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Abstract

We compute the value-at-risk of financial losses by fitting a generalized Pareto dis-

tribution to exceedances over a threshold. Following the common practice of setting

the threshold as high sample quantiles, we show that, for both independent obser-

vations and time-series data, the asymptotic variance for the maximum likelihood

estimation depends on the choice of threshold unlike the existing study of using a

divergent threshold. We also propose a random weighted bootstrap method for inter-

val estimation of VaR, with critical values computed by the empirical distribution of

the absolute differences between the bootstrapped estimators and the maximum like-

lihood estimator. While our asymptotic results unify the cases of fixed or divergent

thresholds, the finite sample studies via simulation and application to real data show

that the derived confidence intervals well cover true VaR in insurance and finance.

Keywords: ARMA-GARCH models; Generalized Pareto distribution; Random weighted

bootstrap; Value-at-risk; Weighted empirical process
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1 Introduction

Measuring risk and quantifying its uncertainty is crucial in insurance and finance. A

well-studied and widely employed risk measure is the so-called Value-at-Risk (VaR) at

level 1 − p ∈ (0, 1), which is defined as the quantile of the distribution function of a risk

variable or a portfolio; see Duffie and Pan (1997) and Jorion (2006) for an overview of VaR.

Given n identically distributed observations, the VaR at level 1 − p can be well estimated

nonparametrically by the sample quantile when n(1 − p) is neither close to n nor zero.

Quantifying the inference uncertainty can be done via direct estimation of the asymptotic

variance or resampling methods such as the bootstrap and the empirical likelihood in Owen

(2001).

In practice, the level 1−p of VaR is often set to be close to one by regulators such as 99%

and 99.9%. Therefore, when the sample size is not particularly large, the nonparametric

VaR estimation is inefficient and may seriously underestimate the risk. An obvious way to

improve inference efficiency is to fit a parametric distribution family to the risk variable. It

is known that efficient likelihood based inference mainly utilizes the information around the

center of data. As 1−p is close to one, the information in the upper tail of the distribution

becomes more crucial to the study of VaR. Therefore, one may build a parametric model

for observations above a threshold to ensure that the upper tail’s fitting is accurate and

robust. This raises an interesting question on how to model the excess distribution above

a threshold given by

Fu(x) = P(X − u ≤ x|X > u) =
F (x+ u)− F (u)

1− F (u)
for 0 ≤ x < xF − u,

where xF is the right endpoint of the distribution function F (x) = P(X ≤ x), i.e., xF =

sup{x : F (x) < 1}.

As stated in the Extreme Value Theory, see Resnick (1987) and Embrechts et al. (1997)

for an overview, when F is in the domain of attraction of extreme value distribution, there

exists a function β(u) > 0 such that

lim
u→xF

sup
0≤x<xF−u

|Fu(x)−Gγ,β(u)(x)| = 0, (1.1)

where Gγ,β(u)(x) = 1− (1+γx/β(u))−1/γ for 1+γx/β(u) > 0 is the cumulative distribution

function of the generalized Pareto distribution with the shape parameter γ and scale pa-
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rameter β(u); see Balkema and de Haan (1974). Fitting a generalized Pareto distribution

to exceedances over a high threshold has been studied in the literature. For example, Smith

(1987) and Drees et al. (2004) have studied the maximum likelihood estimation when a de-

terministic divergent threshold and a random divergent threshold are chosen, respectively;

see also Davison and Smith (1990). The choice of the threshold depends on the approxima-

tion errors in (1.1), which generally is defined as a second order regular variation. Typically,

a large threshold gives a big variance, and a small threshold leads to large estimation bias.

Given the difficulty in choosing this divergent threshold, researchers often advise practi-

tioners to plot estimators against various thresholds and find a relatively stable region. In

this case, the estimator has a non-negligible bias, which complicates interval estimation.

Nevertheless, as a rule of thumb, practitioners often ignore the asymptotic bias and

pick up 90% or 95% sample quantile as a threshold; see the discussions in Section 13.6.1 of

Hull (2018). This is especially the case when modeling the so-called dynamic tail risk by

some critical economic variables. Some applications of the generalized Pareto distribution

include Rootzén and Tajvidi (1997) and Brodin and Rootzén (2009) for wind storm losses,

Barro and Jin (2011) for economic disasters, and McNeil and Frey (2000), Chavez-Demoulin

and Embrechts (2004), Bollerslev and Todorov (2011), and Allen et al. (2012) for financial

time series. For dynamically modeling the generalized Pareto distribution, we refer to

Chavez-Demoulin et al. (2005), Kelly and Jiang (2014), Chavez-Demoulin et al. (2014),

and Massacci (2017) for financial returns and Hall and Tajvidi (2000) for climate data.

In reality, practitioners often choose the threshold as 90% or 95% sample quantile and

ignore the estimation bias caused by the model approximation error. Hence, it becomes

natural to model exceedances over an (unknown) fixed threshold by a generalized Pareto

distribution. In other words, instead of fitting a parametric model, it is good to fit

the exceedances over a threshold by the Generalized Pareto distribution and model the

data below the threshold nonparametrically like Smith (1987) and Drees et al. (2004) for

independent data, McNeil and Frey (2000) for an ARMA-GARCH model, and Martins-

Filho et al. (2018) for nonparametric regression. Under such a model assumption, when

the threshold is chosen as a sample quantile, inference for parameters and VaR will indeed

depend on the random threshold selected, which is in stark contrast with the existing study
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of using a divergent threshold. A particular semi-parametric model we focus on is

F (x) =


θG(x)
G(x0)

if x ≤ x0

1− (1− θ)
(

1 + γ(x−x0)
σ

)−1/γ

if x > x0,
(1.2)

where θ ∈ (0, 1), and G is a distribution function.

This paper aims to provide a comprehensive inference for such a model based on inde-

pendent observations and time series data. We focus on VaR, but the developed methodolo-

gies can be extended/applied to other tail-related risk measures such as expected shortfall

and expectile. As it is arguably reasonable to assume that insurance losses are independent,

we first derive the asymptotic distribution for parameters and risk estimation based on in-

dependent data. We develop a unified inference theory for a universal threshold statistic,

which can be a deterministic threshold based on prior knowledge, an order statistic based

on the observations, or a more sophisticated quantile estimator. To quantify the inference

uncertainty, we investigate the naive bootstrap method and the random weighted bootstrap

method.

For dependent data such as financial time series, we propose considering conditional VaR

by combining an ARMA-GARCH model and the semiparametric model for the residuals.

To ensure the normality of VaR estimation for the ARMA-GARCH model with heavy-tailed

errors, we propose a two-step self-weighted procedure to estimate the ARMA-GARCH

model before fitting the residual distribution semiparametrically. We first estimate the

ARMA parameters by a self-weighted least-squares method. Then, the GARCH parameters

using the self-weighted exponential quasi-likelihood in Zhu and Ling (2011) with the least-

squares ARMA residuals. Our approach maintains the natural condition that the ARMA

errors have a zero mean, rather than a zero median in the previous paper, when relaxing

the kurtosis condition on GARCH errors. To quantify the uncertainty of the conditional

VaR estimation, we employ the random weighted bootstrap method, which is much less

computationally intensive than the residual based bootstrap method.

The existing methods of using a divergent threshold face the severe difficulty of choos-

ing the threshold. When one concerns interval estimation, the efficient way is to choose a

larger threshold such that the estimation bias is negligible. This essentially assumes the

exceedance follows an exact Generalized Pareto distribution. In other words, when the
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exceedance has an approximate Generalized Pareto distribution, our proposed point esti-

mation and interval estimation are still valid when we choose a divergent threshold larger

enough such that the model approximation error is a smaller order of the estimation error.

We organize this paper as follows. Sections 2 and 3 present our methodologies and

asymptotic results for independent observations and an ARMA-GARCH model, respec-

tively. Sections 4 and 5 contain simulation study and data analysis. Section 6 concludes.

The detailed proofs of the theorems are available in the supplement. We denote by AT the

transpose of a matrix or vector A. Throughout this paper, we denote
d−→ as convergence in

distribution and
P−→ as convergence in probability. All the asymptotic results hold as the

sample size n→∞.

2 Methodologies and Asymptotic Results for Inde-

pendent Data

Consider a random variable X ∈ R with distribution function F and quantile function

Q(·) = F←(·). For a threshold u0 = F←(1− α0) with exceeding probability α0 ∈ (0, 1), we

make the following assumption for the exceedance X − u0|X > u0.

Assumption 1 (Generalized Pareto Model). There exist a shape parameter γ0 ∈ R and

a scale parameter σα0 > 0 such that

P (X > u0 + x|X > u0) =


(

1 + γ0x
σα0

)−1/γ0

, γ0 6= 0,

exp
(
− x
σα0

)
, γ0 = 0.

where α0 = P(X > u0) and we require 1 + γ0x/σα0 > 0 for γ0 6= 0 and x > 0 for γ0 = 0.

The shape parameter γ0 is called the extreme value index for the exceedance X−u0|X >

u0. When γ0 < 0, there is a finite right endpoint u∗ = u0 −
σα0

γ0
in the support of the

distribution of X, i.e. F (x) = 1 for all x ≥ u∗. When γ = 0, X − u0|X > u0 has an

exponential distribution with mean σα0 . When γ0 > 0, X − u0|X > u0 has a heavy tail

with up to 1
γ0

-th finite moments. Note that we write σα0 instead of σ(u0).

Observe that for any higher threshold u > u0, the exceedance X−u|X > u again follows

the generalized Pareto distribution with the same shape parameter γ0 but a different scale
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parameter σα =
(
α0

α

)γ0 σα0 , where α = 1− F (u) is the exceeding probability. Specifically,

P (X > u+ x|X > u) =


(

1 + γ0x
σα

)−1/γ0

, γ0 6= 0,

exp
(
− x
σα

)
, γ0 = 0.

A direct calculation yields the (1 − p)-th quantile of X, i.e., the VaR at level 1 − p takes

the form

VaRX(1− p) = Q(1− p) =

 u+ σα
γ0

((
α
p

)γ0

− 1
)

if γ0 6= 0,

u+ σα log
(
α
p

)
if γ0 = 0,

(2.1)

for all given p ∈ (0, α0).

As Assumption 1 above does not model the distribution below the threshold paramet-

rically, computing VaR(1 − p) based on (2.1) is a semiparametric method and achieves

a good balance between robustness and efficiency. It is easy to check that model (1.2)

satisfies Assumption 1. Unlike the existing studies on fitting GPD to exceedances over a

divergent threshold, we investigate the inference based on a non-divergent threshold. In

this case, the threshold may play a role in quantifying the inference uncertainty of VaR in

(2.1). On the other hand, if the threshold diverges fast enough such that the estimation

bias is negligible, then the model approximation error is negligible. Hence, the developed

method for fitting an exact Generalized Pareto distribution is valid for using a larger di-

vergent threshold under the setting that the exceedance has an approximate Generalized

Pareto distribution.

Suppose we have a random sample X1, . . . , Xn from F satisfying Assumption 1. Let the

order statistics be X1:n ≤ . . . ≤ Xn:n. Take a large threshold, say, un, either deterministic

or random, corresponding to the sample exceeding probability

α̂n =
1

n

n∑
i=1

δ(Xi − un), (2.2)

where δ(x) := 1(x > 0) denotes the step function taking value 1 on the positive line and

value 0 otherwise. Denote the adaptive exceeding probability αn = 1− F (un), which may

be either deterministic or random depending on our choice of the threshold un.

Given an exceedance Xi − un = x > 0, the log-likelihood function for the Pareto
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parameters ν := (γ, log σ)T ∈ R2 is given by

l(ν|x) = −
{

1 + γ

γ
log
(

1 +
γx

σ

)
+ log σ

}
.

Note that the above function is well defined for γ = 0 by continuity as

l
(
(0, log σ)T |x

)
= −x

σ
− log σ.

Thus, the full log-likelihood function given X1 − un, . . . , Xn − un becomes

n∑
i=1

δ(Xi − un)l(ν|Xi − un),

resulting in the score equations

n∑
i=1

δ(Xi − un)
∂l(ν|Xi − un)

∂γ
=

n∑
i=1

δ(Xi − un)s1(ν|Xi − un) = 0, (2.3)

n∑
i=1

δ(Xi − un)
∂l(ν|Xi − un)

∂ log σ
=

n∑
i=1

δ(Xi − un)s2(ν|Xi − un) = 0, (2.4)

where

s1(γ, log σ|x) =
1

γ2

(
log
(

1 + γ
x

σ

)
− γx/σ

1 + γx/σ

)
− x/σ

1 + γx/σ
,

s2(γ, log σ|x) = −1 + (1 + γ)
x/σ

1 + γx/σ
,

and for γ = 0 the above equations take the form

s1(0, log σ|x) =
1

2

(x
σ

)2

− x

σ
, s2(0, log σ|x) = −1 +

x

σ
.

In this paper, we only consider the regular case, i.e., γ0 > −1
2

as in Davison and Smith

(1990) and Drees et al. (2004), and it is often the case of γ0 > 0 regarding heavy-tailed

losses in insurance and finance; see also Bücher and Segers (2017) for more discussions. For

dealing with the irregular case, i.e., γ0 ≤ −1/2, we refer to Smith (1985), Zhou (2009), Zhou

(2010), and Peng and Qi (2009). Davison and Smith (1990) disregard the randomness of

threshold while Drees et al. (2004) obtain the asymptotic normality of MLE for a divergent

random threshold (i.e., ᾱ = ᾱ(n)→ 0 as n→∞) under (1.1), which holds for Assumption

1. Here, we present a universal asymptotic normality result under Assumption 1 in the

sense of unifying the cases of using either a deterministic threshold or a random threshold:
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Assumption 2 (Universal threshold statistic). The threshold un = un(X1, . . . , Xn) is an

arbitrary measurable statistic such that un
P−→ Q(1− ᾱ) for some ᾱ ∈ (0, α0).

The assumption above allows a flexible choice of the threshold un for the practitioners, who

may choose a deterministic threshold based on prior knowledge, an order statistic based

on the observations, or an even more sophisticated quantile estimator.

Normalizing the estimators with the adaptive values θ
(n)
0 = (γ0, log σαn , logαn) rather

than its limit θ0 = (γ0, log σᾱ, log ᾱ), we have a unified inference procedure for a general

threshold statistic un:

Theorem 1 (Universal inference for generalized Pareto parameters). Suppose that As-

sumption 1 holds with a true parameter γ0 > −1
2

and the choice of sequence un satisfies

Assumption 2.

(i) With probability tending to 1, there exists a maximum likelihood estimator θ̂n =

(γ̂n, log σ̂n, log α̂n), solving the score equations (2.2)– (2.4) simultaneously, in the local

parameter space

Θ̄ε
n =

{
θ ∈ R3 :

∥∥∥θ − θ(n)
0

∥∥∥ < n−1/2+ε
}
, (2.5)

for any ε ∈ (0,min{γ0 + 1/2, 1/2}), where θ
(n)
0 = (γ0, log σαn , logαn) denotes the

adaptive true values.

(ii) Any maximum likelihood estimator sequence from part (i) is asymptotically normal in

such a way that

√
nᾱ

(
γ̂n − γ0,

σ̂n
σαn
− 1,

α̂n
αn
− 1

)
d−→ N

0,

 I−1 0

0 1− ᾱ


where the inverse Fisher information matrix

I−1 =

(
E

(
∂l(ν0|Z)

∂ν

∂l(ν0|Z)

∂νT

∣∣∣∣Z > 0

))−1

=

 (1 + γ0)2 −(1 + γ0)

−(1 + γ0) 2(1 + γ0)


with Z = X −Q(1− ᾱ).

In practice, it is common to fix a proportion of data, say, ᾱ ∈ (0, 1) and use the [nᾱ]th

largest observation un = Xn−[nᾱ]:n as the threshold. It is then easy to deduce the following

corollary.
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Corollary 1. Under the conditions of Theorem 1 with un = Xn−[nᾱ]:n, as n→∞,

√
nᾱ


γ̂n − γ0

σ̂n
σᾱ
− 1

α̂n
ᾱ
− 1

 d−→ N

0,


(1 + γ0)2 −(1 + γ0) 0

−(1 + γ0) 2(1 + γ0) + γ2
0(1− ᾱ) −γ0(1− ᾱ)

0 −γ0(1− ᾱ) 1− ᾱ


 .

Remark 1. Our asymptotic variance formula is unified for the threshold being finite or

divergent and deterministic or random when the exceedance follows a generalized Pareto

distribution. In the supplement, we deduce that the results remain true if ᾱ = ᾱn is an

intermediate sequence such that ᾱ → 0 and nᾱ → ∞. If we rewrite Assumption 2 as

un/Q(1− ᾱ)
P−→ 1, one may approximate ᾱ by its limit 0 if necessary. When ᾱ is vanishing,

it is easy to allow the true threshold α0 to vanish as well as long as ᾱ/α0 is bounded strictly

below 1. It is clear from the proof that our results remain true if the approximation error

between the exceedance distribution and a generalized Pareto distribution is a smaller order

than the parametric rate. More specifically, suppose our observations (X
(n)
1 , . . . , X

(n)
n ) come

from an triangular array of i.i.d. random variables and denote their common distribution

as F (n). Our inference remains valid if our generalized Pareto model is approximately true,

that is,

sup
x≥u0

∣∣∣∣∣ 1− F (n)
u0 (x)

1−Gγ,σα0
(x)
− 1

∣∣∣∣∣ = o((nᾱ)−1/2), (2.6)

where F
(n)
u0 (x) = F (n)(x)−F (n)(u0)

α0
denotes the excess distribution function, the exceeding

probability α0 = 1 − F (n)(u0) may be either fixed or vanishing, and Gγ,σα0
denotes the

generalized Pareto distribution with the shape parameter γ and scale parameter σα0 . For

example, consider the universal approximation (1.1) and take a sufficiently large sequence

u = u(n)→∞ as n→∞, our results remain true for the array data

X
(n)
i =

Xi − u
β(u)

, i = 1, . . . , n,

which satisfies condition (2.6) under the high-order regular variation conditions for Xi as

shown in, e.g., Drees et al. (2004). In summary, our fixed-ᾱ approach in the above theorem

is robust and covers more practical applications.

Remark 2. As argued by Dombry (2015), there is no guarantee that the global maximum

likelihood estimator is unique. Even if a global MLE is attainable, the classical regularity
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conditions in Cramér (1946) are not fulfilled, and it requires a detailed verification of

the local asymptotic normality (LAN) conditions in Bücher and Segers (2017). Also, the

global estimation theory in the above paper does not apply as our ‘true’ values θ
(n)
0 are

a sequence of adaptive values depending on the (random) threshold statistic rather than

a fixed point. Therefore, we consider a local maximum likelihood estimator and leave

the global estimation theory for future research. Note that this challenge remains for a

divergent threshold, as the asymptotic normality results in, e.g., Drees et al. (2004) are not

guaranteed to hold for an arbitrary global estimator sequence; see, e.g., Zhou (2009) and

Zhou (2010) for comments.

Plugging the estimator (γ̂n, σ̂n, α̂n) from Theorem 1 in VaR formula (2.1), the MLE of

VaRX(1− p) is given by

V̂aRX(1− p) = un +
σ̂n
γ̂n

((
α̂n
p

)γ̂n
− 1

)
. (2.7)

It should be interpreted as V̂aRX(1 − p) = un + σ̂n log
(
α̂n
p

)
by continuity if γ̂n = 0.

The asymptotic normality of the quantile estimator (2.7) then follows directly from the

continuous mapping theorem, since we can expand the true quantile in (2.1) similarly by

VaRX(1− p) = un +
σαn
γ0

((
αn
p

)γ̂n
− 1

)
, (2.8)

even with a random adaptive exceeding probability αn, conditional on the event αn > α0,

which occurs with probability tending to 1. Again, our quantile inference is asymptotically

correct for a universal threshold statistic.

Theorem 2 (Universal inference for high quantile). Under the conditions of Theorem 1,

for every p ∈ (0, α0),

√
nᾱ

σp

(
V̂aRX(1− p)− VaRX(1− p)

)
d−→ N

(
0, q

(
ᾱ

p

)T
I−1q

(
ᾱ

p

)
+ 1− ᾱ

)
as n→∞, where for γ0 6= 0, the vector function

q(t) =

(∫ t

1

(s
t

)γ0 log s

s
ds,

1− t−γ0

γ0

)T
, t > 0,

and it should be interpreted by continuity as
(

1
2

(log t)2 , log t
)T

when γ0 = 0.
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Remark 3. Ignoring all common factors, one may search for the best threshold as un =

Xn−[nλp]:n with λ in a neighborhood of 1 minimizing the asymptotic variance

1

λ

(
q̂ (λ)T Î−1q̂ (λ) + 1

)
,

where Î−1 and q̂ may be constructed using some preliminary estimate γ̂ of the extreme

value index γ0 as given below. If necessary, one may update γ̂ with the new choice of λ until

convergence. On the other hand, it is important to develop a distribution-free goodness-

of-fit test for fitting a generalized Pareto distribution to exceedances over a threshold. It

is challenging to extend the existing parametric testing methods in, e.g., Koul and Ling

(2006) to our semi-parametric models, which will be our future research.

It is straightforward to quantify the uncertainty of V̂aRX(1−p) based on the normal ap-

proximation. More specifically, we estimate ᾱ by α̂n (if ᾱ is unknown), the scale parameter

σp by

σ̂p = σ̂n (α̂n/p)
γ̂n ,

and the limiting variance by

τ̂ 2
n := q

(
α̂n
p

)T
Î−1q

(
α̂n
p

)
+ 1− α̂n

with

Î−1 =

 (1 + γ̂n)2 −(1 + γ̂n)

−(1 + γ̂n) 2(1 + γ̂n)

 .
Hence, a normal approximation confidence interval of VaRX(1− p) with level a is

INA(a) =

[
V̂aRX(1− p)−

z(1+a)/2√
nα̂n

σ̂n

(
α̂n
p

)γ̂n
τ̂n, V̂aRX(1− p) +

z(1+a)/2√
nα̂n

σ̂n

(
α̂n
p

)γ̂n
τ̂n

]
,

where z(1+a)/2 is the 1+a
2

-quantile of the standard normal distribution. Unfortunately, our

simulation study below shows that this interval has a poor coverage probability in small

samples, which calls for more efficient methods.

To improve finite-sample coverage, we propose a resampling method called the random

weighted bootstrap procedure. The random weighted bootstrap method is less computa-

tionally intensive than the naive bootstrap method when we estimate risk based on a time

series model (in the next section). Zhu (2016, 2019) recently applies this method to conduct

a Portmanteau test and infer autoregressive models.
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• Step B1) Draw a random sample with sample size n from a distribution function

with mean one and variance one such as the standard exponential distribution, say

ξ
(b)
1 , · · · , ξ(b)

n .

• Step B2) Choose a threshold statistic u
(b)
n , possibly dependent on ξ

(b)
1 , . . . , ξ

(b)
n . Solve

the following random weighted score equations for ᾱ, γ, and log σ:

n∑
i=1

ξi
(
δ(Xi − u(b)

n )− ᾱ
)

= 0 (2.9)

n∑
i=1

ξiδ(Xi − u(b)
n )s1(ν|Xi − u(b)

n ) = 0, (2.10)

n∑
i=1

ξiδ(Xi − u(b)
n )s2(ν|Xi − u(b)

n ) = 0. (2.11)

Denote these estimators by α̂
(b)
n , γ̂

(b)
n , and σ̂

(b)
n , we have

V̂aR
(b)

X (1− p) = u(b)
n +

σ̂
(b)
n

γ̂
(b)
n

((α̂(b)
n /p)

γ̂
(b)
n − 1).

• Step B3) Repeat the above two steps B times to obtain {V̂aR
(b)

X (1 − p)}Bb=1. Let

D̄1:B ≤ · · · ≤ D̄B:B denote the order statistics of

log

V̂aR
(b)

X (1− p)
V̂aRX(1− p)

 , b = 1, . . . , B,

and let D̄(1) ≤ · · · ≤ D̄(B) denote the order statistics of∣∣∣∣∣∣log

V̂aR
(b)

X (1− p)
V̂aRX(1− p)

∣∣∣∣∣∣ , b = 1, . . . , B,

Hence, the confidence intervals with level a for log(VaRX(1− p)) are

IRWB,1(a) =
[
log(V̂aRX(1− p))− D̄[B+Ba

2
]:B, log(V̂aRX(1− p))− D̄[B−Ba

2
]:B

]
and

IRWB,2(a) =
[
log(V̂aRX(1− p))− D̄(Ba), log(V̂aRX(1− p)) + D̄(Ba)

]
.

The following theorem establishes the validity of our random weighted bootstrap method.
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Theorem 3 (Random weighted bootstrap). Suppose the conditions of Theorem 1 hold.

For an arbitrary bootstrap threshold statistic u
(b)
n = un + oP(1) and let α

(b)
n = 1− F (u

(b)
n ):

(i) With probability tending to 1, there exists a random weighted maximum likelihood

estimator θ̂
(b)

n = (γ̂
(b)
n , log σ̂

(b)
n , log α̂

(b)
n ), solving the score equations (2.9)– (2.11) si-

multaneously in the local parameter space

Θ(b)
ε =

{
θ ∈ R3 :

∥∥∥θ − θ(b)
0

∥∥∥ < n−1/2+ε
}
, (2.12)

for any ε ∈ (0,min{γ0 + 1/2, 1/2}), where θ
(b)
0 =

(
γ0, log σ

α
(b)
n
, logα

(b)
n

)
denotes the

adaptive true values.

(ii) For each probability level a ∈ (0, 1),

P
(

V̂aRX(1− p)− VaRX(1− p) ≤ cn(a)
)
→ 1− a,

where

cn(a) = inf
{
x : P

(
V̂aR

(b)
(1− p)− V̂aRX(1− p) ≤ x|X1, . . . , Xn

)
> 1− a

}
.

The result remains true if VaRX(1−p), V̂aRX(1−p), and V̂aR
(b)

(1−p) are substituted

by their logarithms, provided that VaRX(1− p) > 0.

Remark 4. The random weighted bootstrap intervals for the extreme value index γ0 is also

valid. For each probability level a ∈ (0, 1), P (γ̂n − γ0 ≤ cn,γ(a))→ 1− a, where

cn,γ(a) = inf
{
x : P

(
γ̂(b)
n − γ̂n ≤ x|X1, . . . , Xn

)
> 1− a

}
.

The result remains true if we substitute γ0, γ̂n and γ̂
(b)
n by their logarithms, provided that

γ0 > 0. The random weighted bootstrap intervals for the adaptive scale parameter σαn and

the adaptive exceeding probability αn, are asymptotically correct if the difference between

the bootstrap threshold and the original threshold is asymptotically negligible in the sense

that u
(b)
n = un + oP((nᾱ)−1/2).

Remark 5 (Naive bootstrap). In the supplement, we show that Theorem 3 and Remark 4

remain true if replacing the random weighted bootstrap statistics with the naive bootstrap

statistics. In simulations, we observe comparable performance between these two methods

for independent data.
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3 Methodologies and Asymptotic Results for ARMA-

GARCH Models

It is reasonable to assume that insurance losses happen independently, but financial losses

often exhibit some stylized facts such that time dependence, heavy tail, skewness, and

persistent volatility; see, e.g., the survey Cont (2001). Since the seminal work of Engle

(1982) and Bollerslev (1986), it has become a common practice to model a financial time

series by an ARMA-GARCH model given byYt = µ+
∑q1

i=1 φiYt−i +
∑q2

j=1 ψjεt−j + εt

εt =
√
htηt, ht = ω +

∑r
i=1 aiε

2
t−i +

∑s
j=1 bjht−j,

(3.1)

where ω > 0, ai ≥ 0, bj ≥ 0, and {ηt} is a sequence of i.i.d. random variables with zero

mean and variance one. In this case, the so-called one-step ahead conditional VaR is more

useful in forecasting risk and is defined as the conditional quantile of Yn+1 given the past

information up to time n, i.e., Fn = σ(. . . , Yn−1, Yn). Hence, the one-step ahead conditional

VaR is

VaRY,n(1− p) = µ+

q1∑
i=1

φiYn+1−i +

q2∑
j=1

ψjεn+1−j +
√
hn+1VaRη(1− p), (3.2)

and note that hn+1 is Fn−measurable.

We remark that McNeil and Frey (2000) consider the model above, and Martins-Filho

et al. (2018) study the nonparametric regression, which covers AR-ARCH models but not

ARMA-GARCH models. Both papers only consider the case of divergent risk level, i.e.,

p = p(n) → 0 as n → ∞. In this case, the estimation for the ARMA-GARCH model

in McNeil and Frey (2000) and the kernel smoothing estimation for the conditional mean

and conditional standard deviation in Martins-Filho et al. (2018) do not play a role in the

asymptotic variance of the VaR estimation. Unlike these two papers, we aim to allow both

fixed and divergent risk levels and consider the uncertainties in fitting both the ARMA-

GARCH model with fewer finite moments and the GPD to residuals.

As aforementioned, regulators often set p close to one, making it useful to model ηt

over a high threshold by a GPD parametrically. To infer the above conditional VaR, we

14



need to estimate the unknown parameters in (3.1) and (2.1). An obvious inference method

for model (3.1) is the so-called quasi maximum likelihood estimation. The asymptotic

normality of the quasi-Gaussian maximum likelihood estimator is available in Francq and

Zaköıan (2004), which requires finite fourth moments of both εt and ηt. However, in

practice, it is quite often that
∑r

i=1 ai +
∑s

j=1 bj is close to one, making it problematic

to assume Eε4
t < ∞. When Eη4

t < ∞, Ling (2007) proposes a weighted quasi-maximum

likelihood estimation to allow Eε4
t =∞ for having a normal limiting distribution. However,

the asymptotic normality of these estimators may be lost when Eη4
t = ∞, see, e.g., Hall

and Yao (2003). To further allow both Eη4
t = ∞ and Eε4

t = ∞, Zhu and Ling (2011)

proposed a self-weighted exponential likelihood estimation method, which has a normal

limiting distribution and requires E|ηt| = 1 and zero median of ηt. Changing Eη2
t = 1

to E|ηt| = 1 requires a scale transformation of ht, which does not affect the inference of

the conditional VaR, however, changing zero mean of ηt to zero median involves a shift

transformation, which makes the inference of the conditional VaR infeasible.

Here, we instead propose a three-step inference of the conditional VaR (3.2) under

model (3.1), which allows both Eε4
t = ∞ and Eη4

t = ∞. This is important in estimating

VaRY,n(1−p) when p is treated as a fixed number rather than a number converging to zero

as n→∞.

We assume that E|ηt| = d > 0 unknown and put Xt = ηt/d, ht = d2ht, ω = ωd2,

ai = aid
2, and bj = bj. Then (3.1) is equivalent toYt = µ+

∑q1
i=1 φiYt−i +

∑q2
j=1 ψjεt−j + εt

εt =
√
htXt, ht = ω +

∑r
i=1 aiε

2
t−i +

∑s
j=1 bjht−j,

(3.3)

where E|Xt| = E|ηt|/d = 1. The coefficients remain the same in the ARMA model for Yt,

and we can rewrite (3.2) as

VaRY,n(1− p) = µ+

q1∑
i=1

φiYn+1−i +

q2∑
j=1

ψjεn+1−j +
√
hn+1VaRX(1− p).

Observe that (3.3) is the model studied in Zhu and Ling (2011), but here we maintain the

zero mean condition on Xt as required by the original model (3.1).

Letψ = (φT ,φTh )T denote the parameters in (3.3) with φ = (µ, φ1, . . . , φq1 , ψ1, . . . , ψq2)T

and φh = (ω, a1, . . . , ar, b1, . . . , bs)
T . Before moving on to the quantile inference, we first
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develop a two-step estimator of ψ that is asymptotic normal without requiring any fourth

moment condition.

Given the observations Y1, . . . , Yn and the initial value Ȳ0 = {Yt : t ≤ 0} generated by

model (3.1), we can write the parametric model (3.3) as

εt(φ) = Yt − µ−
q1∑
i=1

φiYt−i −
q2∑
j=1

ψjεt−j(φ), ht(ψ) = ω +
r∑
i=1

aiε
2
t−i(φ) +

s∑
j=1

bjht−j(ψ),

Xt (ψ) = εt(φ)/
√
ht(ψ).

Obviously, εt = εt(φ0), ht = ht(ψ0), and Xt = Xt (ψ0), where φ0 and ψ0 = (φT0 ,φ
T
h0)T

denote the true values of the parameters. In practice, however, we do not have the initial

values Ȳ0 = {Yt : t ≤ 0}, which makes the calculation of εt(φ), ht(ψ) and Xt (ψ) infeasible.

To make the estimation feasible, in what follows, we replace Ȳ0 = {Yt : t ≤ 0} by zeros

like Ling (2007) and Zhu and Ling (2011) and instead define the feasible parametric model

ε̃t(φ), h̃t(ψ), X̃t (ψ) based on the new initial values.

First, we estimate φ by the following self-weighted least squares estimator

φ̂ = arg min
φ

n∑
t=1

w̃2
t ε̃

2
t (φ), (3.4)

where {w̃t} are some proper weights designed to reduce the moment effect of {ht}, and

ε̃t(φ) is the feasible parametric model as defined above. The key idea in constructing such

a weight function wt is to bound
∑∞

i=1 ρ
i|Yt−i| for some ρ ∈ (0, 1) and ensure that it is well-

defined for all t ≥ 1, where ρ depends on the underlying ARMA-GARCH model. Same as

in He et al. (forthcoming), we use the feasible weight

w̃t =

{
max

(
1,

t−1∑
i=1

e− log2(i+1)|Yt−i|

)}−1

,

which is a truncated version of the oracle weight

wt =

{
max

(
1,
∞∑
i=1

e− log2(i+1)|Yt−i|

)}−1

.

Second, we define the self-weighted estimator φ̂h of φh, which minimizes the self-

weighted negative log quasi-exponential-likelihood

n∑
t=1

w̃4
t l̃t

(
φh|φ̂

)
, l̃t(φh|φ̂) = log

√
h̃t

(
φ̂,φh

)
+

∣∣∣ε̃t(φ̂)
∣∣∣√

h̃t

(
φ̂,φh

) , (3.5)
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where φ̂ and w̃t are the least-squares estimator and self-weights from the first step, respec-

tively, and h̃t (φ,φh) is the feasible parametric model.

To establish the joint asymptotic normality ψ̂ =
(
φ̂
T
, φ̂

T

h

)T
, we need the following

additional regularity conditions.

A1. Let Θψ = Θφ × Θφh ⊂ Rq1+q2+1 × [0,∞)r+s+1 denote the parameter space for ψ =(
φT ,φTh

)T
. Assume that Θψ is compact and the true value of ψ is an interior point.

A2. For each φ ∈ Θφ, 1 −
∑q1

i=1 φiz
i 6= 0 and 1 +

∑q2
j=1 ψjz

j 6= 0 when |z| ≤ 1, and

1 −
∑q1

i=1 φiz
i = 0 and 1 +

∑q2
j=1 ψjz

j = 0 have no common root with φq1 6= 0 and

ψq2 6= 0.

A3. For each φh ∈ Θφh , there is no common root for equations
∑r

i=1 aiz
i = 0 and∑s

j=1 bjz
j = 0. Further,

∑r
i=1 ai 6= 0, ar + bs 6= 0, and

∑s
j=1 bj < 1.

A4. Eε2
t <∞.

A5. Xt = ηt/E|ηt| and {ηt}nt=1 is a sequence of independent and identically distributed

random variables with mean zero, variance one, and continuous density function f

such that f(0) > 0 and supx∈R f(x) <∞.

Conditions A1–A3 are standard stationarity, invertibility, and identification conditions for

ARMA-GARCH model (3.3) as in, e.g., Ling (2007). Condition A4 is equivalent to requiring

that there is no unit root in the underlying GARCH process (3.1), that is,

r∑
i=1

ai +
s∑
j=1

bj < 1.

By carefully checking our proofs, it can be seen that we may further relax the condition

down to the first moment, that is, E|εt| < ∞. This means that our results extend to

IGARCH model with
∑r

i=1 ai+
∑s

j=1 bj = 1 under suitable conditions; see, e.g., part (iii) of

Theorem 2.1 in Ling (2007). The second moment condition simplifies our later inference for

the generalized Pareto model, and therefore we keep it throughout for simplicity. Condition

A5 is similar to Assumption 2.6 in Zhu and Ling (2011), but we maintain the natural

condition that Xt has a zero mean rather than a zero median.
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Theorem 4. Assume conditions A1–A5 hold.

(i) The self-weighted estimator is consistent, that is, ψ̂ :=
(
φ̂
T
, φ̂

T

h

)T P−→ ψ0.

(ii) The self-weighted estimator is asymptotic normal in such a way that

√
n
(
ψ̂ −ψ0

)
d−→ N

(
0,Σ−1Ω(Σ−1)T

)
,

with

Σ =

Σ1 0

Σ21 Σ22

 , Ω =

Ω11 ΩT
21

Ω21 Ω22

 ,
where the sub-matrices

Σ1 = E
(
w2
t

∂εt
∂φ

∂εt

∂φT

)
, Σ21 =

1

8
E
(
w4
t

h2
t

∂ht
∂φh

∂ht

∂φT

)
,Σ22 =

1

8
E
(
w4
t

h2
t

∂ht
∂φh

∂ht

∂φTh

)
,

Ω11 = EX2
t · E

[
w4
tht

∂εt
∂φ

∂εt

∂φT

]
,Ω22 =

EX2
t − 1

4
· E
[
w8
t

h2
t

∂ht
∂φh

∂ht

∂φTh

]
, and

Ω21 = E
[
X2
t (1(Xt > 0)− 1(Xt < 0))

]
· E
[
w6
t

2
√
ht

∂ht
∂φh

∂εt

∂φT

]
.

Next, we estimate the high quantile of Xt under the generalized Pareto model with the

additional assumption

A6. Xt ≡ ηt/E|ηt| satisfies Assumption 1 with γ0 ∈ (0, 1
2
) and scale parameter σα0 > 0.

Note that γ0 < 1/2 above ensures Eη2
t < ∞. Let X̂1:n ≤ . . . ≤ X̂n:n denote the order

statistics of residuals {X̂t := X̃t(ψ̂) : t = 1, . . . , n}, where X̃t(·) is the feasible parametric

model as defined above. We then choose a threshold statistic such as

un = X̂n−[nᾱ]:n, (3.6)

corresponding to an adaptive tail probability level αn = 1 − F (un), where F denotes the

distribution function of Xt. Under the conditions of Theorem 4, we show that the threshold

estimator (3.6) is consistent, that is,

un
P−→ Q(1− ᾱ), and equivalently αn

P−→ ᾱ, (3.7)

where Q(·) = F←(·) denotes the quantile function of Xt. In general, our theory allows

an arbitrary threshold statistic un that satisfies our Assumption 2 above. With a general

18



threshold statistic, we estimate the adaptive exceeding probability αn, the shape parameter

γ0 and the scale parameter σαn by solving equations (2.2)–(2.4) with Xi therein replaced

by the residual X̂t here. Denote the estimators by α̂, γ̂, and σ̂ respectively, which gives the

quantile estimator

V̂aRX(1− p) = un +
σ̂

γ̂

((
α̂

p

)γ̂
− 1

)
,

Thus the estimator for VaRY,n(1− p) is given by

V̂aRY,n(1− p) = µ̂+

q1∑
i=1

φ̂iYn+1−i +

q2∑
j=1

ψ̂j ε̃n+1−j(φ̂) +

√
h̃t

(
φ̂, φ̂h

)
V̂aRX(1− p). (3.8)

Note that un = un(ψ̂), γ̂ = γ̂(ψ̂) and σ̂ = σ̂(ψ̂) all depend on the self-weighted estimator

ψ̂, whose effects do not fade away for any finite p ∈ (0, 1).

Theorem 5. Assume conditions A1-A6 hold.

(i) With probability tending to 1, there exists a maximum likelihood estimator θ̂ = (γ̂, log σ̂, log α̂)

solving the score equations (2.2)– (2.4) simultaneously for {X̂t} in the local parameter

space

Θ̄ε
n =

{
θ ∈ R3 :

∥∥∥θ − θ(n)
0

∥∥∥ < n−1/2+ε
}
,

for any ε ∈ (0,min{γ0 + 1/2, 1/2}), where θ
(n)
0 = (γ0, log σαn , logαn) and αn =

1− F (un) denote the adaptive true values.

(ii) Any maximum likelihood estimator sequence from part (i) is jointly asymptotic nor-

mal, in such a way that

√
nᾱ

ψ̂ −ψ0

θ̂ − θ(n)
0

 d−→ N
(
0,
(

Σ̃−1
)

Ω̃
(

Σ̃−1
)T)

where

Σ̃ =


Σ 0 0

−ΓT1 Σ I 0

− 1
1−ᾱΓT2 Σ 0 1

1−ᾱ

 , Ω̃ =


ᾱΩ ᾱσᾱΓ3

ᾱσᾱ
1−ᾱΓ4

ᾱσᾱΓT3 I 0

ᾱσᾱ
1−ᾱΓT4 0 1

1−ᾱ


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with

Γ1 = E
[

1

2ht

∂ht
∂ψ

] 1
(1+γ0)(1+2γ0)

1
1+2γ0

T + Γ2

− γ0

(1+γ0)(1+2γ0)

1+γ0

1+2γ0

T ,
Γ2 =

1

σᾱ

{
Q(1− ᾱ)E

[
1

2ht

∂ht
∂ψ

]
− E

[
1√
ht

∂εt
∂ψ

]}
,

Γ3 =

E [w2
t
∂εt
∂φ

√
ht

]
E
[
w4
t

2ht
∂ht
∂φh

]
 1

(1−γ0)2

1
1−γ0

T , Γ4 =

 E
[
w2
t
∂εt
∂φ

√
ht

] (
Q(1−ᾱ)
σᾱ

+ 1
1−γ0

)
E
[
w4
t

2ht
∂ht
∂φh

] (
Q(1−ᾱ)
σᾱ

+ 1
1−γ0
− 1

σᾱ

)
 ,

and I defined in Theorem 1.

Remark 6. Again, our inference is asymptotically correct regardless of the threshold being

finite or divergent and deterministic or random if we rewrite Assumption 2 slightly as in

Remark 1. By fixing ᾱ, we can effectively quantify the influence from the ARMA-GARCH

model estimation errors for our generalized Pareto parameter inference based on residuals

rather than the true errors. When ᾱ = ᾱn → 0 is an intermediate sequence such that

nᾱ/nκ → ∞ for some κ > 0 as in, e.g, McNeil and Frey (2000), Martins-Filho et al.

(2018), and Hoga (2019), we deduce in the supplement that the estimation error from the

ARMA-GARCH model indeed becomes asymptotically negligible as

√
nᾱn

(
θ̂ − θ(n)

0

)
d−→ N

0,

I−1 0

0 1

 ,

where the asymptotic variance is the same as using the true errors rather than the residuals,

and coincides with that in the theorem above by approximating ᾱ to its limit 0. In other

words, our approach unifies the inference for both non-divergent and divergent thresholds.

Following Remark 1, it is natural to expect that our methods remain asymptotically correct

when the true errors are array data that could be sufficiently well modeled by the generalized

Pareto distribution.

From the theorem above, we can quantify the impact of the ARMA-GARCH model

estimation errors to our inference of the Generalized Pareto parameters using residuals

rather than the true errors. In particular, observe that

√
nᾱ
(
θ̂ − θ(n)

0

)
d−→ N

(
0, I−1

ᾱ + ᾱVᾱ
)
,
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where I−1
ᾱ =

I−1 0

0 1− ᾱ

 is the asymptotic covariance matrix in Theorem 1, and we

have an additional variance term depending on the ARMA-GARCH model given by

Vᾱ = I−1
ᾱ

(
AΩAT + vAT + AvT

)
I−1
ᾱ , A =

 ΓT1
1

1−ᾱΓT2

 , v =

 σᾱΓT3
σᾱ

1−ᾱΓT4

 . (3.9)

Now recall the quantile formula (2.8). The following quantile inference theorem follows by

continuous mapping theorem.

Theorem 6. Under the conditions of Theorem 5, for any p ∈ (0, α0)
√
nᾱ

σp

(
V̂aRX(1− p)− VaRX(1− p)

)
d−→ N(0, τ 2(ᾱ, p)),

where the variance

τ 2(ᾱ, p) = q

(
ᾱ

p

)T
I−1q

(
ᾱ

p

)
+ 1− ᾱ + ᾱ

q(ᾱ/p)
1

Vᾱ
q(ᾱ/p)

1

T ,
with I−1 defined in Theorem 1 and the additional variance term Vᾱ given in (3.9), compared

to that in Theorem 2.

We omit the proof as it is completely analogous to that of Theorem 2. Now, with σ̂p =

σ̂n(α̂/p)γ̂n and a consistent estimator τ̂ 2(ᾱ, p) (e.g., replacing the moments by their sample

versions, ᾱ by α̂, γ0 by γ̂, σᾱ by σ̂n, and Q(1− ᾱ) by un), a confidence interval with level

a of VaRX(1− p) is given by[
V̂aRX(1− p)−

z(1+a)/2√
nᾱ

σ̂n(α̂/p)γ̂n τ̂(ᾱ, p), V̂aRX(1− p) +
z(1+a)/2√

nᾱ
σ̂n(α̂/p)γ̂n τ̂(ᾱ, p)

]
.

Substituting V̂aRX(1− p) in (3.8) by the values in the above interval, we can construct a

prediction interval for V̂aRY,n(1 − p). Similar to the case of independent data, such an

interval has a poor coverage probability in small samples. It is computationally intensive

to employ the residual based bootstrap method. Here, to bypass the daunting task of

estimating the asymptotic variance of the quantile estimator, we suggest a random weighted

bootstrap procedure as follows.

• Step C1) Draw a random sample with sample size n from a distribution function with

mean one and variance one, say ξ
(b)
1 , · · · , ξ(b)

n .
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• Step C2) First, we estimate φ by

φ̂
(b)

= arg min
φ

n∑
t=1

ξ
(b)
t w̃2

t ε̃
2
t (φ).

Second, we estimate φh by maximizing
n∑
t=1

ξ
(b)
t w̃4

t l̃t

(
φh|φ̂

(b)
)

and denote the estimator by φ̂
(b)

h . Define X̂
(b)
t = ε̃t(φ̂

(b)
)/

√
h̃t(φ̂

(b)
, φ̂

(b)

h ) for t =

1, · · · , n, û
(b)
n = X̂

(b)
n−[nᾱ]:n, and estimate γ0 and σαn by solving

n∑
t=1

ξ
(b)
t δ(X̂

(b)
t − û(b)

n )s1(ν|X̂(b)
t − û(b)

n ) = 0,
n∑
t=1

ξ
(b)
t δ(X̂

(b)
t − û(b)

n )s2(ν|X̂(b)
t − û(b)

n ) = 0.

Denote the estimators by γ̂(b) and σ̂(b), which gives

V̂aR
(b)

X (1− p) = û(b)
n +

σ̂(b)

γ̂(b)
((ᾱ/p)γ̂

(b) − 1).

• Step C3) Repeat the above two steps B times to obtain
{

V̂aR
(b)

X (1− p)
}B
b=1

. Let

D̃1:B ≤ · · · ≤ D̃B:B denote the order statistics of

log

V̂aR
(b)

X (1− p)
V̂aRX(1− p)

 , b = 1, . . . , B,

and let D̃(1) ≤ · · · ≤ D̃(B) denote the order statistics of∣∣∣∣∣∣log

V̂aR
(b)

X (1− p)
V̂aRX(1− p)

∣∣∣∣∣∣ , b = 1, . . . , B.

Hence, the confidence intervals with level a for log(VaRX̄(1− p)) are

ĨRWB,1(a) = [log(V̂aRX̄(1− p))− D̃[B+Ba
2

]:B, log(V̂aRX̄(1− p))− D̃[B−Ba
2

]:B]

and

ĨRWB,2(a) = [log(V̂aRX̄(1− p))− D̃(Ba), log(V̂aRX̄(1− p)) + D̃(Ba)].

Again, substituting V̂aRX(1 − p) in (3.8) by the values in each interval above, we can

construct the corresponding prediction interval for V̂aRY,n(1 − p). The simulation study

below shows that the above procedure provides a good finite-sample coverage performance.

The asymptotic theory for the random weighted bootstrap method can be derived with

rather tedious calculations and thus is skipped.
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4 Simulation Study

4.1 Independent data

This subsection carries out a simulation study to evaluate the finite-sample behavior of the

proposed method for estimating VaR based on independent observations.

We draw 10000 random samples with sample size n = 500 or 1200 or 2500 from (1.2)

with γ = 3 or 1/3, σ = 1, G being the standard normal distribution, θ = 0.9. We use

ᾱ = 0.05, p = 0.01 or 0.001, and B = 10000 in the naive bootstrap method and the

random weighted bootstrap method. We use the nlm function in the R statistical software

to minimize the likelihood function with the following initial values for γ and σᾱ.

Let Yi = X(n−i+1):n−X(n−[nᾱ]):n for i = 1, . . . ,m with m = [nᾱ]. As we consider positive

index γ, we use the initial values

γini =
1

log 2

∣∣∣∣log
Y[m(1−3/8)]:m − Y[m(1−3/16)]:m

Y[m(1−3/4)]:m] − Y[m(1−3/8)]:m

∣∣∣∣ and σiniᾱ =
Y[m(1−3/8)]:mγ

ini

(3/8)−γini − 1
.

Here γini is the Pickands tail index estimation in Pickands (1975).

The coverage probabilities of the proposed intervals with levels a = 90% and 95% are

reported in Tables 1 and 2, which show that i) the normal approximation method is the

worst, and ii) it is much better to use the naive bootstrap method and the random weighted

bootstrap method with critical values computed from the empirical distribution of the

absolute differences between the bootstrapped estimators and the maximum likelihood VaR

estimator. Further, the normal Q-Q plots in Figures B.1 and B.2 of the supplement show

that the distribution of the VaR estimator is away from a normal distribution, especially

when p is very small. Hence we prefer IBoot,2(a) and IRWB,2(a) to IBoot,1(a) and IRWB,1(a)

in risk analysis.

4.2 ARMA-GARCH sequence

This subsection carries out a simulation study to evaluate the finite-sample behavior of the

proposed method for estimating VaR based on an AR-GARCH sequence.

Due to the computation burden of the random weighted bootstrap method, we draw

1000 random samples with sample size n = 1200 and 2500 from the following AR-GARCH
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(n, p, γ) INA(0.90) IBoot,1(0.90) IBoot,2(0.90) IRWB,1(0.90) IRWB,2(0.90)

(500,0.01,3) 0.7671 0.8447 0.9042 0.8516 0.9009

(500,0.001,3) 0.6634 0.8267 0.9012 0.8089 0.8936

(1200,0.01,3) 0.8247 0.8723 0.9005 0.8697 0.9012

(1200,0.001,3) 0.7392 0.8607 0.8971 0.8535 0.8984

(2500,0.01,3) 0.8573 0.8901 0.8987 0.8869 0.9007

(2500,0.001,3) 0.7837 0.8812 0.8957 0.8706 0.8972

(500,0.01,1/3) 0.8569 0.8571 0.8990 0.8591 0.8966

(500,0.001,1/3) 0.7453 0.7053 0.9318 0.6791 0.9210

(1200,0.01,1/3) 0.8803 0.8815 0.9034 0.8799 0.9036

(1200,0.001,1/3) 0.8027 0.7840 0.9145 0.7635 0.9136

(2500,0.01,1/3) 0.8928 0.8898 0.8985 0.8893 0.8975

(2500,0.001,1/3) 0.8494 0.8446 0.9029 0.8205 0.9048

Table 1: Confidence intervals with level a = 90%. Empirical coverage probabilities are

reported for the normal approximation confidence interval INA(a), the naive bootstrap

intervals IBoot,1(a) and IBoot,2(a), and the random weighted bootstrap intervals IRWB,1(a)

and IRWB,2(a). We take γ = 3 or 1/3, σ = 1, G ∼ N(0, 1) and θ = 0.9 in (1.2).

model:

Yt =0.0337− 0.0620Yt−1 + εt

εt =
√
htXt, ht = 0.0123 + 0.0883εt−1 + 0.8310ht−1

where Xt = (et −Eet)/E|et|, et = δet,1 − (1− δ)et,2, and et,1 and et,2 are independent GPD

random variables with CDF F (x) = 1−(1+γx)−1/γ . The parameters are calibrated from the

daily returns on the S&P500 index between 2012 and 2016. We consider γ = 1/3 and 1/6

to ensure EX2
t <∞. We take δ = 0.5 and use the random weighted bootstrap method with

B = 10000. The coverage probabilities of the proposed intervals with levels a = 90% and

95% are reported in Table 3, which show that ĨRWB,2(a) is again better than ĨRWB,1(a) and

performs well except under the case (n, p) = (1200, 0.001), where over-coverage is observed.

In summary, for quantifying the inference uncertainty of VaR estimation, we prefer
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(n, p, γ) INA(0.95) IBoot,1(0.95) IBoot,2(0.95) IRWB,1(0.95) IRWB,2(0.95)

(500,0.01,3) 0.7931 0.8928 0.9523 0.8806 0.9508

(500,0.001,3) 0.6817 0.8718 0.9512 0.8393 0.9479

(1200,0.01,3) 0.8538 0.9184 0.9491 0.9130 0.9489

(1200,0.001,3) 0.7626 0.9075 0.9480 0.8932 0.9486

(2500,0.01,3) 0.8908 0.9359 0.9480 0.9306 0.9486

(2500,0.001,3) 0.8102 0.9316 0.9478 0.9173 0.9483

(500,0.01,1/3) 0.9008 0.9102 0.9490 0.9126 0.9483

(500,0.001,1/3) 0.7852 0.7631 0.9655 0.7162 0.9607

(1200,0.01,1/3) 0.9235 0.9301 0.9520 0.9274 0.9524

(1200,0.001,1/3) 0.8396 0.8253 0.9572 0.7986 0.9567

(2500,0.01,1/3) 0.9375 0.9408 0.9485 0.9399 0.9491

(2500,0.001,1/3) 0.8838 0.8843 0.9519 0.8608 0.9532

Table 2: Confidence intervals with level a = 95%. Empirical coverage probabilities are

reported for the normal approximation confidence interval INA(a), the naive bootstrap

intervals IBoot,1(a) and IBoot,2(a), and the random weighted bootstrap intervals IRWB,1(a)

and IRWB,2(a). We take γ = 3 or 1/3, σ = 1, G ∼ N(0, 1) and θ = 0.9 in (1.2).

the random weighted bootstrap method with critical values computed from the empirical

distribution of the absolute differences between the bootstrapped risk estimators and the

risk estimator, which works well for independent data and dependent data.

5 Data Analysis

5.1 Danish fire insurance losses

This subsection analyzes the Danish fire insurance data1 in McNeil (1997) using the pro-

posed semi-parametric GPD model in (1.2) by treating the fire losses as independent data.

The dataset consists of 2167 large fire insurance claims (i.e., losses) in Denmark from

1The dataset is publicly available via R package evir.
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(n, p, γ) ĨRWB,1(0.90) ĨRWB,2(0.90) ĨRWB,1(0.95) ĨRWB,2(0.95)

(1200,0.01,1/3) 0.843 0.908 0.901 0.961

(1200,0.001,1/3) 0.629 0.940 0.689 0.968

(2500,0.01,1/3) 0.878 0.894 0.928 0.949

(2500,0.001,1/3) 0.700 0.906 0.763 0.952

(1200,0.01,1/6) 0.857 0.898 0.918 0.951

(1200,0.001,1/6) 0.703 0.936 0.764 0.970

(2500,0.01,1/6) 0.868 0.903 0.930 0.943

(2500,0.001,1/6) 0.757 0.896 0.811 0.943

Table 3: Confidence intervals for AR-GARCH models. Empirical coverage probabilities are

reported for the random weighted bootstrap confidence intervals ĨRWB,1(a) and ĨRWB,2(a)

with a = 0.90 and 0.95.

January 1980 until December 1990.

We first perform a sensitivity analysis of the proposed method w.r.t. the choice of

threshold level ᾱ. Specifically, we calculate the (1−p)×100% VaR at level p = 0.01, 0.005, 0.001

under varying threshold levels ᾱ = (0.05, 0.1). The confidence interval (C.I.) for VaR is cal-

culated at a = 90% and 95% level. To construct the C.I., we implement the normal approx-

imation (NA), the naive bootstrap method (Boot1 and Boot2), and the random weighted

bootstrap method (RWB1 and RWB2). For comparison, we further conduct a naive non-

parametric bootstrap (Naive), where we simply bootstrap the Danish fire insurance data

and use sample quantile to estimate the VaR and its C.I.

The result is given in Figure 1. The performance of semi-parametric GPD is fairly stable

w.r.t. ᾱ for p = 0.01, 0.005 and has some variation for p = 0.001. Note that the naive non-

parametric bootstrap (Naive) gives a very wide (and thus non-informative) C.I. for extreme

VaR (p = 0.001), which highlights the value/necessity of the proposed semiparametric C.I.

construction approach. We also report the Q-Q plots of log(V̂aR
(b)

X (1 − p)/V̂aRX(1 − p)),

b = 1, 2, · · · , 10000, for Boot and RWB, respectively, in Figures B.3 and B.4 of the supple-

ment. These figures show that the distribution is generally skewed, especially for p = 0.005

and 0.001.
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Figure 1: Sensitivity analysis of constructed confidence intervals (C.I.) for the (1−p)×100%

VaR at level p = 0.01, 0.005, 0.001. The y-axis is in the unit of 1 million Danish Krone.

EmpQ stands for VaR estimated by the sample quantile, and EstQ stands for VaR estimated

by the semi-parametric GPD. The result of the naive approach (Naive) does not depend on

ᾱ, thus is only plotted under ᾱ = 0.05 to avoid confusion.
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We further conduct a Leave-One-Out Validation (LOOV) for the proposed semi-parametric

GPD model and compare it with the naive nonparametric sample quantile approach (Naive).

Specifically, for each observation Xi with i = 1, 2, · · · , 2167, we use the leave-one-out sam-

ple X−i to estimate the (1 − p) × 100% VaR by either semi-parametric GPD or sample

quantile (Naive). For evaluation, we use the empirical coverage rate, which is defined as

the proportion of experiments where the left-out loss Xi is covered by (i.e. lower than) the

estimated VaR based on the leave-one-out sample X−i for i = 1, · · · , 2167.

p ᾱ Emp. rate(GPD) Emp. rate(Naive) p-value(GPD) p-value(Naive)

0.010 0.050 0.990 0.989 1.000 0.745

0.010 0.100 0.990 - 1.000 -

0.005 0.050 0.995 0.994 1.000 0.647

0.005 0.100 0.995 - 1.000 -

0.001 0.050 0.999 0.999 0.483 0.483

0.001 0.100 0.999 - 0.483 -

Table 4: The empirical coverage rate (Emp. rate) of the estimated (1 − p) × 100% VaR

across the 2167 experiments at level p = 0.01, 0.005, 0.001. The result of the naive approach

does not depend on ᾱ, thus is only reported under ᾱ = 0.05 to avoid confusion.

Table 4 reports the empirical coverage rate of the estimated VaR by the two approaches

across the 2167 experiments and further gives the corresponding p-values from the binomial

tests2 for the null hypothesis that the coverage probability of the estimated (1− p)× 100%

VaR is indeed the target level 1 − p. As can be seen, both approaches give a satisfactory

result with GPD providing a perfect performance. Moreover, note that the performance

of the GPD approach is insensitive to the threshold level of ᾱ, indicating the statistical

stability of the proposed approach.

2Under the null hypothesis, the number of coverage by the estimated (1 − p) × 100% VaR across n

experiments should follow a binomial distribution with parameters (n, 1 − p). See Kratz et al. (2018) for

more details of the binomial test.
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5.2 Losses of the S&P500 index

This subsection analyzes the daily negative log-returns (i.e., losses) of the S&P500 index

using the proposed semi-parametric GPD method with an ARMA-GARCH model. Pre-

cisely, on each day t, based on the past 2500 historical observations (yt−2499, yt−2498, · · · , yt),

we fit an AR(1)-GARCH(1,1) model using the proposed two-step self-weighted estimation

method. We then calculate the one-day ahead (1 − p) × 100% conditional VaR by the

semi-parametric GPD method with a threshold ᾱ and construct the corresponding 90% or

95% C.I. by RWB.

For comparison, we also conduct the analysis using a traditional nonparametric ap-

proach (Trad). That is, we fit an AR(1)-GARCH(1,1) model by MLE and use the sample

quantile of the fitted residuals to calculate the one-day ahead conditional VaR and boot-

strap the residuals to construct the corresponding C.I. of VaR.

We let t start from 11/01/2007, which is roughly the start of the financial crisis, and we

make the end date to be 10/20/2011, which roughly marks the end of the crisis. In other

words, we aim to test the ability of the proposed GPD method for monitoring a financial

system under stress.

p ᾱ Emp. rate(GPD) Emp. rate(Trad) p-value(GPD) p-value(Trad)

0.010 0.050 0.985 0.979 0.111 0.002

0.010 0.100 0.985 - 0.111 -

0.005 0.050 0.995 0.989 1.000 0.020

0.005 0.100 0.995 - 1.000 -

0.001 0.050 1.000 0.998 0.632 0.264

0.001 0.100 1.000 - 0.632 -

Table 5: The empirical coverage rate (Emp. rate) of the estimated (1 − p) × 100% VaR

across the 1000 predictions at level p = 0.01, 0.005, 0.001. The result of the traditional

approach does not depend on ᾱ, thus is only reported under ᾱ = 0.05 to avoid confusion.

There are 1000 predictions of one-day ahead conditional VaR given by the semi-parametric

GPD approach and the traditional nonparametric approach (Trad). We vary p = 0.01, 0.005, 0.001
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Figure 2: Estimated one-day ahead conditional VaR (red line) and its 90% C.I. (blue

dashed lines) by the random weight bootstrap (RWB2) and the traditional nonparamet-

ric approach (Trad). The black line denotes the negative daily log returns of the S&P500

index.

30



and set the confidence level of the C.I. to be 90% or 95%. For the semi-parametric GPD

approach, we further vary ᾱ = 0.05, 0.1. Table 5 reports the empirical coverage rate of

the estimated VaR by the two approaches across the 1000 predictions, which is defined as

the proportion of predictions where the observed loss is lower than the estimated one-day

ahead conditional VaR. Table 5 also gives the corresponding p-values from the binomial

test. As can be seen, the traditional nonparametric approach tends to underestimate the

true conditional VaR, and thus imposes serious under-reserve risk. On the other hand, the

semi-parametric GPD gives satisfactory prediction performance and passes all the binomial

tests. Moreover, note that the performance of the GPD approach is again insensitive to

the threshold level of ᾱ, indicating the statistical stability of the proposed approach.

For illustration, Figure 2 plots the estimated VaR and the corresponding C.I. given by

RWB2 and the traditional nonparametric approach. For the plots, we set ᾱ = 0.05, the

confidence level of C.I. a = 90% and vary p = 0.01, 0.005, 0.001. The result for RWB1

and the result for ᾱ = 0.1 and the confidence level a = 95% are similar and thus are

omitted. Note that compared to RWB2, the C.I. given by the traditional nonparametric

method is narrower for p = 0.01, which may be possibly due to the fact that the C.I. by the

traditional nonparametric approach does not incorporate the estimation uncertainty of the

AR(1)-GARCH(1,1) model. On the other hand, the nonparametric approach gives much

wider C.I. for extreme quantiles p = 0.005, 0.001, indicating that a naive nonparametric

bootstrap cannot construct an informative C.I. for extreme quantiles. This phenomenon is

observed in the Danish insurance data analysis as well.

6 Conclusions

Given that regulators often set a high VaR level in risk management, fitting distribu-

tion in the tail is essential. This paper infers a semi-parametric model, which only models

exceedances over a non-divergent threshold by the generalized Pareto distribution. Asymp-

totic results for parameters and VaR estimation are first derived for independent data. For

financial data modeled by an ARMA-GARCH process, a three-step weighted estimation

procedure is proposed to ensure a normal limit for estimating parameters and conditional

VaR with heavy tailed observations. For efficiently quantifying the uncertainty of risk fore-
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cast, a random weighted bootstrap method is proposed and shown to be consistent. A

simulation study and real data analysis confirm the advantages of the proposed method-

ologies. It is crucial to develop a distribution free goodness-of-fit test and the asymptotic

theory for dynamic modeling of the generalized Pareto distribution, which will be our future

research plan.

SUPPLEMENTARY MATERIAL

In this supplement, we provide the asymptotic theory for the naive bootstrap method

for independent data (Remark 5), report some additional Q-Q plots discussed in Sec-

tions 4.1 and 5.1, prove Theorems 1–5, and deduce the results for divergent thresholds

from Remarks 1 and 6 in details.
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