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Abstract

We compute the value-at-risk of financial losses by fitting a generalized Pareto dis-
tribution to exceedances over a threshold. Following the common practice of setting
the threshold as high sample quantiles, we show that, for both independent obser-
vations and time-series data, the asymptotic variance for the maximum likelihood
estimation depends on the choice of threshold unlike the existing study of using a
divergent threshold. We also propose a random weighted bootstrap method for inter-
val estimation of VaR, with critical values computed by the empirical distribution of
the absolute differences between the bootstrapped estimators and the maximum like-
lihood estimator. While our asymptotic results unify the cases of fixed or divergent
thresholds, the finite sample studies via simulation and application to real data show

that the derived confidence intervals well cover true VaR in insurance and finance.

Keywords: ARMA-GARCH models; Generalized Pareto distribution; Random weighted

bootstrap; Value-at-risk; Weighted empirical process



1 Introduction

Measuring risk and quantifying its uncertainty is crucial in insurance and finance. A
well-studied and widely employed risk measure is the so-called Value-at-Risk (VaR) at
level 1 —p € (0,1), which is defined as the quantile of the distribution function of a risk
variable or a portfolio; see Duffie and Pan (1997) and Jorion (2006) for an overview of VaR.
Given n identically distributed observations, the VaR at level 1 — p can be well estimated
nonparametrically by the sample quantile when n(1 — p) is neither close to n nor zero.
Quantifying the inference uncertainty can be done via direct estimation of the asymptotic
variance or resampling methods such as the bootstrap and the empirical likelihood in Owen
(2001).

In practice, the level 1—p of VaR is often set to be close to one by regulators such as 99%
and 99.9%. Therefore, when the sample size is not particularly large, the nonparametric
VaR estimation is inefficient and may seriously underestimate the risk. An obvious way to
improve inference efficiency is to fit a parametric distribution family to the risk variable. It
is known that efficient likelihood based inference mainly utilizes the information around the
center of data. As 1 —p is close to one, the information in the upper tail of the distribution
becomes more crucial to the study of VaR. Therefore, one may build a parametric model
for observations above a threshold to ensure that the upper tail’s fitting is accurate and
robust. This raises an interesting question on how to model the excess distribution above

a threshold given by
F(x 4+ u) — F(u)
1 — F(u)
where zp is the right endpoint of the distribution function F(z) = P(X < z), i.e., zp =
sup{z : F(z) < 1}.
As stated in the Extreme Value Theory, see Resnick (1987) and Embrechts et al. (1997)

Fuz)=P(X —u<z|X >u)=

for 0<x<axp—u,

for an overview, when F'is in the domain of attraction of extreme value distribution, there

exists a function S(u) > 0 such that

lim  sup [|Fu(z)— G, pw)(z)] =0, (1.1)

U=TF 0<g<zp—u
where G, ) (%) = 1— (1+~x/B(u)) Y7 for 1+~z/B(u) > 0 is the cumulative distribution

function of the generalized Pareto distribution with the shape parameter v and scale pa-
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rameter [(u); see Balkema and de Haan (1974). Fitting a generalized Pareto distribution
to exceedances over a high threshold has been studied in the literature. For example, Smith
(1987) and Drees et al. (2004) have studied the maximum likelihood estimation when a de-
terministic divergent threshold and a random divergent threshold are chosen, respectively;
see also Davison and Smith (1990). The choice of the threshold depends on the approxima-
tion errors in (1.1), which generally is defined as a second order regular variation. Typically,
a large threshold gives a big variance, and a small threshold leads to large estimation bias.
Given the difficulty in choosing this divergent threshold, researchers often advise practi-
tioners to plot estimators against various thresholds and find a relatively stable region. In
this case, the estimator has a non-negligible bias, which complicates interval estimation.

Nevertheless, as a rule of thumb, practitioners often ignore the asymptotic bias and
pick up 90% or 95% sample quantile as a threshold; see the discussions in Section 13.6.1 of
Hull (2018). This is especially the case when modeling the so-called dynamic tail risk by
some critical economic variables. Some applications of the generalized Pareto distribution
include Rootzén and Tajvidi (1997) and Brodin and Rootzén (2009) for wind storm losses,
Barro and Jin (2011) for economic disasters, and McNeil and Frey (2000), Chavez-Demoulin
and Embrechts (2004), Bollerslev and Todorov (2011), and Allen et al. (2012) for financial
time series. For dynamically modeling the generalized Pareto distribution, we refer to
Chavez-Demoulin et al. (2005), Kelly and Jiang (2014), Chavez-Demoulin et al. (2014),
and Massacci (2017) for financial returns and Hall and Tajvidi (2000) for climate data.

In reality, practitioners often choose the threshold as 90% or 95% sample quantile and
ignore the estimation bias caused by the model approximation error. Hence, it becomes
natural to model exceedances over an (unknown) fixed threshold by a generalized Pareto
distribution. In other words, instead of fitting a parametric model, it is good to fit
the exceedances over a threshold by the Generalized Pareto distribution and model the
data below the threshold nonparametrically like Smith (1987) and Drees et al. (2004) for
independent data, McNeil and Frey (2000) for an ARMA-GARCH model, and Martins-
Filho et al. (2018) for nonparametric regression. Under such a model assumption, when
the threshold is chosen as a sample quantile, inference for parameters and VaR will indeed

depend on the random threshold selected, which is in stark contrast with the existing study



of using a divergent threshold. A particular semi-parametric model we focus on is

0G(x)

(zo)
F(r) = -1/
1—(1—9)(1+W—‘“)) T it > 1,

if ¢ <z

@

(1.2)
where 6 € (0,1), and G is a distribution function.

This paper aims to provide a comprehensive inference for such a model based on inde-
pendent observations and time series data. We focus on VaR, but the developed methodolo-
gies can be extended/applied to other tail-related risk measures such as expected shortfall
and expectile. As it is arguably reasonable to assume that insurance losses are independent,
we first derive the asymptotic distribution for parameters and risk estimation based on in-
dependent data. We develop a unified inference theory for a universal threshold statistic,
which can be a deterministic threshold based on prior knowledge, an order statistic based
on the observations, or a more sophisticated quantile estimator. To quantify the inference
uncertainty, we investigate the naive bootstrap method and the random weighted bootstrap
method.

For dependent data such as financial time series, we propose considering conditional VaR
by combining an ARMA-GARCH model and the semiparametric model for the residuals.
To ensure the normality of VaR estimation for the ARMA-GARCH model with heavy-tailed
errors, we propose a two-step self-weighted procedure to estimate the ARMA-GARCH
model before fitting the residual distribution semiparametrically. We first estimate the
ARMA parameters by a self-weighted least-squares method. Then, the GARCH parameters
using the self-weighted exponential quasi-likelihood in Zhu and Ling (2011) with the least-
squares ARMA residuals. Our approach maintains the natural condition that the ARMA
errors have a zero mean, rather than a zero median in the previous paper, when relaxing
the kurtosis condition on GARCH errors. To quantify the uncertainty of the conditional
VaR estimation, we employ the random weighted bootstrap method, which is much less
computationally intensive than the residual based bootstrap method.

The existing methods of using a divergent threshold face the severe difficulty of choos-
ing the threshold. When one concerns interval estimation, the efficient way is to choose a
larger threshold such that the estimation bias is negligible. This essentially assumes the

exceedance follows an exact Generalized Pareto distribution. In other words, when the
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exceedance has an approximate Generalized Pareto distribution, our proposed point esti-
mation and interval estimation are still valid when we choose a divergent threshold larger
enough such that the model approximation error is a smaller order of the estimation error.

We organize this paper as follows. Sections 2 and 3 present our methodologies and
asymptotic results for independent observations and an ARMA-GARCH model, respec-
tively. Sections 4 and 5 contain simulation study and data analysis. Section 6 concludes.
The detailed proofs of the theorems are available in the supplement. We denote by A” the
transpose of a matrix or vector A. Throughout this paper, we denote < as convergence in
distribution and = as convergence in probability. All the asymptotic results hold as the

sample size n — oo.

2 Methodologies and Asymptotic Results for Inde-
pendent Data

Consider a random variable X € R with distribution function F' and quantile function
Q(-) = F<(+). For a threshold uy = F* (1 — o) with exceeding probability ag € (0,1), we

make the following assumption for the exceedance X — uo| X > uy.

Assumption 1 (Generalized Pareto Model). There exist a shape parameter 75 € R and

a scale parameter o,, > 0 such that

—1/70
(1 + %) (1] 7£ Oa

P(X > uy+ x| X > up) =
exp (—ﬁ) Y = 0.

where ap = P(X > wug) and we require 1 + oz /04, > 0 for 79 # 0 and z > 0 for 7y = 0.

The shape parameter v is called the extreme value index for the exceedance X —uo| X >
ug. When v9 < 0, there is a finite right endpoint v* = wug — :ﬂol in the support of the
distribution of X, i.e. F(x) = 1 for all # > uw*. When v = 0, X — ug|X > up has an
exponential distribution with mean o,,. When 79 > 0, X — uo|X > up has a heavy tail
with up to %—th finite moments. Note that we write o,, instead of o (uy).

Observe that for any higher threshold u > ug, the exceedance X —u|X > u again follows

the generalized Pareto distribution with the same shape parameter vy but a different scale



parameter o, = (%)VO Oag, Where a = 1 — F'(u) is the exceeding probability. Specifically,

o —1/70
<1+:o%) ’ 70#07

P(X >u+2|X >u) =
o (Z2), 10=0

A direct calculation yields the (1 — p)-th quantile of X, i.e., the VaR at level 1 — p takes

the form

VaRy (1 —p) = Q(1 —p) = u+%<<%>0_1> if 7y #0,

u + o, log (%) if =0,
for all given p € (0, ayp).

As Assumption 1 above does not model the distribution below the threshold paramet-
rically, computing VaR(1 — p) based on (2.1) is a semiparametric method and achieves
a good balance between robustness and efficiency. It is easy to check that model (1.2)
satisfies Assumption 1. Unlike the existing studies on fitting GPD to exceedances over a
divergent threshold, we investigate the inference based on a non-divergent threshold. In
this case, the threshold may play a role in quantifying the inference uncertainty of VaR in
(2.1). On the other hand, if the threshold diverges fast enough such that the estimation
bias is negligible, then the model approximation error is negligible. Hence, the developed
method for fitting an exact Generalized Pareto distribution is valid for using a larger di-
vergent threshold under the setting that the exceedance has an approximate Generalized
Pareto distribution.

Suppose we have a random sample X, ..., X, from F satisfying Assumption 1. Let the
order statistics be Xy, < ... < X,,.,. Take a large threshold, say, u,, either deterministic

or random, corresponding to the sample exceeding probability
Q ! i (X ) (2.2)
Oy = — i — Un), .
i

where (x) := 1(z > 0) denotes the step function taking value 1 on the positive line and
value 0 otherwise. Denote the adaptive exceeding probability a,, = 1 — F'(u,,), which may
be either deterministic or random depending on our choice of the threshold ,,.

Given an exceedance X; — u, = x > 0, the log-likelihood function for the Pareto



parameters v := (v,logo)? € R? is given by

1
l(v|z) = — {ylog (1 + ?) + logo} :

Note that the above function is well defined for v = 0 by continuity as
T x
[((0,logo)"|z) = == —logo.
o

Thus, the full log-likelihood function given X; — u,, ..., X, — u, becomes

25 (| X — uy),

resulting in the score equations

Z(S V|X— 2(5 n)s1(w| X —uy,) =0,
Z(S V’X— 25 i — Up)S2 (V| X; — =
n n)o2 un) Oa

Ologo

where

1 X xr/o x/o
s1(7,logolx) = ? (log (1 —|—»yg> _ L) _ /

1+vz/o 1+~z/o’
x/o

s2(7,logofz) = =1+ (1 +7) T 2/0

and for v = 0 the above equations take the form

\2 =x

1
51(0,logo|z) = 5 (;) - s2(0,1logo|x) = —1 + g.

(2.3)

(2.4)

In this paper, we only consider the regular case, i.e., 7 > —% as in Davison and Smith

(1990) and Drees et al. (2004), and it is often the case of 79 > 0 regarding heavy-tailed

losses in insurance and finance; see also Biicher and Segers (2017) for more discussions. For
dealing with the irregular case, i.e., vo < —1/2, we refer to Smith (1985), Zhou (2009), Zhou
(2010), and Peng and Qi (2009). Davison and Smith (1990) disregard the randomness of

threshold while Drees et al. (2004) obtain the asymptotic normality of MLE for a divergent

random threshold (i.e., @ = @(n) — 0 as n — oo) under (1.1), which holds for Assumption

1. Here, we present a universal asymptotic normality result under Assumption 1 in the

sense of unifying the cases of using either a deterministic threshold or a random threshold:

7



Assumption 2 (Universal threshold statistic). The threshold w, = u,(Xi,...,X,) is an

arbitrary measurable statistic such that w, 5 Q(1 — &) for some a € (0, ayp).

The assumption above allows a flexible choice of the threshold u,, for the practitioners, who
may choose a deterministic threshold based on prior knowledge, an order statistic based
on the observations, or an even more sophisticated quantile estimator.

Normalizing the estimators with the adaptive values 0(()") = (70, log 04, log ;) rather
than its limit @y = (7o, log og,log @), we have a unified inference procedure for a general

threshold statistic u,,:

Theorem 1 (Universal inference for generalized Pareto parameters). Suppose that As-
sumption 1 holds with a true parameter ~y > —% and the choice of sequence w,, satisfies

Assumption 2.

(1) With probability tending to 1, there exists a mazimum likelihood estimator /H\n =
(Y, log o, log @), solving the score equations (2.2)— (2.4) simultaneously, in the local
parameter space

@;:{eeR%HG—OW

<<n—“%f}, (2.5)

for any ¢ € (0,min{v, + 1/2,1/2}), where 0(()”) = (Y0,log oy, ,loga,) denotes the

adaptive true values.

(11) Any mazimum likelihood estimator sequence from part (1) is asymptotically normal in

such a way that
Vna (% - Yo, In 1, Gn _ 1) LN |0
o «

where the inverse Fisher information matriz

e e

with 7 = X — Q(1 — ).

In practice, it is common to fix a proportion of data, say, & € (0, 1) and use the [nalth
largest observation u, = X,,_juqa):n as the threshold. It is then easy to deduce the following

corollary.



Corollary 1. Under the conditions of Theorem 1 with u, = X,_[na):n, as n — 00,

Fn — Yo (14 0)? —(1+40) 0
. d
na o —1 = N10, | —(1+7) 201+v)+%@(1—-a) —p(l-a)
“- o ew 1-a

Remark 1. Our asymptotic variance formula is unified for the threshold being finite or
divergent and deterministic or random when the exceedance follows a generalized Pareto
distribution. In the supplement, we deduce that the results remain true if @ = @, is an
intermediate sequence such that @ — 0 and na — oo. If we rewrite Assumption 2 as
u,/Q(1 — @) LN 1, one may approximate @ by its limit 0 if necessary. When @ is vanishing,
it is easy to allow the true threshold g to vanish as well as long as a/«q is bounded strictly
below 1. It is clear from the proof that our results remain true if the approximation error
between the exceedance distribution and a generalized Pareto distribution is a smaller order
than the parametric rate. More specifically, suppose our observations (X f”), e 7XT(L")) come

from an triangular array of i.i.d. random variables and denote their common distribution

as F™ . Our inference remains valid if our generalized Pareto model is approximately true,

that is,
1 - F (3)(95) 1
u o —\—1/2
sup |———— — 1| = o((na , 2.6
T, ) ((na)~/%) (2.6)
where FQEQ) (x) = EW@-EMw) epotes the excess distribution function, the exceeding

@

probability ag = 1 — F™(uy) may be either fixed or vanishing, and G 04, denotes the
generalized Pareto distribution with the shape parameter v and scale parameter o,,. For
example, consider the universal approximation (1.1) and take a sufficiently large sequence
u = u(n) — 0o as n — 00, our results remain true for the array data
Xi(n) _ Xi—u
B(u)

which satisfies condition (2.6) under the high-order regular variation conditions for X; as

,1=1,...,n,

shown in, e.g., Drees et al. (2004). In summary, our fixed-& approach in the above theorem

is robust and covers more practical applications.

Remark 2. As argued by Dombry (2015), there is no guarantee that the global maximum

likelihood estimator is unique. Even if a global MLE is attainable, the classical regularity
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conditions in Cramér (1946) are not fulfilled, and it requires a detailed verification of
the local asymptotic normality (LAN) conditions in Biicher and Segers (2017). Also, the
global estimation theory in the above paper does not apply as our ‘true’ values 0((]”) are
a sequence of adaptive values depending on the (random) threshold statistic rather than
a fixed point. Therefore, we consider a local maximum likelihood estimator and leave
the global estimation theory for future research. Note that this challenge remains for a
divergent threshold, as the asymptotic normality results in, e.g., Drees et al. (2004) are not
guaranteed to hold for an arbitrary global estimator sequence; see, e.g., Zhou (2009) and

Zhou (2010) for comments.

Plugging the estimator (3, 0,, @,) from Theorem 1 in VaR formula (2.1), the MLE of
VaRx(1 — p) is given by

VaRx (1 — p) = u, + O <<%)a - 1) . (2.7)

Tn p

It should be interpreted as @X(l —p) = u, + o, log <%"> by continuity if 7, = 0.
The asymptotic normality of the quantile estimator (2.7) then follows directly from the

continuous mapping theorem, since we can expand the true quantile in (2.1) similarly by

VaRy (1 — p) = uy + 20 (<%>% - 1) , (2.8)

Yo p

even with a random adaptive exceeding probability «,,, conditional on the event a,, > «y,
which occurs with probability tending to 1. Again, our quantile inference is asymptotically

correct for a universal threshold statistic.

Theorem 2 (Universal inference for high quantile). Under the conditions of Theorem 1,

for every p € (0, ),

VIR (VaRx(1—p) ~ VaR(1 - p) % N (o,q (5) (%) +1- a>

Op

as n — 0o, where for vy # 0, the vector function

t 1 1— ¢\
q(t) = (/ (§>WO og s ds, ) , t>0,
Y S Yo

and it should be interpreted by continuity as (% (log t)2 , log t)T when vo = 0.
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Remark 3. Ignoring all common factors, one may search for the best threshold as w, =

Xy—fnap):n With X in a neighborhood of 1 minimizing the asymptotic variance

1/ ra g

S (@NT TN + 1),

where Z—1 and ¢ may be constructed using some preliminary estimate 7 of the extreme
value index 7 as given below. If necessary, one may update 7 with the new choice of A until
convergence. On the other hand, it is important to develop a distribution-free goodness-
of-fit test for fitting a generalized Pareto distribution to exceedances over a threshold. It

is challenging to extend the existing parametric testing methods in, e.g., Koul and Ling

(2006) to our semi-parametric models, which will be our future research.

It is straightforward to quantify the uncertainty of VaR x(1—p) based on the normal ap-
proximation. More specifically, we estimate & by @, (if @ is unknown), the scale parameter
op by

~

Op = a\n (an/p)% )

~1q (%) +1—a,
p

s | WHAR -+
_<1+'/7\n) 2(1+:Y\n)

Hence, a normal approximation confidence interval of VaRx (1 — p) with level a is

g Z a ~ An an/\ — z a R An /'?n/\
Iya(a) = |VaRx(1 - p) - 2225 (O‘—) Py VaRx (1 —p) + ~ 225 (O‘_) Tn],

and the limiting variance by

Y
I
L)
VRS
<19
N——
~
)

with

vna,

p Vna, "\ p
where 2(144)/2 is the 1JrTa—quamtile of the standard normal distribution. Unfortunately, our

simulation study below shows that this interval has a poor coverage probability in small
samples, which calls for more efficient methods.

To improve finite-sample coverage, we propose a resampling method called the random
weighted bootstrap procedure. The random weighted bootstrap method is less computa-
tionally intensive than the naive bootstrap method when we estimate risk based on a time
series model (in the next section). Zhu (2016, 2019) recently applies this method to conduct

a Portmanteau test and infer autoregressive models.
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e Step B1) Draw a random sample with sample size n from a distribution function

with mean one and variance one such as the standard exponential distribution, say

b b
O LD,
e Step B2) Choose a threshold statistic uﬁf’), possibly dependent on f&b), ey ® Solve

the following random weighted score equations for &, v, and logo:

Zn:& (6(X; —ul)—a) =0 (2.9)

> &d(Xi = ul)si (] X; —ulf)) = 0, (2.10)
=1
D &6(X = uP)sy(v] X — ul)) = 0. (2.11)
i=1

) 2(0)

Denote these estimators by at , n, and 37(117), we have

~(b)
VaRy (1 —p) = ul) + (@) /p)™ —1).

n

— (b
e Step B3) Repeat the above two steps B times to obtain {VaR;)(l —p)}E,. Let

Dy.p < --- < Dg.g denote the order statistics of

—— (b
VaRy (1 - p)

. b=1,...,B,
VaRX(l—p)

log

and let D(l) << D(B) denote the order statistics of

VaRy (1 - p)

log | —
VaRx (1 - p)

Hence, the confidence intervals with level a for log(VaRx (1 — p)) are
I (@) = |log(VaRx(1 = p)) = Dipssey g, log(VaR(1 = p)) = Dyposes]
and

[RWBQ(OJ) = |:10g<@x(1 —p)) — D(Ba), log(@x(l — p)) + D(Ba):| .

The following theorem establishes the validity of our random weighted bootstrap method.
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Theorem 3 (Random weighted bootstrap). Suppose the conditions of Theorem 1 hold.
For an arbitrary bootstrap threshold statistic ul = u, + op(1) and let o =1-F (u%b)):

(1) With probability tending to 1, there exists a random weighted mazimum likelihood
~(b
estimator 97(1) = (/’?éb),logﬁéb),log&\%b)), solving the score equations (2.9)— (2.11) si-

multaneously in the local parameter space
ol = {0 eR?: He - 98”“ < n*1/2+€} , (2.12)

for any e € (0,min{vo + 1/2,1/2}), where Oéb) = <70,10g o m,log ozs))) denotes the

adaptive true values.
(i1) For each probability level a € (0,1),
P (@X(l —p) —VaRx(1 —p) < cn(a)) —1—a,
where
cp(a) = inf {x P (\fﬁ{(b)(l —p) — \fa}{X(l —p) <z|lXy,... ,Xn> >1-— a} :

— — b
The result remains true if VaRx(1—p), VaRx(1—p), and VaR( )(1—p) are substituted
by their logarithms, provided that VaRx (1 — p) > 0.

Remark 4. The random weighted bootstrap intervals for the extreme value index 7 is also

valid. For each probability level a € (0,1), P (7, — v < ¢n(a)) = 1 — a, where

n

Cny(a) =inf {z: P (ﬁ(b) —p < z|X1,..., Xp) >1—a}.

The result remains true if we substitute vq, 7, and %’” by their logarithms, provided that
Y > 0. The random weighted bootstrap intervals for the adaptive scale parameter o,, and
the adaptive exceeding probability «,, are asymptotically correct if the difference between
the bootstrap threshold and the original threshold is asymptotically negligible in the sense
that ul) = u, + op((na)=1/2).

Remark 5 (Naive bootstrap). In the supplement, we show that Theorem 3 and Remark 4
remain true if replacing the random weighted bootstrap statistics with the naive bootstrap
statistics. In simulations, we observe comparable performance between these two methods

for independent data.
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3 Methodologies and Asymptotic Results for ARMA-
GARCH Models

It is reasonable to assume that insurance losses happen independently, but financial losses
often exhibit some stylized facts such that time dependence, heavy tail, skewness, and
persistent volatility; see, e.g., the survey Cont (2001). Since the seminal work of Engle
(1982) and Bollerslev (1986), it has become a common practice to model a financial time

series by an ARMA-GARCH model given by

=p+ Z;il OiYe i + 23'2:1 Vi + &
5t:\/ht77ta h —W+Zz 1 zst 2+2] l—j—t J?

where w > 0,a;, > 0,b; > 0, and {7} is a sequence of i.i.d. random variables with zero

(3.1)

mean and variance one. In this case, the so-called one-step ahead conditional VaR is more
useful in forecasting risk and is defined as the conditional quantile of Y, ,; given the past
information up to time n, i.e., F,, = o(...,Y,_1,Y,). Hence, the one-step ahead conditional

VaR is
VaRy, (1 —p u+2@wu+2%m”+wwwﬁl— (3.2)

and note that h is F,,—measurable.

g

We remark that McNeil and Frey (2000) consider the model above, and Martins-Filho
et al. (2018) study the nonparametric regression, which covers AR-ARCH models but not
ARMA-GARCH models. Both papers only consider the case of divergent risk level, i.e.,
p = p(n) — 0 as n — oo. In this case, the estimation for the ARMA-GARCH model
in McNeil and Frey (2000) and the kernel smoothing estimation for the conditional mean
and conditional standard deviation in Martins-Filho et al. (2018) do not play a role in the
asymptotic variance of the VaR estimation. Unlike these two papers, we aim to allow both
fixed and divergent risk levels and consider the uncertainties in fitting both the ARMA-
GARCH model with fewer finite moments and the GPD to residuals.

As aforementioned, regulators often set p close to one, making it useful to model 7,

over a high threshold by a GPD parametrically. To infer the above conditional VaR, we
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need to estimate the unknown parameters in (3.1) and (2.1). An obvious inference method
for model (3.1) is the so-called quasi maximum likelihood estimation. The asymptotic
normality of the quasi-Gaussian maximum likelihood estimator is available in Francq and
Zakoian (2004), which requires finite fourth moments of both ¢; and 7;. However, in
practice, it is quite often that > .  a; + ijl b; is close to one, making it problematic
to assume Ee} < co. When Enj} < oo, Ling (2007) proposes a weighted quasi-maximum
likelihood estimation to allow Ee} = oo for having a normal limiting distribution. However,
the asymptotic normality of these estimators may be lost when En} = oo, see, e.g., Hall
and Yao (2003). To further allow both En! = oo and Ee} = oo, Zhu and Ling (2011)
proposed a self-weighted exponential likelihood estimation method, which has a normal
limiting distribution and requires E|n;| = 1 and zero median of ;. Changing En? = 1
to E|n;| = 1 requires a scale transformation of h;, which does not affect the inference of
the conditional VaR, however, changing zero mean of 7, to zero median involves a shift
transformation, which makes the inference of the conditional VaR infeasible.

Here, we instead propose a three-step inference of the conditional VaR (3.2) under
model (3.1), which allows both Ee} = oo and Enj} = co. This is important in estimating
VaRy,,(1—p) when p is treated as a fixed number rather than a number converging to zero
as n — o0.

We assume that Eln;| = d > 0 unknown and put X; = n;/d, hy = d*h,, w = wd?,
a; = a;d*, and b; = b;. Then (3.1) is equivalent to

Vi=p+ 20 oY+ 30 e e

&t = \/EXt, ht =w + Z::l aisf_i —+ Zj:l bjhtfja

where E|X;| = E|n|/d = 1. The coefficients remain the same in the ARMA model for Y;,

(3.3)

and we can rewrite (3.2) as

q1 q2
VaRY»ﬂ(l - p) =p+ Z gbiYnJrlfi + Z ijnJrl—j + v/ hn+1vaRx(1 — p)
i=1 =1

Observe that (3.3) is the model studied in Zhu and Ling (2011), but here we maintain the
zero mean condition on X as required by the original model (3.1).

Let ¢ = (¢", ¢ )7 denote the parameters in (3.3) with ¢ = (u, ¢1, ..., Bgys V1, - -+, V)"

and ¢, = (w,a1,...,a,,b1,...,b,)T. Before moving on to the quantile inference, we first
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develop a two-step estimator of 1) that is asymptotic normal without requiring any fourth
moment condition.
Given the observations Y7, ...,Y, and the initial value Yy = {Y; : t < 0} generated by

model (3.1), we can write the parametric model (3.3) as

a(@) =Yi—p—) ¢Yii— > Wie (@), () =w+ ) aei i(d) + Y bk ()
i=1 J=1 i=1 j=1

Xi (Y) = ei(d) /v ().

Obviously, g, = (@), he = hy(vpy), and X; = X, (2b,), where ¢, and 1, = (¢, drg)”

denote the true values of the parameters. In practice, however, we do not have the initial
values Yy = {Y; : t < 0}, which makes the calculation of &;(¢), k(1)) and X; (1)) infeasible.
To make the estimation feasible, in what follows, we replace Yy = {Y; : t < 0} by zeros
like Ling (2007) and Zhu and Ling (2011) and instead define the feasible parametric model
£(®), he(v), X, (1) based on the new initial values.

First, we estimate ¢ by the following self-weighted least squares estimator

= argmin 307210, (3.4
where {w;} are some proper weights designed to reduce the moment effect of {h;}, and
gi(¢) is the feasible parametric model as defined above. The key idea in constructing such
a weight function wy is to bound Y ;°, p'|Y;_;| for some p € (0,1) and ensure that it is well-

defined for all t > 1, where p depends on the underlying ARMA-GARCH model. Same as

in He et al. (forthcoming), we use the feasible weight

t—1 -1
Wy = {max (1, Z e—logZ(i+1)|y;_i|> } 7
i=1

which is a truncated version of the oracle weight

- 1
wy; = {max (1, Z e_logg(i+1)|§/t_,-|> } )
i=1

Second, we define the self-weighted estimator c?bh of ¢;,, which minimizes the self-

weighted negative log quasi-exponential-likelihood

Z @l (6119) . T(dild) =log[hi (6. 61) +
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where aﬁ and w, are the least-squares estimator and self-weights from the first step, respec-
tively, and h (¢, @,,) is the feasible parametric model.
~ ~T ~T\T
To establish the joint asymptotic normality ¥ = (q’) ,gz’)h) , we need the following

additional regularity conditions.

Al. Let O¥ = 0% x ©% C Rute+l x [0, 00)"+**! denote the parameter space for ¥ =

(q{)T, qz’)z)T Assume that ©¥ is compact and the true value of 1) is an interior point.

A2. For each ¢ € ©%, 1 =371 2" # 0 and 14 3% 4527 # 0 when 2| < 1, and
L= ¢i2" =0and 1+ 3%, 42/ = 0 have no common root with ¢,, # 0 and
Vg, 7 0.

A3. For each ¢, € ©%, there is no common root for equations Y, a;z* = 0 and
> 5-1bj2) = 0. Further, 337 a; # 0, a, +bs # 0, and 377 b; < L.
Ad. Ee? < co.

A5. Xy = n/E|n| and {n:}}-, is a sequence of independent and identically distributed
random variables with mean zero, variance one, and continuous density function f

such that f(0) > 0 and sup,.p f(z) < cc.

Conditions A1-A3 are standard stationarity, invertibility, and identification conditions for
ARMA-GARCH model (3.3) as in, e.g., Ling (2007). Condition A4 is equivalent to requiring
that there is no unit root in the underlying GARCH process (3.1), that is,

T

ZQi—FiZ_Jj < 1.
j=1

i=1
By carefully checking our proofs, it can be seen that we may further relax the condition
down to the first moment, that is, Ele;| < oco. This means that our results extend to
IGARCH model with >"7_, Qi—f-Z;:l b; = 1 under suitable conditions; see, e.g., part (iii) of
Theorem 2.1 in Ling (2007). The second moment condition simplifies our later inference for
the generalized Pareto model, and therefore we keep it throughout for simplicity. Condition

A5 is similar to Assumption 2.6 in Zhu and Ling (2011), but we maintain the natural

condition that X; has a zero mean rather than a zero median.
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Theorem 4. Assume conditions A1-A5 hold.
~ o N\ T
(i) The self-weighted estimator is consistent, that is, ¥ := <¢T, cb:,f) LN (7S

(11) The self-weighted estimator is asymptotic normal in such a way that

Vi (% —vo) SN (0,370,

with
221 222 Q21 Q22

where the sub-matrices

Oe; Oe 1 wt Oh; Oh 1_ [w* Oh, Oh
YRt oy, — CR (e ) oy TR (e 2
: (wtﬁd)@qu)’ 28 (h%amaqf’ T8\ 1 0y 0] )
@f—:t 85,5 ]Eth -1 ’LU? aht 8ht
| Q= —1t . E|Lt == d
aqsaﬂ’ 2Ty n o, ogr] "

o 2 o ) wf 6ht (%t
Qo1 =E [ X7 (1(X; > 0) — 1(X, < 0))] - E {2\/53% aqu} :

Next, we estimate the high quantile of X; under the generalized Pareto model with the

O =EX?-E {w?ht

additional assumption
A6. X, = n,/E|n,| satisfies Assumption 1 with 7o € (0, 3) and scale parameter o4, > 0.

Note that 7o < 1/2 above ensures En? < oo. Let le < ... < )A(n:n denote the order
statistics of residuals {X’t = X,(p) i t=1,... ,n}, where X,(-) is the feasible parametric

model as defined above. We then choose a threshold statistic such as
Up = )?n—[no_z]:nv (36)

corresponding to an adaptive tail probability level o, = 1 — F(u,), where F' denotes the
distribution function of X;. Under the conditions of Theorem 4, we show that the threshold

estimator (3.6) is consistent, that is,
Up Q(1 — @), and equivalently o, 5 a, (3.7)

where Q(-) = F*(-) denotes the quantile function of X;. In general, our theory allows

an arbitrary threshold statistic w,, that satisfies our Assumption 2 above. With a general
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threshold statistic, we estimate the adaptive exceeding probability «,,, the shape parameter
7o and the scale parameter o,, by solving equations (2.2)—(2.4) with X; therein replaced
by the residual X, here. Denote the estimators by @, 7, and @ respectively, which gives the

quantile estimator
/aTZ{X(l —p) =u, + —i ((
Y

Thus the estimator for VaRy,,(1 — p) is given by

q1 q2
VaRy,,(1 —p) =pu+ Z GiYni1-i + Z Vi€nt1-5(@) + 1/ (¢, ¢h> VaRx(1 —p). (3.8)
i=1 j=1
Note that u,, = un(@), ~N= ‘y\({ﬁ) and 0 = 8(1/,5) all depend on the self-weighted estimator
’IZ, whose effects do not fade away for any finite p € (0, 1).

Theorem 5. Assume conditions A1-A6 hold.

(1) With probability tending to 1, there ezists a mazimum likelihood estimator O = (7,log o, log @)
solving the score equations (2.2)- (2.4) simultaneously for {X;} in the local parameter
space

6 = {0€R3 : He—eg’”

< n_1/2+5} ,

for any ¢ € (0,min{vyy + 1/2,1/2}), where Oén) = (Y0,logog,,,loga,) and o, =

1 — F(uy) denote the adaptive true values.

(1) Any mazimum likelihood estimator sequence from part (i) is jointly asymptotic nor-

mal, in such a way that

vaa |2l s o () a (5))

6— 6"
where
b 0 0 aQ  aosl's 292Ty
S=| 178 T 0|, Q=|ac, T I 0
=TTy 0 £ dospf 0 =

19



with

T T
1 _ ol
ro_g | LM [T |, | T TRt
! 2hy O 1 2 1470 ’
EE 2

r=— {Q(l ~ a)E [i?—’;] E {V_lh_g_fb] } |
B [ut Vi | [t ' E [up g Vin] (952 + 5)

_ (1=70)2 —
il I Y B o R N IR A
2ht ath 1—0 2hy afbh & 1—v0 Oa

and I defined in Theorem 1.

Remark 6. Again, our inference is asymptotically correct regardless of the threshold being
finite or divergent and deterministic or random if we rewrite Assumption 2 slightly as in
Remark 1. By fixing &, we can effectively quantify the influence from the ARMA-GARCH
model estimation errors for our generalized Pareto parameter inference based on residuals
rather than the true errors. When a = &, — 0 is an intermediate sequence such that
na/n" — oo for some k > 0 as in, e.g, McNeil and Frey (2000), Martins-Filho et al.
(2018), and Hoga (2019), we deduce in the supplement that the estimation error from the
ARMA-GARCH model indeed becomes asymptotically negligible as
Vi (@-e) s (o |T 0.
0 1

where the asymptotic variance is the same as using the true errors rather than the residuals,
and coincides with that in the theorem above by approximating & to its limit 0. In other
words, our approach unifies the inference for both non-divergent and divergent thresholds.
Following Remark 1, it is natural to expect that our methods remain asymptotically correct
when the true errors are array data that could be sufficiently well modeled by the generalized

Pareto distribution.

From the theorem above, we can quantify the impact of the ARMA-GARCH model
estimation errors to our inference of the Generalized Pareto parameters using residuals

rather than the true errors. In particular, observe that
Vna (5 - egﬂ) LN(0,Z: + ava),
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I—l
where 771 = is the asymptotic covariance matrix in Theorem 1, and we
0 1—-a

have an additional variance term depending on the ARMA-GARCH model given by

FT O'@FT

Vo =Z7" (AQAT 4 0AT + AN I A= | | u= ° . (3.9)
1,FT Ta_ FT
1—-a~ 2 1—a— 4

Now recall the quantile formula (2.8). The following quantile inference theorem follows by

continuous mapping theorem.

Theorem 6. Under the conditions of Theorem 5, for any p € (0, )

Vna

Op

(VaRx(1 = p) = VaRx(1 = p) ) & N (0, 7%(a,p)),

where the variance
T

(a,p) = q (%)TI‘lq (%) 1 atia Q(CYl/p) V. q(al/p) |

with = defined in Theorem 1 and the additional variance term Vy given in (3.9), compared

to that in Theorem 2.

We omit the proof as it is completely analogous to that of Theorem 2. Now, with o, =
7,(@/p)7 and a consistent estimator 72(&, p) (e.g., replacing the moments by their sample
versions, a by @, vy by 7, 05 by 7,, and Q(1 — @) by u,), a confidence interval with level

a of VaRx (1 — p) is given by

VaRy (1 — p) — “H925 (& /p) (@, p), VaR (1 — p) + 225 (@ /p) 7 (a, p)| -

Vna Vna

Substituting @X(l —p) in (3.8) by the values in the above interval, we can construct a

prediction interval for \@ym(l — p). Similar to the case of independent data, such an
interval has a poor coverage probability in small samples. It is computationally intensive
to employ the residual based bootstrap method. Here, to bypass the daunting task of
estimating the asymptotic variance of the quantile estimator, we suggest a random weighted

bootstrap procedure as follows.

e Step C1)Draw a random sample with sample size n from a distribution function with

. b b
mean one and variance one, say Sf ), e ,é}(L ).
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e Step C2) First, we estimate ¢ by

~(b
qs"—argmmza T2E ().

Second, we estimate ¢, by maximizing
a7 [, a®
Sl (419
t=1

~(b ~ ~(b) ~(
and denote the estimator by (ﬁ;). Define X\ ( )/ ht(qb( ),qbz)) for t =

1, n, ) = X, xX® and estimate vy and o,, by solving

—[na]:n’
Z& as, (0] X" — ) Z@%X“’ s (0] X" — 0y = 0.

Denote the estimators by 7 and 7, which gives

- ) g 7(b)
VaRy (1 —p) =ay) + 7—(( a/p) —1).
. o ® B
e Step C3) Repeat the above two steps B times to obtain {VaRX (1 —p)}b . Let
~ _ -1
Di.g < .-- < Dpg.p denote the order statistics of
—= (b)
VaRy (1 —
og | VRxU=p) )
VaRx(1 — p)

and let 5(1) <. < 15(3) denote the order statistics of

g [ VARX (1)
@X(l —p)

Hence, the confidence intervals with level a for log(VaR (1 — p)) are

Tnwp(a) = log(VaRg (1 = p)) = Dypssey.p,  log(VaRyg(1 = p)) — Dyp_pe; )

2

and
Trwpa(a) = [log(VaRg (1 — p)) — Digay,  log(VaRg (1 — p)) + D(sa)).

Again, substituting @X(l — p) in (3.8) by the values in each interval above, we can
construct the corresponding prediction interval for @ym(l — p). The simulation study
below shows that the above procedure provides a good finite-sample coverage performance.
The asymptotic theory for the random weighted bootstrap method can be derived with

rather tedious calculations and thus is skipped.
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4 Simulation Study

4.1 Independent data

This subsection carries out a simulation study to evaluate the finite-sample behavior of the
proposed method for estimating VaR based on independent observations.

We draw 10000 random samples with sample size n = 500 or 1200 or 2500 from (1.2)
with v = 3 or 1/3, 0 = 1, G being the standard normal distribution, # = 0.9. We use
a = 0.05, p = 0.01 or 0.001, and B = 10000 in the naive bootstrap method and the
random weighted bootstrap method. We use the nlm function in the R statistical software
to minimize the likelihood function with the following initial values for v and o.

Let Vi = X(pit1)m — Xn—fna))m fori = 1,...,m with m = [na]. As we consider positive
index 7, we use the initial values

o 1 Yim1— m — Yim(1— ‘m i Yima- m e
ini _ o [m(1-3/8)]: [m(1—3/16)]: and o™ = [m(1 3/8i)jn gl .
1Og 2 Yr[m(1—3/4)]:m} - Yv[m(1—3/8)]:m (3/8)7’Y -1

f)/

Here 4" is the Pickands tail index estimation in Pickands (1975).

The coverage probabilities of the proposed intervals with levels a = 90% and 95% are
reported in Tables 1 and 2, which show that i) the normal approximation method is the
worst, and ii) it is much better to use the naive bootstrap method and the random weighted
bootstrap method with critical values computed from the empirical distribution of the
absolute differences between the bootstrapped estimators and the maximum likelihood VaR
estimator. Further, the normal Q-Q plots in Figures B.1 and B.2 of the supplement show
that the distribution of the VaR estimator is away from a normal distribution, especially
when p is very small. Hence we prefer g, 2(a) and ITrwp2(a) to Iperi(a) and Irwpi(a)

in risk analysis.

4.2 ARMA-GARCH sequence

This subsection carries out a simulation study to evaluate the finite-sample behavior of the
proposed method for estimating VaR based on an AR-GARCH sequence.
Due to the computation burden of the random weighted bootstrap method, we draw

1000 random samples with sample size n = 1200 and 2500 from the following AR-GARCH
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(n,p, ) Ina(0.90) | I5001(0.90)  Ipoor2(0.90) | Trwp.1(0.90)  Iry p.2(0.90)
(500,0.01,3) 0.7671 0.8447 0.9042 0.8516 0.9009
(500,0.001,3) 0.6634 0.8267 0.9012 0.8089 0.8936
(1200,0.01,3) 0.8247 0.8723 0.9005 0.8697 0.9012
(1200,0.001,3) | 0.7392 0.8607 0.8971 0.8535 0.8984
(2500,0.01,3) 0.8573 0.8901 0.8987 0.8869 0.9007
(2500,0.001,3) | 0.7837 0.8812 0.8957 0.8706 0.8972
(500,0.01,1/3) | 0.8569 0.8571 0.8990 0.8591 0.8966
(500,0.001,1/3) | 0.7453 0.7053 0.9318 0.6791 0.9210
(1200,0.01,1/3) | 0.8803 0.8815 0.9034 0.8799 0.9036
(1200,0.001,1/3) |  0.8027 0.7840 0.9145 0.7635 0.9136
(2500,0.01,1/3) | 0.8928 0.8898 0.8985 0.8893 0.8975
(2500,0.001,1/3) |  0.8494 0.8446 0.9029 0.8205 0.9048

Table 1: Confidence intervals with level a = 90%. Empirical coverage probabilities are
reported for the normal approximation confidence interval Iy4(a), the naive bootstrap
intervals Ipoot1(a) and Ipeeta(a), and the random weighted bootstrap intervals Irwp1(a)

and Ipwpa(a). We take y =3 o0r1/3,0 =1, G~ N(0,1) and # = 0.9 in (1.2).

model:

Y, =0.0337 — 0.0620Y;_; + &,
g =Xy, he = 0.0123 + 0.0883,_; + 0.83107;_;

where X; = (e; — Eey) /Eley|, er = derq — (1 — d)eso, and e;; and e; 5 are independent GPD
random variables with CDF F(z) = 1—(14~x)~/7. The parameters are calibrated from the
daily returns on the S&P500 index between 2012 and 2016. We consider v = 1/3 and 1/6
to ensure EX7? < co. We take § = 0.5 and use the random weighted bootstrap method with
B = 10000. The coverage probabilities of the proposed intervals with levels a = 90% and
95% are reported in Table 3, which show that TRWByg(a) is again better than fRWB,l(a) and
performs well except under the case (n, p) = (1200, 0.001), where over-coverage is observed.

In summary, for quantifying the inference uncertainty of VaR estimation, we prefer
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(n,p, ) Ina(0.95) | T5001(0.95)  Ipoor2(0.95) | Trwp.1(0.95) Iy p2(0.95)
(500,0.01,3) 0.7931 0.8928 0.9523 0.8806 0.9508
(500,0.001,3) 0.6817 0.8718 0.9512 0.8393 0.9479
(1200,0.01,3) 0.8538 0.9184 0.9491 0.9130 0.9489
(1200,0.001,3) | 0.7626 0.9075 0.9480 0.8932 0.9486
(2500,0.01,3) 0.8908 0.9359 0.9480 0.9306 0.9486
(2500,0.001,3) | 0.8102 0.9316 0.9478 0.9173 0.9483
(500,0.01,1/3) | 0.9008 0.9102 0.9490 0.9126 0.9483
(500,0.001,1/3) | 0.7852 0.7631 0.9655 0.7162 0.9607
(1200,0.01,1/3) | 0.9235 0.9301 0.9520 0.9274 0.9524
(1200,0.001,1/3) |  0.8396 0.8253 0.9572 0.7986 0.9567
(2500,0.01,1/3) | 0.9375 0.9408 0.9485 0.9399 0.9491
(2500,0.001,1/3) |  0.8838 0.8843 0.9519 0.8608 0.9532

Table 2: Confidence intervals with level a = 95%. Empirical coverage probabilities are

reported for the normal approximation confidence interval Iy4(a), the naive bootstrap

intervals Ipoot1(a) and Ipeeta(a), and the random weighted bootstrap intervals Irwp1(a)

and Ipwpa(a). We take y =3 o0r1/3,0 =1, G~ N(0,1) and # = 0.9 in (1.2).

the random weighted bootstrap method with critical values computed from the empirical

distribution of the absolute differences between the bootstrapped risk estimators and the

risk estimator, which works well for independent data and dependent data.

5 Data Analysis

5.1 Danish fire insurance losses

This subsection analyzes the Danish fire insurance data' in McNeil (1997) using the pro-

posed semi-parametric GPD model in (1.2) by treating the fire losses as independent data.

The dataset consists of 2167 large fire insurance claims (i.e., losses) in Denmark from

!The dataset is publicly available via R package evir.
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(n,p,7) Tewp1(0.90) Trwp2(0.90) | Trwp1(0.95) Irwp2(0.95)
(1200,0.01,1/3) 0.843 0.908 0.901 0.961
(1200,0.001,1/3) 0.629 0.940 0.689 0.968
(2500,0.01,1/3) 0.878 0.894 0.928 0.949
(2500,0.001,1/3) 0.700 0.906 0.763 0.952
(1200,0.01,1/6) 0.857 0.898 0.918 0.951
(1200,0.001,1/6) 0.703 0.936 0.764 0.970
(2500,0.01,1/6) 0.868 0.903 0.930 0.943
(2500,0.001,1/6) 0.757 0.896 0.811 0.943

Table 3: Confidence intervals for AR-GARCH models. Empirical coverage probabilities are
reported for the random weighted bootstrap confidence intervals Tgwp1(a) and Ipw po(a)

with ¢ = 0.90 and 0.95.

January 1980 until December 1990.

We first perform a sensitivity analysis of the proposed method w.r.t. the choice of
threshold level &. Specifically, we calculate the (1—p)x100% VaR at level p = 0.01, 0.005, 0.001
under varying threshold levels @ = (0.05,0.1). The confidence interval (C.I.) for VaR is cal-
culated at a = 90% and 95% level. To construct the C.I., we implement the normal approx-
imation (NA), the naive bootstrap method (Bootl and Boot2), and the random weighted
bootstrap method (RWB1 and RWB2). For comparison, we further conduct a naive non-
parametric bootstrap (Naive), where we simply bootstrap the Danish fire insurance data
and use sample quantile to estimate the VaR and its C.I.

The result is given in Figure 1. The performance of semi-parametric GPD is fairly stable
w.r.t. a for p=0.01,0.005 and has some variation for p = 0.001. Note that the naive non-
parametric bootstrap (Naive) gives a very wide (and thus non-informative) C.I. for extreme
VaR (p = 0.001), which highlights the value/necessity of the proposed semiparametric C.I.
construction approach. We also report the Q-Q plots of log(\faﬁg)(l -p)/ @X(l — D)),
b=1,2,---,10000, for Boot and RWB, respectively, in Figures B.3 and B.4 of the supple-
ment. These figures show that the distribution is generally skewed, especially for p = 0.005
and 0.001.
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Figure 1: Sensitivity analysis of constructed confidence intervals (C.1.) for the (1—p)x100%
VaR at level p = 0.01,0.005,0.001. The y-azxis is in the unit of 1 million Danish Krone.
EmpQ stands for VaR estimated by the sample quantile, and Est(Q) stands for VaR estimated
by the semi-parametric GPD. The result of the naive approach (Naive) does not depend on

@, thus is only plotted under & = 0.05 to avoid confusion.
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We further conduct a Leave-One-Out Validation (LOOV) for the proposed semi-parametric
GPD model and compare it with the naive nonparametric sample quantile approach (Naive).
Specifically, for each observation X; with i =1,2,--- 2167, we use the leave-one-out sam-
ple X_; to estimate the (1 — p) x 100% VaR by either semi-parametric GPD or sample
quantile (Naive). For evaluation, we use the empirical coverage rate, which is defined as

the proportion of experiments where the left-out loss X; is covered by (i.e. lower than) the

estimated VaR based on the leave-one-out sample X_; for ¢ =1,--- ,2167.

p a Emp. rate(GPD) Emp. rate(Naive) p-value(GPD) p-value(Naive)
0.010  0.050 0.990 0.989 1.000 0.745
0.010 0.100 0.990 - 1.000 -
0.005 0.050 0.995 0.994 1.000 0.647
0.005 0.100 0.995 - 1.000 -
0.001  0.050 0.999 0.999 0.483 0.483
0.001 0.100 0.999 - 0.483 -

Table 4: The empirical coverage rate (Emp. rate) of the estimated (1 — p) x 100% VaR
across the 2167 experiments at level p = 0.01,0.005,0.001. The result of the naive approach

does not depend on &, thus is only reported under & = 0.05 to avoid confusion.

Table 4 reports the empirical coverage rate of the estimated VaR by the two approaches
across the 2167 experiments and further gives the corresponding p-values from the binomial
tests? for the null hypothesis that the coverage probability of the estimated (1 —p) x 100%
VaR is indeed the target level 1 — p. As can be seen, both approaches give a satisfactory
result with GPD providing a perfect performance. Moreover, note that the performance
of the GPD approach is insensitive to the threshold level of @, indicating the statistical
stability of the proposed approach.

2Under the null hypothesis, the number of coverage by the estimated (1 — p) x 100% VaR across n
experiments should follow a binomial distribution with parameters (n,1 — p). See Kratz et al. (2018) for

more details of the binomial test.
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5.2 Losses of the S&P500 index

This subsection analyzes the daily negative log-returns (i.e., losses) of the S&P500 index
using the proposed semi-parametric GPD method with an ARMA-GARCH model. Pre-
cisely, on each day t, based on the past 2500 historical observations (v;—2499, Yt—2498, " * * > Yt),
we fit an AR(1)-GARCH(1,1) model using the proposed two-step self-weighted estimation
method. We then calculate the one-day ahead (1 — p) x 100% conditional VaR by the
semi-parametric GPD method with a threshold @ and construct the corresponding 90% or
95% C.I. by RWB.

For comparison, we also conduct the analysis using a traditional nonparametric ap-
proach (Trad). That is, we fit an AR(1)-GARCH(1,1) model by MLE and use the sample
quantile of the fitted residuals to calculate the one-day ahead conditional VaR and boot-
strap the residuals to construct the corresponding C.I. of VaR.

We let ¢ start from 11/01/2007, which is roughly the start of the financial crisis, and we
make the end date to be 10/20/2011, which roughly marks the end of the crisis. In other
words, we aim to test the ability of the proposed GPD method for monitoring a financial

system under stress.

D a Emp. rate(GPD) Emp. rate(Trad) p-value(GPD) p-value(Trad)

0.010 0.050 0.985 0.979 0.111 0.002
0.010 0.100 0.985 - 0.111 -
0.005 0.050 0.995 0.989 1.000 0.020
0.005 0.100 0.995 - 1.000 -
0.001  0.050 1.000 0.998 0.632 0.264
0.001 0.100 1.000 - 0.632 -

Table 5: The empirical coverage rate (Emp. rate) of the estimated (1 — p) x 100% VaR
across the 1000 predictions at level p = 0.01,0.005,0.001. The result of the traditional

approach does not depend on &, thus is only reported under a = 0.05 to avoid confusion.

There are 1000 predictions of one-day ahead conditional VaR given by the semi-parametric

GPD approach and the traditional nonparametric approach (Trad). We vary p = 0.01, 0.005, 0.001
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Figure 2: Estimated one-day ahead conditional VaR (red line) and its 90% C.I. (blue
dashed lines) by the random weight bootstrap (RWB2) and the traditional nonparamet-
ric approach (Trad). The black line denotes the negative daily log returns of the SEP500

index.
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and set the confidence level of the C.I. to be 90% or 95%. For the semi-parametric GPD
approach, we further vary @ = 0.05,0.1. Table 5 reports the empirical coverage rate of
the estimated VaR by the two approaches across the 1000 predictions, which is defined as
the proportion of predictions where the observed loss is lower than the estimated one-day
ahead conditional VaR. Table 5 also gives the corresponding p-values from the binomial
test. As can be seen, the traditional nonparametric approach tends to underestimate the
true conditional VaR, and thus imposes serious under-reserve risk. On the other hand, the
semi-parametric GPD gives satisfactory prediction performance and passes all the binomial
tests. Moreover, note that the performance of the GPD approach is again insensitive to
the threshold level of @, indicating the statistical stability of the proposed approach.

For illustration, Figure 2 plots the estimated VaR and the corresponding C.I. given by
RWB2 and the traditional nonparametric approach. For the plots, we set a = 0.05, the
confidence level of C.I. a = 90% and vary p = 0.01,0.005,0.001. The result for RWB1
and the result for & = 0.1 and the confidence level a = 95% are similar and thus are
omitted. Note that compared to RWB2, the C.I. given by the traditional nonparametric
method is narrower for p = 0.01, which may be possibly due to the fact that the C.I. by the
traditional nonparametric approach does not incorporate the estimation uncertainty of the
AR(1)-GARCH(1,1) model. On the other hand, the nonparametric approach gives much
wider C.I. for extreme quantiles p = 0.005,0.001, indicating that a naive nonparametric
bootstrap cannot construct an informative C.I. for extreme quantiles. This phenomenon is

observed in the Danish insurance data analysis as well.

6 Conclusions

Given that regulators often set a high VaR level in risk management, fitting distribu-
tion in the tail is essential. This paper infers a semi-parametric model, which only models
exceedances over a non-divergent threshold by the generalized Pareto distribution. Asymp-
totic results for parameters and VaR estimation are first derived for independent data. For
financial data modeled by an ARMA-GARCH process, a three-step weighted estimation
procedure is proposed to ensure a normal limit for estimating parameters and conditional

VaR with heavy tailed observations. For efficiently quantifying the uncertainty of risk fore-
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cast, a random weighted bootstrap method is proposed and shown to be consistent. A
simulation study and real data analysis confirm the advantages of the proposed method-
ologies. It is crucial to develop a distribution free goodness-of-fit test and the asymptotic
theory for dynamic modeling of the generalized Pareto distribution, which will be our future

research plan.

SUPPLEMENTARY MATERIAL

In this supplement, we provide the asymptotic theory for the naive bootstrap method
for independent data (Remark 5), report some additional Q-Q plots discussed in Sec-
tions 4.1 and 5.1, prove Theorems 1-5, and deduce the results for divergent thresholds

from Remarks 1 and 6 in details.
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