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Abstract

Knowledge distillation is a popular technique for training a small student network
to emulate a larger teacher model, such as an ensemble of networks. We show
that while knowledge distillation can improve student generalization, it does not
typically work as it is commonly understood: there often remains a surprisingly
large discrepancy between the predictive distributions of the teacher and the student,
even in cases when the student has the capacity to perfectly match the teacher.
We identify difficulties in optimization as a key reason for why the student is
unable to match the teacher. We also show how the details of the dataset used for
distillation play a role in how closely the student matches the teacher — and that
more closely matching the teacher paradoxically does not always lead to better
student generalization.

1 Introduction

Large, deep networks can learn representations that generalize well. While smaller, more efficient
networks lack the inductive biases to find these representations from training data alone, they may
have the capacity to represent these solutions [e.g., 2, [18 (32} 45]. Influential work on knowledge
distillation [22]] argues that Bucild et al. [5] “demonstrate convincingly that the knowledge acquired
by a large ensemble of models [the teacher] can be transferred to a single small model [the student]”.
Indeed this quote encapsulates the conventional narrative of knowledge distillation: a student model
learns a high-fidelity representation of a larger teacher, enabled by the teacher’s soft labels.

Conversely, in Figure [I we show that with modern architectures knowledge distillation can lead to
students with very different predictions from their teachers, even when the student has the capacity to
perfectly match the teacher. Indeed, it is becoming well-known that in self-distillation the student
fails to match the teacher and, paradoxically, student generalization improves as a result [14} |40].
However, when the teacher is a large model (e.g. a deep ensemble) improvements in fidelity translate
into improvements in generalization, as we show in Figure[T[b). For these large models there is still a
significant accuracy gap between student and teacher, so fidelity is aligned with generalization.

We will distinguish between fidelity, the ability of a student to match a teacher’s predictions, and
generalization, the performance of a student in predicting unseen, in-distribution data. We show that
in many cases it is surprisingly difficult to obtain good student fidelity. In Section[5 we investigate
the hypothesis that low fidelity is an identifiability problem that can be solved by augmenting the
distillation dataset. In Section[6 we investigate the hypothesis that low fidelity is an optimization
problem resulting in a failure of the student to match the teacher even on the original training dataset.
We present a summary of our conclusions in Section[7]

Does knowledge distillation really work? In short: Yes, in the sense that it often improves student
generalization. No, in that knowledge distillation often fails to live up to its name, transferring very
limited knowledge from teacher to student.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).
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Figure 1: Evaluating the fidelity of knowledge distillation. The effect of enlarging the CIFAR-100
distillation dataset with GAN-generated samples. (a): The student and teacher are both single
ResNet-56 networks. Student fidelity increases as the dataset grows, but test accuracy decreases.
(b): The student is a single ResNet-56 network and the teacher is a 3-component ensemble. Student
fidelity again increases as the dataset grows, but test accuracy now slightly increases. The shaded
region corresponds to p £ o, estimated over 3 trials.

2 Related Work

Knowledge distillation can improve model efficiency [38,45]], unsupervised domain adaptation [37]],
improved object detection [9], model transparency [48], and adversarial robustness [[15}42].

Seminal work by Bucild et al. [5] showed that teacher-ensembles with thousands of simple components
could be compressed into a single shallow network that matched or outperformed its teacher. Other
early work proposed distilling ensembles of shallow networks into a single network [55]], an idea
which resonates with more recent work on the distillation of deep ensembles [2, [7} 46} 150} 53]].
Recently Fakoor et al. [13] developed a data-augmentation scheme for the distillation of large
ensembles of simple models for tabular data, achieving impressive results on a wide range of tabular
benchmarks. Malinin et al. [35] proposed a method to model the implicit distribution over predictive
distributions from which the ensemble component predictive distributions are drawn, rather than just
the ensemble model average.

Our work focuses explicitly on student fidelity, decoupling our understanding of good fidelity from
good generalization. We show that achieving good fidelity is extremely difficult, even with a variety
of interventions, and seek to understand, by systematically considering several hypotheses, why
knowledge distillation does not produce high fidelity students for modern architectures and datasets.
In contrast, the distillation literature focuses largely on improving student generalization, without
particularly distinguishing between fidelity and generalization.

For example, concurrent work by Beyer et al. [4] does not carefully distinguish generalization and
fidelity metrics, but they assert that high student fidelity is conceptually desirable and apparently
difficult to achieve when measured as the gap between teacher and student accuracy. As a result
their work focuses most heavily on practical modifications to the distillation procedure for the best
student top-1 accuracy. In this paper we investigate many of the same prescriptions, including
careful treatment of data augmentation (such as showing the teacher and student the exact same input
images), the addition of MixUp, and extended training duration. We also find that such interventions
do improve student accuracy, but there still remains a large discrepancy between the predictive
distributions of the teacher and the student. We also investigate multiple optimizers. While we do not
pursue Shampoo [[17, [1] specifically, Beyer et al. [4] find similar qualitative results for Shampoo and
Adam, besides faster convergence for Shampoo.

3 Preliminaries

We will focus on the supervised classification setting, with input space X and label space ), where
|Y| = c. Let f : X x © — R be a classifier parameterized by § € © whose outputs define a categor-
ical predictive distribution over Y, p(y = i[x) = 0;(f(x,0)), where 0;(z) := exp(z;)/ >_; exp(2;)
is the softmax link function. We will often refer to the outputs of a classifier z := f(x, 6) as logits.
For convenience, we will use ¢ and s as shorthand for fieacher and fstudent, respectively. When the



teacher is an m-component ensemble, the component logits (z1, . . ., 2., ), where z; = f;(x,6;), are
combined to form the teacher logits: z; = log (3"~ | o(z;)/m). These combined logits correspond
to the predictive distribution of the ensemble model average. The experiments in the main text
consider m € {1, 3,5}, and we include results up to m = 12 in Appendix @

3.1 Knowledge Distillation

Hinton et al. [22] proposed a simple approach to knowledge distillation. The student minimizes a
weighted combination of two objectives, £ := aLxrr + (1 —«)Lkp, where « € [0, 1). Specifically,

LniL(zs,y) ny logo;(zs), Lkp(zs,2¢):=—T ZO'J (7_ ) logo; (%) .

Lnr is the usual supervised cross-entropy between the student logits z, and the one-hot labels y.
Recalling that KL(p||q) = 3_; p;(log ¢; — log p;), we see that L1, is equivalent (up to a constant)
to the KL from the empirical data distribution to the student predictive distribution (ps). Lkp is
the added knowledge distillation term that encourages the student to match the teacher. It is the
cross-entropy between the teacher and student predictive distributions p; = o(z;) and ps = o(zs),
both scaled by a temperature hyperparameter 7 > 0. If 7 = 1 then Lxp is similarly equivalent to the
KL from the teacher to the student, KL(p;||ps). Since we focus on distillation fidelity, we choose
a = 0 for all experiments in the main text to avoid any confounding from true labels, but we also
include a limited ablation of « in Figure[I4]in Appendix [C.5 for the curious reader.

As T — 400, V,, Lxp(2s,2t) &~ z; — Zs, and thus in the limit V,_Lkp is approximately equivalent
to V. ||z: — zs||5/2, assigning equal significance to every class logit, regardless of its contribution
to the predictive distribution. In other words 7 determines the “softness” of the teacher labels, which
in turn determines the allocation of student capacity. If the student is much smaller than the teacher,
the student capacity can be focused on matching the teacher’s top-k predictions, rather than matching
the full teacher distribution by choosing a moderate value (e.g. 7 = 4). In Appendix [B.T we include
further discussion on the interplay of teacher ensemble size, teacher network capacity, and distillation
temperature on the student labels.

The teacher and student often share at least some training data. It is also common to enlarge the
student training data in some way (e.g. incorporating unlabeled examples as in Ba and Caruana [2])).
When there is a possibility of confusion, we will refer to the student’s training data as the distillation
data to distinguish it from the teacher’s training data.

3.2 Metrics and Evaluation

To measure generalization, we report top-1 accuracy, negative log-likelihood (NLL) and expected
calibration error (ECE) [[L6]. To measure fidelity, we report the following:

n

1
Average Top-1 Agreement := — g 1{argmaxo;(z;;) = argmax o;(zs)}, 2)
n : :
i=1 J J
- 1 ¢ A X
Average Predictive KL := — E KL (5 (y|x:) || ps(y|%:)) s 3)
n

i=1

Eqn. is the average agreement between the student and teacher’s top-1 label. Eqn. is the
average KL divergence from the predictive distribution of the teacher to that of the student, a measure
of fidelity sensitive to all of the labels.

While improvements in generalization metrics are relatively easy to understand, interpreting fidelity
metrics requires some care. For example, suppose we have three independent models: fi, f2, and f3
that respectively achieve 55%, 75%, and 95% test accuracy. f1 and f3 can agree on at most 60% of
points, whereas f> and f3 agree on at least 70%, but it would obviously be incorrect to make any
claim about f, being a better distillation of f3 since each model was trained completely independently.
To account for such confounding when evaluating the distillation of a student s from a teacher ¢, we
also evaluate another student s distilled through an identical procedure from an independent teacher.

!Code for all experiments can be found here: https://github.com/samuelstanton/gnosis,


https://github.com/samuelstanton/gnosis

By comparing the fidelity of (¢, s) and (¢, s’) we can distinguish between a generic improvement in
generalization and an improvement specifically to fidelity. If s and s’ have comparable fidelity, then
the students agree with the teacher at many points because they generalize well, and not the reverse.

4 Knowledge Distillation Transfers Knowledge Poorly

In this section, we present evidence that we are not able to distill large networks such as a ResNet-56
with high fidelity, and discuss why high fidelity is an important objective.

4.1 When is knowledge transfer successful?

We first consider the easy task of distilling a LeNet-5 teacher into an identical student network as
a motivating example. We train the teacher on a random subset of 200 examples from the MNIST
training set for 100 epochs, resulting in a 84% to 86% teacher test accuracy across different subsets
We then distill the teacher using the full MNIST train dataset with 60,000 examples, as well as 25%,
50%, and 100% of the EMNIST train dataset [11]. The EMNIST train set contains 697,932 images.

In Figure [2] we see that knowledge distillation works as expected. With enough examples the student
learns to make the same predictions as the teacher (over 99% top-1 test agreement). Notably, in this
case, self-distillation does not improve generalization, since the slight difference between the teacher
and student accuracy is explained by variance between trials.

Now we consider a more challenging task: distilling a
ResNet-56 teacher trained on CIFAR-100 into an identical 0 —————— L 00
student network (Figure E, left). Since no dataset drawn Q/.:
from the same distribution as CIFAR-100 is publicly avail- 9% 1 r 95
able, to augment the distillation data, we instead combined
samples from an SN-GAN [39] pre-trained on CIFAR-100
with the original CIFAR-100 train dataset. Appendix
details the hyperparameters and training procedure for the
GAN, teacher, and student.
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nowhere near 99% test agreement. Since a ResNet-56 has
many more parameters than a LeNet-5, it is possible that
the student simply has not seen enough examples to per-
fectly emulate the teacher, a hypothesis we discuss in more . .
detail in Section Also, like the MNIST experiment, estimated over 3 trials.

as the distillation dataset grows the student accuracy ap-

proaches the teacher’s. Unlike the MNIST experiment, the

student test accuracy is higher than the teacher’s when the distillation dataset is small, so increasing
fidelity decreases student generalization.

Figure 2: LeNet-5 self-distillation on
MNIST with additional distillation data.
The shaded region corresponds to p % o,

4.2 What can self-distillation tell us about knowledge distillation in general?

We have seen in Figure|[I[a) that with self-distillation the student can exceed the teacher performance,
in accordance with Furlanello et al. [14]]. This result is only possible by virtue of failing at the
distillation procedure: if the student matched the teacher perfectly then the student could not
outperform the teacher. On the other hand, if the teacher generalizes significantly better than an
independently trained student, we would expect the benefits of fidelity to dominate other regularization
effects associated with not matching the teacher. This setting reflects the original motivation for
knowledge distillation, where we wish to faithfully transfer the representation discovered by a large
model or ensemble of models into a more efficient student.

In Figure[I[b) we see that if we move from self-distillation to the distillation of a 3 ResNet-56 teacher
ensemble, fidelity becomes positively correlated with generalization. But there is still a significant

2We took only a subset of the MNIST train set since otherwise every teacher network as well as the ensemble
would achieve over 99% test accuracy.
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Figure 3: Data augmentation and distillation: Test accuracy and teacher-student agreement when
distilling a 5-component ResNet-56 teacher ensemble into a ResNet-56 student on CIFAR-100 with
varying augmentation policies. The best performing policy is shown in green, results averaged over 3
runs. Additional metrics are reported in Figure[IT in Appendix [C] Mixup and GAN augmentation
provide the best generalization, and Mixup(7 = 4) provides the best fidelity. The baseline policy
(crops and flips) with 7 = 4 is a surprisingly strong baseline. The error bars indicate o

gap in fidelity, even after the distillation set is enlarged with 50k GAN samples. In practice, the
gap remains large enough that higher fidelity students do not always have better generalization, and
the regularization effects we see in self-distillation do play a role for more broadly understanding
student generalization. We will indeed show in Section [3]that higher fidelity students do not always
generalize better, even if the teacher generalizes much better than the student.

4.3 If distillation already improves generalization, why care about fidelity?

While knowledge distillation does often improve generalization, understanding the relationship
between fidelity and generalization, and how to maximize fidelity, is important for several reasons —
including better generalization!

Better generalization in distilling large teacher models and ensembles. Knowledge distillation
was initially motivated as a means to deploy powerful models to small devices or low-latency
controllers [e.g., 26l [54]. While in self-distillation generalization and fidelity are in
tension, there is often a significant disparity in generalization between large teacher models, including
ensembles, and smaller students. We have seen this disparity in Figure [I[b). We additionally show in
Figure[I0]in Appendix [B.I|that as we increase the number of ensemble components, the generalization
disparity between teacher and distilled student increases. Improving student fidelity is the most
obvious way to close the generalization disparity between student and teacher in these settings. Even
if one exclusively cares about student accuracy, fidelity is a key consideration outside self-distillation.

Interpretability and reliability. Knowledge distillation has been identified as a means to transfer
representations discovered by large black-box models into simpler more interpretable models, for
example to provide insights into medical diagnostics, or discovering rules for understanding sentiment
in text [e.g., 23] 246,33 [8]. The ability to perform this transfer could have extraordinary scientific
consequences: large models can often discover structure in data that we would not have anticipated
a priori. Moreover, we often want to transfer properties such as well-calibrated uncertainties or
robustness, which have been well-established for larger models, so that we can safely deploy more
efficient models in their place. In both cases, achieving good distillation fidelity is crucial.

Understanding. The name knowledge distillation implies we are transferring knowledge from
the teacher to the student. For this reason, improved student generalization as a consequence of a
distillation procedure is sometimes conflated with fidelity. Decoupling fidelity and generalization,
and explicitly studying fidelity, is foundational to understanding how knowledge distillation works
and how we can make it more useful across a variety of applications.

4.4 Possible causes of low distillation fidelity

If we are able to match the student model to the teacher on a comprehensive distillation dataset, we
expect it to match on the test data as well, achieving high distillation ﬁdelit Possible causes of the
poor distillation fidelity in our CIFAR-100 experiments include:

3See, for example, Lemma 1 in Fakoor et al. [13]].
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Figure 4: Data recycling and distillation: results on subsampled CIFAR-100. Top: We fix the
temperature (7 = 4) and vary the number of ensemble components (m), comparing students distilled
on the same dataset as the teacher (Dy/Dy), a reserved dataset (Dy/D1), or both (Do /Dy U Dy).
Distilling on both produces the best result, while distilling on Dy increases accuracy and decreases
fidelity, relative to D;. Bottom: We repeat the experiment, but fix m = 3 and vary 7. The shaded
region corresponds to i £ o, estimated over 3 trials.

Student capacity — We observe low fidelity even in the self-distillation setting, so we can rule out
student capacity as a primary cause, but we also confirm in Figure[T2)in Appendix [C.]that increasing
the student capacity has very little effect on fidelity in the ensemble-distillation setting.

Network architecture — Low fidelity could be specific to ResNet-like architectures, an explanation
we rule out by showing similar results with VGG networks [47]] in Figure[I3]in Appendix [C.2.

Dataset scale and complexity — we provide similar results in Section |C.3|for ImageNet, showing
that our findings apply to datasets of larger scale and complexity.

Data domain — Similarly in Section [C.4| we observe low distillation fidelity in the context of text
classification (sentiment analysis on the IMDB dataset), showing our results are relevant beyond
image classification.

Identifiability (Section|5) — the distillation data is insufficient to distinguish high-fidelity and low-
fidelity students. In other words, matching the teacher predictions on the distillation dataset does not
lead to matching predictions on the test data.

Optimization (Section [6)) — we are unable to solve the distillation optimization problem sufficiently
well. The student does not agree with the teacher on test because it does not even agree on train.

5 Identifiability: Are We Using the Right Distillation Dataset?

We investigate whether it is possible to attain the level of fidelity observed with LeNet-5s on MNIST
with ResNets on CIFAR-100 by addressing the identifiability problem — have we shown the student
enough of the right input-teacher label pairs to define the solution we want?

5.1 Should we do more data augmentation?

Data augmentation is a simple and practical method to increase the support of the distillation data
distribution. If identifiability is a primary cause of poor distillation fidelity, using a more extensive
data augmentation strategy during distillation should improve fidelity.

To test this hypothesis, we evaluated the effect of several augmentation strategies on student fidelity
and generalization. In Figure [3] the teacher is a 5-component ensemble of ResNet-56 networks
trained on CIFAR-100 with the Baseline augmentation strategy: horizontal flips and random crops.



We report the student accuracy and teacher-student agreement for each augmentation strategy, and
also include results for Baseline with 7 = 1 and 7 = 4 to demonstrate the effect of logit tempering.

We first observe that the best augmentation policies for generalization, MixUp, and GANH are not
the best policies for fidelity. Furthermore, although many augmentation strategies enable slightly
higher distillation fidelity compared to Baseline (T = 1), even the best augmentation policy, Mixup
(T = 4), only achieves a modest 86% test agreement. In fact the Baseline (7 = 4) policy is quite
competitive, achieving 84.5% test agreement. Many of the augmentation strategies also slightly
improve teacher-student KL relative to Baseline (T = 4) (see Figure[TT).

In Figure[TT]in Appendix [B.3] we report all generalization and fidelity metrics for a range of ensemble
sizes, as well as the results for the independent student baseline discussed in Section[3.2] Often these
independent students, taught how to mimic a completely different model, have nearly as good test
agreement with the teacher as the student explicitly trained to emulate it. See Appendix for a
detailed description of the augmentation procedures.

Should data augmentation be close to the data distribution? In theory, any data augmentation
should help with identifiability: if a student matches a teacher on more data, it is more likely to match
the teacher elsewhere. However, the Noise and OOD augmentation strategies based on noise and out-
of-distribution data fail on all metrics, decreasing performance compared to the baseline. In practice,
data augmentation has an effect beyond improving identifiability — it has a regularizing effect,
making optimization more challenging. We explore this facet of data augmentation in Section [6]

The slight improvements to fidelity with extensive augmentations suggest that increasing the support
of the distillation dataset can indeed improve distillation fidelity. However, since the benefit is so
small compared to heuristics like logit tempering (which does not modify the support at all), it is very
unlikely that an insufficient quantity of teacher labels is the primary obstacle to high fidelity.

5.2 The data recycling hypothesis

If simply showing the student more labels does not always significantly improve fidelity, perhaps we
are not showing the student the right labels. Additional data augmentation during distillation does
give the student more teacher labels to match, but also introduces a distribution shift between the
images the teacher was trained on and the images the student is distilling on. Even when the teacher
and student have the same augmentation policy, reusing the teacher’s training data for distillation
violates the assumptions of empirical risk minimization (ERM) because the distillation data is not an
independent draw from the true joint distribution over images and teacher labels. What if there was
no augmentation distribution shift, and the student was distilled on a fresh draw from the joint test
distribution over images and teacher labels?

To investigate the effect of recycling teacher data during distillation we randomly split the CIFAR-100
training dataset D into two equal parts, Dy and D;. We train teacher ResNet-56 ensembles on D,
and then compare s, a student distilled on the original Dy, s1, a student distilled on the unseen D1,
and sgy1, a student distilled on both: Dy U D;. Note that the students cannot access the true labels,
only those provided by the teacher. We present the results in Figure 4] varying the ensemble size in
the top row and the logit temperature in the bottom row.

Surprisingly, sq attains higher test accuracy than s;, while showing worse ECE and lower fidelity
(measured by test teacher-student agreement and test teacher-student KL). Therefore, the hypothesis
that s; should be a higher fidelity distillation of the teacher than sy does hold, but the gain in fidelity
does not result in s; best replicating the teacher’s accuracy. The best attributes of sy and s; are
combined by sgu1, which coincides with how unlabeled data is typically used in practice [2]. The
reason for this puzzling observation is simply that for the larger teachers fidelity has not improved
enough to also improve generalization. In fact, the best teacher-student agreement is only around
85%, no improvement when compared to the results from extensive data augmentation in the last
section. We again find that modifying the distillation data can slightly improve fidelity, but the
evidence does not support blaming poor distillation fidelity on the wrong choice of distillation data.

*Unlike Figure for Figurewe generated new GAN samples every epoch, to mimic data augmentation.



GAN-Generated Data Held-Out Data Data Augmentation

€ € €

210 {0 2100 1O g 100 1O

3 @ 3

5 \8\*\.\. 8 - g

<n(o 95 (0] ::o 9 é‘) 80

< © o = <

0 5 § 0o

= = 80 =

CIFAR-100 +12.5k GAN 425k GAN +37.5k GAN +50k GAN Dy Dy U Dy D, Baseline Rotation Vertical Flip  ColorJitter Combined Augs
—@— 1 Teacher O 3 Teachers O~ 5 Teachers

Figure 5: The train agreement for teacher ensembles (m € {1, 3,5}) and student on the distillation
data for a ResNet-56 on CIFAR-100 under different augmentation policies. In all panels, increasing
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more difficult. Left: agreement for the synthetic GAN-augmentation policy from Figure|l| Middle:
agreement from subsampled CIFAR-100 experiment in Figure[4] Right: agreement for some of the
augmentation policies in FigureE} The shaded region is not visible because the variance is very low.

6 Optimization: Does the Student Match the Teacher on Distillation Data?

If poor fidelity is not primarily an identifiability problem from the wrong choice of distillation data,
perhaps there is a simpler explanation. Up to this point, we have focused on student fidelity on a
held-out test set. Now we turn our attention to student behavior on the distillation data itself. Does
the student match the teacher on the data it is trained to match it on?

6.1 More distillation data lowers train agreement

In Figure[I|we presented an experiment distilling ResNet-56 networks on CIFAR-100 augmented with
synthetic GAN-generated images. We saw that enlarging the distillation dataset leads to improved
teacher-student agreement on test, but the agreement remains relatively low (below 80%) even for the
largest distillation dataset that we considered. In Figure 5 (left panel), we report the teacher-student
agreement for the same experiment, but now on the distillation dataset. We now observe the opposite
trend: as the distillation dataset becomes larger, it becomes more challenging for the student to match
the teacher. Even when the student has identical capacity to the teacher, the student only achieves
95% agreement with the teacher when we use 50k synthetic images for distillation.

The drop in train agreement is even more pronounced when we use extensive data augmentation. In
Figure[3] right panel, we report the teacher-student agreement on the train set with data augmentation
for a subset of augmentation strategies presented in Section[5.I] We use the CIFAR-100 dataset and
the ResNet-56 model for the teachers and the students (for details, see Section[5.1). In each case,
we measure agreement on the augmented training set that was used during distillation. While for
the baseline augmentation strategy, we can achieve almost perfect teacher-student agreement, for
heavier augmentations the agreement drops dramatically. For the Rotation, Vertical Flip and Color
Jitter augmentations, the agreement is between 80% and 90% for all the considered teacher sizes.
For Combined Augs, the combination of these three augmentation strategies, the agreement drops
even further, to just 60% in self-distillation!

Our intuition about how knowledge distillation should work largely hinges on the assumption that
after distillation the student matches the teacher on the distillation set. However, the results presented
in this section suggest that in practice the optimization method is unable to achieve high fidelity even
on the distillation dataset when extensive data augmentation or synthetic data is used. The inability
to solve the optimization problem undermines distillation: in order to find a student that would match
the teacher on all inputs, we need to at least be able to find a student that would match the teacher on
all of the distillation data.

Optimization and the train-test fidelity gap. Notably, despite having the lowest train agreement,
the Combined Augs policy results in better test agreement than other polices with better train
agreement (Figure[3). This result highlights a fundamental trade-off in knowledge distillation: the
student needs many teacher labels match the teacher on test, but introducing examples not in the
teacher train data makes matching the teacher on the distillation data very difficult.



A=00 A =025 A =0.375
10 85

m
"
(2]
]U
>
&
3
& 8
5
&
5
g

Train Agreement
3 3 8

o

S
4

‘

i3

Init Init Init .

Train Agreement
o
g
S
]

Train Loss

8

6

4
2 20 2 64 F
O ° ° ° 0{_e °
Teacher, Student Teacher Student| | Teacher Student 0

300 1k S5k 1k 5k 000 025 050 075 100 0 25 50 75 0 20 40 60 0 20 40 60
Number of Epochs A

(a) Optimizer effect (b) Initialization effect (c) Loss Visualization

Figure 6: Optimization and distillation: self-distillation with ResNet-20s with LayerNorm on
CIFAR-100. (a): Final train agreement for SGD and Adam optimizers. Training longer improves
agreement, but it remains below 85% even after 5k epochs. (b): Final train loss and agreement when
the initialization is a convex combination of teacher and random weights, 85 = A0, 4+ (1 — A)0,.. (¢):
Projections of the distillation loss surface on the plane intersecting 6;, the initial student weights,
and the final student weights for different A\. When A is small, the student converges to a suboptimal
solution with low agreement. The uncertainty regions correspond to y + o, estimated over 3 trials.

6.2 Why is train agreement so low?

A simplified distillation experiment. To simplify our exploration, we focus on self-distillation of
a ResNet-20 on CIFAR-100. We use the Baseline data augmentation strategy, as we found that a
ResNet-20 student is unable to match the teacher on train even with basic augmentation. We also
replace the BatchNorm layers [25] in ResNet-20 with LayerNorm [3]], because we found that with
BatchNorm layers even when the teacher and the student have identical weights, they can make
different predictions due to differences in the activation statistics accumulated by the BatchNorm
layers. Layer normalization does not collect any activation statistics, so the student will match the
teacher as long as the weights coincide.

Can we solve the optimization problem better? We verify that the distillation fidelity cannot be
significantly improved by training longer or with a different optimizer. By default, in our experiments
we use stochastic gradient descent (SGD) with momentum, train the student for 300 epochs, and use a
weight decay value of 107%. In Figurelgl we report the results for the SGD and Adam [27] optimizers
run for 1k and 5k epochs without weight decay. Switching from SGD to Adam only reduced fidelity.

For both optimizers, training for more epochs does slightly improve train agreement. In particular,
with SGD we achieve 83.3% agreement when training for 5k epochs compared to 78.95% when
training for 300 epochs. It is possible, though unlikely, that if we train for even more epochs the train
agreement could reach 100%. However, training for 5k epochs is significantly longer than what is
typically done in practice (100 to 500 epochs). Furthermore, the improvement from 1% to 5k epochs
is only about 2%, suggesting that we would need to train for tens of thousands of epochs, even in the
optimistic case that agreement improves linearly, in order to get close to 100% train agreement.

The distillation loss surface hypothesis: If we cannot perfectly distill a ResNet-20 on CIFAR-100
with any of the interventions we have discussed so far, we now ask if there is any modification of the
problem that can produce a high-fidelity student.

In the self-distillation setting, we do know of at least one set of weights that is optimal w.r.t. the
distillation loss — the teacher’s own weights 6,. Letting 6,. be a random weight initialization, in
Figure[6|(a) we examine the effect of choosing the student initialization to be a convex combination
of the teacher and random weights, 8, = A0, + (1 — \)0,.. After being initialized in this way, the
student was trained as before. In other words A = 0 corresponds to a random initialization and A = 1
corresponds to initializing the student weights at the final teacher weights.

We find that if the student is initialized far from the teacher (A < 0.25), the optimizer converges to a
sub-optimal value of the distillation loss, producing a student that significantly disagrees with the
teacher. However at A = 0.375 there is a sudden change. The final train loss drops to the optimal
value and the agreement drastically increases, and the behavior continues for A > 0.375. To further
investigate, in Figure@ (c) we visualize the distillation loss surface for A € {0,0.25,0.375} projected
on the 2D subspace intersecting 6,, the initial student weights, and the final student weights. If the
student is initialized far from the teacher (A € {0,0.25}), it converges to a distinct, sub-optimal basin
of the loss surface. On the other hand, when initialized close to the teacher (A = 0.375), the student
converges to the same basin as the teacher, achieving nearly 100% agreement.



CKA (1)
Init. Agree. (1) KL (]) Stage 1 Stage 2 Stage 3

Rand. 77.174 (0.352) 0.836 (0.016) 0.939 (0.017) 0.925(0.027) 0.885 (0.011)
Teach. 77.098 (0.238) 0.838 (0.020) 0.951 (0.017) 0.937 (0.020)  0.890 (0.015)

Table 1: We examine whether fidelity can be improved in the context of ResNet-20 self-distillation on
CIFAR-100 if the teacher and student share the same weight initialization. All metrics are computed
on the test set. A shared initialization does make the student slightly more similar to the teacher in
activation space (measured by CKA), but in function space the results are indistinguishable from
randomly initialized students. We report the mean and standard deviation, estimated from 10 trials.
The average teacher accuracy was 70.522 (0.412).

Is using the initial teacher weights enough for good fidelity? If good fidelity can be obtained
by initializing the student near the final teacher weights, it is possible that similar results could be
obtained by initializing the student at the initial teacher weights. In Table [I we compare students
distilled from random initializations with those initialized at the initial teacher weights. In addition to
the metrics reported in the rest of the paper, we also include the centered kernel alignment (CKA)
[28]] of the preactivations of each of the teacher and student networks. There is a small increase in
CKA, indicating that sharing an initialization between teacher and student does increase alignment in
activation space, but functionally the students are identical to their randomly initialized counterparts —
there is no observable change in accuracy, agreement, or predictive KL when compared to random
initialization.

To summarize, we have at last identified a root cause of the ineffectiveness of all our previous
interventions on the knowledge distillation procedure. Knowledge distillation is unable to converge
to optimal student parameters, even when we know a solution and give the initialization a small head
start in the direction of an optimum. Indeed, while identifiability can be an issue, in order to match
the teacher on all inputs, the student has to at least match the teacher on the data used for distillation,
and achieve a near-optimal value of the distillation loss. Furthermore, the suboptimal convergence of
knowledge distillation appears to be a consequence of the optimization dynamics specifically, and not
simply initialization bias. In practice, optimization converges to sub-optimal solutions, leading to
poor distillation fidelity.

7 Discussion

Our work provides several new key findings about knowledge distillation:

* Good student accuracy does not imply good distillation fidelity: even outside of self-
distillation, the models with the best generalization do not always achieve the best fidelity.

* Student fidelity is correlated with calibration when distilling ensembles: although the
highest-fidelity student is not always the most accurate, it is always the best calibrated.

* Optimization is challenging in knowledge distillation: even in cases when the student has
sufficient capacity to match the teacher on the distillation data, it is unable to do so.

* There is a trade-off between optimization complexity and distillation data quality: Enlarging
the distillation dataset beyond the teacher training data makes it easier for the student to
identify the correct solution, but also makes an already difficult optimization problem harder.

In standard deep learning, we are saved by not needing to solve the optimization problem well: while
it true that our training loss is highly multimodal, properties such as the flatness of good solutions,
the inductive biases of the network, and the implicit biases of SGD, often enable good generalization
in practice. In knowledge distillation, however, good fidelity is directly aligned with solving what
turns out to be an exceptionally difficult optimization problem.
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