Three-Step Risk Inference In Insurance Ratemaking
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Abstract. As catastrophic events happen more and more frequently, accurately forecasting
risk at a high level is vital for the financial stability of the insurance industry.  This paper
proposes an efficient three-step procedure to deal with the semicontinuous property of insurance
claim data and forecast extreme risk. The first step uses a logistic regression model to estimate
the nonzero claim probability. The second step employs a quantile regression model to select
a dynamic threshold for fitting the loss distribution semiparametrically. The third step fits a
generalized Pareto distribution to exceedances over the selected dynamic threshold. Combining
these three steps leads to an efficient risk forecast. Furthermore, a random weighted bootstrap
method is employed to quantify the uncertainty of the derived risk forecast. Finally, we apply
the proposed method to an automobile insurance data set.

Keywords: Generalized Pareto distribution, Insurance loss, Logistic regression, Quantile

regression, Random weighted bootstrap

1 Introduction

Consider an insurance dataset {X;, IV;, {L¢7j}§vzi1}?:1 in insurance ratemaking in a given year,
where X; is an explanatory vector representing some characteristics of the ith policyholder
(e.g., age of the policyholder and age of car), N; is the number of claims, and {L; ; }jV:Z | are the
corresponding observed losses. Then S; = Z;V:ZI L; ; is the aggregate loss of the ith policyholder.
A practical question in risk management is to forecast the risk of the aggregate loss S of a future
policyholder with characteristic vector x.

Two widely employed conditional risk measures of S given x in the financial industry and
insurance business are the conditional Value-at-Risk (VaR) and conditional Expected Shortfall

(ES), defined as
VaRg(a|x) = inf{s : P(S < s|x) > a} and ESg(a|x) = E(S|S > VaRg(a|x), x), respectively.

Practically, regulators often require the risk level a to be high such as 0.99 for VaR and 0.975 for

ES, making nonparametric inference inefficient. On the other hand, a parametric inference may

1School of Data Science, FuDan University, China
2Department of Risk Management and Insurance, Georgia State University, Atlanta, GA 30303, USA



lead to an unstable risk forecast due to the higher risk level and the fact that the parametric
inference mainly employs the information around the distribution center.

To better appreciate the proposed study, we describe the recent two-step inference procedure
in [9] for predicting the Value-at-Risk of the aggregate loss. The first step uses the logistic
regression model to estimate the probability of having no claim, i.e., p; = P(N; = 0/X;). When

the semicontinuous property of S; admits the following decomposition
P(SZ < S|X1) = P(Nl = OIXz) + P(]\fZ > 0|XZ)P(51 < S|X¢,Ni > 0) for s > S0, (1)

the Value-at-Risk of S; at level « is equal to that of the conditional loss .S; given N; > 0 at

the adjusted level &; = ‘f:f;z as long as the VaR is above sg. Therefore, the second step in [9]

applies quantile regression to those (S;, X;) with positive N; at the adjusted risk level &;, which
depends on the estimator for p; in the first step. To quantify the uncertainty of this two-step
risk forecast, [13] develops a random weighted bootstrap method when the second step uses
empirical quantile estimation rather than quantile regression. [12] develops another two-step
procedure using weighted quantile regression. A drawback of quantile regression is the infeasible
application to other risk measures such as Expected Shortfall or Expectile.

For applications to more general risk measures at a high risk level, this paper proposes to
model the conditional excess function of S; over a dynamic threshold u; = u(X;) given X; and
N; > 0 parametrically. That is, we need a model for the dynamic threshold and a parametric
model for the excess function of S; (i.e., a semiparametric model for the distribution of S;). When
Fix(s) = P(S; < s|X; = x,N; > 0) is in the domain of attraction of extreme value distribution
with index &; x and right endpoint zp (see [18] and [6] for an overview about Extreme Value

Theory), there exists a function o; x(u) > 0 such that

i s (Fixu(2) = Geon ()] = 0, 2)
where
1-— Fz x(u + Z)
z,x,u(z) 1 Fz-’x(u)
is the excess function, and
Geol2) =1 - (1+82/0)7 1 (3)

for 1 +&z/0 > 0 with 0 > 0 and £ € R is called the generalized Pareto distribution (GPD); see

[1]. Therefore, we propose to model the conditional excess function of S; given X; by a GPD



with parameters £ and o in (3) depending on the covariate vector X;. Because we do not model
losses below the threshold, the resulted risk forecast is robust against high risk levels.

It is not new to model the parameters in the GPD as parametric functions of some covariates;
see [2], [14], [3], and [17] for financial returns and [8] for climate data. However, the threshold
in these papers is independent of the covariates. Because of using a dynamic GPD, we employ
a quantile regression model to estimate the dynamic threshold and study the following three-
step procedure for forecasting risk at a high risk level: i) using logistic regression to model
the probability p; = P(N; = 0|X;) at the first stage, ii) using quantile regression to model
the dynamic threshold wu; at the 90% or 95% level at the second stage as a rule of thumb in
fitting a generalized Pareto distribution (see [10]), iii) and fitting a dynamic generalized Pareto
distribution to exceedances over the selected dynamic threshold u; based on those S;’s and X;’s
with N; > 0. Combining these three steps leads to a robust forecast for a given risk measure
at a high risk level because we model the distribution of .S; semiparametrically, i.e., we model
losses over the threshold parametrically and below the threshold nonparametrically. In contrast,
the two-step inference in [9] only works for Value-at-Risk. To quantify the uncertainty of the
derived risk forecast, we develop a random weighted bootstrap method.

We organize the paper as follows. Section 2 presents the three-step inference for estimating
risk measures at a high level and a random weighted bootstrap method for uncertainty quan-
tification. Section 3 analyzes an automobile dataset. We conclude the paper in Section 4. All

theoretical derivations appear in Section 5.

2 Methodologies and Main Results

2.1 Three-step inference for risk measures at a high level

We observe the actuarial dataset {X;, N, {L; ; }jy:il}?zl in a given year, where X is the character-
istic vector representing the ith policyholder, N; > 0 is the number of claims, and {L; ; > 0}?[:1'1
are the corresponding losses. Define the aggregate loss S; = Z;\lel L; ;. For forecasting a condi-
tional risk measure of S; given X; at a high risk level « such as 0.99, we employ equation (1)
by modeling P(N; = 0|X;) parametrically in the first step and P(S; < s|X;, N; > 0) semipara-
metrically in the second and third steps.

Throughout, we write X; = (1,X7)7 and X = (1,x")", where A" denotes the transpose of

matrix or vector A. Like [9], the first step models the conditional probability of p(X;) = P(N; =



0|X;) by logistic regression:

1

I(N; = 0)|X; ~ Bin(1,p(X;)) and p(X;) =p(X;;601) = T4 op(07X,)
1 7

(4)

where I(A) is the indicator function of A. The above chosen parametric form ensures p(X;) €

(0,1). The maximum likelihood estimation of 6 is
A n 1 I(N;=0) 1 I(N;>0)
0, =a a _— ) [ .

LT mBX}_[l { 1+ exp(07X) } { 1+ exp(07X,) }
Using these estimators, we estimate p(x) for X; = x by
- 1
0=
1+ exp(6,X)

Further, we estimate the adjusted level a*(x) = Cf:g ((:)) for X; = x by

ey @ —B(x)

& (x) = T
To model P(S; < s|X;, N; > 0) semiparametrically, the second and third steps select the thresh-
old by quantile regression and fit the exceedances by a GPD, respectively. For ease of presenta-
tion, we write the observations in {X;, N;, S;}" ; with nonzero claims as {X;, N;, gi}?:p i.e., the
first 72 of N;’s are nonzero. Thus, S; is the conditional loss of S; given N; > 0. Using the data
set {X;, NV, gi}?:17 the second step models the dynamic threshold by the conditional quantile

at a chosen risk level o as
u(Xz) = U(Xi; 02) = VaRgi(a0|Xi) (6)

fori=1,---,n. Note that 85 is related to the quantile level cg above, but «g is a chosen level,
independent of the predictor X;’s and less than the targeted risk level o. As a rule of thumb in
[10], we employ ap = 90% or 95% in practice.

Using quantile regression inference, we estimate @2 by

02 = argmin Z; Pao(Si — u(X;;0)) (7)
with pa,(s) = s(ao — I(s < 0)). Further, we estimate the dynamic threshold by
(X)) = u(Xy; 7). (8)

The third step models the conditional excess function of S; over the threshold u(X;) in (6)

given X; by the generalized Pareto distribution

P(Si > u(X) + 2[X;) = (1 — ag) {1+ &(Xi)z/o (X)) 71/, (9)



where z > 0 and ¢ = 1,--- ,n. Note that all u(X;),£(X;), and o(X;) depend on the predictors,

indicating the dynamic structures in the proposed three-step method. Like (6), we assume that
§(Xi) =¢&(Xi303) and  o(X;) = (X3 04), (10)

for : = 1,--- ,n. We will specify the parametric forms later. To infer the GPD, we denote

N3 = (05,0})" and define

;0
i(mslz) = —{1+ gy Hog (1+ £593 %) — log (X5 64)

for i =1,---,n. Then, we estimate n3, {(x), and o(x) by
= (63,0%)" —argmaxzf (Si > a(X))li(n]S; — (X)),

=1
£(x) =&(x;03), and &(x)=0(x;04).
Finally, we predict the conditional Value-at-Risk and conditional Expected Shortfall of S

given x by combining the above three steps. Because of high risk level o, we consider the case

of a*(x) > ap and assume N; > 0 when S; > VaRg(a|x). Therefore,

o(x —ar(x)\ ¢
VaRg(alx) = VaRg(a* (x)|x) = u(x) + ( ){<1 ( )> _1}

1—0&()

and

—1/&(x
ESs(alx) = 5E00VaRg(alx) + 1720 1200 1 4 ¢(x) Yeltslapgutd | /ex)

o 1609 )
_ 1—a*(x) [ VaRg(alx) o(x)—&(x)u(x)
= 150 (Velefob) 4 b€l }

when 0 < £(x) < 1. Because we focus on insurance losses, we assume &(x) > 0. The existence
of expected shortfall requires £(x) < 1. Plugging estimates in the three steps into the above risk

measures leads to our risk forecasts

— &(x — e (x)\ ¢
VaRg(a|x) = u(x) + ( i {(1 ( )> _ 1} (11)

1—a0

and

—~ —&*(X) x5 ag 6(x) £ aRs(a|x)—u(x —1/8(x)+1
ESs(alx) =552 VaRg(alx) + =22 T T¢{x) {1 flx )%}
_1-a*(x) VaRS(a|x) U(X (x)u X
= 15T sk '}

(12)

When o*(x) < ag, we estimate P(S < s|X = x) for s < u(x) nonparametrically and

P(S > s|X = x) for s > u(x) parametrically by the fitted GPD; see Remark 1 below.



Remark 1. If &*(x) < ag and X; is categorical, we estimate VaRg(a|x) and ESg(a|x) by
VaRs(afx) = G} (6" (x)

and

_ T Sil(Gx (6 (%)) <Si <Gt (@0) I (Xi=x)
(1=a) i, [(Xi=x)

1—a X7 D l—ag 6(x)
+722VaRg(alx) + T2 ()’

E/J\Ss(a]x)

respectively, where ) R
~ mOIS; < 2)I(X; =
GX(S) _ Ez:l S}S — .’IJ) ( X)
Y i I(Xi = x)

and G' denotes the generalized inverse of Gx. When X; is continuous, we replace 1(X; = x)

with kernel smoothing estimation; see [7] for kernel smoothing techniques.

Remark 2. We model u(x;602), £(x;63), and 0(x; 04) parametrically. Because u(x;02), {(x;03),

and o(x;04) are positive, and the linear function is the simplest approzimation, we assume
u(x;02) = exp(x702), &(x;03) =exp(X703), and o(x;604) =exp(X 0y). (13)

Our theorems below use the parameters above, but they are valid for general parametric forms
under some regularity conditions. For developing a goodness-of-fit test for the above parametric
forms, it is necessary to study the nonparametric smoothing inference of the proposed three-step

procedure, which is beyond the scope of this paper.

We state the following regularity conditions before deriving the asymptotic limit of the

proposed risk forecasts.

Assumption 1. Assume {X;} is a sequence of independent and identically distributed random
vectors with bounded support. Given {X;}, {V;} is a sequence of independent random variables
satisfying model (4). Given {X;}, {S;} is a sequence of independent random variables satisfying
model (1). Let S; denote the conditional variable of S; given N; > 0. We use Fj(s|X;) and
fi(s|X;) to denote the conditional distribution function and conditional density function of S;
given X, respectively, satisfying models (6), (9), and (10) with (13).

Assumption 2. Assume Ep(X;) =po € (0,1), and ¥y = E{p(X;)(1 — p(X;))X;XT},

F2 = E{fZ(Ffl(ao|XZ)|XZ) exp(20§Xl)X1XZ}, 22 = E{eXp(QO;Xl)XZX:},

and
26X)? % oxr 243(X)  x xr
Iy = (1 — ag)E | eIy X e zesy
2+3¢(X;) X.XT 1 x.XT
TFEX) (1 260K0) 0% ) X

are positive definite.



Theorem 1. Suppose Assumptions 1 and 2 hold. Then, as n — oo,

1

V(0 — 01) 5 STIW, V(0 — 6,) S . Ty 'W,,
— Po
Vil —ng) % LW,
EERRVA S TR
where W5 = (W, WZ,)", W5, = W3+ T3105 "Wo, Wso =Wy + 5,05 ' W,
I's1=(1-ay)E { EX) exp(03X,) X, X7 }
(X)) (14 €(X3)) (1 + 26(X4))
14+ &(Xy)
I'g9=—(1-— FE
32=~{1-a0) {cr(xz-)(l +2¢(X0) P

and W1, Wao, W3, Wy are defined in Lemma 1 below.

*

—1/¢
Define G(a*,u,§,0) = u+ % ((i:f!O) — 1) and let VG(a*,u,&,0) denote the gradient

of G at (a*,u,&, o). Write VGx := VG (a*(x), u(x), &(x), 0(x)), which has nonzero coordinates.
- N . N1/

Similarly, define G(a*,u,€,0) = 12 G(a*,u,€,0)+ 1220 12 (1 + gw) denote

VG (a*,u, €, 0) as the gradient of G at (a*, u, £, o), and write VG = VG(a* (x), u(x), £(x), 0(x)).

Thus,

VaRs(alx) = G(a*(x), u(x), £(x), 0(x)) and ESs(alx) = G(a*(x), u(x), £(x), 0 (x)).

An application of the delta method to Theorem 1 yields the following asymptotic limits of our

risk forecasts.

Theorem 2. Suppose conditions in Theorem 1 hold. Further assume o*(x) > ag, N; > 0

whenever S; > VaRg(a|x), and £(x) < 1 for estimating ESg(a|x). Then, as n — oo,
Jn{VaRg(alx) — VaRg(alx)} % N(0, VGTELVGy)

and

Vn{ESs(alx) — ESs(a]x)} % N (0, VGL S VGL),

where Yk 1s defined in Lemma 5 below.

2.2 Uncertainty quantification

Because the asymptotic variances in Theorem 2 above are very complicated, we do not estimate
them directly for quantifying our forecast uncertainty. Instead, we adopt the random weighted
bootstrap method in [11], [4], and [21] as follows. The idea is to repeat the three-step inference

many times using random weighted likelihood and distance.



e Step 1) Independently draw a random sample with size n from a distribution function with
mean one and variance one, such as standard exponential distribution. Denote them by

{6b3n . Write {53, X, N;, S'i}?zl as those of (67, X;, N;, S;)’s with nonzero claim.

o Step 2) Maximize

n 1 exp(07X;)
S I(N; =0)1 —— )+ I(N; log(—————=—
; ' { ( 0)teg <1 + exp(H{Xi)) TI(Ni>0) Og(l + exp(07X;)

b
and denote the resulted estimator by 6;. Compute

(%) = p(x; 0}) = : — and  a*t(x) = M_
1+ exp((6,)7%)

e Step 3) Minimize

D 8pa (Si — u(X;;6%)).
i=1
Denote the resulted estimator by 9; and estimate the threshold by

W0 (x) = u(x; ég)

e Step 4) Maximize

n

D O(Si > A (Xa)ki(n|Si — a°(Xy))
=1

and denote the resulted estimator by ﬁg.

e Step 5) Compute

— & (x — a*o(x —€(x)
VaR%(alx) = ib(x) + =) (1 ( )) 1

and

b —a*(x) b —ap 00(x 2 /a\b alx)—ab(x
BBj(ab) = SRR o) + 4 2o {1+ €0 Pl

}—1/5”()4)-5—1
_ 1= [ VaRg(alx) | 62(0—E(x)a(x)
T 1€ (x) 16 (x) ’

—Q

where

~

€0(x) = £(x; 03) = exp{x703} and 6°(x) = o (x; 8) = exp{x76y).

—— b —b
e Step 6) Repeat the above steps B times and obtain {VaRg(a|x)}Z | and {ESg(alx)}Z .



_———b —
o Step 7) Let Ay = VaRg(a|x) — VaRg(a|x) for b= 1,--- , B and estimate the asymptotic

variance of ms((ﬂx) by 62 = & Zle AZ2. Hence, the confidence intervals with level a

for VaRg(ax) are either

Ii(alx) = (VaRg(alx) — Ap [sep], VaRs(alx) — Ap[izep])

2

or

Ir(alx) = (VaRs(alx) — Acrp—a))>: VaRs(alx) + A pa—a)>);
where Ap; <--- < Ap p denote the order statistics of Ay,--- ,Ap, Acqs <--- < Acps
denote the order statistics of |Aq|,---,|Ap|, and [z] represents the least integer greater

than or equal to x. Similarly, we can construct confidence intervals for the conditional

Expected Shorfall.

The theorem below shows that the coverage probabilities of the above proposed intervals are

asymptotically correct.

Theorem 3. Under the conditions of Theorem 2, as B — oo and n — oo,
\TELRS(O(|X) — VaRg(a|x)
b __
VBUSL, (VaR(alx) — VaRs(alx)?

4 N(0,1)

and .
ESg(a|x) — ESg(a|x)

= = 4 N(0,1).
\/Bfl Z(?:l(ESS(MX) — ESS(Oé|X))2

3 Data Analysis

In this section, we analyze the Australian automobile insurance data by using the proposed
three-step inference method. The data set includes 67,856 one-year vehicle insurance policies in
Australia between 2004 and 2005, which is available in the R package ‘InsuranceData’ (see [20]).
We refer to [5] for a detailed description.

Our goal is to predict the conditional VaR. at level 99% and the conditional ES at level 97.5%
of the aggregate loss given two influential dependent variables, the age of the vehicle and the
driver’s age, following the variable selection in [9]. That is, the dimension of X; is two. These
two categorical variables have four and six levels, respectively, the combination of which results
in a total of 24 distinct levels of explanatory vector X;. We select a dynamic threshold using

ap = 90% and employ B = 5000 in the proposed random weighted bootstrap method.



Table 1 reports estimates in fitting logistic regression in the first step and quantile regression
in the second step. The upper panel displays 6, and 05 in fitting logistic regression and quantile
regressions, respectively. The lower panel shows p(X;) and 4(X;) for each category in fitting
logistic regression and quantile regression, respectively. Table 2 reports estimates in the third
step, where we choose £(x;63) as constant following [8], i.e., £ is independent of X;. Using
these fittings above, Tables 3 and 4 report the predictions for the conditional VaR at level 99%
and conditional ES at level 97.5% within each category, respectively. The two numbers inside
the bracket of the first column represent the combination of the levels of the two explanatory
variables. In Table 3, the 2nd column represents the number of observations of each category, the
3rd column is the naive estimates of VaR at level 99% (i.e., nonparametric estimation without
using the second and third steps), the 4th column is the GPD estimates with a static threshold
chosen as the 90% quantile of all positive losses, the 5th column is the three-step estimates
{\7a\R(0.99|Xj) ?4:1, and the 6th and 7th columns are the proposed 90% confidence intervals
I1(0.9]x;) and I(0.9]x;), respectively. Likewise, Table 4 reports estimates and intervals for the
conditional ES at 97.5% level.

Our observations from Tables 3 and 4 are as follows. The naive estimates of VaR and ES
are smaller than those computed from the GPD estimates with a static and dynamic threshold,
except for the first five categories in Table 4, which may mean that naive estimators tend to
underestimate high risks. Because the naive estimators of VaR and ES are outside the intervals
except for category 10 for ES, the three-step forecast is significantly different from the naive
forecast. Also, the GPD estimates for VaR with a static threshold are outside the intervals for
some categories, implying that the GPD estimates with a static and dynamic threshold forecast
VaR differently. In contrast, there is no significant difference between the GPD estimates with
a static and dynamic threshold for forecasting ES. Further, intervals I5(0.9|x;) are slightly
more skewed to the right than 7;(0.9|x;). To check the GPD fit visually, we use the PP-plots
computed from the GPD estimates with a fixed (90% quantile) and dynamic threshold (quantile
regression). It is seen from Figure 1 that the GPD estimate with a dynamic threshold fits better
than that with a static threshold.

In summary, our data analysis shows that the developed new three-step inference procedure
with the random weighted bootstrap uncertainty quantification can provide different insights.
The PP-plot indicates that using GPD semiparametrically offers a good fit. Developing an

efficient goodness-of-fit test for the new method is necessary to address the concern of model

10



misspecification, which requires corresponding nonparametric inferences for all three steps and

is beyond the scope of this paper.

4 Conclusions

This paper develops an effective three-step inference procedure for forecasting a risk measure
at a high level in insurance ratemaking. The first step uses logistic regression to estimate
the probability of having no claim accurately. Conditional on nonzero claims, the second step
employs quantile regression to model and estimate the dynamic threshold for a robust fit to loss
distribution. The third step uses extreme value theory to fit a generalized Pareto distribution
to exceedances over the selected threshold in the second step. Furthermore, this paper adopts
a random weighted bootstrap method to quantify the risk forecast derived from the above
three steps. Finally, we reexamine the Australian automobile data for forecasting Value-at-
Risk at level 99% and Expected Shortfall at 97.5% and find that the three-step method provides
significantly different forecasts from the naive approach without modeling the losses. One future

research is to develop a goodness-of-fit test for the proposed models.

5 Proofs

Put

Zi1 = X;(I(N; = 0) — p(Xy)),

Zio = X; exp(05X;) (o — I(S; < exp(03X,))),

Si(ui) = 1+ E53(Si — u(Xy)),

Zi3(us) = Xi{ gy Log Sius) — (14 gy) (1= sy H (S0 > (X)),
Zia(u;) = Xi{(1 E(Xi))(l - si(lui)) = LH(Si > u(X,)).

v

Lemma 1. Under conditions of Theorem 1,

1< 1 <
— Z Zii =Wi+op(l), —= Z Zip = W +0p(1),
v Vi S

1 & 1 &
7 > Zig(ui) = W3+ 0p(1), 7 D Zia(ui) = Wy +o0p(1),
=1 =1

where the joint distribution of W1, - , Wy is a multivariate normal distribution with

E(W1W7) = E{p(X;)(1 — p(X;))X; X7},

11



E(WQWQ) = Ck(](l — aO)E{exp(205Xz)XlX:},

T\ _ 2§(X1)2 X YT
B(WsWi) = (1-a0) { 0T 26X T e } ’
E(WsWj) =(1—-a)E {H;szXZ} )
E(W1W7) =0 for j =2,3,4,

E(WW3) =0, E(WyWj}) =0,
- £(X) < T
BWsWi) = (1 ~a0)f { (01 EK0) (1 + 28(X) } '

Proof. When S; > u(X;), we have
P(S;(us) > 2|X) = (1 — ag)z VXD for 2 > 1,
implying that

E(log Si(u)|Xi) = (1 — a0)&(Xs), E((log Si(ui))*|Xs) = 2(1 — ag)6*(X),

1 B §(Xi)
E(1- () 1X;) = (1 —ap) -

B((1 -

~)*1Xi) = (1 - ag)

E(log(Si(uq))(1 —

1 NN (6.8
Si(ui))IXz)—(l 0) (

Using these equations, straightforward calculations give that

E(Zi3(ui)Z; 4(ui)|X;) = (1 — ap)

E(Z; 4(u)Z] 4 (u;)|X;) = (1 — _
Further, we have

E(Zi1|X;) = 0, E(Zi1Z7,|X;) = p(Xi) (1 - p(X;))XiX]

E(Z@Q‘X,’) = 0, E(Zi,QZZ’2|X,~) = Oéo(l — ag) eXp(QOEXZ‘)XiXZ,

E(Zi 227 5(u;)|X;) = E(Zi 2 B(Z] 5(w;)|S; > u(X;), X;)[X;) = 0,

12



E(Zi2Z7 4 (ui)|X) = E(ZipB(Z] 4(ui)|Si > w(X;), Xq)[X;) =

Because S; is the conditional variable of one of S; given N; > 0, the conditional variable of

S, Zi; given X;’s is mutually independent of the conditional variables of

i Z@Q, i Zi,g(ui), and i Zi,4(ui) given X;S.
i=1 i=1 i=1

Therefore, Lemma 1 follows from the central limit theorem.

O
Lemma 2. Under conditions of Theorem 1, as n — 00,
V(01 — 01) = S7YW + 0,(1).
Proof. Define
Z{I 0) log p(X;) + I(N; > 0)log(1 — p(X;))}.
Then,
Ip(Xi) 2
— (X)) (1 = p(X;) X,
o, = PX(1 - p(X)
1 8L1(01) 1 - d
— =Nz, 4w,
Jn 06, \/HZ; 1 W
132.[/]_ 0]_ > ~7T P
nW—“ZP X)XX] % —2.
Hence, it follows from Theorem 5.39 of [19] that
A 0°L1(6:)) ' 1 OLi(61) .
0,—6))=—< —— -+ — 1)=%"W 1).
iy~ 0) =~ { et} =T o) = B W+ o,(1)
O

Lemma 3. Under conditions of Theorem 1, as n — oo,
a/n B 1 —py and V(0 — 02) = T Wy + 0,(1).
Proof. The first equation follows from the weak law of large numbers by noting that

i = Zn:I(Ni > 0) and EI(N; > 0) = E(1 — p(X;)) = 1 — po.
=1
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Define

Z{pao — exp(85X;) — exp(85X;) (exp(27Xi/ Vi) — 1)) = pao(Si — exp(63X5))},
Zexp (03X,)(exp(27™X;/VR) — 1)(ag — I(S; — exp(83X;) < 0)),

{I(S’ exp(05X;) < s) — I(S exp(03X;) < 0)} ds.

P rexp(83X,)(exp(a” X /V/A) 1)
Qna(z) = /

i=170
It follows from Knight’s equality that

Note that

and
E{Qn2(2)} = E{E(Qn2(2)[{Xi})} = *ZTFlz +op(1).
Using the above expansions and the standard techniques in Section 4.4 of [15] for nonlinear

quantile regression, we can show that

n
V(s — ) =T — ZZ,2+op =T5 "Wy + 0,(1).
Lemma 4. Under conditions of Theorem 1, as n — oo,

Proof. Define

Then,

= OL: 7l . i 7 .
RO, = o ST Zia(ii) = J= Y0y Zaa(uw) + o= S0 {Zaa (@) — Zia(u)},

n X, ~ i
= L X s + s | (- WX > (X)) + o)
= IS ab + e b exp(03X0) XX 1(Si > u(X) V(B — 0) + 0,(1)
2 Xz — — A
= (1-a0)E { sy P05 X) X X] } Vin(Bs — 05) + 0,(1),
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implying that

oL
N 830(773) = W; + I‘3’11"271W2 + op(1). (14)
3

Similarly,

VA2 = LS 70 (00) = d= S Zialus) + = S0 {Zia(i) — Zia(u)},

o= Yie{Ziai) = Zia(ui)}
= e U K (@ — wX))(S; > (X)) + op(1)

= Y s exP(O3X)X; XTI( > u(X)) V(02 — 02) + 0,(1)
= —(1—@0)E{%exp }\/ﬁé’g—@g + 0p(1),
implying that
1 JL3(ns) -1
— = I'sol 1). 1
NA) Wy + T3, " Wa +0,(1) (15)
Because
%L
8033(532) =7 Zz 1 XiXT { mlog Si(ui) + g()Qci)(l - Si(lui))
1 -
R (st — sta) P 15> w(X0) + (1)
_ 26(X;)? T
= (1~ 00)E { gttty XX | + op(1).
02L T 1—S; (u; 1+¢€ 1—S5; (u; T
pesal = 5 XXT { iy S + S e L 1(8i > w(Xa) + 0p(1)
2+3§(X, T
(1~ 00) B { ey reoey XX + op(1),
9?2 n T Si(u;
oot = 1YL, XX] 1*&") DEZL 13, > (X)) + 0p(1)
= —(1 - a0) B { ratiey XiX7 } + 0p(1);
we have
1 0%Ls(ns)
= =TIy +o0,(1 16
n — angang P( ) ( )
Hence, the lemma follows from (14)-(16).
O
Proof of Theorem 1. The theorem follows from Lemmas 1—4. O

Lemma 5. Under conditions of Theorem 1, given any X, as n — oo,
~ % * ~ 2 N d
V(' (x) — o (x), 4(x) — u(x), £(x) — £(x),6(x) — o(x)) = N(0,3x),

where Yx = DxXwDZ, Yw is the covariance matriz of (W1, W3, WI)", and

fl—a oy ux) €x) , ox) .\
Dy = diag (XTE L x'I'5 ", diag ( X", x"|T .
p(x) YVT=pe Vi—=po "VI—po !
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Proof. Tt follows from Lemmas 1 - 4 and the delta method that

V(x) — af(x :1—0z>_(7 n(6, — 0 :1—(1}_(7 o 0
V(& (x) (%)) o) V(01 — 61) + op(1) ) Wi+ op(1),
Vnli(x) — u(x)) =u(x)X V(02 — 02) + op(1) = ?(i()poicTFQ_lWQ +o,(1),
R §(x) %7 0
Vn(€(x) = €(x),6(x) —o(x))" = 1_(’;“ olx) V(i3 —ms) + 0p(1)
1*P0X
§(x) %7 0
— | VI-ro " T, W5 + 0,(1),
0 TX) %7
1-po
implying that
df (x) — o*(x) W,
vir| T w, | o)
£(x) — &(x) Wi
o(x) — o(x)

O
Proof of Theorem 2. The theorem follows immediately from Lemma 5 and the delta method. [

Proof of Theorem 3. Like the proof of Lemma 1, we can show that
1 & 1 &
— Z&fzz’l = WI{ + Op(l), — = Z(szl’] = W? + Op(l) for ] = 2, 3,4,
vn i=1 Vi i=1

and {W? -W; }?:1 and {W; }§:1 are independent with the same distribution.

Following the proof of Lemma 2, we have
~b _
V(01 = 61) = T TWT +0y(1),
implying that
b4 B
V(81 — 01) = S (W) — W1) + 0,(1).

Similarly, we have

V(8 — ) = T3 (W5 — W) + 0,(1)
and

Vi — ) =T; (W5 — Ws) + 0,(1),
where

W = (W5 +T31T5 " W5, (W + T35 'W5)™)",
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Therefore, the joint limit of \/ﬁ(és —@,) for j =1,--- 4 is the same as that of \/n(0; — ;) for
j=1,---,4, implying that \/n{VaRg(a|x) — VaRg(a|x)} and v/n{ESg(a|x) — ESs(a|x)} have
the same limit as \/ﬁ{\ﬁi\Rg(a\x) — VaRg(a|x)} and \/ﬁ{E/Z\SS(a\x) — ESg(alx)}, respectively.

Furthermore, we can show that

B B
S {(VaRs(alx) - VaRs(afx)}* and 7 >~ {ESg(alx) — ESs(alx)}*
b=1 b=1

Sl

converge in probability to the asymptotic variances of
\/ﬁ{@s(a\x) — VaRg(a|x)} and \/ﬁ{E/gs(odx) — ESg(a|x)}, respectively.

That is, the theorem holds.
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Table 1: This table reports the estimates of logistic regression in the first step and quantile

regression in the second step. The upper panel displays 61 and 6, in fitting logistic regression and

quantile regressions, respectively. The lower panel shows p(X;) and 4(X;) for each categories in

fitting logistic regression and quantile regression, respectively. The probability level in selecting

threshold is ag = 0.90.

Parameter estimates

Logistic Regression (61) | Quantile Regression (85)
(Intercept) -1.907 8.240
Veh Age: 1 -0.031 -0.181
Veh Age: 3 -0.127 0.110
Veh Age: 4 -0.221 0.257
Agecat: 1 0.533 0.587
Agecat: 2 0.334 0.189
Agecat: 3 0.272 0.123
Agecat: 4 0.230 0.127
Agecat: 6 -0.003 -0.057
Probability and threshold estimates
Category | Size | Logistic Regression (p(X;)) | Quantile Regression (u(X;))
1(2&1) | 1504 0.798 6817.390
2(1&1) | 1283 0.803 5688.863
3(3&1) | 1643 0.818 7609.343
4(2&2) | 3167 0.828 4577.220
5(4&1) | 1312 0.831 8816.629
6(1&2) 2160 0.833 3819.523
7(2&3) | 3741 0.837 4284.405
8(1&3) 2706 0.841 3575.180
9(2&4) | 3919 0.843 4301.956
10(3&2) | 3956 0.846 5108.940
11(1&4) | 2935 0.847 3589.826
12(3&3) | 4826 0.853 4782.110
13(4&2) | 3592 0.857 5919.516
14(3&4) | 4760 0.859 4801.700
15(4&3) | 4494 0.865 5540.832
16(4&4) | 4575 0.870 5563.530
17(2&5) | 2635 0.871 3789.770
18(2&6) | 1621 0.871 3580.935
19(1&5) | 2042 0.874 3162.425
20(1&6) | 1131 0.875 2988.160
21(3&5) | 3088 0.884 4230.015
22(3&6) | 1791 0.885 3996.920
23(4&5) | 2971 0.894 4901.142
24(4&6) | 2004 0.894 4631.065
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Table 2: This table reports estimates in fitting the Generalized Pareto Distribution in the third

step, where £(x, 03) is constant, i.e., independent of x, and o(x,0,) = exp{xX"604}.

Estimates in fitting GPD
& -1.817
(Intercept)  8.370

Veh Age: 1 0.114
Veh Age: 3 -0.161
Veh Age: 4 -0.241

0, Agecat: 1 0.025
Agecat: 2 0.238
Agecat: 3 0.028
Agecat: 4 0.088
Agecat: 6 0.174
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Table 3: This table reports sample size, nonparametric estimate, GPD estimate with a static

threshold, and three-step estimate of the conditional VaR at 99% level, and the two 90% con-

fidence intervals using the three-step inference and random weighted bootstrap method with

B = 5000 for each category.

Three-step Estimate

Category | Size | Naive VaR(0.99|x;) | GPD VaR(0.99|z;) @(0.99@]-) I, (0.9|x;) 1(0.9|x;)
1(2&1) 1504 7341.31 8616.69 10109.95 (8223.92, 11673.32)  (8389.59, 11830.31)
2(1&1) 1283 5697.99 9038.44 9238.36 (6855.95, 10847.83)  (7269.99, 11206.72)
3(3&1) 1643 5594.83 7447.37 9982.25 (8290.21, 11385.22)  (8456.35, 11508.15)
4(2&2) 3167 4089.01 8171.66 7670.78 (6238.09, 8991.58) (6312.78, 9028.78)
5(4&1) 1312 6712.36 6831.47 10712.61 (8834.67, 12255.24) (9017.61, 12407.6)
6(1&2) 2160 2701.22 8495.82 7111.36 (5233.15, 8531.48) (5505.27, 8717.46)
7(2&3) 3741 3567.86 7450.26 6546.33 (5483.03, 7492.56) (5547.66, 7545.01)
8(1&3) 2706 2396.47 7685.67 5967.99 (4569.29, 7034.11) (4761.99, 7123.98)
9(2&4) 3919 3146.32 7458.32 6520.53 (5441.17, 7507.4) (5494.93, 7546.13)
10(3&2) 3956 3855.48 7014.56 7206.24 (6017.29, 8223.99) (6118.41, 8294.07)
11(1&4) | 2935 2613.19 7681.10 5925.3 (4501.7, 6951.36) (4706.04, 7144.55)
12(3&3) | 4826 3923.08 6507.43 6272.36 (5425.78, 7043.76) (5470.94, 7073.79)
13(4&2) | 3592 4032.21 6407.01 7488.88 (6320.13, 8564.61) (6371.31, 8606.45)
14(3&4) | 4760 3779.84 6474.93 6228.21 (5250.68, 6983.21) (5374.47, 7081.96)
15(4&3) | 4494 3661.65 6012.94 6618.93 (5679.58, 7459.69) (5731.9, 7505.96)
16(4&4) | 4575 3997.81 5989.61 6564.52 (5684.77, 7434.84) (5687.25, 7441.79)
17(2&5) 2635 2813.81 6164.60 4922.43 (3891.81, 5729.72) (4010.59, 5834.27)
18(2&6) | 1621 1994.16 6729.40 4914.38 (3530.94, 5814.8) (3787.45, 6041.3)
19(1&5) | 2042 1768.52 6205.05 4293.94 (3188.51, 5029.5) (3372.71, 5215.18)
20(1&6) 1131 2188.47 6786.32 4318.53 (2824.69, 5168.59) (3149.93, 5487.13)
21(3&5) 3088 2277.86 5500.48 4771.73 (3617.16, 5637.14) (3753.07, 5790.38)
22(3&6) 1791 2860.75 5749.03 4629.36 (3285.56, 5255.69) (3674.89, 5583.83)
23(4&5) 2971 3249.02 5154.53 5112.70 (4059.73, 6014.14) (4123.92, 6101.48)
24(4&6) | 2004 2489.78 5238.38 4871.62 (3496.9, 5645.11)  (3795.25, 5947.98)
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Table 4: This table reports the sample size, nonparametric estimate, GPD estimate with a

static threshold, and three-step estimate of the conditional ES at 97.5% level, and the two 90%

confidence intervals using the three-step inference and random weighted bootstrap method with

B = 5000 for each category.

Three-step Estimate

Category | Size | Naive ES(0.975|x;) | GPD ES(0.975|x;) ]:35(0.975\33]') I, (0.9|x;) 1(0.9|x;)
1(2&1) 1504 340068 213577 211909 (201877, 219747) (203154, 220663)
2(1&1) 1283 297957 288678 285943 (272539, 294759) (275098, 296788)
3(3&1) 1643 245718 209312 209001 (199509, 215671) (201110, 216892)
4(2&2) 3167 244731 208108 207959 (198627, 216187) (199315, 216603)
5(4&1) 1312 254996 218490 219198 (209343, 226876) (210520, 227877)
6(1&2) 2160 183670 285244 284079 (271570, 294098) (273312, 294847)
7(2&3) 3741 179336 203247 201845 (194831, 207806) (195428, 208263)
8(1&3) 2706 143020 279994 277566 (267811, 285216) (269098, 286033)
9(2&4) 3919 169734 205230 203212 (195449, 209448) (196323, 210101)
10(3&2) | 3956 201986 202112 203263 (195999, 210006) (196311, 210216)
11(1&4) | 2935 170819 282267 279076 (268986, 286825) (270222, 287931)
12(3&3) | 4826 189645 197844 197751 (192449, 202328) (192856, 202646)
13(4&2) | 3592 187990 209337 211548 (203613, 218502) (204214, 218882)
14(3&4) | 4760 176240 199457 198932 (192902, 204176) (193321, 204544)
15(4&3) | 4494 184675 205249 206149 (200382, 211158) (200777, 211521)
16(4&4) | 4575 188146 206674 207259 (200802, 212638) (201369, 213148)
17(2&5) | 2635 150802 199861 199277 (192023, 205908) (192435, 206119)
18(2&6) | 1621 114702 209234 202354 (189099, 212079) (191088, 213620)
19(1&5) | 2042 91678 276712 275253 (265056, 283765) (265910, 284597)
20(1&6) 1131 187416 287839 278940 (263703, 290461) (265781, 292098)
21(3&5) 3088 136175 194506 195040 (188937, 200369) (189296, 200784)
22(3&6) | 1791 127544 201763 197437 (186030, 205772) (187788, 207087)
23(4&5) | 2971 153992 201709 203127 (196707, 208532) (197246, 209007)
24(4&6) 2004 155001 207747 205121 (194499, 213067) (195975, 214267)
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Figure 1: PP-plots for the GPD estimates with a dynamic threshold (quantile regression) in the

left panel and static threshold (90% quantile of all positive losses) in the right panel.
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