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Abstract

Fitting an ARMA-GARCH model has become a common practice in financial economet-

rics. Because the asymptotic normality of the quasi maximum likelihood estimation (QMLE)

requires finite fourth moment for both errors and the sequence itself, self-weighted quasi maxi-

mum exponential likelihood estimation (SWQMELE) has been proposed to reduce the moment

constraints but requires the errors to have zero median instead of zero mean. Because changing

zero mean to zero median destroys the ARMA-GARCH structure and has a serious effect on

skewed data, this paper proposes an efficient empirical likelihood test for zero mean of errors

in the application of SWQMELE to ensure that the model still concerns conditional mean. A

simulation study confirms the good finite sample performance before applying the test to the

US housing price indexes and financial returns for the study of comovement.

Keywords: ARMA-GARCH model, empirical likelihood, quasi-maximum likelihood estimation,

self-weighted quasi maximum exponential likelihood estimation.

∗College of Mathematics, Zhejiang University
†Department of Risk Management and Insurance, Georgia State University
‡College of Mathematics, Zhejiang University. Corresponding author: rmzhang@zju.edu.cn

1



1 Introduction

It has become a practical technique to model heteroscedasticity of a financial/economic variable by

an ARMA-GARCH sequence since Engle (1982) and Bollerslev (1986). A standard ARMA(p,q)-

GARCH(r,s) model is defined as


yt = ϕ+

∑p
i=1 φiyt−i +

∑q
j=1 ψjεt−j + εt, εt = ηt

√
ht,

ht = α0 +
∑r

i=1 αiε
2
t−i +

∑s
j=1 βjht−j ,

(1.1)

where α0 > 0, αi ≥ 0 (i = 1, ..., r), βj ≥ 0 (j = 1, ..., s), ϕ ∈ R, φi ∈ R (i = 1, ..., p),

ψj ∈ R (j = 1, ..., q), and {ηt} is a sequence of independent and identically distributed random

variables with mean zero and variance one.

A commonly employed statistical inference for fitting model (1.1) is the so-called quasi-

maximum likelihood estimation (QMLE); see Ling and Li (1997), Jeantheau (1998), Berkes et

al. (2003), Ling and McAleer (2003), Hall and Yao (2003), and Francq and Zaköıan (2004). It

is known that the QMLE has a normal limit when both Eε4
t < ∞ and Eη4

t < ∞. In practice,∑r
i=1 αi +

∑s
j=1 βj is often close to one, suggesting that the assumption of Eε4

t < ∞ may be

problematic. To reduce this moment constraint, Ling (2007) proposed a self-weighted local quasi

maximum likelihood estimation, which has a normal limit when Eη4
t < ∞ and E|εt|τ< ∞ for

some τ > 0. When the model (1.1) becomes a pure GARCH process, Hall and Yao (2003) showed

that the QMLE has a stable law limit when Eη4
t = ∞. Without surprising, one has to use a

different estimation technique based on some condition different from Eη2
t = 1 to ensure a normal

limit in the case of Eη4
t =∞. For example, Peng and Yao (2003) showed that the least absolute

deviation estimation for a GARCH sequence has a normal limit when Eη4
t =∞, but the median

of η2
t is one. Zhu and Ling (2012) proposed the so-called self-weighted quasi maximum expo-

nential likelihood estimation (SWQMELE) by assuming E|ηt|= 1 and zero median of ηt instead
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of Eηt = 0 and Eη2
t = 1 in (1.1), which ensures a normal limit regardless of Eη4

t = ∞ and/or

Eη4
t = ∞. When E|ηt|= d > 0 in the standard ARMA-GARCH model (1.1) is unknown, after

defining

η∗t = ηt/d, h
∗
t = d2ht, α

∗
i = d2αi for i = 0, 1, · · · , r, and β∗j = βj for j = 1, · · · , s, (1.2)

model (1.1) is equivalent to

yt = ϕ+

p∑
i=1

φiyt−i +

q∑
j=1

ψjεt−j + εt, εt = η∗t
√
h∗t , h

∗
t = α∗0 +

r∑
i=1

α∗i ε
2
t−i +

s∑
j=1

β∗j h
∗
t−j . (1.3)

Therefore, changing Eη2
t = 1 to E|ηt|= 1 is a simple scale transformation of parameters αi’s. More

importantly, this scale transformation generally does not change risk measure inference such as

conditional Value-at-Risk and conditional Expected Shortfall of yt given Ft−1, Value-at-Risk and

Expected Shortfall of ηt, and comovement of two sequences. Here, Ft is the σ-field generated by

{ys : s ≤ t}. For example, it follows from (1.1) and (1.3) that

P (yt ≤ y|Ft−1) = P (ηt ≤
y−ϕ−

∑p
i=1 φiyt−i−

∑q
j=1 ψjεt−j√

ht
|Ft−1)

= P (η∗t ≤
y−ϕ−

∑p
i=1 φiyt−i−

∑q
j=1 ψjεt−j√

h∗t
|Ft−1).

That is, the conditional Value-at-Risk of yt given Ft−1 computed from (1.1) is the same as that

computed from (1.3). However, changing zero mean of ηt in (1.1) to zero median requires a

complicated shift transformation, which can not maintain the ARMA-GARCH structure. For

example, if the median of ηt is m, then a simple transformation of (1.1) to have zero median is

εt = m
√
ht + (ηt −m)

√
ht,

which does not have the GARCH structure due to the additional term m
√
ht. That is, changing
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zero mean of ηt to zero median destroys the ARMA-GARCH structure and makes the SWQMELE

not applicable. We refer to Fan, Qi and Xiu (2014) for more details on the transformation effect

for skewed data. Therefore, it is of importance to test H0 : Eηt = 0 when SWQMELE is applied

to (1.1) under the assumptions of E|ηt|= 1 and zero median of ηt. If this null hypothesis is

rejected, then the ARMA part in (1.1) no longer models the conditional mean of yt.

This paper investigates the possibility of using the empirical likelihood method to test the

hypothesis above. The empirical likelihood method is introduced by Owen (1988, 1990) and is a

data-driven method combining the advantages of parametric and nonparametric methods. Under

some regularity conditions, the associated empirical likelihood ratio statistic asymptotically fol-

lows a chi-squared distribution function, and the shape of the obtained confidence interval/region

is determined automatically by the data. Because of its effectiveness, the empirical likelihood

method has been applied in various fields to provide powerful tests and accurate interval estima-

tion. These include Owen (1991) and Kolaczyk (1994) in general regression problems, Chuang and

Chan (2002) in unstable autoregressive (AR) models, Chan and Ling (2006) in GARCH models,

Liu et al. (2008) and Ciuperca and Salloum (2015) in the detection of change point, Fan and

Huang (2005) in the varying-coefficient partially linear model, Chen et al. (2012) in the threshold

AR models, and Zhang et al. (2019) in the tail index inference of GARCH-type models. We refer

to Owen (2001) for an overview of the empirical likelihood method.

Our empirical motivation is the study of the comovement of housing price indexes in the states,

where an AR-GARCH model is fitted to the house price index for each state, and QMLE is often

employed; see Zimmer (2012, 2015). However, Huang, Peng and Yao (2019) confirmed that both

Eη4
t and Eε4

t may be infinite by using the Hill estimate (Hill (1975)) and found that the estimates

for the mean and median of ηt are close to zero by applying the SWQMELE. This paper provides

a formal test for Eηt = 0 in using the SWQMELE to fit an ARMA-GARCH model.

We organize this paper as follows. Section 2 provides the empirical likelihood test and its
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asymptotic result. Sections 3 and 4 present a simulation study and real data analyses on US

housing price indexes and financial returns, respectively. Section 5 summarizes our conclusions.

We put all proofs in the Appendix and the supplementary file.

2 Methodology and Asymptotic Result

Consider the ARMA(p,q)-GARCH(r,s) model (1.1), and let θ = (γ ′, δ′)′ denote the unknown pa-

rameters with true value θ0, where γ = (ϕ, φ1, ..., φp, ψ1, ..., ψq)
′ and δ = (α0, α1, ..., αr, β1, ..., βs)

′.

Let Θ = Θγ × Θδ be the parameter space with Θγ ⊂ Rp+q+1, Θδ ⊂ Rr+s+1
0 , R = (−∞,∞) and

R0 = [0,∞). Given the observations {yn, ..., y1} and the initial values {y0, y−1, ...}, we write the

parametric form of (1.1) as


εt(γ) = yt − ϕ−

∑p
i=1 φiyt−i −

∑q
j=1 ψjεt−j(γ), ηt(θ) =

εt(γ)√
ht(θ)

,

ht(θ) = α0 +
∑r

i=1 αiε
2
t−i(γ) +

∑s
j=1 βjht−j(θ).

(2.4)

Write ηt(θ0) = ηt, εt(γ0) = εt, ht(θ0) = ht, and denote φ(z) = 1−
∑p

i=1 φiz
i, ψ(z) = 1+

∑q
i=1 ψiz

i,

α(z) =
∑r

i=1 αiz
i, and β(z) = 1−

∑s
i=1 βiz

i. Like Ling (2007) and Zhu and Ling (2012), we take

yi = 0 for i ≤ 0 and impose the following regularity conditions.

Assumption 1. Assume that Θγ and Θδ are compact, and θ0 is an interior point in Θ. For each

θ ∈ Θ, φ(z) 6= 0 when |z|≤ 1, and φ(z) and ψ(z) have no common root with φp 6= 0 or ψq 6= 0.

Assumption 2. For each θ ∈ Θ, α(z) and β(z) have no common root, α(1) 6= 1, αr + βs 6= 0,

and
∑s

i=1 βi < 1.

Assumption 3. {ηt} is a sequence of independent and identically distributed random variables.

Assumption 4. E[(wt + w2
t )ξ

4
ρ,t−1] <∞ for any ρ ∈ (0, 1), where ξρ,t = 1 +

∑∞
i=0 ρ

i|yt−i|.
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Assumption 5. ηt has zero median with E|ηt|= 1, Eη2
t <∞, and a continuous density function

g(x) satisfying g(0) > 0 and supx∈R g(x) <∞.

Assumption 6. E|εt|ι<∞ for some ι > 0.

Assumption 1 implies the stationarity, invertibility, and identifiability of the ARMA part of

model (2.4), under which it follows that

ψ−1(z) =
∞∑
i=0

aψ(i)zi and φ(z)ψ−1(z) =
∞∑
i=0

aγ(i)zi,

where supΘγ aψ(i) = O(ρi) and supΘγ aγ(i) = O(ρi) for some 0 < ρ < 1.

Assumption 2 is the identification condition for the GARCH part of the model (2.4). Under

this condition, we have

β−1(z) =
∞∑
i=0

aβ(i)zi and α(z)β−1(z) =
∞∑
i=1

aδ(i)z
i,

where supΘδ
aβ(i) = O(ρi) and supΘδ

aδ(i) = O(ρi) for some 0 < ρ < 1; see Lemma 2.1 in Ling

(1999). Assumption 6 ensures the stationarity of {εt}.

The weight wt in Assumption 4 is used to reduce the moment condition on εt as Zhu and Ling

(2012). A particular choice suggested by Zhu and Ling (2012) and Pan, Wang and Yao (2007) is

employed in the simulation study and empirical analysis below.

Assumption 5 allows Zhu and Ling (2012) to study the SWQMELE, which reduces the moment

condition on ηt for having a normal limit. More specifically, by temporarily assuming that ηt

follows the standard double exponential distribution, one can minimize the following weighted

negative log-likelihood function to obtain the SWQMELE:

Lsn(θ) =
1

n

n∑
t=1

wtlt(θ) and lt(θ) = log
√
ht(θ) +

|εt(γ)|√
ht(θ)

.
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As argued in the introduction, changing zero mean of ηt in the standard ARMA-GARCH

model to zero median destroys the ARMA-GARCH structure and has a serious effect on skewed

data. Therefore, it becomes important to test

H0 : Eηt = 0 against H1 : Eηt 6= 0 (2.5)

under the above Assumptions 1–6. When this null hypothesis can not be rejected, the ARMA

part still models the conditional mean, and conditional mean and conditional median are equal.

To formulate an empirical likelihood test, we follow the idea of using estimating equations in

Qin and Lawless (1994). First, we calculate the score functions of the SWQMELE, i.e.,

∂lt(θ)

∂θ
=

1

2ht(θ)

∂ht(θ)

∂θ
+

1√
ht(θ)

∂εt(γ)

∂θ
sgn(ηt(θ))− |εt(γ)|

2
√
ht(θ)

1

ht(θ)

∂ht(θ)

∂θ

=
1

2ht(θ)

∂ht(θ)

∂θ
(1− |ηt(θ)|) +

1√
ht(θ)

∂εt(γ)

∂θ
sgn(ηt(θ)),

where sgn denotes the sign function. Put Dt,1(θ) = wt
∂lt(θ)

∂θ
, Dt,2(θ, µ) = wt(ηt(θ) − µ), and

µ = µ(θ) = Eηt(θ) with true value µ0. Then θ and µ can be estimated simultaneously by solving

the following estimating equations:

n∑
t=1

Dt,1(θ) = 0 and

n∑
t=1

Dt,2(θ, µ) = 0.

This defines the following empirical likelihood function

L(θ, µ) = sup{
n∏
t=1

(npt) : p1 ≥ 0, ..., pn ≥ 0,
n∑
t=1

pt = 1,
n∑
t=1

ptDt(θ, µ) = 0},

where Dt(θ, µ) =
(
D′t,1(θ), Dt,2(θ, µ)

)′
. Using the Lagrange multiplier technique, the log empir-
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ical likelihood function becomes

l(θ, µ) = −2 log(L(θ, µ)) = 2
n∑
t=1

log{1 + λ′Dt(θ, µ)}, (2.6)

where λ = λ(θ, µ) satisfies

n∑
t=1

Dt(θ, µ)

1 + λ′Dt(θ, µ)
= 0.

Because we are only interested in µ, we consider the profile empirical likelihood ratio lp(µ) =

min
θ∈Θ

l(θ, µ). The following theorem shows that the Wilks theorem holds for the proposed empirical

likelihood method.

Theorem 1. Suppose (1.1) satisfies Assumptions 1–6. Under H0 : Eηt = 0, lp(0) converges in

distribution to a chi-squared limit with one degree of freedom as n→∞.

Based on the above theorem we reject H0 : Eηt = 0 at the level 1 − a whenever lp(0) > χ2
1,a,

where χ2
1,a denotes the a-th quantile of a chi-squared distribution function with one degree of

freedom.

The next theorem shows that the proposed test has power.

Theorem 2. Suppose that Assumptions 1-6 hold for the model (1.1). When µ0 = M/
√
n for some

constant M , lp(0) converges in distribution to a non-central chi-squared limit with one degree of

freedom and the noncentral parameter M2(Ewt)
2 as n→∞.
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3 Simulation

This section examines the finite sample performance of the proposed empirical likelihood test by

generating data from an AR(1)-GARCH(1,1) model:

yt = ϕ+ φ1yt−1 + εt, εt = ηt
√
ht, ht = α0 + α1ε

2
t−1 + β1ht−1.

We take θ0 = (0.0797,−0.0465, 0.0347, 0.1572, 0.8057), n = 200 or 500 or 1000 or 2500 or 5000,

and choose wt as

(3.7)wt =

(
max

{
1,

1

C

∞∑
k=1

1

k9
|yt−k|I{|yt−k|> C}

})−4

with C being the 95% or 90% quantile of {|yt|}nt=1. This particular choice is suggested by Ling

(2007) and Pan, Wang and Yao (2007) when E|εt|< ∞. For computing the size of the proposed

empirical likelihood test at levels 10% and 5%, we consider ηt = η̃t/E|η̃t|, where η̃t ∼ Laplace(0, 1)

and η̃t ∼ N(0, 1). Because they are symmetric, the considered ηt has both zero mean and zero

median. Table 1 reports the computed empirical sizes based on 10000 repetitions. We observe

that i) the coverage probability is robust to the two choices of C, ii) the normal error provides a

less accurate size than the Laplace error as we fit the ARMA-GARCH model based on a Laplace

distribution, iii) and the accuracy improves for a large sample size.

Table 1: We report the sizes of the profile empirical likelihood test for H0 : Eηt = 0, where C in
(3.7) is chosen as the 95% (left panel) and 90% (right panel) quantile of {|yt|}nt=1

.

n Level 5% Level 10% Level 5% Level 10% Level 5% Level 10% Level 5% Level 10%
Laplace Laplace Normal Normal Laplace Laplace Normal Normal

200 0.0644 0.1181 0.0419 0.0797 0.0644 0.1160 0.0418 0.0801

500 0.0418 0.0843 0.0320 0.0654 0.0431 0.0849 0.0306 0.0683

1000 0.0455 0.0900 0.0328 0.0766 0.0458 0.0915 0.0333 0.0750

2500 0.0425 0.0879 0.0387 0.0803 0.0419 0.0856 0.0392 0.0811

5000 0.0456 0.0946 0.0436 0.0939 0.0455 0.0941 0.0418 0.0914

Next, we compute the power of the proposed empirical likelihood test at levels 10% and 5%

by considering the standardized Beta(1.2, 1) and Beta(2, 2.7), i.e., E|ηt|= 1 and zero median. By
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drawing 100,000 random samples with sample size 1,000,000 from these two Beta distributions,

we find that Eηt is around −0.0659 for Beta(1.2,1) and 0.0660 for Beta(2,2.7), i.e., H0 is false.

Table 2 reports the computed empirical powers, which shows that i) the proposed test is powerful,

ii) a larger sample size gives a better power, iii) the power is robust to the two choices of C, iv)

and Beta(2, 2.7) has slightly better power than Beta (1.2, 1) as the former one departs a bit more

away from the null hypothesis.

Table 2: We report the powers of the profile empirical likelihood test for H0 : Eηt = 0, where C
in (3.7) is chosen as the 95% (left panel) and 90% (right panel) quantile of {|yt|}nt=1.

n Level 5% Level 10% Level 5% Level 10% Level 5% Level 10% Level 5% Level 10%
Beta(1.2,1) Beta(1.2,1) Beta(2,2.7) Beta(2,2.7) Beta(1.2,1) Beta(1.2,1) Beta(2,2.7) Beta(2,2.7)

200 0.1249 0.1914 0.0977 0.1657 0.1192 0.1851 0.0986 0.1660

500 0.1746 0.2712 0.1783 0.2846 0.1687 0.2674 0.1755 0.2734

1000 0.3364 0.4705 0.3830 0.5090 0.3247 0.4584 0.3678 0.5030

2500 0.7408 0.8347 0.8083 0.8857 0.7274 0.8243 0.7974 0.8776

In summary, the proposed empirical likelihood test has a reasonable size and is powerful and

robust to the two choices of C. It remains challenging to find an optimal weight function to

improve the size.

4 Real Analysis

4.1 US Housing Price Indexes

This subsection applies the proposed test to the quarterly percentage changes of the state-level

house price index (HPI) of California, Florida, Nevada, and Arizona from 1975 to 2018, which

were estimated and published by the Federal Housing Finance Agency. The total number of

observations for each state is 176. To study the comovement and contagion in the housing market,

one often fits an AR-GARCH model to each HPI sequence. Recently, Huang, Peng and Yao

(2019) found that an AR(3)-GARCH(1,1) model fits the data well by using the SWQMELE and

the assumptions of Eη4
t < ∞ and Eε4

t < ∞ are questionable after estimating the tail indexes
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of ηt and εt by the well-known Hill tail index estimate (Hill (1975)); see Table 3 for the fitted

models. Although the estimates for the mean and median of ηt are close to zero (see Table 4 below),

Huang, Peng and Yao (2019) didn’t formally test H0 : Eηt = 0 to ensure the AR part models both

conditional mean and conditional median. An application of the proposed empirical likelihood

test gives P-values 0.267, 0.480, 0.637, and 0.830 for California, Florida, Nevada, and Arizona,

respectively; see Table 4. Therefore, the null hypothesis H0 : Eηt = 0 can not be rejected, i.e.,

the employed AR(3)-GARCH(1,1) model still studies the conditional mean, and the application

of combining copula and SWQMELE for studying comovement of house pricing indexes in the

literature is methodologically sound as copula is invariant to the scale transformation.

Table 3: SWQMELE for fitting AR(3)-GARCH(1,1) models.

State ϕ̂ φ̂1 φ̂2 φ̂3 ω̂ α̂1 β̂1

CA 0.3067 0.7274 -0.0069 0.1220 0.3327 0.3305 0.1252
FL 0.2662 0.5008 0.0344 0.3174 0.0666 0.1380 0.6706
NV 0.2703 0.4475 0.0094 0.3231 0.0821 0.2810 0.5647
AZ 0.4155 0.3253 0.1169 0.2565 0.0333 0.3037 0.5810

Table 4: Profile empirical likelihood test for Eηt = 0.

State mean η̂t median η̂t mean|η̂t| l̂p(µ0) P-value

CA -0.0944 -0.0068 1.0161 1.2332 0.267
FL -0.0661 -0.0217 0.9888 0.4995 0.480
NV 0.0245 -0.0230 0.9951 0.2231 0.637
AZ 0.0028 -0.0454 0.9863 0.0459 0.830

4.2 Financial returns

In this subsection, we study the daily S&P500 and Microsoft Stock (MSFT) close prices from

August 3, 2009 to July 29, 2019, which gives a total of 2514 observations for each sequence. We

fit an ARMA-GARCH model to the 100 times log-returns. We plot the prices and log-returns in

Figures 1 and 2, respectively.
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Figure 1: The daily S&P500 and MSFT close prices from August 3, 2009 to July 9, 2019.

Figure 2: The 100 times log-return of daily S&P500 and MSFT close prices from August 3, 2009
to July 9, 2019.
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To apply the proposed test, we first use the function “auto.arima” in the R package “forecast”

with AIC to obtain the appropriate order of the ARMA part, which suggests an ARMA(2,2)-

GARCH(1,1) model for S&P500 returns and an ARMA(1,1)-GARCH(1,1) model for MSFT re-

turns. An application of the quasi maximum likelihood inference in the R package “fGarch” gives

the fitted ARMA(2,2)-GARCH(1,1) model for S&P 500 as



yt = 0.0054− 0.0287yt−1 + 0.9469yt−2 + 0.0052εt−1 − 0.9784εt−2 + εt,

(0.0015) (0.0118) (0.0115) (0.0071) (0.0072)

εt = ηt
√
ht, ht = 0.0345 + 0.1588ε2

t−1 + 0.8042ht−1,

(0.0084) (0.0244) (0.0247)

and the fitted ARMA(1,1)-GARCH(1,1) model for MSFT as



yt = 0.0217 + 0.7716yt−1 − 0.8083εt−1 + εt,

(0.0105) (0.0974) (0.0952)

εt = ηt
√
ht, ht = 0.3391 + 0.1206ε2

t−1 + 0.7216ht−1.

(0.1353) (0.0372) (0.0846)

Here, the numbers in brackets are standard errors.

The autocorrelation functions of the estimated ηt and |ηt| in Figure 3 show that the fitted

models are reasonable for both log-returns. Using the R package ’evmix’, we plot the Hill estimates

for the estimated ηt and the 90% confidence intervals in Figure 4, which suggests that the quasi

maximum likelihood estimation for S&P500 may have a normal limit, but it is not for MSFT.

Next, we examine whether SWQMELE is applicable.
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Figure 3: We plot the autocorrelation functions computed from the estimated ηt’s and |ηt|’s for
S&P 500 and MSFT.
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Figure 4: Using the R package ’evmix’, we compute the Hill estimates from the estimated ηt’s
and the 90% confidence intervals (dotted lines) for S&P 500 and MSFT.

An application of the SWQMELE shows that the mean of ηt is -0.0201 and 0.0029, the median

of ηt is 0.0335 and -0.0083, and the mean of |ηt| is 1.0048 and 1.0014, respectively, for S&P 500

and MSFT. The proposed empirical likelihood test gives l̂p(0) = 16.1283 and 0.6071, respectively,

for S&P 500 and MSFT with the corresponding P-values 5.919× 10−5 and 0.436. Therefore, the

null hypothesis of H0 : Eηt = 0 is rejected for S&P 500 but is not rejected for MSFT, although

the estimated mean and median of ηt are close to each other for both series. This analysis

suggests that it is better and sound to apply the SWQMELE to MSFT log-returns because the

sequence does not have enough moments and has both zero mean and zero median. In contrast,

the application of the SWQMELE to the S&P500 log-returns means that we no longer model

the conditional mean as the proposed test does not support both zero mean and zero median.

Because the sequence has enough moments shown by the Hill estimate, it may be good to use the

QMLE for the S&P500 log-returns.

In summary, it is practically vital to test whether the error in an ARMA-GARCH model has
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both zero mean and zero median in applying the SWQMELE because changing zero mean to zero

median destroys the ARMA-GARCH structure.

5 Conclusions

QMLE is often employed to fit an ARMA-GARCH model, which requires finite fourth moments

for both errors and the sequence itself to ensure a normal limit. Having a normal limit is neces-

sary to ensure that the standard residual-based bootstrap method can be employed to quantify

uncertainty. The self-weighted quasi maximum exponential likelihood estimation (SWQMELE)

significantly reduces the moment conditions. Still, it requires errors to have zero median instead

of zero mean in the original ARMA-GARCH models. Generally, changing zero mean to zero me-

dian destroys the ARMA-GARCH structure. This paper proposes an efficient empirical likelihood

method for testing zero mean of errors in using the SWQMELE to fit an ARMA-GARCH model

for returns. Applications to real datasets show that the SWQMELE does not apply to S&P500

log-returns, but is useful for US housing price indexes and MFST log-returns.
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Appendix: Proofs of Theorems

First we need some lemmas, where the lengthy proofs of Lemmas 2 and 3 are given in the

supplementary file. Recall µ0 denotes the true value of µ = Eηt and is zero under the null

hypothesis H0 : Eηt = 0.

Lemma 1. Under conditions of Theorem 1, there exist a constant ρ ∈ (0, 1), a constant C > 0,

and a neighborhood Θ0 of θ0 such that for any constant ι1 ∈ (0, 1), we have

(a) sup
Θ0

|εt(γ)|≤ Cξρt−1,

(b) sup
Θ0

∥∥∥∥∂εt(γ)

∂γ

∥∥∥∥ ≤ Cξρt−1,

(c) sup
Θ0

∥∥∥∥∂2εt(γ)

∂γ∂γ ′

∥∥∥∥ ≤ Cξρt−1,

(d) sup
Θ0

∣∣∣∣ ∂3εt(γ)

∂γi∂γj∂γj

∣∣∣∣ ≤ Cξρt−1 where i, j, k = 1, ..., p+ q + 1,

(e) 1 ≤ sup
Θ0

ht(θ)

α0
≤ Cξ2

ρt−1 where α0 = inf
Θ0

α0,

(f) sup
Θ0

∥∥∥∥ 1

ht(θ)

∂ht(θ)

∂δ

∥∥∥∥ ≤ Cξι1ρt−1,
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(g) sup
Θ0

∥∥∥∥ 1

ht(θ)

∂2ht(θ)

∂δ∂δ′

∥∥∥∥ ≤ Cξι1ρt−1,

(h) sup
Θ0

∣∣∣∣ 1

ht(θ)

∂3ht(θ)

∂δi∂δj∂δk

∣∣∣∣ ≤ Cξι1ρt−1 where i, j, k = 1, ..., r + s+ 1,

(i) sup
Θ0

∥∥∥∥ 1√
ht(θ)

∂ht(θ)

∂γ

∥∥∥∥ ≤ Cξρt−1,

(j) sup
Θ0

∥∥∥∥ 1√
ht(θ)

∂2ht(θ)

∂γ∂γ ′

∥∥∥∥ ≤ Cξρt−1,

(k) sup
Θ0

∣∣∣∣ 1√
ht(θ)

∂3ht(θ)

∂γi∂γj∂γk

∣∣∣∣ ≤ Cξρt−1 where i, j, k = 1, ..., p+ q + 1,

(l) sup
Θ0

∥∥∥∥ 1√
ht(θ)

∂2ht(θ)

∂δ∂γ ′

∥∥∥∥ ≤ Cξρt−1,

(m) sup
Θ0

∣∣∣∣ 1√
ht(θ)

∂3ht(θ)

∂δi∂δj∂γk

∣∣∣∣ ≤ Cξρt−1 where i, j = 1, ..., p+ q + 1, k = 1, ..., r + s+ 1,

(n) sup
Θ0

∣∣∣∣ 1√
ht(θ)

∂3ht(θ)

∂δi∂γj∂γk

∣∣∣∣ ≤ Cξρt−1 where i = 1, ..., p+ q + 1, j, k = 1, ..., r + s+ 1.

Proof. See Ling (2007) or Chan and Ling (2006).

Lemma 2. Under conditions of Lemma 1, we have

(a) E sup
Θ0

||Dt(θ, µ0)||2<∞,

(b) E sup
Θ0

||P t(θ, µ0)||<∞, where P t =
∂Dt(θ, µ0)

∂ω′
and ω = (θ′, µ)

′
.

Lemma 3. Let V0 =
{
θ : ‖θ−θ0‖≤

M√
n

}
for some constant M > 0. Under conditions of Lemma

1, we have

(a) max
1≤t≤n

sup
V0

‖P t(θ, µ0)‖= op(n),

(b) max
1≤t≤n

sup
V0

‖Dt(θ, µ0)‖= op(
√
n),

(c) 1
n

∑n
t=1P t(θ, µ0) = Ψ + op(1) holds uniformly for all θ ∈ V0,

(d) 1
n

∑n
t=1[Dt(θ, µ0)D′t(θ, µ0)] = Ω + op(1) holds uniformly for all θ ∈ V0,

where Ψ =


1

4
E{ wt

h2
t (θ0)

∂ht(θ0)

∂θ

∂ht(θ0)

∂θ′
} 0

E{ wt√
ht(θ0)

∂εt(γ0)

∂θ′
} −Ewt

, Ω =

 Ω11 Ω12

Ω21 Ω22

,

Ω11 = E{ w2
t

ht(θ0)

∂εt(γ0)

∂θ

∂εt(γ0)

∂θ′
}+

Eη2
t − 1

4
E{ w2

t

h2(θ0)

∂ht(θ0)

∂θ

∂ht(θ0)

∂θ′
},

Ω12 = −E(η2
t sgn(ηt))

2
E{ w2

t

ht(θ0)

∂ht(θ0)

∂θ
},

Ω21 = −E(η2
t sgn(ηt))

2
E{ w2

t

ht(θ0)

∂ht(θ0)

∂θ′
}, Ω22 = E(w2

t η
2
t ).
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Lemma 4. Under conditions of Lemma 1, we have

1√
n

n∑
t=1

Dt(θ0, µ0)
d−→ N(0,Ω),

where Ω is defined in Lemma 3.

Proof. Recall Ft is the σ-field generated by {ym,m ≤ t}. Then,

E(Dt,1(θ0)|Ft−1) = E

(
wt

2ht(θ0)

∂ht(θ0)

∂θ
(1− |ηt(θ0)|) +

wt√
ht(θ0)

∂εt(γ0)

∂θ
sgn(ηt(θ0))

∣∣∣∣Ft−1

)
= 0, and

E(Dt,2(θ0, µ0)|Ft−1) = E(wtηt|Ft−1) = wtEηt = 0.

Hence,Dt(θ0, µ0) is a sequence of martingale differences, and the theorem follows from the Central

Limit Theorem of Martingales (see Page 58 of Hall and Heyde (1980)).

Proof of Theorem 1. Let θ = θ0 +
ν√
n

, where ν is a (p + q + r + s + 2)-dimensonal vector.

Denote g(θ, µ0,λ) =
1

n

n∑
t=1

Dt(θ, µ0)

1 + λ′Dt(θ, µ0)
and γt(θ, µ0) = λ′Dt(θ, µ0), where λ is a solution of

equation g(θ, µ0,λ) = 0. We first show that max
1≤t≤n

|γt(θ, µ0)|= op(1).

Let λ = ρr with ‖r‖= 1. Observe that

0 = ‖g(θ, µ0, ρr)‖ ≥ ‖r′g(θ, µ0, ρr)‖

=

 1

n

n∑
t=1

r′Dt(θ, µ0)− 1

n
ρ

n∑
t=1

r′Dt(θ, µ0)D′t(θ, µ0)r

1 + ρr′Dt(θ, µ0)


≥ − 1

n

 n∑
t=1

r′Dt(θ, µ0)

+
ρr′Sn(θ, µ0)r

1 + ρZn(θ, µ0)
,
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where Sn(θ, µ0) =
1

n

n∑
t=1

Dt(θ, µ0)D′t(θ, µ0), Zn(θ, µ0) = max
1≤t≤n

‖Dt(θ, µ0)‖. Thus,

ρr′Sn(θ, µ0)r

1 + ρZn(θ, µ0)
≤ 1

n

 n∑
t=1

r′Dt(θ, µ0)


≤ 1

n

 n∑
t=1

r′Dt(θ0, µ0)

+
1

n

 n∑
t=1

r′P t(θ
∗, µ0)

‖θ − θ0‖

≤ 1

n

 n∑
t=1

r′Dt(θ0, µ0)

+

(
1

n

n∑
t=1

‖P t(θ
∗, µ0)‖

)
‖θ − θ0‖

= Op(
1√
n

)

holds uniformly for any θ ∈ V0, where the last equation follows from Lemma 4 that
1√
n

n∑
t=1

Dt(θ0, µ0) =

Op(1) and the proof of Lemma 2 in the supplementary file. Consequently,

ρr′Sn(θ, µ0)r

1 + ρZn(θ, µ0)
= Op(

1√
n

).

By Lemma 3(d), r′Sn(θ, µ0)r ≥ a+ op(1) holds uniformly for θ ∈ V0, where a is the smallest

eigenvalue of Ω. Thus,

ρ = ‖λ‖= Op(
1√
n

) (5.8)

holds uniformly in θ ∈ V0. Then, by Lemma 3(b),

max
1≤t≤n

|γt(θ, µ0)|≤ ‖λ‖max
1≤t≤n

‖Dt(θ, µ0)‖= op(1) (5.9)

holds uniformly in θ ∈ V0.
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On the other hand, Taylor expansion and Lemma 3 (c) imply that

1

n

n∑
t=1

Dt(θ, µ0) =
1

n

n∑
t=1

(Dt(θ0, µ0) + P t(θ
∗, µ0)(θ − θ0) + op(

1√
n

))

=
1

n

n∑
t=1

Dt(θ0, µ0) +
ν

n
√
n

n∑
t=1

P t(θ
∗, µ0) + op(

1√
n

)

= Op(
1√
n

) +
ν√
n

(Ψ + op(1)) + op(
1√
n

)

= Op(
1√
n

) + op(
1√
n

)

= Op(
1√
n

)

holds uniformly in V0, where θ∗ lies between θ0 and θ. By (5.9), we have

0 = g(θ, µ0,λ)

=
1

n

n∑
t=1

Dt(θ, µ0)− Sn(θ, µ0)λ+
1

n

n∑
t=1

Dt(θ, µ0)γ2
t (θ, µ0)

1 + γt(θ, µ0)

≤ 1

n

n∑
t=1

Dt(θ, µ0)− Sn(θ, µ0)λ+
1

(1− max
1≤t≤n

|γt(θ, µ0)|)
1

n

n∑
t=1

(
Dt(θ, µ0)γ2

t (θ, µ0)

)

≤ 1

n

n∑
t=1

Dt(θ, µ0)− Sn(θ, µ0)λ+

max
1≤t≤n

|γt(θ, µ0)|2

(1− max
1≤t≤n

|γt(θ, µ0)|)

(
1

n

n∑
t=1

Dt(θ, µ0)

)

=
1

n

n∑
t=1

Dt(θ, µ0)− Sn(θ, µ0)λ+ op(1)Op(
1√
n

)

=
1

n

n∑
t=1

Dt(θ, µ0)− Sn(θ, µ0)λ+ op(
1√
n

).

Because S−1
n (θ, µ0) ≥ C in probability by Lemma 3 (d), we have

λ = S−1
n (θ, µ0)(

1

n

n∑
t=1

Dt(θ, µ0)) +Ln with ‖Ln‖= op(
1√
n

).

By Taylor expansion and op(|γt(θ, µ0)|2) = op(1), we have

ln(1 + γt(θ, µ0)) = γt(θ, µ0)− γ2
t (θ, µ0)

2
+Rt(θ, µ0),
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where Rt(θ, µ0) is the remainder term. This gives that

l(θ, µ0) = −2 lnL(θ, µ0)

= 2

n∑
t=1

ln{1 + γt(θ, µ0)}

= 2λ′(
n∑
t=1

Dt(θ, µ0))− nλ′Sn(θ, µ0)λ+ 2
n∑
t=1

Rt(θ, µ0)

= 2n(
1

n

n∑
t=1

Dt(θ, µ0))′S−1
n (θ, µ0)(

1

n

n∑
t=1

Dt(θ, µ0)) + 2L′n(
n∑
t=1

Dt(θ, µ0))

− n(
1

n

n∑
t=1

Dt(θ, µ0))′S−1
n (θ, µ0)(

1

n

n∑
t=1

Dt(θ, µ0))−L′n(
n∑
t=1

Dt(θ, µ0))

− nL′nSn(θ, µ0)Ln − (
n∑
t=1

Dt(θ, µ0))′Ln + 2
n∑
t=1

Rt(θ, µ0)

= (
1√
n

n∑
t=1

Dt(θ, µ0))′S−1
n (θ, µ0)(

1√
n

n∑
t=1

Dt(θ, µ0))− nL′nSn(θ, µ0)Ln + 2

n∑
t=1

Rt(θ, µ0).

Because nL′nSn(θ, µ0)Ln = op(1) by noting that ‖Ln‖= op(
1√
n

), and the last term satisfies

|2
n∑
t=1

Rt(θ, µ0)|≤ 2B

n∑
t=1

|γt(θ, µ0)|3= op(1), (5.10)

it follows that

l(θ, µ0) = (
1√
n

n∑
t=1

Dt(θ, µ0))′S−1
n (θ, µ0)(

1√
n

n∑
t=1

Dt(θ, µ0)) + op(1)

= (
1√
n

n∑
t=1

Dt(θ, µ0))′Ω−1(
1√
n

n∑
t=1

Dt(θ, µ0)) + op(1)

holds uniformly in θ ∈ V0 by part(d) of Lemma 3. Therefore,

l(θ0, µ0) = (
1√
n

n∑
t=1

Dt(θ0, µ0))′Ω−1(
1√
n

n∑
t=1

Dt(θ0, µ0)) + op(1).
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It follows from part (d) of Lemma 3 that

n∑
t=1

‖Dt(θ, µ0)‖3

≤ max
1≤t≤n

‖Dt(θ, µ0)‖
( n∑
t=1

‖Dt(θ, µ0)‖2
)

= op(
√
n)

( n∑
t=1

‖Dt(θ, µ0)‖2
)

= op(
√
n) · n · ( 1

n

n∑
t=1

D′t(θ, µ0)Dt(θ, µ0)) = op(
√
n) · n · tr( 1

n

n∑
t=1

D′t(θ, µ0)Dt(θ, µ0))

= op(
√
n) · n · tr( 1

n

n∑
t=1

Dt(θ, µ0)D′t(θ, µ0)) = op(
√
n) · n · tr(Ω + op(1))

= op(
√
n) · n ·Op(1) = op(n

√
n),

where tr denotes the trace of a matrix. Thus, we have ‖λ‖3= Op(n
− 3

2 ) and

n∑
t =1

|γt(θ, µ0)|3 ≤
n∑
t=1

‖λ‖3‖Dt(θ, µ0)‖3 = Op(n
− 3

2 )
n∑
t=1

‖Dt(θ, µ0)‖3 = Op(n
− 3

2 )op(n
√
n) = op(1).

Define ∆n(θ) =
1√
n

n∑
t=1

Dt(θ, µ0). Then,

l(θ, µ0)− l(θ0, µ0) = (∆n(θ)−∆n(θ0))′Ω−1∆n(θ0) + ∆′n(δ0)Ω−1(∆n(θ)−∆n(θ0))

+ (∆n(θ)−∆n(θ0))′Ω−1(∆n(θ)−∆n(θ0)) + op(1)

holds uniformly for all θ ∈ V0. Further,

∆n(θ)−∆n(θ0) =
1√
n

n∑
t=1

[
(Dt,1(θ)−Dt,1(θ0))′, Dt,2(θ, µ0)−Dt,2(θ0, µ0)

]′
.

Let Ψ11 =
1

4
E{ wt

h2
t (θ0)

∂ht(θ0)

∂θ

∂ht(θ0)

∂θ′
} be the first block of Ψ. Then, by part (c) of Lemma 3

and Taylor expansion, we have

1√
n

n∑
t =1

(Dt,1(θ)−Dt,1(θ0)) =
1√
n

n∑
t=1

(
∂Dt,1(θ0)

∂θ′
(θ − θ0) + op(

1√
n

))

=
1√
n

n∑
t=1

(
∂Dt,1(θ0)

∂θ′
ν√
n

+ op(
1√
n

))

= ν(
1

n

n∑
t=1

∂Dt,1(θ0)

∂θ′
) + op(1)

= Ψ11ν + op(1)
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holds uniformly for θ ∈ V0. Similarly, put Ψ21 = E{ wt√
ht(θ0)

∂εt(γ0)

∂θ′
}, which is the second and

the first block of Ψ. Then,

1√
n

n∑
t =1

(Dt,2(θ, µ0)−Dt,2(θ0, µ0)) =
1√
n

n∑
t=1

(
∂Dt,2(θ0)

∂θ′
(θ − θ0) + op(

1√
n

))

=
1√
n

n∑
t=1

(
∂Dt,2(θ0, µ0)

∂θ′
ν√
n

+ op(
1√
n

))

=
1√
n

n∑
t=1

(
∂Dt,2(θ0, µ0)

∂θ′
(θ − θ0) + op(

1√
n

))

= ν(
1

n

n∑
t=1

∂Dt,2(θ0, µ0)

∂θ′
) + op(1)

= Ψ21ν + op(1)

holds uniformly for θ ∈ V0.

Put A = (Ψ11,Ψ21). It follows that

∆n(θ)−∆n(θ0) = (Ψ′11,Ψ
′
21)′ν + op(1) = A′ν + op(1)

holds uniformly for θ ∈ V0, implying that

(5.11)l(θ, µ0)− l(θ0, µ0) = ν ′AΩ−1∆n(θ0) + ∆′n(θ0)Ω−1A′ν + ν ′A′Ω−1νA′ + op(1)

holds uniformly for θ ∈ V0. Like the proof of Lemma 1 of Qin and Lawless (1994), we know that

the minimizer θ̂ = θ0 +
ν√
n

must lie in V0, i.e., ν̂ = −(AΩ−1A′)−1AΩ−1∆n(θ0) + op(1), which

implies that

l(θ̂, µ0) = [Ω−
1
2 ∆n(θ0)]′[I −Ω−

1
2A′(AΩ−1A′)−1AΩ−

1
2 ][Ω−

1
2 ∆n(θ0)] + op(1).

By Lemma 4, Ω−
1
2 ∆n(θ0) converges in distribution to a multivariate standard normal distri-

bution function, implying that l(θ̂, µ0)
d−→ χ2

1 by noting that

tr(I −Ω−
1
2A′(AΩ−1A′)−1AΩ−

1
2 ) = tr(I)− tr(Ω−

1
2A′(AΩ−1A′)−1AΩ−

1
2 )

= p+ q + s+ r + 3− rank(Ω−
1
2A′)

= 1.
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Proof of Theorem 2. Following the proof of Theorem 1, we have

l(θ̂, 0) = [Ω−
1
2 ∆∗n(θ0)]′[I −Ω−

1
2A′(AΩ−1A′)−1AΩ−

1
2 ][Ω−

1
2 ∆∗n(θ0)] + op(1), (5.12)

where ∆∗n(θ0) =
1√
n

n∑
t=1

Dt(θ0, 0).

Because µ0 = M/
√
n, we have

∆∗n(θ0) =
1√
n

n∑
t=1

Dt(θ0, 0)

=
1√
n

n∑
t=1

(D′t,1(θ0), Dt,2(θ0, 0))

=
1√
n

n∑
t=1

[
(D′t,1(θ0), wt(ηt − µ0))′ + (0,

M√
n
wt)
′
]

=
1√
n

n∑
t=1

(D′t,1(θ0), wt(ηt − µ0))′ +
1

n

n∑
t=1

(0,Mwt)
′

=
1√
n

n∑
t=1

Dt(θ0, µ0) +
1

n

n∑
t=1

(0,Mwt)
′,

where 0 is a (p+q+s+r+2)-vector. By Lemma 4, we have
1√
n

n∑
t=1

Dt(θ0, µ0)
d−→ N(0,Ω). By the

weak laws of large number for stationary series,
M

n

n∑
t=1

wt
p−→MEwt. Thus, Ω−

1
2 ∆∗n(θ0) converges

in distribution to a multivariate normal distribution with mean −(0′,MEwt)
′ and covariance I.

By (5.12), we have l(θ̂, 0) converges to a noncentral chi-squared limit with one degree of freedom

and the noncentral parameter M2(Ewt)
2 as n→∞.
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Data Availability Statement

From the Federal Housing Finance Agency, we collect the state-level house price index (HPI)

of California, Florida, Nevada, and Arizona from 1975 to 2018.

From Yahoo Finance, we collect the daily S&P500 and Microsoft Stock (MSFT) close prices

from August 3, 2009 to July 29, 2019.
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