 4 is devoted to discussing our notion of well-separated mixture models. We
present some illustrative examples, discuss the implications of our results, and finally com-
ment on possible extensions and generalizations.

Detailed proofs of our main results are presented in Appendix A. In particular, Ap-
pendix A.1 focuses on stability properties of orthogonal cone structures, allowing us to prove
Theorem 10 in Appendix A.2 after showing several preliminary results. In Appendix A.3
we make the connection between the eigenspaces generated by the first N eigenvectors of
the graph Laplacian and those of the continuum Laplacian. We conclude with Appendix
A.4, where we present the proof of Theorem 15. Appendix B contains further technical
lemmata and theorems that are used in the proofs of Appendix A and the examples in
Subsection 4.1.

2. Preliminaries

Here we collect some definitions and notation that are used throughout the article. Discrete
and continuum limit graph Laplacian operators are introduced in Subsection 2.1; the notion
of a well-separated mixture model is defined in Subsection 2.2.

Let M be a smooth, connected, orientable, m-dimensional manifold embedded in Rd.
For the moment we think ofM as either a compact manifold without boundary or a subset
of Rd. Let ρ1, . . . , ρN be a family of C1(M) probability density functions on M (densities
with respect to the volume form of M) and let w1, . . . , wN be positive weights adding to
one. The densities ρ1, . . . , ρN are weighted to produce the mixture model

ρ(x) :=

N∑
k=1

wkρk(x), x ∈M. (1)

We assume that ρ(x) > 0 for all x ∈M and let ν be the probability measure onM induced
by ρ, that is,

dν(x) = ρ(x)dx,

where in the above and in the remainder dx denotes integration with respect toM’s volume
form and P(M) denotes the space of complete Borel probability measures on M.

Given a density % on M we define the weighted function spaces

L2(M, %) :=
{
u :M 7→ R

∣∣∣〈u, u〉% < +∞
}
,

equipped with the weighted inner product

〈u, v〉% :=

∫
M
u(x)v(x)%(x)dx.

6



Geometric structure of graph Laplacian embeddings

Throughout the article we routinely write L2(%) instead of L2(M, %) when the domain of
the function space is clear from the context. In Appendix A.3 we modify our notation
slightly and use L2(µ) to denote L2(M, %) where µ = %dx and use 〈·, ·〉L2(µ) to denote 〈·, ·〉ρ.

We consider a point cloud Mn = {x1, . . . ,xn} that are i.i.d. samples from ν, denote by
νn the empirical measure associated to the samples x1, . . . ,xn,

νn :=
1

n

n∑
i=1

δxi . (2)

Let L2(νn) be the space of functions un : Mn → R, and we identify un ∈ L2(νn) with a
column vector (un(x1), . . . , un(xn))T in Rn.

2.1 Graph Laplacian operators

We associate a weighted graph structure to Mn as follows. Let η : [0,∞) → [0,∞) be a
non-increasing Lipschitz function with compact support and let

αη :=

∫ ∞
0

η(r)rm+1dr, (3)

where we recall m ≤ d is the intrinsic dimension of the manifold M (typically we think of
m � d for applications, but this is unimportant for the purposes of the results discussed
here). We assume that the kernel has been normalized so that∫

Rm
η(|x|)dx = 1.

For a given ε > 0 we define the weight matrix Wn with entries (Wn)ij ,

(Wn)ij :=
2ηε(|xi − xj |)

αηε2(dε(xi))1/2 · (dε(xj))1/2
, (4)

measuring how similar points xi and xj are. Here, | · | denotes the Euclidean distance in
the ambient space Rd, ηε is defined as

ηε(r) :=
1

εm
η
(r
ε

)
,

and

dε(y) :=
n∑
j=1

ηε(|y − xj |) y ∈M .

Finally, we introduce the graph Laplacian operator ∆n : L2(νn)→ L2(νn),

∆n := Dn −Wn, (5)

where Dn is the degree matrix associated to the weight matrix Wn, that is, Dn is a diagonal
matrix whose diagonal entries (Dn)ii are given by (Dn)ii =

∑n
j=1(Wn)ij . The dependence

of ∆n on ε has been suppressed for notational convenience.
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The core idea in our analysis is the convergence of the spectrum of ∆n to that of the
differential operator

∆ρ(u) := −1

ρ
div(ρ∇u) = −∆u− 1

ρ
∇ρ · ∇u, (6)

which is defined for smooth functions u :M 7→ R. In the above, ∇ stands for the gradient
operator on M, div is the divergence on M, and ∆ is the Laplace-Beltrami operator on
M. The term ∇ρ · ∇u evaluated at a point x ∈ M is the inner product of the vectors
∇ρ(x),∇u(x) in the tangent space TxM; seen as vectors in Rd, ∇ρ(x) · ∇u(x) is just their
inner product in Rd. We establish the convergence of ∆n to ∆ρ in Appendix A.3 when the
number of samples n→∞ while the local connectivity parameter ε→ 0 at an appropriate
rate.

We notice that the weights in (4) have been appropriately rescaled so that the eigenvalues
of the graph Laplacian ∆n defined below approximate those of ∆ρ. We also point out that
(Wn)ij can be written as

(Wn)ij =
2ηε(|xi − xj |)

αηnε2(dε(xi)/n)1/2 · (dε(xj)/n)1/2
,

and that dε(·)/n is nothing but a kernel density estimator for the density ρ due to the fact
that η is normalized.

Remark 3 The normalization terms appearing in (4) induce the kernelized graph Lapla-
cian ∆n which in turn converges to ∆ρ in the continuum limit. There are other possible
normalizations that one can consider such as the ones in the parametric family introduced
in Coifman and Lafon (2006). The effect of the different normalizations can be observed
asymptotically (as n → ∞) in the way the density ρ affects the differential operator ∆ρ

(which in general will differ from (6)). We expand our discussion on the choice of different
normalizations in Section 4.2.2; for an overview of a more general family of normalizations
see Section 5 of Hoffmann et al. (2019). In the context of this paper, it is enough to say
that ∆n and ∆ρ (as defined in (6)) are closely related to each other following Theorem 30.

Similarly to (6) we also define the differential operators ∆ρk in association with the
densities ρk, which for smooth functions u, are defined by

∆ρk(u) := − 1

ρk
div(ρk∇u) = −∆u− 1

ρk
∇ρk · ∇u. (7)

2.2 Well-separated mixture models

Let us now introduce the notion of a well-separated mixture model. This is a notion defined
in terms of three quantities associated to the model ν that we refer to as overlapping,
coupling, and indivisibility parameters.

For k = 1, . . . , N , define the functions

qk :=

√
wkρk
ρ

. (8)
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The overlapping parameter of the mixture model ν is the quantity

S := max
i 6=j

〈(
qi√
wi

)2

,

(
qj√
wj

)2
〉
ρ

= max
i 6=j

∫
M

ρiρj
ρ
dx, (9)

Note that S ∈
(

0, 1
minj wj

)
since for any k ∈ {1, ..., N} we have the bound

(min
j
wj)ρk ≤

N∑
j=1

wjρj = ρ ,

and so ρk
ρ ≤

1
minj wj

.

The coupling parameter of the mixture model is defined as

C := max
k=1,...,N

Ck, (10)

where

Ck :=
1

4

∫
M

∣∣∣∣∇ρkρk − ∇ρρ
∣∣∣∣2 ρkdx, k = 1, . . . , N. (11)

This quantity is the Fisher information of the measure ρkdx with respect to the measure
ρdx. We use the convention that if the density ρk(x) vanishes at some point x ∈ M, then
we interpret the integrand in (11) as zero at that point; in other words we only integrate
over the set {x ∈M : ρk(x) > 0}.

Finally, the indivisibility parameter for the model is defined as

Θ := min
k=1,...,N

Θk, (12)

where

Θk := min
u⊥1

∫
M|∇u|

2ρkdx

〈u, u〉ρk
. (13)

In (13), 1 stands for the function that is identically equal to one, and ⊥ indicates orthog-
onality with respect to the inner product 〈·, ·〉ρk . This may as well be defined as the first
non-trivial eigenvalue of the operator ∆ρk .

In Subsection 4.1 we discuss different interpretations of S, C,Θ and present some ex-
amples that illustrate the significance of these parameters. Intuitively, the overlapping and
coupling parameters S and C are small whenever the mixture components ρk are individual
bumps that are mostly concentrated on disjoint sets (see Figure 1) while the indivisibil-
ity parameter Θ is large when the components ρk cannot be further divided into smaller
components. We are now ready to introduce the notion of a well-separated mixture model.

Definition 4 (Informal) The mixture model (1) is well-separated if

S � 1,
C
Θ
� 1.

These conditions are to be read as: the overlapping S is small enough, and the coupling
parameter C is small in comparison to the indivisibility parameter Θ.
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We highlight that the above definition is only qualitative in accordance with the informal
version of our first main result (Theorem 1). However, this definition can be made rigorous
in the relative sense. For example, given two mixture models ν and ν ′, the model for which
S and C/Θ are smaller is the better separated model and in turn the Laplacian embedding
F can cluster that model more effectively. This is a direct consequence of Theorem 10
that gives precise quantitative bounds on how tightly the measure F]ν concentrates around
orthogonal vectors depending on the quantities S and C/Θ.

Remark 5 We emphasize that both of the conditions in Definition 4 are crucial for the
mixture model to be well-separated and to exclude pathologies. Having S � 1 ensures that
the components ρk are not repeated while C � Θ ensures that components that should have
otherwise been merged or components that should have otherwise been split into smaller
components are excluded. See also Examples 1 and 2 and Remark 16.

Remark 6 We will use the functions q1, . . . , qN frequently in the proofs of Appendix A so
it is worth mentioning a simple interpretation for them. Suppose that we wanted to obtain
one sample from the mixture model introduced in (1): x ∼ ρ. One way to obtain x is to
first choose a random number k ∈ {1, . . . , N} where P(k = k) = wk and then sample x from
ρk. Conversely given the value x = x, we can check that:

P(k = k|x = x) =
wkρk(x)

ρ(x)
.

Thus, qk(x) is simply the square root of the likelihood of x being sampled from ρk.

3. Geometric structure of Laplacian embeddings

In this section we discuss detailed versions of our main results. In Subsection 3.1 we present
Theorem 10 as the rigorous version of Theorem 1. This theorem gives quantitative bounds
on the concentration properties of the pushforward measure F]ν around orthogonal cones in
low dimensions as a function of S, C, and Θ. The map F (defined in (14)) is the continuum
analogue of the spectral embedding commonly used in spectral clustering.

Subsection 3.2 contains Theorem 15 as the quantitative analogue of Theorem 2 which
extends Theorem 10 from the continuum to the discrete setting. More precisely, this theorem
shows that the embedded point cloud Fn(Mn) inherits the concentration properties of F]ν
with very high probability provided that (n, ε) are within an appropriate regime. Here Fn
is the usual discrete Laplacian embedding defined in (18).

In summary, Theorems 10 and 15 together state that whenever the mixture ν has N
well-separated components and (n, ε) are in the appropriate regime, the point cloud Fn(Mn)
concentrates within N disjoint orthogonal cones with very high probability. Further, the
better ν is separated, the smaller the angle of these cones, and the more mass lies within
the cones. This means that in classification tasks, the embedded cloud Fn(Mn) can be
classified easily using N − 1 dimensional hypersurfaces in RN that separate the orthogonal
cones.
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3.1 The continuum setting

In what follows we describe the geometry of the ground-truth spectral embedding (i.e. the
measure clustering embedding in the continuum). First, let us collect assumptions on the
mixture model ν.

Assumption 7 The components ρ1, . . . , ρN of the mixture ν belong to C1(M) and are such
that the operators ∆ρk and ∆ρ have discrete point spectrum with associated orthonormal
eigenfunctions spanning L2(ρk) and L2(ρ) respectively.

Now let u1, . . . , uN be the first N orthonormal (with respect to 〈·, ·〉ρ) eigenfunctions of
∆ρ corresponding to its N smallest eigenvalues. Define the Laplacian embedding

F : x ∈M 7−→

u1(x)
...

uN (x)

 ∈ RN . (14)

The push-forward of the measure ν by F , denoted µ := F]ν, is a measure on RN which
describes the distribution of points originally in M after transformation by the Laplacian
map F . Our first main result asserts that if the mixture model (1) is well-separated,
then the measure µ has an orthogonal cone structure; this is a geometric notion originally
introduced for point clouds in Schiebinger et al. (2015) and extended here for arbitrary
probability distributions.

Definition 8 Let σ ∈ (0, π/4), δ ∈ [0, 1), and r > 0. We say that the probability measure
µ ∈ P(Rk) has an orthogonal cone structure with parameters (σ, δ, r) if there exists an
orthonormal basis for Rk, e1, . . . , ek, such that

µ

 k⋃
j=1

C(ej , σ, r)

 ≥ 1− δ,

where C(ej , σ, r) is the set

C(ej , σ, r) :=

{
z ∈ Rk :

z · ej
|z|

> cos(σ), |z| > r

}
.

In simple words, a measure µ ∈ P(Rk) has an orthogonal cone structure if it is concentrated
on cones centered at vectors which form an orthonormal basis for Rk. The parameter σ is
the opening angle of the cones measured from the axis ej , r is the radius of the ball centered
at the origin that we remove from the cones to form the sets C(ej , σ, r), and δ is the amount
of mass that is allowed to lie outside the cones. The condition σ < π/4 ensures that the
sets C(ej , σ, r) do not overlap.

Remark 9 Instead of the above definition, one could also consider a component-wise cone
structure, namely the existence of parameters {(σj , δj , rj)}kj=1 such that

∑k
j=1 δj ∈ [0, 1)

and µ(C(ej , σj , rj)) ≥ wj − δj for all j ∈ {1, ..., k}. This notion of orthogonal cone struc-
ture implies the weaker notion in Definition 8. We do not introduce this component-wise
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orthogonal cone structure here as our assumption are not strong enough to conclude such a
structure holds; in particular, one would need a more detailed, pointwise notion of the over-
lapping parameter S. However, we believe that this component-wise cone structure can lead
to stronger versions of our main theorems with individual bounds on the probability masses
lying within each cone as opposed to the total mass outside of the union of the cones.

We are now ready to state our first main result.

Theorem 10 Let ν be a mixture model with density ρ of the form (1) which we assume
satisfies Assumptions 7. For σ ∈ (0, π/4), suppose

S < wmin(1− cos2(σ))

wmax cos2(σ)N2
.

Define

τ := 4

(√
Θ(1−NS)

C
−
√
NS

(1− S)

)−1

+
√
S .

and

δ∗ :=
wmax cos2(σ)N2S
wmin(1− cos2(σ))

.

Here, wmax := maxi=1,...,N wi and wmin := mini=1,...,N wi.

Suppose that

τ −
√
S > 0, τN < 1, (15)

and s, t > 0 satisfy

t sin(s)√
Nwmax

≥

√√√√N

(
τ −
√
S

2

)2

+ 4N3/2

(
1√

1−Nτ
− 1

)
, s+ σ <

π

4
. (16)

Then, the probability measure µ := F]ν has an orthogonal cone structure with parameters(
σ + s, δ + t2, 1−sin(s)√

wmax

)
for any δ ∈ [δ∗, 1). Here, F is the continuum Laplacian embedding

defined in (14).

Notice firstly that the smaller the quantities S and C/Θ are (i.e. the better separated
the mixture model is), the smaller τ is. As a consequence the right-hand side of (16) is also
small. This allows a choice of parameters s, t close to zero. Secondly, for small S, we can

choose σ to be small, and if S is small compared to wmin(1−cos2(σ))
wmax cos2(σ)N2 , then δ∗ will be small

also. Following Definition 8, small choices of δ and t mean that a bigger proportion of the
mass of the measure F]ν can be found inside the cones, whereas if σ and s are small, then
the cones are more concentrated around orthogonal vectors. The bottom line is that the
smaller S and C/Θ are, the more concentrated around orthogonal vectors the measure F]ν
is. Note also that keeping all other parameters fixed, smaller choices of σ will force a bigger
choice of δ. This reflects a trade-off between the total mass of the measure F]ν inside the
cones, and the opening angle of the cones.

12
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To see that the measure F]ν has an orthogonal cone structure under the assumption

of a well-separated mixture model, we first study the geometry of a related measure FQ] ν

where FQ is the map

FQ : x ∈M 7−→


q1(x)√
w1

...
qN (x)√
wN

 ∈ RN , (17)

where we recall the functions qk are as in (8). Note that the functions qk are normalized in
the sense that

∑N
k=1 |qk(x)|2 = 1 for all x ∈ M, whereas the entries of FQ are normalized

in L2(ρ) since

‖FQk ‖
2
ρ =

∫
M

ρk(x)

ρ(x)
ρ(x)dx = 1 ∀ k ∈ {1, ..., N} .

We will show that FQ] ν has an orthogonal cone structure provided the overlapping parameter
of the mixture model S is small enough (see Proposition 29). In Section A.1 we show that
orthogonal cone structures are stable under Wasserstein perturbations. Theorem 10 is then
proved by showing that the measures FQ] ν and F]ν are close to each other in the Wasserstein
sense modulo an orthogonal transformation. To achieve this we will essentially show that
q1, . . . , qN are close to spanning the subspace generated by the first N eigenfunctions of ∆ρ.
This statement is trivially true in the extreme case when M has N connected components
and the ρkdx are the uniform distributions of the connected components. Indeed, in that
case, the first N eigenvalues of ∆ρ are zero, and the first N eigenfunctions of ∆ρ are rescaled
versions of the indicator functions of the components. In other words, the span of the ρk
is exactly equal to the span of the first N eigenfunctions of ∆ρ, and in particular up to a
rotation we have FQ = F .

3.2 The discrete setting

Having discussed spectral clustering at the continuum level, we now move to the discrete
setting. Let Mn := {x1, . . . ,xn} be i.i.d. samples from the probability distribution dν =
ρ(x)dx and let ∆n be the discrete graph Laplacian operator on L2(νn) as in (5). The
spectrum of ∆n induces a graph Laplacian embedding

Fn :Mn → RN

Fn : xi 7−→

un,1(xi)
...

un,N (xi)

 , (18)

where un,1, . . . , un,N are the first N eigenvectors of ∆n. Our second main result states
that, with very high-probability, the measure Fn]νn has an orthogonal cone structure if the
mixture model ν is well-separated, the number of data points n is sufficiently large, and
the connectivity parameter ε is sufficiently small. In order to state and prove this result we
make the following assumption.
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Assumption 11 We assume thatM is a smooth, compact, orientable, connected m-dimensional
manifold without a boundary. Furthermore, we assume that ρ ∈ C1(M), and that there exist
positive numbers 0 < ρ− < ρ+ such that

ρ− ≤ ρ(x) ≤ ρ+, ∀x ∈M.

We denote by CLip > 0 the Lipschitz constant of ρ.
We also assume that n is large enough and ε is small enough, so that

ε
(

1 +
√
λN

)
+

log(n)pm

n1/mε
≤ min{C, 1

2
(λN+1 − λN )} , (19)

where pm = 3/4 if m = 2 and pm = 1/m when m ≥ 3, C > 0 is a finite constant that
depends only on M, and λN and λN+1 are the N -th and (N + 1)-th eigenvalues of ∆ρ in
increasing order.

Remark 12 Several theoretical results deducing convergence rates for the spectra of graph
Laplacians towards their continuum counterparts make similar assumptions to those in As-
sumption 11 (e.g Garćıa Trillos et al. (2020); Garćıa Trillos and Slepčev (2018)), and for
the moment being we will only be able to state our second main result under the assumption
that M is compact (see Section 4.2.1 where we discuss further extensions and generaliza-
tions). Regarding the assumptions on n and ε, we remark that requiring the quantity on the
left hand side to be less than a constant C is the same condition used in the literature to
quantify rates of convergence for the spectra of graph Laplacians (see for example Burago
et al. (2014); Garćıa Trillos et al. (2020)). On the other hand, requiring the left hand side
of (19) to also be smaller than 1

2(λN+1 − λN ) is a condition that is easier to satisfy when
the model is well-separated. Indeed, we will later see that it is possible to find an upper
bound for λN (Lemma 38) and a lower bound for λN+1 (Proposition 27) in terms of the
parameters of the mixture model. That is, one can restate our assumption and write an
inequality in terms of the overlapping, indivisibility and coupling parameters. However, at
this point we do not believe there is any benefit in developing this discussion any further,
and we remark that these are simply concrete and technical conditions that guarantee that
we have entered the regime where our theorems hold.

Remark 13 Notice that when the manifold M is smooth and compact as in Assumption
11, Assumption 7 is automatically satisfied.

Remark 14 Notice that the fact that ρ is bounded away from zero does not imply that the
individual components ρk are as well. In particular, an individual component ρk may be
arbitrarily close to zero (or even equal to zero) in certain region of M without contradicting
Assumption 11. As a matter of fact, one precisely needs this to be the case in order for a
model to be well-separated (for otherwise S would not typically be small).

In Appendix A.3, we make the connection between the spectrum of the graph Laplacian
∆n and the spectrum of the continuous operator ∆ρ. The proof of the main technical result,
Theorem 30, relies on a comparison between the Dirichlet forms associated to the operators
∆n and ∆ρ by way of careful interpolation and discretization of discrete and continuum
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functions. Only small modifications to the proofs in Burago et al. (2014); Garćıa Trillos
et al. (2020) are necessary and Section A.3 should be understood as a short guide on how
to adapt the machinery developed there to the context of this paper.

Finally, we leverage Theorems 10 and 30 to establish our second main result, which
asserts that under Assumption 11 and provided the mixture model is well-separated, the
measure Fn]νn also has an orthogonal cone structure with very high probability. More
precisely we have the following.

Theorem 15 Let N ≥ 2 and β > 1. Suppose that M and ρ satisfy Assumption 11 for
some ε > 0. Assume also that the parameters S, C,Θ of the mixture model ρ are such that
the quantities τ, δ∗ and σ from Theorem 10 satisfy (15) and (16). In addition, assume
S < N−2. Let x1, . . . ,xn be i.i.d. samples from the measure dν = ρdx with associated
empirical measure νn, and let Fn be the Laplacian embedding defined in (18).

Then, there exists a constant Cβ > 0 depending only on β, so that with probability at
least 1−Cβn−β, the probability measure µn := Fn]νn has an orthogonal cone structure with
parameters (

σ + s, δ + t2,
1− sin(s)
√
wmax

)
,

for any δ ∈ [δ∗, 1), and s, t > 0 satisfying

σ + s <
π

4
,

t sin(s)√
Nwmax

≥

√√√√N

(
τ −
√
S

2

)2

+ 4N3/2

(
1√

1−Nτ
− 1

)
+
√
Nφ(S, C,Θ, N, ε, n,m),

(20)

where

φ(S, C,Θ, N, ε, n,m) = cM

(
N

1−NS1/2

)(
ε+

log(n)pm

εn1/m

)

·

(√Θ

C
(1−NS)−

√
NS

1− S

)2

− N

1−NS1/2

−1

,

and cM > 0 is a constant depending on M, ρ±, CLip, η and N . In the above we require S
and C/Θ small enough so that all the inner terms in the definition of φ make sense and are
positive.

Notice that the only extra term in inequality (20) that does not appear in (16) is the term
φ(S, C,Θ, N, ε, n,m). As we will see in Appendix A.4 (following the estimates in Appendix
A.3) this term is an upper bound for the Wasserstein distance between the measures F]ν
and Fn]νn (up to an orthogonal transformation). The assumptions in Theorem 15 imply
that F]ν has an orthogonal cone structure as described in Theorem 10, and hence in order
to deduce that Fn]νn has an orthogonal cone structure (as it is stated in Theorem 15) it is
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enough to combine Proposition 22 with the estimates on the Wasserstein distance between
Fn]νn and F]ν.

We observe that asymptotically, if the parameter ε > 0 scales with n like

log(n)pm

n1/m
� ε� 1,

then φ(S, C,Θ, N, ε, n,m) gets smaller as n→∞, and we deduce that the geometry of the
point cloud Fn(Mn) converges to that of F]ν. Nevertheless, it is worth emphasizing that our
results are meaningful in the finite (but possibly large) n case. As we discussed in Section 1.2
these rates can be improved with some straightforward but tedious computations following
the ideas in the recent work of Calder and Garćıa Trillos (2019). We opted for concreteness
and simplicity in our estimates (as much as possible) in order to avoid detracting from the
main analytical idea that we explore in this paper: study properties of continuum objects
using PDE techniques and then connect to the finite data objects using some available
approximation result.

4. Discussion

The purpose of this section is to provide a more detailed account of the notions introduced
above, as well as to discuss our main results and provide several remarks on extensions and
generalizations.

In Subsection 4.1 we discuss the overlapping, coupling, and indivisibility parameters
and the notion of a well-separated mixture model from various view points and in the
context of two concrete examples. Subsection 4.2 is then dedicated to various extensions and
generalizations of our results to unbounded domains and k-NN graphs as well as different
normalizations of the graph Laplacian.

4.1 Overlapping, coupling and indivisibility parameters

We now give a more detailed description of the parameters S, C and Θ introduced in
Section 2.2. The overlapping parameter S is small if the components ρk have well-separated
mass in the sense that if at some point x ∈M one component ρk(x) is large, then all other
components ρi(x), i 6= k, are small at that point. In this case, at x ∈ M, we have
ρ(x) ≈ wkρk(x), and so

ρk(x)ρi(x)

ρ(x)
≈ ρi(x)

wk
,

which is small. If ρk is small at x ∈M on the other hand, then

ρk(x)ρi(x)

ρ(x)
≤ ρk(x)

wi

is also small. In other words, the parameter S being small requires the components not to
overlap too much (hence the name given to it).

If the indivisibility parameter Θ is small, this is an indication that our choice of mixture
model ρ(x) =

∑
k wkρk(x) for a given density ρ is not optimal in the sense that it could
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be split into smaller meaningful components. This property is captured by the spectrum of
the operators ∆ρk . For any k ∈ {1, ..., N}, and u, v ∈ C1(M),

〈∆ρku, v〉ρk =

∫
M
∇u · ∇v ρkdx = 〈∇u,∇v〉ρk ,

and so the first eigenvalue is zero with constant eigenfunction 1. For the sake of illustration,
suppose that the support of ρk has two disconnected components. In that case, one can
construct an eigenfunction orthogonal to 1 that takes different constant values on the two
different components, and so the second eigenvalue is zero. In light of the max-min theorem
(see for example (Attouch et al., 2014, Thm. 8.4.2), also known as the Courant–Fisher
theorem) and definition (13), we observe that Θk is exactly the second eigenvalue of the
operator ∆ρk .

It is well-known, in both the spectral geometry and machine learning literature, that
the first non-trivial eigenvalue of the Laplacian associated to a geometric object (discrete or
continuum) is intimately related to the problem of two-way clustering. Having a small first
non-trivial eigenvalue indicates the presence of two clusters in the data set in the discrete
setting. This is essentially because the eigenvalue problem can be interpreted as a relax-
ation of balanced cut minimization problems (see von Luxburg (2007) and also Cheeger’s
inequality for graphs (Chung, 1997, Sec. 2.3)). The more ρk concentrates on two separate
components, the smaller the second eigenvalue will become (see Hoffmann et al. (2019) for
precise estimates). This is why the second eigenfunction can be interpreted as an approxi-
mate identifier for clusters in the problem of two-way clustering, and it is usually referred
to as the Fiedler vector. Intuitively, a low value of Θk indicates that the component ρk can
be split into further significant components. For this reason, we require that Θ, the indi-
visibility parameter for the model to be large enough, guaranteeing that the components
in the model cannot be divided into further meaningful components. This follows from
the observation that if there exists a k ∈ {1, ..., N} such that ρk can be split into separate
components, then the second eigenvalue of ∆ρk will be small resulting in Θ being small as
well.

The coupling parameter C being small can be interpreted as a metastability condition
on the relative entropy of measures ρkdx with respect to the measure ρdx. We define the
relative entropy of a probability measure %dx with respect to ρdx by

H(%|ρ) :=

∫
M

(
%

ρ

)
log

(
%

ρ

)
ρdx =

∫
M
% (log %− log ρ) dx .

Given a probability density ρ, consider %(t, x) varying with time that satisfies the evolution
equation

∂t% = ∆%+ div(%∇ log ρ)

= div (%∇ (log %− log ρ)) , (21)

with initial condition %(0, x) = ρk(x) for a fixed k ∈ {1, ..., N}. Model (21) is a linear
Fokker-Planck equation that is driven by the competition between linear diffusion and a
confining drift term given by the potential log ρ. Observe that ρ is a stationary state of the
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system, and the quantity H(%(t)|ρ) gives a sense of how far %(t, x) is from the stationary
state ρ(x) at time t ≥ 0. In this context, the coupling parameter Ck can be interpreted as
an initial rate of decay for the entropy. More precisely, following Boltzmann’s H-theorem,
the relative Fisher Information I(%|ρ) is defined as the entropy dissipation along solutions
to (21),

d

dt
H(%(t)|ρ) =

∫
M
∂t% (log %− log ρ) dx

= −
∫
M
% |∇ (log %− log ρ)|2 dx =: −I(%(t)|ρ) ,

and so the definition of the coupling parameter (11) can be interpreted as

Ck =
1

4
I(%(0)|ρ) =

1

4

∫
M

∣∣∣∣∇ρkρk − ∇ρρ
∣∣∣∣2 ρkdx .

Approximating the entropy for small initial times t > 0,

H(%(t)|ρ) = H(ρk|ρ)− 4Ckt+O(t2) ,

we observe that if the coupling parameter Ck is small, then H(%(t)|ρ) only varies very slowly
in a neighborhood of t = 0, and so we can consider H(ρk|ρ) to be in a metastable state. For
a well-separated mixture model, we expect the initial entropy H(ρk|ρ) to be large enough
as small entropy would indicate that ρk takes values close to ρ (note that H(%|ρ) = 0 if and
only if % = ρ almost everywhere). In other words, having a small overlapping parameter
S indicates that the initial entropy H(ρk|ρ) cannot be too small. For well-separatedness,
however, we require that Ck is small for all k ∈ {1, ..., N}, that is to say that the Fisher
Information is small initially when starting the evolution process (21) at any of the compo-
nents ρk. In this sense, we require the mixture model to be in a metastable state.

Having discussed the parameters S,Θ and C, we now give some intuition on the notion
of a well-separated mixture as introduced in Definition 4. Roughly speaking, a mixture
model is well-separated if it has small coupling and overlapping parameters C and S, but
a large indivisibility parameter Θ. A natural question is whether it is necessary to require
both C and S to be small. Intuitively, S is small when the components ρj are concentrated
on disjoint sets that are far apart. In such a setting one expects the coupling parameter
C to also be small. However, we present two examples where C and S are not necessarily
simultaneously small, demonstrating that it is not enough to only impose a small C (Example
1) or a small S (Example 2). The examples were chosen to illustrate how to estimate
the parameters S, C and Θ in some concrete settings, and to see that our mathematical
definitions do capture our intuitive interpretation of what well-separated components should
look like.

Example 1 (Mixture of two Gaussians) Consider a mixture of two standard Gaussian
densities on R2 obtained by shifting the two densities. More precisely, let ρ = 1

2ρ1 + 1
2ρ2,

where
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ρ1 ρ2ρ

Figure 1: Cross section of a 2D mixture model with Gaussian components.

ρ1(x) :=
1√
2π
e−|x|

2/2, ρ2(x) :=
1√
2π
e−|x−γ|

2/2

for a fixed vector γ ∈ R2. A cross section of the mixture model along the vector γ is
illustrated in Figure 1. We estimate how the overlapping and coupling parameters of the
model scale with the size of the off-set γ. Intuitively, the components become better separated
as |γ| increases and we will show that both C and S become small in this regime. However,
as |γ| becomes small the coupling parameter C decreases once more while the overlapping
parameter S increases. This example demonstrates why we require both C and S to be small.

Observe that the indivisibility parameter is unaffected by shifts in space of the compo-
nents, i.e., Θ does not depend on γ. On the other hand, straightforward calculations show

∇ρ1(x)

ρ1(x)
= −x, ∇ρ2(x)

ρ2(x)
= −(x− γ),

and that
∇ρ(x)

ρ(x)
= −x+

γ

2

ρ2(x)

ρ(x)
= −(x− γ)− γ

2

ρ1(x)

ρ(x)
.

In particular,

∇ρ(x)

ρ(x)
− ∇ρ1(x)

ρ1(x)
=
γ

2

ρ2(x)

ρ(x)
,
∇ρ(x)

ρ(x)
− ∇ρ2(x)

ρ2(x)
= −γ

2

ρ1(x)

ρ(x)
.

It then follows from (11) that

C ≤ C1 + C2 =
|γ|2

16

∫
R2

ρ1ρ2

ρ2
(ρ1 + ρ2) dx =

|γ|2

8

∫
R2

ρ1ρ2

ρ
dx =

|γ|2

8
S.

Thus, the coupling parameter C is controlled by the overlapping parameter S and |γ|2. It
follows that when |γ| is close to zero, the overlapping parameter is close to one since both
ρ1 and ρ2 are roughly equal to ρ, and that the coupling parameter is small of order |γ|2. On
the other hand, for large |γ|, the overlapping parameter decays exponentially fast and the
coupling parameter decays as well. From an intuitive point of view it is to be expected that
for large |γ| the model is well separated.

It is straightfoward to verify that, for large values of |γ| the parameter S ≈ α1 exp(−β1|γ|2)
and it follows from the above arguments that C/Θ ≈ α2 exp(−β2|γ|2) for constants αi, βi >
0, i = 1, 2. Now consider the bound (16) and fix s, σ > 0. Then a formal calculation yields
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t ≥ α3 exp(−β3|γ|2) provided that |γ| is sufficiently large. Let F denote the Laplacian em-
bedding obtained from the first two eigenfunctions of ∆ρ and let µ = F]ν. Since δ∗ vanishes
like S as well we infer the probability mass of µ outside of its orthogonal cones should vanish
like α4 exp(−β4|γ|2).

We verify the sharpness of the above formal calculation, up to the constants α4, β4,
for a mixture of Gaussian distributions in two dimensions. Let ρ = 1

2ρ1 + 1
2ρ2 where

ρ1 = N(0, 0.04I) and ρ2 = N(γ, 0.04I) with I denoting the identity matrix in R2×2. We
then generate a random graph by drawing n = 211 vertices from ρ and construct the graph

Laplacian matrix ∆n as in (5) by setting ε = 2 (logn)3/4

n1/2 ≈ 0.2. We then construct the
discrete Laplacian embedding Fn using the first two eigenvectors of ∆n and compute the
number noutside of embedded points that fall outside the cones C((1,−1)T , π/4− 1/4, 0) and
C((1, 1)T , π/4− 1/4, 0). We choose |γ| ∈ {0.7, 0.8, 0.9, 1, 1.1, 1.2} and repeat the experiment
over 20 trials for each value of |γ| where the vertices are redrawn from the mixture. We
report the averaged values of noutside/n, as an empirical approximation to the probability
mass outside the cones, versus |γ|2 in Figure 2(a) indicating that indeed − log(noutside/n) =
O(|γ|2)) as expected.
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Figure 2: Empirical approximation of the probability mass of µ = F]ν lying outside of
the orthogonal cones C((1,−1)T , π/4 − 1/4, 0) and C((1, 1)T , π/4 − 1/4, 0). ν is a mix-
ture model of two components and F is the Laplacian embedding. Weighted graphs with
n = 211 vertices were constructed with the vertices distributed according to ν and F was
approximated using the eigenvectors of the graph Laplacian matrix ∆n constructed using
as kernel η(r) = χB1(r)/π, the indicator function on the unit ball. (a) Here ν is a mixture
of two Gaussians as in Example 1 and the figure shows the fraction noutside/n of embedded
vertices that fall outside of the cones versus |γ|2, where |γ| denotes the distance between
the component means. (b) ν is the uniform measure on a dumbbell shaped domain as in
Example 2 with components as in Figure 3(a) and the figure shows the fraction noutside/n
of embedded vertices that fall outside of the cones versus ϑ the width of the thin channel
between the two components of the dumbbell.
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Example 2 (Partitioning a dumbbell shaped domain) We consider a probability mea-
sure ρ on a dumbbell shaped domain M⊂ R2. More precisely define the sets

M0 = {(x1, x2) : −`/2 < x1 < `/2, |x2| < ϑ},
M1 = {(x1, x2) : `/2 < x1 < `, |x2| < `/2},
M2 = {(x1, x2) : −` < x1 < −`/2, |x2| < `/2},

for `, ϑ > 0 and define M :=
⋃2
j=0Mj ⊂ R2. We have in mind ϑ � ` so that M is a

dumbbell shaped domain consisting of two rectangles connected by a thin rectangle.
We assume |M| = 1, i.e. `2+2`ϑ = 1. We take ρ = 1 onM and then define the mixture

elements ρk by partitioning M into subsets and taking the ρk to be a partition of unity for
M with appropriate normalization. We present two choices of partitions and demonstrate
that for small ϑ, one choice results in well-separated densities ρk while the other partition
does not.

Our first partition aims at cutting the dumbbell perpendicularly to its axis (see Fig-
ure 3(a)). For 0 < ε < l/2 define the function ψ : R→ R

ψ(t) :=


1 if t ≤ 0

1− 2
ε2
t2 if t ∈ [0, ε/2]

2(t−ε)2
ε2

if t ∈ [ε/2, ε]

0 if t ≥ ε

.

We let ρ̃1, ρ̃2 :M→ R ,

ρ̃1(x) := ψ(x1), ρ̃2(x) := ψ(−x1), x = (x1, x2) ∈M.

The densities ρ1 and ρ2 are then defined by

ρ1(x) :=
2ρ̃1(x)

ρ̃1(x) + ρ̃2(x)
, ρ2(x) :=

2ρ̃2(x)

ρ̃1(x) + ρ̃2(x)
, (22)

from where we see that ρ(x) = 1
2ρ1(x) + 1

2ρ2(x) with weights w1 = w2 = 1
2 in the notation

of (1).
We now show that the above mixture model is well-separated according to Definition 4

for an appropriate choice of ε(ϑ) as ϑ→ 0. Let us begin by estimating the parameters S, C
and Θ. Following (9) we have

S =

∫
M
ρ1(x)ρ2(x)dx

≤ 4

∫
M
ρ̃1(x)ρ̃2(x)dx

≤ 16ϑε

(23)

where in the first inequality we have used the fact that

1 ≤ ρ̃1(x) + ρ̃2(x) ≤ 2.
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Thus S can be made arbitrarily small by either taking ϑ or ε to zero. Furthermore, by (11)
one can see that

C = max
k

1

4

∫
M

∣∣∣∣∇ρk(x)

ρk(x)

∣∣∣∣2 ρk(x)dx ≤ 4ϑ

∫ ε

0

∣∣∣∣ψ′(t)ψ(t)

∣∣∣∣2 ψ(t)dt ≤ 4ϑ

ε
. (24)

This implies that if we pick
ϑ� ε,

then we can make C as small as we want. It remains to show that the indivisibility parameter
Θ remains bounded away from zero for the right choice of parameters. In order to find a
lower bound for Θ it will be convenient to use Cheeger’s inequality, which gives us a lower
bound for Θ in terms of a geometric quantity that is much easier to understand and estimate.
Namely, by Theorem 43,

Θk = min
u⊥1

∫
M |∇u|

2ρkdx∫
M u2ρkdx

≥ (h(M, ρk))
2

4
, (25)

where in the above ⊥ means orthogonal with respect to the inner product 〈·, ·〉ρk and

h(M, ρk) := min
A⊆M

∫
∂A∩M ρk(x)dS(x)

min
{∫

A ρkdx,
∫
M\A ρkdx

} .
The inequality is due to Cheeger Cheeger (1969), and for the convenience of the reader
we provide in the Appendix a sketch of the proof that in particular highlights the specific
structure of the Raleigh quotient associated to the operators ∆ρk and ∆ρ that makes the
inequality work (see Section B.2). In particular we emphasize that for Cheeger’s inequality
to hold, both the numerator and denominator of the Raleigh quotient defining Θk must be
weighted with the same measure (in our case both integrals are weighted by ρk).

Due to symmetry we have Θ = Θ1 = Θ2. Thanks to Cheeger’s inequality we can focus
on obtaining a lower bound for h(M, ρ1). Now, from the fact that 2 ≥ ρ̃1(x) + ρ̃2(x) ≥ 1 we
see that in order to get a lower bound for h(M, ρ1) we can alternatively get a lower bound
for h(M, ρ̃1). After a moment of reflection, we can conclude that if we can find C(ϑ, ε)
such that

Cut(At) :=

∫
∂At∩M ρ̃1(x)dS(x)

min
{∫

At
ρ̃1dx,

∫
M\At ρ̃1dx

} ≥ C(ϑ, ε), ∀t ∈ [−l/2, ε],

where
At := {x ∈M : x1 ≤ t},

then
h(M, ρ1) ≥ min{c, C(ϑ, ε)},

where c is a constant that does not depend on ϑ nor ε and corresponds to the cost of a cut
along the x1 axis. This is because other than the horizontal cut along the x1 axis, the only
other natural cuts that are viable competitors for minimizing Cut (the objective function
in the definition of h(M, ρ̃1)) are the ones perpendicular to the bottleneck of the dumbbell
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and along the x2 axis. A straight forward calculation shows that the cuts along the x1 axis
result in a value of Cut that is bounded away from zero and so we focus on finding C(ϑ, ε)
by analyzing vertical cuts across the bottleneck. Notice that we do not have to consider the
case t > ε since the density ρ̃1 is equal to zero for x = (x1, x2) with x1 > ε. In other words
we just have to look at non-trivial subsets of {x ∈M : ρ̃1(x) > 0}.

For all t ∈ [−l/2, ε] we have ∂At ∩M = {(x1, x2) ∈ M : x1 = t, |x2| < ϑ}, and so we
can write

Cut(At) =
ψ(t)∫ ε

t ψ(s)ds
.

Now, when ε is small, for every t ∈ [−l/2, ε/2] we have

Cut(At) ≥
1

2
∫ ε
t ψ(s)ds

≥ 1.

On the other hand, we notice that by the definition of ψ we have

ψ′(t)

∫ ε

t
ψ(s)ds+ (ψ(t))2 =

4(ε− t)4

3ε4
≥ 0, ∀t ∈ [ε/2, ε],

implying that the function Cut(At) is increasing between ε/2 and ε. In particular, it follows
that for all t ∈ [ε/2, ε] we have

Cut(At) ≥ Cut(Aε/2) =
1

2
∫ ε
ε/2 ψ(s)ds

≥ 1

ε
.

Hence C(ϑ, ε) = min{1, 1/ε}. We conclude that provided ε ≤ 1 we have that

Θ ≥ c,

for some positive constant that does not depend on ε or ϑ. The bottom line is that the model
is well-separated as long as ϑ� ε and ε is sufficiently small.

One can then consider a partition that aims at cutting the dumbbell along its axis (see
Figure 3(b)). In particular we can introduce analogue densities ρ1 and ρ2 smoothening out
the indicator functions for the sets in the new partitioning (in this case the smoothening
happens in the x2 coordinate). Then using similar calculations as before we can show that
the overlapping parameter can be made arbitrarily small (by selecting the parameter ε to be
small), however, it will not be possible to control the indivisibility parameter from below as
ϑ→ 0. In fact, we expect the second eigenvalue of ∆ρk to go to zero with ϑ following Anné
(1995). Moreover, the coupling parameter will not be controlled by ϑ in this case, and in
fact as ε → 0 it will blow up. Therefore according to our definition this mixture model is
not well-separated.

Notice that this example has made explicit the fact that the notion of well separated
mixture model does not depend on the density ρ, but on the actual decomposition as a mix-
ture model. The example has also exhibited that our mathematical notion of well-separated
mixture model does capture our intuition.

Let us formally verify the lower bound (16) for this example similar to our numerical
experiments in Example 1. Here, we consider a mixture model with the components defined
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as indicated by Figure 3(a), see (22). We let ` = 1 and consider dumbbell shaped domains
with parameter ϑ ∈ {.05, .1, .15, .2, .25, .3, .4, .5}. We then let ρ denote the uniform measure
on the dumbbell shaped domain M and generate random graphs with n = 211 vertices
sampled randomly from ρ. We choose the rest of the parameters in this experiment identical
to the experiment in Example 1 and report the averaged values of noutside/n versus ϑ over
20 trials in Figure 2(b), indicating a linear relationship between ϑ and the probability mass
outside the orthogonal cones.

Let us now return to (16) with s fixed and split ρ into a mixture of two components as
in (22) so that N = 2 and wmax = wmin = 1/2. Assuming our bounds on S, C in (23) and
(24) are sharp we can proceed to simplify the lower bound on t up to leading order assuming
that ϑ� ε < 1. A straightforward calculation then yields that t ≥ αϑ1/2 for some constant
α > 0 which in turn suggests that the probability mass of µ lying outside orthogonal cones
of a fixed angle should vanish like ϑ1/2. Thus we observe a gap between the lower bound in
(16) and our numerical experiments, which suggest the probability mass outside of the cones
vanishes like ϑ. We conclude that either the lower bound (16) is not sharp in this case or
our bounds on S, C in (23) and (24) can be improved.

(a) (b)

Figure 3: Two partitioning strategies for the dumbbell shaped domain of Example 2. The
partition (a) leads to well-separated clusters in the limit ϑ→ 0, while the partition (b) does
not. Clearly, the subsets in (b) can be further split into meaningful components.

The previous two examples have illustrated some aspects of the parameters S,Θ, C which
we now put together in a remark.

Remark 16 The parameters S, C,Θ, can be interpreted as quantitative measures for the
presence of three different types of degeneracies in the mixture model:

• Small S guarantees that there are no repeated components in the model. Notice that
in Example 1 the two components of the model are the same when γ = 0. In that case,
C would be zero and Θ would still be bounded away from zero.
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• Large Θ guarantees that a component in the model can not be divided into further well
separated components (e.g. as it would be the case in Figure 3(b) ).

• Small C guarantees that our components are not slices of what should be considered
one big component. Consider for example a one-dimensional mixture model with two
components given by the halves of a centered Gaussian, each component equal to the
part of the Gaussian lying to either side of the origin. Then the overlap S is zero
and Θ is bounded away from zero but the coupling C would be large since it is easy for
entropy to flow from one component to the other.

In summary, C is a measure of how well entropy flows from any one given component
to the rest of the distribution, which is essentially a measure of between class separation.
Conversely, Θ measures the within class separation. For a clustering method to work we
intuitively expect that one should have that the within class similarity is much greater than
the between class similarity: this is exactly saying that the ratio C/Θ should be small. Small
S on the other hand guarantees that with high probability, data points are allocated to the
correct cluster, which is a direct consequence of small overlap between components.

4.2 Extensions and generalizations of main results

As outlined in Section A the proofs of our main results are divided into two main parts.

1. We prove that the measure F]ν has an orthogonal cone structure provided the model
is well-separated.

2. We show that after an orthogonal transformation, the measures F]ν and Fn]νn are
close to each other in the Wasserstein sense with high probability.

We emphasize that for part (1) we do not need to assume thatM has compact support,
nor that the density ρ is bounded bellow and above by positive constants. We only need
Assumptions 7. In contrast, for part (2), we impose the extra conditions in Assumptions
11 to guarantee that the results of Burago et al. (2014); Garćıa Trillos et al. (2020) on the
spectral convergence of graph Laplacians are applicable.

4.2.1 Extensions to unbounded domains and k-NN graphs

In this paper Theorem 30 links the graph Laplacian ∆n to the differential operator ∆ρ.
Assumption 11 is only used when proving Theorem 30, and in particular to show the
existence of transport maps Tn between ν and νn satisfying

‖Tn − Id‖∞ := ess sup
x∈M

|Tn(x)− x| → 0,

at an explicit rate in terms of n. For an unbounded manifold M, any transport map Tn
pushing forward ν into νn, must transport mass over arbitrary long distances (even a tiny
bit of mass transported over a large distance already results in a large ∞-OT distance). It
is therefore of relevance to investigate other forms of establishing the discrete-continuum
link that do not involve using ∞-OT maps; this is the topic of current investigation.
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It is also of relevance to extend our analysis to settings where different graph construc-
tions are used to extract the coarse structure of the point cloud. In this paper we have
focused on proximity graphs constructed using a kernel η and a connectivity parameter
ε > 0, but other graph constructions are perhaps more popular among practitioners and
enjoy higher regularity properties; such is the case of k nearest neighbors (k-NN) graphs.
Results quantifying spectral convergence rates for k-NN graph Laplacians are largely miss-
ing in the literature, and it is interesting to extend the analysis showed in this paper to the
k-NN setting. In Garćıa Trillos (2019), variational techniques have been used to study the
statistical consistency of optimization problems defined on k-NN graphs.

4.2.2 Different weighted versions of the Laplacian

The kernelized Laplacian considered in this paper is just one of many operators that can be
used to construct the embedding F . In light of the notion of diffusion maps introduced in
Coifman and Lafon (2006), it seems reasonable to ask what is the effect of different graph
Laplacian normalizations on the geometry of the embedded data. For example, one may
consider a family of renormalizations, where for a given γ ∈ [0, 1], we let

(Wn)ij :=
ηε(|xi − xj |)

d̃γi d̃
γ
j

, d̃i :=
n∑
j=1

ηε(|xi − xj |) .1

The weights (Wn)ij induce the family of normalized graph Laplacians

∆γ
n := I −D−1

n Wn

where Dn = diag(di), di =
∑

j(Wn)ij , denotes the degree matrix of the weight matrix Wn.
Intuitively, the parameter γ controls the effect of the density ρ on the clustering: for

γ close to one, the effect of ρ is minimal, and the limiting clustering is influenced only by
the geometry of M; on the other hand, when γ is close to zero, the effect of the ground-
truth density ρ is maximal (see Coifman and Lafon (2006)). This observation can be made
rigorous using the ideas presented in the work Garćıa Trillos and Slepčev (2018) which when
applied would show that after appropriate rescaling, the spectrum of the graph Laplacian
∆γ
n approximates that of the formally defined differential operator

∆γ
ρu := − 1

ρ2(1−γ)
div(ρ2(1−γ)∇u).

Furthermore, following the discussion in Section A.3 one can bootstrap the ideas presented
in Garćıa Trillos et al. (2020) and obtain quantitative error estimates relating the spectra of
∆γ
n and ∆γ

ρ analogous to the ones that appear in Theorem 30. We notice that the limiting
differential operator ∆γ

ρ is of the same type as the one we have considered in this paper,
but where now we think of the underlying density function as being proportional to ρ2(1−γ).
That is, we can introduce the density

ρ̃(x) :=
ρθ(x)∫

M ρθ(y) dy
,

1. Formally, one could take any γ ∈ R, but we follow here the choice of γ as in Coifman and Lafon (2006).
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and notice that

∆γ
ρ = ∆ρ̃,

for θ = 2(1−γ). Based on the analysis presented in this paper, it is then possible to describe
the geometry of the graph Laplacian embeddings constructed from ∆γ

n, assuming that the
modified density ρ̃ admits a representation as a well-separated mixture model.

An immediate question that arises is to understand whether there is an interesting
criterion under which one can choose the value of γ that produces the “best” clustering for
a given data set. Alternatively, instead of looking at a single value of γ, it maybe worth
working with the full ensemble of Laplacian embeddings (for all values of γ), and determine
how to use it as best as possible. The formulation and analysis of these questions are the
topic of current investigation.

Remark 17 Note that the so called random walk graph Laplacian Shi and Malik (2000)
coincides with ∆0

n (i.e. γ = 0). The limiting differential operator then takes the form

∆0
ρ = − 1

ρ2
div(ρ2∇u).

Remark 18 Asymptotically, the kernelized graph Laplacian ∆n studied here coincides with

∆
1/2
n (i.e. γ = 1/2). In particular, there is no reason to work with ∆

1/2
n (i.e. renormalizing

twice). In addition, the limiting differential operator ∆
1/2
ρ = ∆ρ has the following properties.

First,

〈∆ρu, v〉ρ =

∫
M
∇u · ∇vρdx,

is linear in ρ. Secondly,

〈u, v〉ρ =

∫
M
uvρdx,

is also linear in ρ, and ∆ρ is self-adjoint with respect to 〈·, ·〉ρ. Thirdly, under fairly general
conditions, such as when ρ is a well-separated mixture, ∆ρ has a spectral gap after the N -th
eigenvalue.
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Garćıa Trillos, Hoffmann, Hosseini

Wenqi Tao and Zuoqiang Shi. Convergence of Laplacian spectra from random samples.
Journal of Computational Mathematics, 38(6):952–984, 2020. ISSN 1991-7139. doi: 10.
4208/jcm.2008-m2018-0232.

Cédric Villani. Topics in optimal transportation. American Mathematical Society, Provi-
dence, RI, 2003. doi: 10.1007/b12016.

Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):
395–416, 2007. doi: 10.1007/s11222-007-9033-z.

Ulrike von Luxburg, Mikhail Belkin, and Olivier Bousquet. Consistency of spectral cluster-
ing. The Annals of Statistics, 36(2):555–586, 2008. doi: 10.1214/009053607000000640.

Appendix A. Proofs of main results

Here we collect the detailed proofs of the main theoretical results of this article. In Ap-
pendix A.1 we show stability of orthogonal cone structures under perturbations in the
Wasserstein distance, proving that nearby probability measures have similar orthogonal
cone structures.

Appendix A.2 is dedicated to the proof of our first main result Theorem 10 stating that
the pushforward F]ν has an orthogonal cone structure when ν is well-separated. In proving
this theorem we also obtain some auxiliary results regarding the spectrum of ∆ρ that are
interesting by themselves.

In Appendix A.3 we collect convergence results on the spectrum of ∆n and ∆ρ and prove
that as n→∞ and ε→ 0 in an appropriate regime then the spectrum of ∆n converges to
that of ∆ρ and obtain quantitative rates.

We then combine the above results in Appendix A.4 to prove Theorem 15, showing that
the point cloud Fn(Mn) has an orthogonal cone structure when ν is well-separated.

A.1 Stability of orthogonal cone structures

In this section we prove some basic results on the stability of orthogonal cone structures. The
first result follows immediately from the characterization of weak convergence of probability
measures via Portmanteau’s theorem (Bogachev, 2007, Theorem 8.4.7).

Proposition 19 Let {µn}n∈N be a sequence of Borel probability measures on Rk that con-
verge weakly to a measure µ ∈ P(Rk). If µ has an orthogonal cone structure with parameters
(σ, δ, r), then for every ε ∈ (0, 1 − δ), there exists K ∈ N such that for all n ≥ K , µn has
a orthogonal cone structure with parameters (σ, δ + ε, r).

Proof Consider the open set U := ∪kj=1C(ej , σ, r), where the sets C(ej , σ, r) are as in

Definition 8 on the orthogonal cone structure property for µ. Since µn
w−→ µ, Portmanteau’s

theorem implies that
lim inf
n→∞

µn(U) ≥ µ(U).

In particular, this means that for every ε ∈ (0, 1− δ), there exists a K such that if n ≥ K
then,

µn(U) ≥ µ(U)− ε ≥ 1− δ − ε.
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An immediate corollary of the previous proposition is the following.

Corollary 20 If a probability measure µ has an orthogonal cone structure with parameters
(σ, δ, r) and µn is the empirical measure associated to n i.i.d. samples from µ, then ∀ε ∈
(0, 1− δ), with probability one there exists K = K(ε, δ) ∈ N such that for every n ≥ K, µn
has a (σ, δ + ε, r)-cone structure.

The idea is now to improve the previous asymptotic result and instead study the sta-
bility of orthogonal cone structures under small perturbations of a measure; we use the
Wasserstein distance to measure the distance between different probability measures. We
recall its definition.

Definition 21 Let µ1, µ2 be two probability measures on Rk with finite second moments.
We define their Wasserstein distance by

(W2(µ1, µ2))2 := min
π∈Γ(µ1,µ2)

∫
Rk×Rk

|x− y|2dπ(x, y),

where Γ(µ1, µ2) stands for the set of transportation plans between µ1 and µ2, that is, the
set of probability measures in P(Rk × Rk) with first and second marginals equal to µ1 and
µ2 respectively.

Proposition 22 Let µ1, µ2 ∈ P(Rk) and suppose that µ1 has an orthogonal cone structure
with parameters (σ, δ, r), where σ < π/4. Let s, t > 0 be such that

rt sin(s)√
k
≥W2(µ1, µ2), (26)

and such that σ + s < π/4. Then, µ2 has an orthogonal cone structure with parameters
(σ + s, δ + t2, r(1− sin(s)).

Proof Denote by C1, . . . , Ck the “cones” associated to µ1 and let e1, . . . , ek be the orthonor-
mal vectors they are centered at. For s, t > 0 satisfying (26) and such that s + σ < π/4,
define

C̃j :=

{
z ∈ Rk :

z · ej
|z|

> cos(σ̃), |z| > r̃

}
,

where σ̃ := σ + s and r̃ := r(1 − sin(s)). Let π ∈ Γ(µ2, µ1) be an optimal transportation
plan between µ2 and µ1 (which exists by (Villani, 2003, Proposition 2.1)). That is,∫

Rk×Rk
|x− y|2dπ(x, y) = (W2(µ1, µ2))2 .

First, observe that from the definition of r̃, simple trigonometry shows that

min
v∈Ck,w∈∂C̃k

|v − w| = r sin(s).
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From this, it follows that

r2 sin2(s)π(Cj ,Rk \ C̃j) ≤
∫
Cj×(Rk\C̃j)

|x− y|2dπ(x, y) ≤ (W2(µ1, µ2))2 .

Hence, for every j = 1, . . . , k,

µ2(C̃j) ≥ π(Cj , C̃j)

= π(Cj ,Rk)− π(Cj ,Rk \ C̃j)

≥ µ1(Cj)−
(W2(µ1, µ2))2

r2 sin2(s)

≥ µ1(Cj)−
t2

k
.

The assumption σ < π/4 and σ+ s < π/4 implies that the sets C1, . . . , Ck and respectively
C̃1, . . . , C̃k are pairwise disjoint and thus

µ2

 k⋃
j=1

C̃j

 ≥ µ1

 k⋃
j=1

Cj

− t2 ≥ 1− (δ + t2).

We finish this section by recalling that a map T : Rk → Rk with µ2 = T]µ1 (i.e. µ2 is
the pushforward of µ1 by T ) is called a transportation map between µ1 and µ2. Such a map
induces a transportation plan πT ∈ Γ(µ1, µ2) given by

πT := (Id× T )]µ1,

where the map Id × T is given by x ∈ Rk 7→ (x, T (x)) ∈ Rk × Rk. In particular, for any
such T , we have

(W2(µ1, µ2))2 ≤
∫
Rk×Rk

|x− y|2dπT (x, y) =

∫
Rk
|x− T (x)|2dµ1(x). (27)

A.2 Proof of Theorem 10

In what follows we use u1, . . . , uN to represent the first N eigenfunctions of ∆ρ and denote
by U their span. Normalized in L2(ρ), the functions u1, . . . , uN form an orthonormal basis
for U . We use ΠN : L2(ρ)→ U to denote the projection onto U . Denote by Q the span of
the functions q1, . . . , qN . Our first proposition quantifies how close are the functions qk to
their projections onto U .

Proposition 23 For every k = 1, . . . , N we have

1

wk
‖qk −ΠN (qk)‖2ρ ≤

C
λN+1

, (28)

where ΠN stands for the projection onto U the span of the first N eigenfunctions of ∆ρ and
λN+1 is the (N + 1)-st eigenvalue of ∆ρ, where the eigenvalues are assumed to be indexed
in increasing order.
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Proof A direct computation using the definition of qk shows that

〈∆ρqk, qk〉ρ =

∫
M
|∇qk(x)|2ρ(x)dx = wkCk,

where Ck is as defined in (11). On the other hand, we can write qk in the orthonormal basis
of eigenfunctions {u1, u2, . . . } of ∆ρ as

qk =

∞∑
l=1

alkul,

for some coefficients {alk}l∈N. Using this representation we can alternatively write 〈∆ρqk, qk〉ρ
as

〈∆ρqk, qk〉ρ =
N∑
l=1

a2
lkλl +

∞∑
l=N+1

a2
lkλl.

We deduce that

wkC ≥ wkCk ≥ λN+1

∞∑
l=N+1

a2
lk = λN+1‖qk −ΠN (qk)‖2ρ.

We now focus on getting lower bounds for λN+1 in terms of the parameters of the
mixture model. In particular, we show that when S and C are small in relation to Θ then
λN+1 is large. We start with two preliminary results.

Lemma 24 For every j ∈ {1, . . . , N},

1− S ≤ 〈qj , qj〉ρj ≤ 1 + S.

Remark 25 It follows from the above lemma that ‖qj‖ρj converges to one as S → 0. In
general however, S may be bigger than one, in which case the lower bound is trivial.

Proof From the definition of qj we see that

〈qj , qj〉ρj = 1 +

∫
M

(
wjρj
ρ
− 1

)
ρjdx.

On the other hand, ∣∣∣∣∫
M

(
wjρj
ρ
− 1

)
ρjdx

∣∣∣∣ ≤ ∫
M
|wjρj − ρ|

ρj
ρ
dx

=

∫
M

∑
k 6=j

wk
ρkρj
ρ

dx

=
∑
k 6=j

wk

∫
M

ρkρj
ρ

dx

≤ S.
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From the above computations we obtain the desired inequality.

Lemma 26 For every j ∈ {1, . . . , N},

inf
〈v,qj〉ρj=0

∫
M |∇v|

2ρjdx

〈v, v〉ρj
≥ Θ(1− S), (29)

Proof Let us fix j ∈ {1, . . . , N} and pick v ∈ H1(M, ρj), such that 〈v, qj〉ρj = 0, and
〈v, v〉ρj = 1, where

H1(M, ρj) :=

{
u ∈ L2(M, ρj)|

∫
M

(
|∇u|2 + |u|2

)
ρjdx < +∞

}
. (30)

Observe that ∫
M
|∇v|2ρjdx =

∞∑
k=1

〈v, ej,k〉2ρjλj,k,

where in the above {λj,k, ej,k} are the orthonormal (w.r.t. 〈·, ·〉ρj ) eigenpairs of ∆ρj . Since
λj,1 = 0, the first eigenvector is given by ej,1 ≡ 1, the function which is identically equal to
one. Using the above equality and the Pythagorean theorem we conclude that∫

M
|∇v|2ρjdx ≥ λj,2

∞∑
k=2

〈v, ej,k〉2ρj = λj,2

(
〈v, v〉2ρj − 〈v, ej,1〉

2
ρj

)
= Θj

(
1− 〈v, ej,1〉2ρj

)
, (31)

where we recall Θj was defined in (13), and corresponds to the second eigenvalue of the
operator ∆ρj by the max-min formula (Attouch et al., 2014, Thm. 8.4.2).

We now find an upper bound for 〈v, ej,1〉2ρj . Notice that

〈v, ej,1〉ρj =

∫
M
vρjdx =

∫
M
v(1− qj)ρjdx,

where the second equality follows from the fact that 〈v, qj〉ρj = 0. The Cauchy-Schwartz
inequality implies that,

〈v, ej,1〉2ρj ≤ ‖v‖
2
ρj

∫
M

(1− qj)2ρjdx =

∫
M

(1− qj)2ρjdx = 1 +

∫
M

(q2
j − 2qj)ρjdx.

From the fact that 0 ≤ qj ≤ 1, we conclude that (q2
j − 2qj) ≤ −q2

j , and therefore

〈v, ej,1〉2ρj ≤ 1−
∫
M
q2
j ρjdx = 1− 〈qj , qj〉ρj ≤ 1− (1− S) = S,

where the second inequality follows from Lemma 24. To conclude, the estimate (29) is a
consequence of the above inequality and (31).

We are now in a position to find a lower bound for the (N + 1)-th eigenvalue λN+1 of
∆ρ.
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Proposition 27 (Lower bound for λN+1) Suppose that NS < 1. Then,(√
Θ(1−NS)−

√
CNS

(1− S)

)2

≤ λN+1 .

Proof Let us consider u ∈ H1(M, ρ) satisfying 〈u, u〉ρ = 1, and u ∈ Q⊥, i.e. u is orthogonal
to the span of {q1, ..., qN} in terms of the inner product 〈·, ·〉ρ. From the fact that 〈u, qj〉ρ = 0
for all j ∈ {1, ..., N}, we deduce that for every j = 1, . . . , N ,

〈u, qj〉ρj =

∫
M
uqjρjdx =

1

wj

∫
M
uqj (wjρj − ρ) dx = − 1

wj

∑
k 6=j

wk

∫
M
uqjρkdx.

Hence,

|〈u, qj〉ρj | ≤
1

wj

∑
k 6=j

wk

∫
M
|u|qjρkdx

≤ 1

wj

∑
k 6=j

wk

(∫
M
u2ρkdx

)1/2(∫
M
q2
j ρkdx

)1/2

≤

√
S
wj

∑
k 6=j

wk

(∫
M
u2ρkdx

)1/2

≤

√
(1− wj)S

wj

∑
k 6=j

wk

∫
M
u2ρkdx

1/2

≤

√
(1− wj)S

wj
,

(32)

where in the second inequality we have used the Cauchy-Schwartz inequality, in the fourth
inequality we have used Jensen’s inequality, and in the last inequality the fact that 〈u, u〉ρ =
1. Define now the functions

vj := u−
( 〈u, qj〉ρj
〈qj , qj〉ρj

)
qj , j = 1, . . . , N.

The function vj is orthogonal to qj with respect to the inner product 〈·, ·〉ρj . In addition,∫
M
|∇vj |2ρjdx =

∫
M
|∇u|2ρjdx− 2

〈u, qj〉ρj
〈qj , qj〉ρj

∫
M
∇qj · ∇uρjdx

+

( 〈u, qj〉ρj
〈qj , qj〉ρj

)2 ∫
M
|∇qj |2ρjdx.

Notice that,∫
M
|∇qj |2ρjdx =

wj
4

∫
M
|∇(ρj/ρ)|2ρdx =

1

4

∫
M
q2
j

∣∣∣∣∇ρjρj − ∇ρρ
∣∣∣∣2 ρj dx ≤ Cj ,

where in the last step we used the fact that 0 ≤ qj ≤ 1. From the above inequality, Lemma
24, (32) and Cauchy-Schwartz inequality, it follows that∫

M
|∇vj |2ρjdx ≤

∫
M
|∇u|2ρjdx+ 2

(√
1− wj
wj

)( √
CS

(1− S)

)(∫
M
|∇u|2ρjdx

)1/2

35
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+
(1− wj)CS
wj(1− S)2

,

According to Lemma 26, the left hand side of the above expression can be bounded from
below by Θ(1− S)〈vj , vj〉ρj (since 〈vj , qj〉ρj = 0). On the other hand,

〈vj , vj〉ρj = 〈u, u〉ρj −
〈u, qj〉2ρj
〈qj , qj〉ρj

≥ 〈u, u〉ρj −
(1− wj)S
wj(1− S)

,

as it follows from (32) and Lemma 24. Therefore,

Θ(1− S)〈u, u〉ρj −
(1− wj)ΘS

wj

≤
∫
M
|∇u|2ρjdx+ 2

(√
1− wj
wj

)( √
CS

(1− S)

)(∫
M
|∇u|2ρjdx

)1/2

+
(1− wj)CS
wj(1− S)2

.

Multiplying both sides of the above inequality by wj and adding over j we deduce

Θ(1−NS) ≤
∫
M
|∇u|2ρdx+ 2

( √
CS

(1− S)

)
N∑
j=1

(∫
M
|∇u|2wjρjdx

)1/2

+
CNS

(1− S)2
.

Applying Jensen’s inequality and using the fact that 〈u, u〉ρ = 1 we have

Θ(1−NS) ≤
∫
M
|∇u|2ρdx+ 2

√
CNS

(1− S)

(∫
M
|∇u|2ρdx

)1/2

+
CNS

(1− S)2

=

(
‖∇u‖ρ +

√
CNS

(1− S)

)2

.

That is, √
Θ(1−NS)−

√
CNS

(1− S)
≤ ‖∇u‖ρ .

Given that the above inequality holds for every u ∈ H1(M, ρ) with u ∈ Q⊥ and 〈u, u〉ρ = 1,
we conclude from the fact that Q has dimension N and from the max-min formula (Attouch
et al., 2014, Theorem 8.4.2),(√

Θ(1−NS)−
√
CNS

(1− S)

)2

≤ min
u∈Q⊥

∫
M |∇u|

2ρdx∫
M u2ρdx

≤ λN+1

Combining the previous proposition with Proposition 23 we obtain the following result.
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Corollary 28 For every k = 1, . . . , N we have

1

wk
‖qk −ΠN (qk)‖2ρ ≤

(√
Θ(1−NS)

C
−
√
NS

(1− S)

)−2

. (33)

The above corollary shows that for a well-separated mixture model, that is, for S and C/Θ
small, the right-hand side in (33) is small also, and so in that case, the functions q1, ..., qN
are close to their projections onto the first N eigenfunctions of ∆ρ. We will be able to

conclude that F]ν has an orthogonal cone structure provided we can show FQ] ν has one.

Proposition 29 The probability measure µQ := FQ] ν with FQ defined in (17) has an or-
thogonal cone structure with parameters (σ, δ, r) for any σ ∈ (0, π/4), δ∗ ≤ δ < 1 and

r = w
−1/2
max where

δ∗ :=
wmax cos2(σ)N2S
wmin(1− cos2(σ))

.

Here, wmax := maxi=1,...,N wi and wmin := mini=1,...,N wi.

Proof For each k = 1, . . . , N , let

Ck :=

{
z ∈ RN :

zk
|z|

> cos(σ), |z| ≥ r
}
,

with r := 1√
wmax

and fixed σ ∈ (0, π/4). It follows that

µQ(Ck) = FQ] ν(Ck) = ν(Ak),

where Ak is the preimage of Ck through FQ, i.e.

Ak :=(FQ)−1(Ck)

=

x ∈M :

√
ρk(x)

ρ(x)
> cos(σ)

 N∑
j=1

ρj(x)

ρ(x)

1/2

,

 N∑
j=1

ρj(x)

ρ(x)

1/2

≥ r

 .

From the definition of r we see that the condition N∑
j=1

ρj(x)

ρ(x)

1/2

≥ r

is redundant and so we can write

Ak =

x ∈M : ρk(x) > cos2(σ)
N∑
j=1

ρj(x)

 .

Now, for an arbitrary x0 ∈ ∩Nj=1A
c
j ⊆M we have

ρk(x0) ≤ cos2(σ)
N∑
j=1

ρj(x0), ∀k = 1, . . . , N,
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or equivalently,

(1− cos2(σ))ρk(x0) ≤ cos2(σ)
∑
j 6=k

ρj(x0), ∀k = 1, . . . , N.

From the fact that,
N∑
k=1

wkρk(x0)

ρ(x0)
= 1,

we know there exists a k̂ ∈ {1, . . . , N} (depending on x0) for which

wk̂ρk̂(x0)

ρ(x0)
≥ 1

N
.

Hence,

1− cos2(σ)

N2
≤ (1− cos2(σ))

(
wk̂ρk̂(x0)

ρ(x0)

)2

≤ cos2(σ)
wmax
wmin

∑
j 6=k̂

wjρj(x0)

ρ(x0)

wk̂ρk̂(x0)

ρ(x0)

≤ cos2(σ)
wmax
wmin

∑
k

∑
j 6=k

wjρj(x0)

ρ(x0)

wkρk(x0)

ρ(x0)
.

Since this is true for every x0 ∈ ∩Nk=1A
c
k, we conclude that

1− cos2(σ)

N2
ν
(
∩Nk=1A

c
k

)
≤ cos2(σ)

wmax
wmin

∫
∩Nk=1A

c
k

 N∑
l=1

∑
j 6=l

wlρl
ρ

wjρj
ρ

 ρdx

≤ cos2(σ)
wmax
wmin

N∑
l=1

∑
j 6=l

wlwj

∫
M

ρlρj
ρ
dx ≤ cos2(σ)

wmax
wmin

S.

That is,

ν
(
∩Nk=1Ã

c
k

)
≤ wmax cos2(σ)N2S
wmin(1− cos2(σ))

,

and so we deduce that

µQ
(
∪Nk=1Ck

)
≥ 1− wmax cos2(σ)N2S

wmin(1− cos2(σ))
.

This concludes the proof.

Proof [Proof of Theorem 10] In order to show that the measure µ := F]ν has an orthogonal
cone structure, it is enough to show that the measure (OF )]ν has an orthogonal cone
structure where OF is the map:

OF : x ∈M 7→ OF (x) ∈ RN ,

and where O is a conveniently chosen N × N orthogonal matrix. We will construct O in
such a way that the measures OF]ν and FQ] ν are close to each other in the Wasserstein
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sense. From this, Proposition 22 and Proposition 29 we will be able to conclude that OF]ν
has an orthogonal cone structure.

Let us introduce

vi :=
ΠN (qi)

‖ΠN (qi)‖ρ
, i = 1, . . . , N,

where we recall ΠN : L2(ρ) → U is the orthogonal projection onto U , the span of the first
N eigenfunctions of ∆ρ. From Corollary 28 it follows that∥∥∥∥ qi√

wi
− vi

∥∥∥∥
ρ

≤
∥∥∥∥ qi√

wi
− ΠN (qi)√

wi

∥∥∥∥
ρ

+

∥∥∥∥ΠN (qi)√
wi
− ΠN (qi)

‖ΠN (qi)‖ρ

∥∥∥∥
ρ

=

∥∥∥∥ qi√
wi
− ΠN (qi)√

wi

∥∥∥∥
ρ

+
1
√
wi
|‖ΠN (qi)‖ρ −

√
wi|

=

∥∥∥∥ qi√
wi
− ΠN (qi)√

wi

∥∥∥∥
ρ

+
1
√
wi
|‖ΠN (qi)‖ρ − ‖qi‖ρ|

≤ 2

∥∥∥∥ qi√
wi
− ΠN (qi)√

wi

∥∥∥∥
ρ

≤ 2

(√
Θ(1−NS)

C
−
√
NS

(1− S)

)−1

.

(34)

In particular, for i 6= j

|〈vi, vj〉ρ| =
∣∣∣∣〈vi − qi√

wi
, vj〉ρ + 〈 qi√

wi
, vj −

qj√
wj
〉ρ + 〈 qi√

wi
,
qj√
wj
〉ρ
∣∣∣∣

≤
∥∥∥∥ qi√

wi
− vi

∥∥∥∥
ρ

+

∥∥∥∥ qj√
wj
− vj

∥∥∥∥
ρ

+ S1/2

≤ 4

(√
Θ(1−NS)

C
−
√
NS

(1− S)

)−1

+ S1/2 = τ.

The first inequality follows from an application of the Cauchy-Schwartz inequality for the
first two terms (since ‖vi‖ρ = 1 by definition) and Jensen’s inequality for the last term. By
assumption (15), we can then use Lemma 41 to conclude that there exists ṽ1, . . . , ṽN , an
orthonormal basis for (U, 〈·, ·〉ρ) for which

‖vi − ṽi‖2ρ ≤ N
(

1√
1−Nτ

− 1

)2

, i = 1, . . . , N.

Therefore, for any i = 1, . . . , N ,∥∥∥∥ qi√
wi
− ṽi

∥∥∥∥2

ρ

=

∥∥∥∥ qi√
wi
− vi

∥∥∥∥2

ρ

+ 2〈vi − ṽi,
qi√
wi
〉ρ − 〈vi + ṽi, vi − ṽi〉ρ

≤
∥∥∥∥ qi√

wi
− vi

∥∥∥∥2

ρ

+ 4 ‖vi − ṽi‖ρ
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≤4

(√
Θ(1−NS)

C
−
√
NS

(1− S)

)−2

+ 4
√
N

(
1√

1−Nτ
− 1

)

=

(
τ −
√
S

2

)2

+ 4
√
N

(
1√

1−Nτ
− 1

)
. (35)

Let F̃ : M 7→ RN be the map F̃ (x) =
∑N

j=1 ṽj(x)ej . From the fact that {ṽ1, . . . , ṽN}
and {u1, . . . , uN} are both orthonormal bases for (U, 〈·, ·〉ρ) we can conclude there exists an
orthogonal matrix O ∈ RN × RN for which

OF = F̃ .

Moreover, let π := (FQ× F̃ )]ν. We notice that π is a coupling between FQ] ν and F̃]ν. From
(35) we see that

W 2
2 (FQ] ν, F̃]ν) ≤

∫
RN

∫
RN
|z − z̃|2dπ(z, z̃)

=

∫
M
|FQ(x)− F̃ (x)|2dν(x)

=

N∑
i=1

∥∥∥∥ qi√
wi
− ṽi

∥∥∥∥2

ρ

≤ N

(
τ −
√
S

2

)2

+ 4N3/2

(
1√

1−Nτ
− 1

)
. (36)

It then follows from Proposition 22 and Proposition 29 that µ has an orthogonal cone struc-

ture with parameters
(
σ + s, δ + t2, 1−sin(s)√

wmax

)
with δ ∈ [δ∗, 1) as given in Proposition 29 for

any s, t > 0 satisfying assumption (16).

A.3 From discrete to continuum: convergence results for the spectrum of ∆n

In this section we connect the spectrum of the graph Laplacian ∆n with the spectrum of
∆ρ. For this purpose, we modify our notation slightly and write L2(ν) for L2(ρ) to allow
for comparison with L2(νn) (recall (2)). Furthermore, we write 〈u, v〉L2(µ) :=

∫
M uv dµ(x)

for µ = ν or νn.

Theorem 30 Let M, ρ, ε and n be as in Assumptions 11. Let un,1, . . . , un,N be the first
N eigenvectors of the kernelized graph Laplacian ∆n (i.e. the graph with weights defined
in (4)). Then, for every β > 1 there exists a constant Cβ > 0 such that with probability at
least 1− Cβn−β, there exists a map Tn :M→ {x1, . . . ,xn} (see Remark 31) satisfying

ν(T−1
n ({xi})) =

1

n
, ∀i = 1, . . . , n, (37)

and

‖gj − un,j ◦ Tn‖2L2(ν) ≤ cM
(

λN
λN+1 − λN

)(
ε+

log(n)pm

εn1/m

)
, (38)
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for some orthonormal functions g1, . . . , gN ∈ L2(ν) belonging to U , the span of the first
N eigenfunctions of ∆ρ with respect to 〈·, ·〉ρ, and a constant cM > 0 depending only on
M, N , ρ±, CLip and η. In the above, λN and λN+1 denote the N -th and the (N + 1)-th
eigenvalues of ∆ρ.

Remark 31 Relation (37) is simply saying that the map Tn is a transportation map from
ν to νn. Tn here is as defined by Garćıa Trillos et al. (2020), i.e. the ∞-optimal transport
(∞-OT) map between ν and νn. It was proved by Garćıa Trillos et al. (2020) that the

∞-OT cost scales like log(n)pm

n1/m . Notice that this is the only term on the right hand side of
(38) that explicitly depends on n.

The proof of Theorem 30 relies on a comparison between the Dirichlet forms associated
to the operators ∆n and ∆ρ by way of careful interpolation and discretization of discrete
and continuum functions. Only small modifications to the proofs in Burago et al. (2014);
Garćıa Trillos et al. (2020) are necessary and in what follows we give a thorough explanation
of the steps that need to be adjusted. For simplicity, we largely follow the notation in
Garćıa Trillos et al. (2020).

Let us summarize our strategy for the proof. The Dirichlet forms associated to ∆n and
∆ρ are respectively defined as

bn(un) :=
1

2n

∑
i,j

Wij |un(xi)− un(xj)|2, un ∈ L2(νn), (39)

and

D(u) :=
1

2

∫
M
|∇u|2ρ(x)dx, u ∈ H1(M, ρ), (40)

where we recall Wij are the weights defined in (4). We will show that

bn(Pf) ≤ (1 + er(n, ε))D(f), ∀f ∈ L2(ν) ,

D(Ifn) ≤ (1 + er(n, ε))bn(fn), ∀fn ∈ L2(νn).

for appropriately defined discretization and interpolation maps P and I; the er(n, ε) term
does not depend on f or fn, and is small for n large, and ε small but larger than a certain
quantity that depends on n that we will introduce below. Together with the properties of
the maps P and I (see Lemma 33), these inequalities allow us to compare the spectra of
the discrete and continuum operators.

To define the maps P and I we first introduce the transport maps Tn constructed in
(Garćıa Trillos et al., 2020, Theorem 2).

Proposition 32 For a given β > 1, there exists a constant Cβ > 0 depending only on β
so that with probability at least 1 − Cβn−β there exists a map Tn : M → {x1, . . . ,xn} for
which:

1. ν(T−1
n (xi)) = 1/n for all i = 1, . . . , n,

2. δn := ess supx∈M dM(Tn(x), x) ≤ C log(n)pm

n1/m ,
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where C = C(M, ρ−, ρ+, β) > 0, pm = 3/4 for m = 2 and pm = 1/m for m ≥ 3, and dM
represents the geodesic distance in M.

Given the map Tn, the discretization map

P : L2(ν)→ L2(νn),

is defined as the transformation that takes a given f ∈ L2(ν) and maps it into the discrete
function

Pf(xi) := n

∫
T−1
n ({xi})

f(x)ρ(x)dx, i = 1, . . . , n.

For the interpolation map I, we first let P ∗ be the adjoint of P with respect to the L2(νn)
inner product, i.e. the map that satisfies

〈Pg, fn〉L2(νn) = 〈g, P ∗fn〉L2(ν), ∀g ∈ L2(ν), ∀fn ∈ L2(νn),

which takes an arbitrary discrete function fn ∈ L2(νn) and returns a function P ∗fn ∈ L2(ν)
defined by

P ∗fn(x) = fn ◦ Tn(x), x ∈M.

We also introduce a smoothing operator

Λε,n,0f(x) :=

∫
M

1

(ε− 2δn)m
ψ

(
dM(x, y)

ε− 2δn

)
f(y)dy, x ∈M, f ∈ L2(ν),

which is a convolution operator with radial kernel

ψ(t) :=
1

αη

∫ ∞
t

η(s)sds,

where we recall αη :=
∫∞

0 η(r)rm+1dr was defined in (3), and where dM(x, y) is the geodesic
distance between points x, y ∈M. We normalize the operator Λε,n,0 to produce

Λε,nf :=
1

Λε,n,01
Λε,n,0f, f ∈ L2(ν),

where in the above Λε,n,01 denotes the application of Λε,n,0 to the function that is identically
equal to one; the normalization is introduced so as to ensure that Λε,n leaves constant
functions unchanged. Finally, I is defined as the composition of P ∗ with Λε,n. Namely,

Iun := Λε,n ◦ P ∗un, un ∈ L2(νn) .

Note that for any fn ∈ L2(ν) it is guaranteed that Ifn ∈ H1(M, ρ), given that η was
assumed Lipschitz (and so in particular ψ is C1).

Lemma 33 (Discretization and interpolation errors) Under the same assumptions
on M and ρ as in Theorem 30 it follows that:

1. For every f ∈ H1(M, ρ),∣∣∣‖Pf‖2L2(νn) − ‖f‖
2
L2(ν)

∣∣∣ ≤ C1

[
δn‖f‖L2(ν)D(f)1/2 +

(
ε+

δn
ε

)
‖f‖2L2(ν)

]
.
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2. For every f ∈ H1(M, ρ),

bn(Pf) ≤
[
1 + C2

(
ε+

δn
ε

)]
D(f).

3. For every fn ∈ L2(νn) we have,∣∣∣‖Ifn‖2L2(ν) − ‖fn‖
2
L2(νn)

∣∣∣ ≤ C3

[
ε‖fn‖L2(νn)bn(fn)1/2 +

(
ε+

δn
ε

)
‖fn‖2L2(νn)

]
.

4. For every fn ∈ L2(νn) such that Ifn ∈ H1(M, ρ),

D(Ifn) ≤
[
1 + C4

(
ε+

δn
ε

)]
bn(fn).

Here the constants C1, C2, C3, C4 > 0 only depend on lower and upper bounds for ρ and its
Lipschitz constant, and on M and η. The term δn was defined in Proposition 32.

Before we prove Lemma 33 let us introduce an intermediate, non-local continuum Dirich-
let energy

Er(f) :=
2

αη

∫
M

∫
M
η

(
|x− y|
r

)
|f(x)− f(y)|2

√
ρ(x)

√
ρ(y)dxdy, f ∈ L2(ν),

where r > 0 is a length scale to be chosen later on.

Remark 34 Observe that the Dirichlet energy D and the non-local Dirichlet energy Er can
be written as

D(f) =

∫
M
|∇f |2ρ̃2dx, f ∈ H1(M, ρ),

Er(f) :=
2

αη

∫
M

∫
M
η

(
|x− y|
r

)
|f(x)− f(y)|2ρ̃(x)ρ̃(y)dxdy, f ∈ L2(ν),

where ρ̃ =
√
ρ. We notice that ρ̃ ∈ C1(M) since it satisfies the same regularity condition

as ρ given that ρ is bounded away from zero. Hence, our continuum Dirichlet energies D
and Er take the same form as in Garćıa Trillos et al. (2020). As a consequence we may
use all of the bounds relating D and Er that were proven there.

Remark 35 The only difference between the discrete Dirichlet form bn in (39) and the one
introduced in Garćıa Trillos et al. (2020) is the normalization by the terms

√
dε(xi)/n that

appear in the definition of W, i.e., Garćıa Trillos et al. (2020) uses a different normalization
of the graph Laplacian. We notice that the term

√
dε(·)/n uniformly approximates the

density ρ. More precisely, given that the kernel η is assumed to be normalized, it follows
from (Garćıa Trillos et al., 2020, Lemma 18) that

max
i=1,...,n

∣∣∣∣ 1ndε(xi)− ρ(xi)

∣∣∣∣ ≤ C (ε+
δn
ε

)
,
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where we recall δn is the ∞-OT distance between νn and ν given in Proposition 32, and the
constant C > 0 depends only on ρ and geometric quantities associated to M. We highlight
that the above is a non-optimal estimate on the error of approximation of a kernel density
estimator, but has the advantage of only depending on the ∞-OT distance between empirical
and ground-truth measures.

Remark 36 The maps P, P ∗,Λr and I are defined identically to the way they were defined
in Garćıa Trillos et al. (2020) and hence we may use all properties proved there.

Proof [Proof of Lemma 33] Throughout the proof we use C to denote a finite positive
constant that depends only on the lower and upper bounds on ρ, the Lipschitz constant of
ρ, and geometric quantities of M. This constant may change value from one instance to
the next, unless its dependence is explicitly stated.

The first statement follows directly from (Garćıa Trillos et al., 2020, Lemma 13(i)) after
noticing that ρ ≤ C

√
ρ, given that ρ is bounded away from zero. The second statement

follows almost exactly as in (Garćıa Trillos et al., 2020, Lemma 13(ii)), after making some
small modifications that we now describe. First, by Remark 35 and the assumptions on ρ
it follows that for all i, j ∈ {1, . . . , n} and every x ∈ T−1

n ({xi}) and y ∈ T−1
n ({xj}) we have

n√
dε(xi)dε(xj)

≤ (1 + C(ε+ δn/ε))
1√

ρ(x)ρ(y)
.

Using the definition of Pf and Proposition 32 (1) it follows that

bn(Pf) =
2

αηnεm+2

n∑
i=1

n∑
j=1

η
(
|xi−xj |

ε

)
√
dε(xi)

√
dε(xj)

·

∣∣∣∣∣n2

∫
T−1
n ({xi})

∫
T−1
n ({xj})

(f(x)− f(y))ρ(x)ρ(y)dxdy

∣∣∣∣∣
2

≤ 2n

αηεm+2

n∑
i=1

n∑
j=1

η
(
|xi−xj |

ε

)
√
dε(xi)

√
dε(xj)

·
∫
T−1
n ({xi})

∫
T−1
n ({xj})

(f(x)− f(y))2ρ(x)ρ(y)dxdy

≤ 2(1 + C(ε+ δn/ε))

αηεm+2

n∑
i=1

n∑
j=1

η

(
|xi − xj |

ε

)
∫
T−1
n ({xi})

∫
T−1
n ({xj})

(f(x)− f(y))2√ρ(x)
√
ρ(y)dxdy ,

where the first inequality follows by Jensen’s inequality. Using the above bound together
with Remark 34 and proceeding identically to the proof of (Garćıa Trillos et al., 2020,
Lemma 13(ii)) we can bound bn in terms of Er. More precisely,

bn(Pf) ≤ 1 + C(ε+ δn/ε)

εm+2

(
Eε′+2δn(f) +

C̃δn
ε
E2(ε′+2δn)(f)

)
,
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where ε′ = (1+C ′ε2)ε, C ′ is a constant intrinsic to the manifoldM, and C̃ > 0 is a constant
depending only on η. At this point we can follow the rest of the proof of (Garćıa Trillos
et al., 2020, Lemma 13(ii)) to obtain the desired result after bounding Er in terms of D:

1

εm+2
Eε′+2δn(f) ≤

(
1 + C

(
ε+

δn
ε

))
D(f) ,

1

εm+2

δn
ε
E2(ε′+2δn)(f) ≤ C δn

ε

(
1 + ε+

δn
ε

)
D(f).

The third statement follows directly from (Garćıa Trillos et al., 2020, Lemma 14 (i))
after noticing that thanks to Remark 35 we have

√
dε(xi)dε(xj)/n ≤ C, where C depends

only on the upper bound for ρ. Indeed, this inequality allows us to upper bound the discrete
Dirichlet energy introduced in Garćıa Trillos et al. (2020) with a constant multiple of our
discrete Dirichlet energy bn.

For the fourth and final statement we proceed as in (Garćıa Trillos et al., 2020, Lemma
14(ii)), but making a small modification. By Remark 35 we conclude that for all i, j ∈
{1, . . . , n} and every x ∈ T−1

n ({xi}) and y ∈ T−1
n ({xj}) we have

1√
ρ(x)ρ(y)

≤ n(1 + C(ε+ δn/ε))√
dε(xi)dε(xj)

.

The above inequality is used to replace the degree term dε/n with the density ρ, allowing
us to reverse the bound in Lemma 33(2) . Having in mind the inequality, the proof of our
statement is exactly as in Garćıa Trillos et al. (2020). Indeed, we can follow (Garćıa Trillos
et al., 2020, Lemma 14(i)) and show that

Eε−2δn(P ∗fn) ≤
(

1 + C

(
ε+

δn
ε

))
εm+2bn(fn). (41)

In turn, (Garćıa Trillos et al., 2020, Lemma 14(ii)) (recall remark 34) gives

D(Ifn) ≤
[
1 + C

(
ε+

δn
ε

)]
1

εm+2
Eε−2δn(P ∗fn),

for all fn ∈ L2(νn). Combining (41) with the above inequality we deduce the desired result.

With Lemma 33 at hand, we can obtain a precise relationship between eigenvalues of
∆n and ∆ρ.

Lemma 37 (Convergence rate for eigenvalues ) Let λi be the i-th eigenvalue of ∆ρ

and let λn,i be the i-th eigenvalue of ∆n. Let β > 1. Then there exist constants C,Cβ > 0
such that for sufficiently large n, with probability at least 1− Cβn−β, we have

|λn,i − λi|≤ C
(
ε+

δn
ε

+ δn
√
λi

)
λi, i = 1, . . . , N,

where C > 0 depends only on M, η and ρ and Cβ > 0 depends only on β.
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Proof Using Lemma 33, we can follow exactly the proof of (Garćıa Trillos et al., 2020,
Theorem 4).

Now, we are ready to prove Theorem 30.
Proof [Proof of Theorem 30] Throughout this proof we use C to denote a finite positive
constant that depends only on M, N , ρ±, CLip and η. This constant may change from one
instance to the next.

Let un,1, . . . , un,N be the first N eigenfunctions of ∆n with unit norm. We can assume
they form an orthonormal basis with respect to 〈·, ·〉νn , with corresponding eigenvalues

λn,1 ≤ · · · ≤ λn,N .

We now put (Burago et al., 2014, Lemma 7.3) together with Lemmata 33 and 37, as well
as Remark 36 to conclude that for every j = 1, . . . , N we have

‖Iun,j −ΠN (Iun,j)‖2L2(ν) ≤
CM,NλN
λN+1 − λN

(
ε+

δn
ε

)
=: γ2

0 , (42)

where ΠN denotes the projection onto U , the span of the first N eigenfunctions of ∆ρ and
CM,N > 0 is a constant depending on M and N only.

We need to show that the functions ΠN (Iun,1), . . . ,ΠN (Iun,N ) can be modified slightly
to form an orthonormal basis for U . First, by (42) we have

‖Iun,j‖L2(ν) − γ0 ≤ ‖ΠN (Iun,j)‖L2(ν) ≤ ‖Iun,j‖L2(ν) + γ0 .

Next, we find a bound on ‖Iun,j‖L2(ν) using Lemma 33(3). To control the bn(un,j) term on
the right hand side of Lemma 33(3) we make use of the bound on the eigenvalues provided
in Lemma 37,

bn(un,j) = 〈un,j , ∆nun,j〉L2(νn) = λn,j

≤ C
(

1 + ε+
δn
ε

+ δn
√
λN

)
λN

≤ CλN ,

(43)

and so, since the un,j are normalized, we obtain∣∣∣‖Iun,j‖2L2(ν) − 1
∣∣∣ ≤ C (ε√λN + ε+

δn
ε

)
. (44)

Combining with the estimate for ‖ΠNIun,j‖L2(ν) yields (for ε and δn/ε small enough and n
large enough so that the right-hand side in the last estimate is less or equal to 1)

1− γ1 ≤ ‖ΠN (Iun,j)‖L2(ν) ≤ 1 + γ1 ∀j = 1, . . . , N, (45)

where

γ1 := C

[
ε
√
λN + ε+

δn
ε

]1/2

+ γ0 .
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Lemma 33(3) also allows us to bound the difference of inner products. For i 6= j we
have

〈Iun,j , Iun,i〉L2(ν) =
1

2

(
‖Iun,j‖2L2(ν) + ‖Iun,i‖2L2(ν) − ‖Iun,j − Iun,i‖

2
L2(ν)

)
,

0 = 〈un,j , un,i〉L2(νn) =
1

2

(
‖un,j‖2L2(νn) + ‖un,i‖2L2(νn) − ‖un,j − un,i‖

2
L2(νn)

)
.

Subtracting the above identities and using Lemma 33(3) we obtain

|〈Iun,j , Iun,i〉L2(ν)|≤ C
(
ε
√
λN + ε+

δn
ε

)
.

From this, and the fact that both ‖Iun,j − ΠNIun,j‖L2(ν) and ‖Iun,i − ΠNIun,i‖L2(ν) are
smaller than γ0, we deduce that

|〈ΠNIun,i,ΠNIun,j〉L2(ν)| ≤ |〈Iun,i, Iun,j〉L2(ν)|+ |〈Iun,j , Iun,i −ΠNIun,i〉L2(ν)|
+ |〈ΠNIun,i, Iun,j −ΠNIun,j〉L2(ν)|

≤ C
(
ε
√
λN + ε+

δn
ε

)
+ Cγ0 =: γ2, ∀i 6= j,

(46)

where the second inequality follows from Cauchy-Schwartz, the fact that ‖ΠNu‖L2(ν) ≤
‖u‖L2(ν) for any u ∈ L2(ν), and from ‖Iun,i‖L2(ν) ≤ C by (44).

With (45), (46) and Assumptions 11 (guaranteeing the smallness of γ0, γ1 and γ2) we can
use Lemma 41 and Remark 42, to deduce the existence of an orthonormal system g1, . . . , gN
for U satisfying:

‖ΠNIun,j − gj‖L2(ν) ≤
√
N

(
1√

1−Nγ2
− 1

)
, ∀j = 1, . . . , N.

Using (42) and expanding in Nγ2 we deduce

‖Iun,j − gj‖2L2(ν) ≤
(
‖Iun,j −ΠNIun,j‖L2(ν) + ‖ΠNIun,j − gj‖L2(ν)

)2
≤
(
γ0 +

√
N

(
1√

1−Nγ2
− 1

))2

≤ C

(
γ0 +

N3/2

2
γ2 +

3N5/2

8
γ2

2

)2

=: γ3, ∀j = 1, . . . , N.

Now,

‖Iun,j − un,j ◦ Tn‖2L2(ν) = ‖Λε−2δnP
∗un,j − P ∗un,j‖2L2(ν)

≤ Cε2

(ε− 2δn)m+2
Eε−2δn(P ∗un,j)

≤ Cε2bn(un,j)

≤ Cε2λN =: γ4,
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Garćıa Trillos, Hoffmann, Hosseini

where we have used (Garćıa Trillos et al., 2020, Lemma 8), assuming δn < ε/(m + 5) to
obtain the first inequality and where the second and third inequalities follow from (41) and
(43) respectively. Using triangle inequality and the above estimates we obtain

‖un,j ◦ Tn − gj‖2L2(ν) ≤ 2(γ3 + γ4).

Plugging in the definitions of γ3 and γ4 and using Assumptions 11, we may collect the
highest order terms and deduce that for all j = 1, . . . , N we have

‖un,j ◦ Tn − gj‖2L2(ν) ≤ C(1 +N3/2 +N3)CM,N

(
λN

λN+1 − λN

)
(ε+ δn/ε) .

where CM,N is the constant in (42). Proposition 32(2) implies that

‖un,j ◦ Tn − gj‖2L2(ν) ≤ cM
(

λN
λN+1 − λN

)(
ε+

log(n)pm

εn1/m

)
,

where cM is a constant proportional to CM,N and C given in Proposition 32(2). This
concludes the proof of the theorem.

Our goal is now to replace the terms λN and λN+1 in (38) with quantities that only
depend on the parameters of the mixture model. A lower bound for λN+1 was already
obtained in Proposition 27, and now we focus on obtaining an upper bound for λN .

Proposition 38 (Upper bound for λN) Suppose that S1/2N < 1 and let λN be the N -th
eigenvalue of ∆ρ. Then,

λN ≤
NC

1−NS1/2
.

Proof To get an upper bound for λN it is enough to use the min-max formula (Attouch
et al., 2014, Theorem 8.4.2) for λN . In particular, since Q := span{q1, . . . , qN} is N -
dimensional it follows that

λN ≤ max
u∈Q

〈∆ρu, u〉ρ
〈u, u〉ρ

.

Let u ∈ Q for which 〈u, u〉ρ = 1. Then,

u =
N∑
i=1

akqk

for some scalars ak satisfying

1 =

N∑
k=1

a2
k‖qk‖2ρ +

N∑
k=1

∑
j 6=k

akaj〈qk, qj〉ρ =

N∑
k=1

a2
kwk +

N∑
k=1

∑
j 6=k

akaj〈qk, qj〉ρ.

Now, ∣∣∣∣∣∣
N∑
k=1

∑
j 6=k

akaj〈qk, qj〉ρ

∣∣∣∣∣∣ ≤
N∑
k=1

∑
j 6=k
|ak||aj |

√
wk
√
wjS1/2 ≤ NS1/2

N∑
k=1

a2
kwk.
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Thus,
N∑
k=1

a2
kwk ≤

1

1−NS1/2
.

In addition,

〈∆ρu, u〉ρ =
N∑
k=1

N∑
j=1

akaj

∫
M
∇qk · ∇qjρdx .

Recall that ‖∇qk‖2ρ = wkCk. Using Hölder’s inequality, we obtain

〈∆ρu, u〉ρ ≤
N∑
k=1

N∑
j=1

|akaj |
(∫
M
|∇qk|2ρdx

)1/2(∫
M
|∇qj |2ρdx

)1/2

≤ CN
N∑
k=1

a2
kwk ≤

NC
1−NS1/2

.

We conclude that

λN ≤
NC

1−NS1/2
.

Remark 39 In the previous result we used the trace of the operator ∆ρ restricted to Q to
bound ΘN . This is not necessarily an optimal bound, but we remark that in the case when
C/Θ is small enough (in particular smaller than 1/N), one can use this estimate to get a
meaningful lower bound for the spectral gap λN+1 − λN . More precisely, we obtain

λN+1 − λN ≥

(√
Θ(1−NS)−

√
CNS

(1− S)

)2

− NC
1−NS1/2

.

While in general we think of N as a relatively small number (representing the number of
meaningful components in a data set) we would like to remark that N in the estimates

λN ≤
NC

1−NS1/2
,

can be replaced with Neff where Neff is the effective number of components any given
component intersects. That is,

Neff = max
k=1,...,N

#{i 6= k s.t ν(supp(ρk) ∩ supp(ρi)) > 0}.

Estimates with better dependence on N may be obtained in terms of a quantity analogue to
C of the form:

max
k=1,...,N

∫
M
|∇ log(ρk/ρ)|3ρkdx.
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Combining the lower bound for λN+1 from Proposition 27 and the upper bound for λN
we immediately deduce the following.

Corollary 40 In Theorem 30, inequality (38) can be replaced with:∫
M
|gj(x)− un,j ◦ Tn(x)|2dν(x) = ‖gj − un,j ◦ Tn‖2L2(ν) ≤ φ(S, C,Θ, N, ε, n,m), (47)

for all j = 1, . . . , N , where we recall

φ(S, C,Θ, N, ε, n,m) := cM

(
NC

1−NS1/2

)(
ε+

log(n)pm

εn1/m

)

·

(√Θ(1−NS)−
√
CNS

1− S

)2

− NC
1−NS1/2

−1

, (48)

and cM is a constant depending on M, ρ±, CLip, η and N .

A.4 Proof of Theorem 15

Proof [Proof of Theorem 15] Let β > 1. From Corollary 40, we know that with probability
greater than 1− Cβn−β , there exist a transportation map Tn :M→ {x1, . . . ,xn} pushing
forward ν into νn and an orthonormal set of functions g1, . . . , gn in U (the space generated
by the first N eigenfunctions of ∆ρ) satisfying

1. supx∈M dM(x, Tn(x)) ≤ cM log(n)pm

n1/m .

2.
∫
M |gi(x)− un,i(Tn(x))|2dν(x) ≤ φ(S, C,Θ, N, ε, n,m),

where the function φ is defined in (48) and used throughout this proof for convenience of
notation. Let G(x) := (g1(x), . . . , gN (x)) for x ∈M. We deduce that∫

M
|Fn ◦ Tn(x)−G(x)|2 dν(x) =

N∑
i=1

∫
M
|gi(x)− un,i(Tn(x))|2dν(x)

≤ Nφ(S, C,Θ, N, ε, n,m).

We claim that the integral on the left hand side of the previous expression can be written
as: ∫

M
|Fn ◦ Tn(x)−G(x)|2 dν(x) =

∫
RN×RN

|x− y|2dπn(x, y),

for a transportation plan πn ∈ P(RN × RN ) between the measures G]ν and Fn]νn. To see
this, let

πn := (G× Fn ◦ Tn)]ν.

It is straightforward to check that πn is a transportation plan between G]ν and Fn]νn, and
moreover, by the change of variables formula∫

RN×RN
|x− y|2dπn(x, y) =

∫
M
|G(x)− Fn ◦ Tn(x)|2dν(x).
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Therefore,

(W2(G]ν, Fn]νn))2 ≤
∫
M
|Fn ◦ Tn(x)−G(x)|2 dν(x)

≤ Nφ(S, C,Θ, N, ε, n,m). (49)

Since g1, . . . , gN is an orthonormal basis for U , we conclude that there exists an orthog-
onal matrix R such that for every x ∈M we have

G(x) = RF (x),

where F is the continuum spectral embedding as defined in (14).
In order to show that the measure µn := Fn]νn has an orthogonal cone structure, it is

enough to show that the pushforward of νn through any orthogonal transformation of Fn has
an orthogonal cone structure. In particular, we will show that the measure (RO−1Fn)]νn
has an orthogonal cone structure, where R is defined as above, and O is the orthogonal
transformation chosen in the proof of Theorem 10:

OF (x) = F̃ (x) =

N∑
j=1

ΠN (qj)(x)

‖ΠN (qj)‖ρ
ej .

We can now show that the measures OR−1F]ν and FQ] ν are close to each other in the

Wasserstein sense. Since G = RO−1F̃ ,

W2(OR−1Fn]νn, F
Q
] ν) ≤W2(OR−1Fn]νn, F̃]ν) +W2(F̃]ν, F

Q
] ν)

= W2(Fn]νn, RO
−1F̃]ν) +W2(F̃]ν, F

Q
] ν)

= W2(Fn]νn, G]ν) +W2(F̃]ν, F
Q
] ν)

≤
√
Nφ(S, C,Θ, N, ε, n,m)

+

√√√√N

(
τ −
√
S

2

)2

+ 4N3/2

(
1√

1−Nτ
− 1

)
,

where the last inequality follows from (49) and (36). Thanks to the Assumption (20) we
can apply Proposition 29 and Proposition 22 to conclude that OR−1Fn]νn has an orthogo-
nal cone structure with the parameters as stated in Theorem 15, and hence so does Fn]νn.

Appendix B. Supplementary results

B.1 Near-orthogonal vectors

Lemma 41 Let V be a vector space of dimension N and let 〈·, ·〉 be an inner product on V
with associated norm ‖ · ‖. Suppose that v1, . . . , vN are linearly independent unit vectors in
V such that

|〈vj , vl〉| ≤ δ, ∀j 6= l
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for δ > 0 satisfying

Nδ < 1.

Then, there exists an orthonormal basis for V , {ṽ1, . . . ṽN}, such that for every j = 1, . . . , N

‖vj − ṽj‖ ≤ φ̃(N, δ), (50)

where

φ̃(N, δ) :=
√
N

[
1√

1−Nδ
− 1

]
.

Proof Without loss of generality assume V is the Euclidean space RN with the usual inner
product. Define the square matrix

V =
[
v1|v2| · · · |vN

]
.

and the residual matrix R = VTV− I. Since v1, ...vN are linearly independent, the matrix
VTV is invertible, and following Higham (1989) we have that the the nearest orthonormal
approximation to V in the Frobeneous norm is the matrix

Ṽ = V(VTV)−
1
2 = V(I + R)−

1
2 .

Using the series expansion of the square root gives

V − Ṽ = V

(
1

2
R− 3

8
R2 +

5

16
R3 − · · ·

)
Note that |Rij | ≤ δ following our assumptions on the vj . Furthermore, a straightforward
calculation shows that |(Rk)ij | ≤ Nk−1δk. Thus,

|(V − Ṽ)ij | ≤ N

(
sup
ij
|Vij |

)(
1

2
δ +

3

8
Nδ2 +

5

16
N2δ3 + · · ·

)

=

(
sup
ij
|Vij |

)[
(1−Nδ)−

1
2 − 1

]
≤
[
(1−Nδ)−

1
2 − 1

]
=
φ̃(N, δ)√

N
.

It follows that

‖vj − ṽj‖ =

(
N∑
i=1

|(V − Ṽ)ij |2
)1/2

≤

(
N∑
i=1

φ̃(N, δ)2

N

)1/2

= φ̃(N, δ) ,

which proves inequality (50).
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Remark 42 With the same notation as in the above lemma, suppose that the unit vectors
v1, . . . , vN satisfy

|〈vi, vj〉| ≤ δ, ∀i 6= j,

where δ satisfies the slightly stronger condition

2Nδ < 1.

We claim that in that case the vectors are linearly independent. Indeed, for the sake of
contradiction suppose that they are not. Then we can find numbers a1, . . . , aN not all equal
to zero, for which

0 =

N∑
i=1

aivi.

Normalizing the ai we can further assume that

N∑
i=1

a2
i = 1.

It follows from Jensen’s inequality that

0 =

∥∥∥∥∥
N∑
i=1

aivi

∥∥∥∥∥
2

=

N∑
i=1

a2
i + 2

N∑
i=1

∑
j 6=i

aiaj〈vi, vj〉 ≥ 1− 2δ

(
N∑
i=1

|ai|

)2

≥ 1− 2Nδ,

which would contradict the hypothesis on δ.

B.2 Cheeger’s inequality

Cheeger’s inequality in manifolds was introduced in Cheeger (1969). For the convenience
of the reader here we present a proof of Cheeger’s inequality for sufficiently smooth and
bounded functions using techniques that are developed in spectral geometry and spectral
graph theory literature. We omit some technical details and highlight the specific structure
of the operator ∆ρ which allows us to deduce the inequality. As we will see below not every
normalization of Laplacian operator will produce a similar result. We also note that our
result can be generalized to functions in L2(M, ρ) via a density argument.

Theorem 43 Let u ∈ L2(M, ρ) sufficiently smooth and bounded with∫
M
uρdx = 0.

Then
〈∆ρu, u〉ρ
〈u, u〉ρ

≥ 1

4
h(M, ρ)2,

where

h(M, ρ) := min
A⊆M

∫
∂A∩M ρ(x)dS(x)

min
{∫

A ρdx,
∫
M\A ρdx

} .
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Proof We show that for any non-constant function u ∈ L2(M, ρ) sufficiently smooth and
bounded with ∫

M
uρdx = 0,

we can find a set A ⊆M such that

R(u) :=
〈∆ρu, u〉ρ
〈u, u〉ρ

=

∫
M |∇u|

2ρdx∫
M u2ρdx

≥ 1

4

 ∫
∂A∩M ρdS(x)

min
{∫

A ρdx,
∫
M\A ρdx

}
2

≥ 1

4
(h(M, ρ))2.

To see this, we start by letting r be the smallest number for which∫
M

1{u≤r}ρdx ≥ 1/2,

and we define

z(x) := u(x)− r, x ∈M.

In other words, r is the median of u(x). Let m,M be the infimum and supremum of z.
Then either m < 0 or M > 0. Notice that since z and u differ only by a constant we have

〈∆ρu, u〉ρ = 〈∆ρz, z〉ρ,

and from the fact that
∫
M uρdx = 0, we also have

〈z, z〉ρ ≥ 〈u, u〉ρ

In particular,

R(z) ≤ R(u).

Now, the coarea formula states that for any L1(dx) function g :M→ R we have∫
M
g(x)|∇z(x)|dx =

∫ ∞
−∞

(∫
∂At∩M

g(x)dS(x)

)
dt,

where At is the level set:

At := {x ∈M : z(x) ≤ t}.

Taking g to be the function

g(x) = 2ρ(x)|z(x)|, x ∈M,

we deduce that∫
M

2|z(x)||∇z(x)|ρ(x)dx =

∫ ∞
−∞

(∫
∂At∩M

ρ(x)dS(x)

)
2|t|dt

=

∫ M

m

(∫
∂At∩M

ρ(x)dS(x)

)
2|t|dt, (51)
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where in the first equality we have used the fact that at the boundary ∂At the function z
is equal to t. On the other hand,∫ M

m
min

{∫
At

ρ(x)dx,

∫
M\At

ρ(x)dx

}
2|t|dt

=

∫ 0

m

(∫
At

ρ(x)dx

)
2|t|dt+

∫ M

0

(∫
M\At

ρ(x)dx

)
2|t|dt

= −
∫ 0

m
2

(∫
At

ρ(x)dx

)
tdt+

∫ M

0

(∫
M\At

ρ(x)dx

)
2tdt

=

∫
M

∫ 0

m
1{z(x)≤t}(x)(−2t)dtρ(x)dx+

∫
M

∫ M

0
1{z(x)>t}(x)(2t)dtρ(x)dx

=

∫
M

∫ 0

z(x)
1{z(x)≤0}(x)(−2t)dtρ(x)dx+

∫
M

∫ z(x)

0
1{z(x)>0}(x)(2t)dtρ(x)dx

=

∫
M

1{z(x)≤0}(x)z2ρ(x)dx+

∫
M

1{z(x)>0}(x)z2ρ(x)dx =

∫
M
z(x)2ρ(x)dx,

where in the third equality we used the Fubini-Tonelli theorem to switch the order of
integrals. From the previous identity and (51) we notice that∫ M

m

(∫
∂At∩M

ρ(x)dS(x)

)
2|t|dt = K(z)

∫ M

m
min

{∫
At

ρdx,

∫
M\At

ρdx

}
2|t|dt

where

K(z) :=
2
∫
M |z(x)||∇z(x)|ρ(x)dx

〈z, z〉ρ
.

Now, Cauchy Schwartz-inequality shows that

K(z) ≤ 2
√
R(z).

This is the point where it is important to have both numerator and denominator in the
Raleigh quotient R to be weighted by ρ. We notice that with a different weighting we
would have not gotten the square root of the Raleigh quotient in this last step.

It follows that

0 ≤
∫ M

m
2|t|

(
2
√
R(z) min

{∫
At

ρdx,

∫
M\At

ρdx

}
−
∫
∂At∩M

ρ(x)dS(x)

)
dt,

from where we can see that there must exist some t ∈ (m,M) for which∫
∂At∩M ρdS(x)

min
{∫

At
ρdx,

∫
M\At ρdx

} ≤ 2
√
R(z).
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