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Abstract

Fitting an ARMA-GARCH model has become a common practice in financial economet-
rics. Because the asymptotic normality of the quasi maximum likelihood estimation (QMLE)
requires finite fourth moment for both errors and the sequence itself, self-weighted quasi maxi-
mum exponential likelihood estimation (SWQMELE) has been proposed to reduce the moment
constraints but requires the errors to have zero median instead of zero mean. Because changing
zero mean to zero median destroys the ARMA-GARCH structure and has a serious effect on
skewed data, this paper proposes an efficient empirical likelihood test for zero mean of errors
in the application of SWQMELE to ensure that the model still concerns conditional mean. A
simulation study confirms the good finite sample performance before applying the test to the

US housing price indexes and financial returns for the study of comovement.
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1 Introduction

It has become a practical technique to model heteroscedasticity of a financial /economic variable by
an ARMA-GARCH sequence since Engle (1982) and Bollerslev (1986). A standard ARMA (p,q)-

GARCH(r,s) model is defined as

Yo =0+ 20y Giv—i + 25—y Vier—j + ety e = mv e, 1)

he = ao+ Yy e + > =1 Bihi—j,
where ag > 0, oy >0 (i = 1,..,7), B3 >0 ( =1,...,8), ¢ € R, ¢ € R (i = 1,...,p),
Y € R(j=1,..,q), and {n:} is a sequence of independent and identically distributed random
variables with mean zero and variance one.

A commonly employed statistical inference for fitting model (1.1) is the so-called quasi-
maximum likelihood estimation (QMLE); see Ling and Li (1997), Jeantheau (1998), Berkes et
al. (2003), Ling and McAleer (2003), Hall and Yao (2003), and Francq and Zakoian (2004). It
is known that the QMLE has a normal limit when both Fe} < oo and En} < oco. In practice,
S+ ijl Bj is often close to one, suggesting that the assumption of Ee} < 0o may be
problematic. To reduce this moment constraint, Ling (2007) proposed a self-weighted local quasi
maximum likelihood estimation, which has a normal limit when En} < oo and E|g|"< oo for
some 7 > 0. When the model (1.1) becomes a pure GARCH process, Hall and Yao (2003) showed
that the QMLE has a stable law limit when En{ = co. Without surprising, one has to use a
different estimation technique based on some condition different from En? = 1 to ensure a normal
limit in the case of Enf = co. For example, Peng and Yao (2003) showed that the least absolute
deviation estimation for a GARCH sequence has a normal limit when E7} = oo, but the median
of n? is one. Zhu and Ling (2012) proposed the so-called self-weighted quasi maximum expo-

nential likelihood estimation (SWQMELE) by assuming E|n:|= 1 and zero median of 7; instead



of Eny = 0 and En? = 1 in (1.1), which ensures a normal limit regardless of En} = oo and/or
Enf = oco. When E|ni|= d > 0 in the standard ARMA-GARCH model (1.1) is unknown, after

defining
n; =n/d, hi = d?hy, a = d’a; for i =0,1,---,r, and 6; =pjforj=1,---,s, (1.2)
model (1.1) is equivalent to

P q r s
Yr =+ Z¢iyt—i + Z?,Z)j&—j +en e =m/hi, b =ag+ Zaf€§_i + Zﬁ;h:—j- (1.3)
=1 j=1 i=1 j=1

Therefore, changing En? = 1 to E|n;|= 1 is a simple scale transformation of parameters a;’s. More
importantly, this scale transformation generally does not change risk measure inference such as
conditional Value-at-Risk and conditional Expected Shortfall of y; given F;_1, Value-at-Risk and
Expected Shortfall of 7, and comovement of two sequences. Here, F; is the o-field generated by

{ys : s < t}. For example, it follows from (1.1) and (1.3) that

—p= S e i~ ey
Ply < ylFiy) = Py < =m0V T e )
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That is, the conditional Value-at-Risk of y; given F;_1 computed from (1.1) is the same as that
computed from (1.3). However, changing zero mean of 7, in (1.1) to zero median requires a
complicated shift transformation, which can not maintain the ARMA-GARCH structure. For

example, if the median of 7; is m, then a simple transformation of (1.1) to have zero median is

et = mv/he + (1 — m)\/ by,

which does not have the GARCH structure due to the additional term m+/h;. That is, changing



zero mean of 7; to zero median destroys the ARMA-GARCH structure and makes the SWQMELE
not applicable. We refer to Fan, Qi and Xiu (2014) for more details on the transformation effect
for skewed data. Therefore, it is of importance to test Hg : Eny = 0 when SWQMELE is applied
to (1.1) under the assumptions of E|n|= 1 and zero median of 7. If this null hypothesis is
rejected, then the ARMA part in (1.1) no longer models the conditional mean of y;.

This paper investigates the possibility of using the empirical likelihood method to test the
hypothesis above. The empirical likelihood method is introduced by Owen (1988, 1990) and is a
data-driven method combining the advantages of parametric and nonparametric methods. Under
some regularity conditions, the associated empirical likelihood ratio statistic asymptotically fol-
lows a chi-squared distribution function, and the shape of the obtained confidence interval /region
is determined automatically by the data. Because of its effectiveness, the empirical likelihood
method has been applied in various fields to provide powerful tests and accurate interval estima-
tion. These include Owen (1991) and Kolaczyk (1994) in general regression problems, Chuang and
Chan (2002) in unstable autoregressive (AR) models, Chan and Ling (2006) in GARCH models,
Liu et al. (2008) and Ciuperca and Salloum (2015) in the detection of change point, Fan and
Huang (2005) in the varying-coefficient partially linear model, Chen et al. (2012) in the threshold
AR models, and Zhang et al. (2019) in the tail index inference of GARCH-type models. We refer
to Owen (2001) for an overview of the empirical likelihood method.

Our empirical motivation is the study of the comovement of housing price indexes in the states,
where an AR-GARCH model is fitted to the house price index for each state, and QMLE is often
employed; see Zimmer (2012, 2015). However, Huang, Peng and Yao (2019) confirmed that both
En} and Ee} may be infinite by using the Hill estimate (Hill (1975)) and found that the estimates
for the mean and median of 7; are close to zero by applying the SWQMELE. This paper provides
a formal test for En; = 0 in using the SWQMELE to fit an ARMA-GARCH model.

We organize this paper as follows. Section 2 provides the empirical likelihood test and its



asymptotic result. Sections 3 and 4 present a simulation study and real data analyses on US
housing price indexes and financial returns, respectively. Section 5 summarizes our conclusions.

We put all proofs in the Appendix and the supplementary file.

2 Methodology and Asymptotic Result

Consider the ARMA (p,q)-GARCH(r,s) model (1.1), and let 8 = (v/,8")’ denote the unknown pa-
rameters with true value 6, where v = (¢, ¢1, ..., ¢p, VY1, ..., 10g) and 8 = (ap, a1, ..., @, B1, ..., Bs)".
Let © = ©, x ©; be the parameter space with , C RPHITL 95 c Ry R = (—o00,00) and
Rop = [0,00). Given the observations {yy,...,y1} and the initial values {yo,y—1, ...}, we write the

parametric form of (1.1) as

et(Y) =y — o — 20y PiYr—i — Z?:l bigi—j(7), m(0) =

hi(0) = ap + 21—, 041'5?4('7) + Z§:1 Bihi—;(0).

Write n:(00) = 1, €1(vg) = €, he(B9) = hy, and denote ¢(z) = 1—25:1 bz, P(z) = 1+Z§:1 2t
a(z) =31 a;2, and B(z) = 1 —Y.;_, Biz". Like Ling (2007) and Zhu and Ling (2012), we take

y; = 0 for ¢ < 0 and impose the following regularity conditions.

Assumption 1. Assume that ©, and O are compact, and g is an interior point in ©. For each

0 € O, ¢(z) #0 when |2|< 1, and ¢(z) and (z) have no common root with ¢, # 0 or 14 # 0.

Assumption 2. For each 0 € O, a(z) and B(z) have no common root, (1) # 1, a, + fs # 0,

and Y7 Bi < 1.
Assumption 3. {n:} is a sequence of independent and identically distributed random variables.

Assumption 4. E[(w; + wf)féytﬂ] < oo for any p € (0,1), where £,p = 14 3520 p'lyi—il.



Assumption 5. 1; has zero median with E|n|= 1, En? < co, and a continuous density function

g(x) satisfying g(0) > 0 and sup,cp g(z) < 0.

Assumption 6. E|s|'< oo for some ¢ > 0.

Assumption 1 implies the stationarity, invertibility, and identifiability of the ARMA part of

model (2.4), under which it follows that

Zaw 2t and o(z ZG‘Y

where supg_ ay (i) = O(p') and SUpg_ (1) = O(p?) for some 0 < p < 1.
Assumption 2 is the identification condition for the GARCH part of the model (2.4). Under

this condition, we have

Zag z and «a(z) Zag

where supg, ag(i) = O(p") and supg, as(i) = O(p") for some 0 < p < 1; see Lemma 2.1 in Ling
(1999). Assumption 6 ensures the stationarity of {e;}.

The weight w; in Assumption 4 is used to reduce the moment condition on &; as Zhu and Ling
(2012). A particular choice suggested by Zhu and Ling (2012) and Pan, Wang and Yao (2007) is
employed in the simulation study and empirical analysis below.

Assumption 5 allows Zhu and Ling (2012) to study the SWQMELE, which reduces the moment
condition on 7; for having a normal limit. More specifically, by temporarily assuming that
follows the standard double exponential distribution, one can minimize the following weighted

negative log-likelihood function to obtain the SWQMELE:

0) ;iwtzt(e) and  1,(0) = log /7 (@) + %.
t=1 t



As argued in the introduction, changing zero mean of 7; in the standard ARMA-GARCH
model to zero median destroys the ARMA-GARCH structure and has a serious effect on skewed

data. Therefore, it becomes important to test

Hy: En, =0 against Hp: En #0 (2.5)

under the above Assumptions 1-6. When this null hypothesis can not be rejected, the ARMA
part still models the conditional mean, and conditional mean and conditional median are equal.
To formulate an empirical likelihood test, we follow the idea of using estimating equations in

Qin and Lawless (1994). First, we calculate the score functions of the SWQMELE, i.e.,

alt(a): 1 aht(e) 1 agt(7)s n( (0))_ ’575(7)‘ 1 aht(a)
90 2m,(0) 90 /i, e) o0 " 2/hi(6) h(6) 00
) 1 0e(7)
= i@y o (L~ MO)+ s T san (@)
01,(6)

where sgn denotes the sign function. Put Dy () = w; 90 Dy 2(0, 1) = wi(n(0) — p), and
w = (@) = En(0) with true value pg. Then 0 and p can be estimated simultaneously by solving

the following estimating equations:

This defines the following empirical likelihood function

n n n
L(0,p) =sup{[ [(npe) : p1 > 0,00 = 0, “pr =1, piDy(6, ) = 0},
t=1 t=1 t=1

where D(0, 1) = (D} 1(0), Dy 2(8, ,u)),. Using the Lagrange multiplier technique, the log empir-



ical likelihood function becomes

18, 1) = —2log(L(0, 1)) = 2 ) log{1 + N'Dy(6, )}, (2.6)
t=1

where A = A(0, u) satisfies

n
; 1+ >\ Dt i

Because we are only interested in p, we consider the profile empirical likelihood ratio ,(n) =
min (0, u). The following theorem shows that the Wilks theorem holds for the proposed empirical

0co

likelihood method.

Theorem 1. Suppose (1.1) satisfies Assumptions 1-6. Under Hy : En, = 0, 1,(0) converges in

distribution to a chi-squared limit with one degree of freedom as n — oc.

Based on the above theorem we reject Hy : Er; = 0 at the level 1 — a whenever 1,(0) > x7 ,,
where Xia denotes the a-th quantile of a chi-squared distribution function with one degree of
freedom.

The next theorem shows that the proposed test has power.

Theorem 2. Suppose that Assumptions 1-6 hold for the model (1.1). When pyg = M /+/n for some
constant M, 1,(0) converges in distribution to a non-central chi-squared limit with one degree of

freedom and the noncentral parameter M?(Ew;)? as n — .



3 Simulation

This section examines the finite sample performance of the proposed empirical likelihood test by

generating data from an AR(1)-GARCH(1,1) model:

Yo =@+ Pr1yi—1 + e, €0 = e/ Iy, by = o9 + 04153_1 + Brhi—1.

We take 6y = (0.0797, —0.0465,0.0347,0.1572,0.8057), n = 200 or 500 or 1000 or 2500 or 5000,

and choose w; as

1 X1 -
wr = (max {15 3 bttt €1 }) (3.7
k=1

with C' being the 95% or 90% quantile of {|y:|}};. This particular choice is suggested by Ling
(2007) and Pan, Wang and Yao (2007) when Ele;|< oco. For computing the size of the proposed
empirical likelihood test at levels 10% and 5%, we consider 1, = 1,/ E|n|, where 1, ~ Laplace(0, 1)
and 7 ~ N(0,1). Because they are symmetric, the considered 7, has both zero mean and zero
median. Table 1 reports the computed empirical sizes based on 10000 repetitions. We observe
that i) the coverage probability is robust to the two choices of C, ii) the normal error provides a
less accurate size than the Laplace error as we fit the ARMA-GARCH model based on a Laplace

distribution, iii) and the accuracy improves for a large sample size.

Table 1: We report the sizes of the profile empirical likelihood test for Hy : Eny = 0, where C' in
(3.7) is chosen as the 95% (left panel) and 90% (right panel) quantile of {|y:|}},

n Level 5% Level 10% Level 5% Level 10% | Level 5% Level 10% Level 5% Level 10%
Laplace Laplace Normal Normal Laplace Laplace Normal Normal
200 0.0644 0.1181 0.0419 0.0797 0.0644 0.1160 0.0418 0.0801
500 0.0418 0.0843 0.0320 0.0654 0.0431 0.0849 0.0306 0.0683
1000 0.0455 0.0900 0.0328 0.0766 0.0458 0.0915 0.0333 0.0750
2500 0.0425 0.0879 0.0387 0.0803 0.0419 0.0856 0.0392 0.0811
5000 0.0456 0.0946 0.0436 0.0939 0.0455 0.0941 0.0418 0.0914

Next, we compute the power of the proposed empirical likelihood test at levels 10% and 5%

by considering the standardized Beta(1.2, 1) and Beta(2, 2.7), i.e., E|n:|= 1 and zero median. By



drawing 100,000 random samples with sample size 1,000,000 from these two Beta distributions,
we find that Emn; is around —0.0659 for Beta(1.2,1) and 0.0660 for Beta(2,2.7), i.e., Hy is false.
Table 2 reports the computed empirical powers, which shows that i) the proposed test is powerful,
ii) a larger sample size gives a better power, iii) the power is robust to the two choices of C, iv)
and Beta(2, 2.7) has slightly better power than Beta (1.2, 1) as the former one departs a bit more

away from the null hypothesis.

Table 2: We report the powers of the profile empirical likelihood test for Hy : En; = 0, where C'
in (3.7) is chosen as the 95% (left panel) and 90% (right panel) quantile of {|y:|}};.

n Level 5% Level 10% Level 5% Level 10% | Level 5% Level 10% Level 5% Level 10%
Beta(1.2,1) Beta(1.2,1) Beta(2,2.7) Beta(2,2.7) Beta(1.2,1) Beta(1.2,1) Beta(2,2.7) Beta(2,2.7)
200 0.1249 0.1914 0.0977 0.1657 0.1192 0.1851 0.0986 0.1660
500 0.1746 0.2712 0.1783 0.2846 0.1687 0.2674 0.1755 0.2734
1000 0.3364 0.4705 0.3830 0.5090 0.3247 0.4584 0.3678 0.5030
2500 0.7408 0.8347 0.8083 0.8857 0.7274 0.8243 0.7974 0.8776

In summary, the proposed empirical likelihood test has a reasonable size and is powerful and
robust to the two choices of C'. It remains challenging to find an optimal weight function to

improve the size.

4 Real Analysis

4.1 US Housing Price Indexes

This subsection applies the proposed test to the quarterly percentage changes of the state-level
house price index (HPI) of California, Florida, Nevada, and Arizona from 1975 to 2018, which
were estimated and published by the Federal Housing Finance Agency. The total number of
observations for each state is 176. To study the comovement and contagion in the housing market,
one often fits an AR-GARCH model to each HPI sequence. Recently, Huang, Peng and Yao
(2019) found that an AR(3)-GARCH(1,1) model fits the data well by using the SWQMELE and

the assumptions of En} < oo and Fe} < oo are questionable after estimating the tail indexes

10



of n; and &; by the well-known Hill tail index estimate (Hill (1975)); see Table 3 for the fitted
models. Although the estimates for the mean and median of 7, are close to zero (see Table 4 below),
Huang, Peng and Yao (2019) didn’t formally test Hy : En = 0 to ensure the AR part models both
conditional mean and conditional median. An application of the proposed empirical likelihood
test gives P-values 0.267, 0.480, 0.637, and 0.830 for California, Florida, Nevada, and Arizona,
respectively; see Table 4. Therefore, the null hypothesis Hg : En; = 0 can not be rejected, i.e.,
the employed AR(3)-GARCH(1,1) model still studies the conditional mean, and the application
of combining copula and SWQMELE for studying comovement of house pricing indexes in the

literature is methodologically sound as copula is invariant to the scale transformation.

Table 3: SWQMELE for fitting AR(3)-GARCH(1,1) models.
State 7 b1 bo b3 w a1 B
CA  0.3067 0.7274 -0.0069 0.1220 0.3327 0.3305 0.1252
FL 0.2662 0.5008 0.0344 0.3174 0.0666 0.1380 0.6706

NV 0.2703 0.4475 0.0094 0.3231 0.0821 0.2810 0.5647
AZ 04155 0.3253 0.1169 0.2565 0.0333 0.3037 0.5810

Table 4: Profile empirical likelihood test for En; = 0.

State mean 7; median 7, mean|n:| [,(no) P-value

CA  -0.0944 -0.0068 1.0161  1.2332  0.267
FL  -0.0661 -0.0217 0.9888  0.4995  0.480
NV 0.0245 -0.0230 0.9951 0.2231  0.637
A7 0.0028 -0.0454 0.9863  0.0459  0.830

4.2 Financial returns

In this subsection, we study the daily S&P500 and Microsoft Stock (MSFT) close prices from
August 3, 2009 to July 29, 2019, which gives a total of 2514 observations for each sequence. We
fit an ARMA-GARCH model to the 100 times log-returns. We plot the prices and log-returns in

Figures 1 and 2, respectively.

11
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Figure 1: The daily S&P500 and MSFET close prices from August 3, 2009 to July 9, 2019.
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Figure 2: The 100 times log-return of daily S&P500 and MSFT close prices from August 3, 2009
to July 9, 2019.

12



To apply the proposed test, we first use the function “auto.arima” in the R package “forecast”
with AIC to obtain the appropriate order of the ARMA part, which suggests an ARMA(2,2)-
GARCH(1,1) model for S&P500 returns and an ARMA(1,1)-GARCH(1,1) model for MSFT re-
turns. An application of the quasi maximum likelihood inference in the R package “fGarch” gives

the fitted ARMA(2,2)-GARCH(1,1) model for S&P 500 as

yi = 0.0054 — 0.0287y;—1 + 0.9469y; o + 0.0052;_1 — 0978455 + &4,
(0.0015) (0.0118)  (0.0115)  (0.0071)  (0.0072)

er = nev/he, hy = 0.0345 + 0.1588¢2_, + 0.8042h_1,

(0.0084) (0.0244)  (0.0247)

and the fitted ARMA(1,1)-GARCH(1,1) model for MSFT as

yr = 0.0217 4 0.7716y; 1 — 0.8083e4—1 + &4,
(0.0105) (0.0974)  (0.0952)

et = mvhe, hy = 0.3391 + 0.1206e7_; + 0.7216h;_.

(0.1353) (0.0372)  (0.0846)

Here, the numbers in brackets are standard errors.

The autocorrelation functions of the estimated 7; and |7 in Figure 3 show that the fitted
models are reasonable for both log-returns. Using the R package ’evmix’, we plot the Hill estimates
for the estimated 7, and the 90% confidence intervals in Figure 4, which suggests that the quasi
maximum likelihood estimation for S&P500 may have a normal limit, but it is not for MSFT.

Next, we examine whether SWQMELE is applicable.
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Figure 3: We plot the autocorrelation functions computed from the estimated 7;’s and |n|’s for
S&P 500 and MSFT.
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Figure 4: Using the R package ’evmix’, we compute the Hill estimates from the estimated 7;’s
and the 90% confidence intervals (dotted lines) for S&P 500 and MSFT.

An application of the SWQMELE shows that the mean of 7, is -0.0201 and 0.0029, the median
of n; is 0.0335 and -0.0083, and the mean of |n| is 1.0048 and 1.0014, respectively, for S&P 500
and MSFT. The proposed empirical likelihood test gives Zp(O) = 16.1283 and 0.6071, respectively,
for S&P 500 and MSFT with the corresponding P-values 5.919 x 107° and 0.436. Therefore, the
null hypothesis of Hy : En, = 0 is rejected for S&P 500 but is not rejected for MSFT, although
the estimated mean and median of 7y are close to each other for both series. This analysis
suggests that it is better and sound to apply the SWQMELE to MSFT log-returns because the
sequence does not have enough moments and has both zero mean and zero median. In contrast,
the application of the SWQMELE to the S&P500 log-returns means that we no longer model
the conditional mean as the proposed test does not support both zero mean and zero median.
Because the sequence has enough moments shown by the Hill estimate, it may be good to use the
QMLE for the S&P500 log-returns.

In summary, it is practically vital to test whether the error in an ARMA-GARCH model has

15



both zero mean and zero median in applying the SWQMELE because changing zero mean to zero

median destroys the ARMA-GARCH structure.

5 Conclusions

QMLE is often employed to fit an ARMA-GARCH model, which requires finite fourth moments
for both errors and the sequence itself to ensure a normal limit. Having a normal limit is neces-
sary to ensure that the standard residual-based bootstrap method can be employed to quantify
uncertainty. The self-weighted quasi maximum exponential likelihood estimation (SWQMELE)
significantly reduces the moment conditions. Still, it requires errors to have zero median instead
of zero mean in the original ARMA-GARCH models. Generally, changing zero mean to zero me-
dian destroys the ARMA-GARCH structure. This paper proposes an efficient empirical likelihood
method for testing zero mean of errors in using the SWQMELE to fit an ARMA-GARCH model
for returns. Applications to real datasets show that the SWQMELE does not apply to S&P500

log-returns, but is useful for US housing price indexes and MFST log-returns.
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Appendix: Proofs of Theorems

First we need some lemmas, where the lengthy proofs of Lemmas 2 and 3 are given in the
supplementary file. Recall po denotes the true value of = Emn, and is zero under the null

hypothesis Hg : Eny = 0.

Lemma 1. Under conditions of Theorem 1, there exist a constant p € (0,1), a constant C' > 0,

and a neighborhood ©¢ of 0y such that for any constant 11 € (0,1), we have

(a) suple(v)|< C&pi1,

©o
(b) Sélg) 85(;(;)/) H < Cépi-1,
() Sup 8;,?8(3,) < Cépr1,
(d) Sélg) m < C&p—1 where i, j,k=1,...p+q+1,
(e) 1< sgg) htofoe) < Cfghl where ag = iélof ap,
O o Rt
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1 0% (6)
oel
(g> S(E)l(? ht(o) 8686/ = 'Spt—l)
1 03h(0) .
() s l.0) a&iagjaak < Oty where by gk =1,.or + s+ 1,
. 1 oh(6) ‘
1) su < C&p-1,
Q @(])D he(0) Ov ||~ Spt-1
1 0%h(0) ’
. < Ceyy
(]) ht(e) 8‘767/ — fpt 1
1 3
(k) sup W@i ;’;(0}% < O&pp—1 where i, j,k=1,...p+q+1,
t( i07;0
1 82ht(0)
< _
1 O3h:(0
(m sup \/hi(% 8§(8’)y ‘ C&pt—1 wherei,j=1,...p+q+1,k=1,..,
(
3
(n) Sup \/;78?;;(8)7 ’ C&pi—1 wherei=1,....,p+q+1,5,k=1,...,r+s+1.
#( J

Proof. See Ling (2007) or Chan and Ling (2006).

Lemma 2. Under conditions of Lemma 1, we have

(a) Esup||D(0

SH}

(b) Esup||P(0
[SH)

,MO)H2< 0,

8Dt(07 MO)

10)||< oo, where Py =
o)||< oo, where Py S

M
Lemma 3. Let V = {0 D |0—0p||< —
NG
1, we have
(a)  max squHPt( s o) ||= 0p(n),
(b)  max sup [[D(8 po)ll= 0p(v'n),

() 7220 Pi(0: po) =

and w = (0', 1)’

W + 0,(1) holds uniformly for all 8 € Vp,

(d) %Z?zl[Dt(a, 10) D} (0, 1o)] = Q@ + 0,(1) holds uniformly for all 8 € Vy,
1 0 0
where ¥ = ZE{ h??;oighééz)(ahg)(ol())} ’ , Q= e )
E{ - tgo 5;0 } —Ew; Qo1 Qoo
2 2 2

Y

Q= _E(U?Sg”(nt))E{ h:zfgo) WL:;(;’O)}7

1y = - EOgn)) py Wi OO0y gy = B,
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} for some constant M > 0. Under conditions of Lemma



Lemma 4. Under conditions of Lemma 1, we have

Z 100, 110) % N(0,9),
=1

where €2 is defined in Lemma 3.

Proof. Recall F; is the o-field generated by {y,,, m < t}. Then,

wy  Oh(6 w Oe
FDLOFn) = B(gan g0~ mO0) + oS T sgniaio0)| 7.
t
= 0, and

E(Dy2(60, 110)| Fi—1) E(wng|Fi—1) = weEn = 0.

Hence, Dy (0o, 110) is a sequence of martingale differences, and the theorem follows from the Central

Limit Theorem of Martingales (see Page 58 of Hall and Heyde (1980)). O

Proof of Theorem 1. Let 0 = 0y + where v is a (p + ¢ + 7 + s + 2)-dimensonal vector.

v
N
1 - Dt(eul’LO)
Denote g(0, tg, A) = —
( ) n tzl 1+ )\’Dt(B,,uo)

and 14(0, o) = X' D(0, 110), where X is a solution of
equation g(@, po, A) = 0. We first show that max 1740, po)|= op(1).
Stsn

Let A = pr with ||r||= 1. Observe that

0=1g(8,u0,pr)ll > Il7'g(0, po, pr)||
SO 7' Dy(0, 110)D}(0, po)r
- |= Dy( _ =
‘”;r 10 10) pz 1+m°’Dt(9 0)
> 1 pr' S, (0, po)r

1+ pZn(av MO) ’
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where S, ( ZDt 0, 10), Zn(0, j10) = max | Dy(0, )| Thus,

p’l’/Sn(e,/Lo)T 1 - /
—_— < — r' D0
1 +pZn(07MO) n ; t(
1 n
<~ D r'Di(Bo, o) | + Zr Py(6%, 10) | 116 — 60|l
t=1
1 n
<213 Dy(80.0) ( ZuPt * o) )He—eou
t=1
1
= Op( )

vn
1 n
holds uniformly for any @ € V{), where the last equation follows from Lemma 4 that T g Dy(09, o) =
n
t=1

Op(1) and the proof of Lemma 2 in the supplementary file. Consequently,

'S, (6 1
priSa(0, mo)r _

5 pZu(0 )~ P )

By Lemma 3(d), 'S, (0, po)r > a+ 0p(1) holds uniformly for 8 € Vp, where a is the smallest

eigenvalue of €. Thus,

1
= |IAll= O, (— 5.8
holds uniformly in @ € Vj. Then, by Lemma 3(b),
< = .
ax [7:(0, o) |< [l max [[D+(8, po)l|= 0p(1) (5.9)

holds uniformly in 8 € V.
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On the other hand, Taylor expansion and Lemma 3 (c) imply that

%Zpt(a,uo) = %Z(Dt(GOaNO)“‘Pt(a?ﬂO)(O 60) +op(—=))

t=1 t=1

<

1< 1
n; +(00, 110) Z +(0%, 1o +0p(\/ﬁ)
1

= Op(%) +
1

(T +0,(1)) + Op(i)

ﬁ vn

holds uniformly in Vj, where 6* lies between 8y and 8. By (5.9), we have

0=g(0, 10, )

1 n D6, 1 )%2(0,/1)
— ﬁZDt(a’MO)_S (0, o)A + — Z L+ (0, po) :

t=1 t 1

1 1 1 <
< — D 0, - Sn 0, A‘i‘ - D 0) ; 07 )
= tz:; t( MO) ( NO) (1 — 1max |’Yt(05 MO)D n tZ:; < t( :U’O)’Yt ( NO)
n max | (6, )| n
1 1<t<n 1
< ﬁ ZDt(a’MO) - Sn(07M0)A + (1 —tmaX | (0 )|) <TL Dt(e’lu’o)>
=1 1<t<n Ye\Y, Lo —1
1 < 1
= n Z Dy(0, j10) — Sn(6, o)A + Op(l)Op(ﬁ)
t=1
LS D0, 10) — Su(0, 1A + 0y )
- n v t\Y, lo n\U, 0 Op \/ﬁ .
Because S, (0, 10) > C in probability by Lemma 3 (d), we have
A=S lznj )) + Ly, with || L= op(——)
= n w = on(75):

By Taylor expansion and oy (|7:(8, 10)[?) = 0,(1), we have

2
0,
In(1 + v(0, po)) = 7(6, po) — %(QMO) + R(0, po),
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where R(0, po) is the remainder term. This gives that
18, 10) = ~21n L(B, o)

=2 In{l+ (6, mo)}

t=1
=2X (D Dy(0,110)) — n XS (6, 1o)X +2> " Ri(8, o)
= t=1
= on(- > Di(6, 10))'S ZDt o) + 203" D0, o))
t=1 t=1
(> D6, m))'S ZDt )~ T3 D101
t=1 =1

—nL!S,(0, o)Ly — ZDt ,10)) L, +22Rt 10)

IZDt  10))' S, (8, po) \FZDt . 10)) nL;Sn(O,uo)Ln+22Rt(0,uo)-

t=1

1
Because nL),S,,(0, 10) L, = 0,(1) by noting that || L,|= 0,(—=), and the last term satisfies

\/ﬁ
23" R0, 10)< 2B S (0, wo)P= 0,(1), (5.10)
t=1 t=1
it follows that
10, o) = QH S Dy, 10))' S ZDt )+ 0p(1)
t=1
- (= > D6, ZDt ) + 0p(1)

holds uniformly in @ € V; by part(d) of Lemma 3. Therefore,

1(B0, po) = ZDt 60, 110))’ \/»ZDt 60, 110)) + 0p(1).
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It follows from part (d) of Lemma 3 that

n

>_IDu(6, o)

t=1
< 1r£1ta<X | D(8, 10)]| (ZHDt ‘2) = Op(\/ﬁ)<ZHDt(97MO)H2>
- ZD’ ,10)Di(0, o)) = 0p(v/n) - m - tr(— ZD' o) D¢ (0, p10))
= op(v/n) -n-tr(= ZDt  0) D3 (0, 110)) = op(v/n) - - tr (2 + 0,(1))

= Op(\/ﬁ) "N Op( )= Op(n\/ﬁ)a

where tr denotes the trace of a matrix. Thus, we have ||A|?>= Op(n_%) and

S (0, 10)* < YNNI De(8, po)|F = Op(n~2 ZHDt = Op(n"2)op(nv/n) = 0y(1).
t=1

t=1
Define A,,(0) = \1f ZDt<97M0)- Then,
n

18, 10) — 1(80, o) = (An(8) — An(60))' Q" A (8o) + A (80)2 (An(6) — Ay (60))
+ (An(6) — An(80)) Q27 (An(8) — An(60)) + 0p(1)

holds uniformly for all @ € Vj. Further,

!/

An(0) — An(6) = \/15 > |:(Dt,1(0) — D¢1(60))", Dt,2(0, 1o) — De2(80, o)
t=1

Wt 8ht(00) 8ht(90)
h2(6y) 00 00

Let ¥q; = E{ } be the first block of ¥. Then, by part (c¢) of Lemma 3

and Taylor expansion, we have

0Dy 1(60) 1
2 (T(B —6o) + Op(ﬁ))
6Dt1(90) 174 ))

TN TR

;ﬁ > " (D41(8) — Dy1(80) =
t=1

§%‘§ﬂ~
M:

b
NG

&~
Il
—

0D 1(60)
T) + 0p(1)

S|
M=

= ]/(
t=1

=W v +0y(1)
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wr  Oe()

Vhi(0) 06

holds uniformly for @ € V. Similarly, put Wo; = E{ }, which is the second and

the first block of ¥. Then,

n

;ﬁéwt’zw’m = DualBo o) = 23 (P26~ 60 + 0(72)
- %E(W\% +o)( =)
- 2 (R0 o) oyl )
- ”QZlW) +op()
= W+ 0y(1)

holds uniformly for 8 € V.

Put A = (‘1’11, ‘I’Ql). It follows that

An(0) = An(0o) = (11, ¥%)'v + 0,(1) = A'v + 0p(1)

holds uniformly for 8 € V4, implying that

10, o) — 1(80, o) = VAQ A, (80) + AL(00)Q Ay + VAQ WA +0,(1)  (5.11)

holds uniformly for @ € Vj. Like the proof of Lemma 1 of Qin and Lawless (1994), we know that

the minimizer 6 = 0y + Y must lie in Vo, ie., = —(AQTA)TLAQ A, (8)) + 0,(1), which

vn

implies that

18, o) = [272 An(80)] [T — 272 A/(AQ ™ A) T AQ 2272 An(80)] + 0,(1).

By Lemma 4, Q_%AH(OO) converges in distribution to a multivariate standard normal distri-

bution function, implying that (0, uo) LN X? by noting that

tr(I —Q 2 A (AQ A 1AQ 2) = tr(I) — tr(Q 2 A/ (AQ 1 A)) 1 AQ 2)
=p+q+s+r+3—7‘ank(Q*%A’)
=1.
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Proof of Theorem 2. Following the proof of Theorem 1, we have
1(6,0) = [ 2 A5 (6))[T - Q2 A(AQT'A) T AQT )2 AL (00)] +0,(1),  (5.12)

1 n
where A (0) = 7 > " Dy(6,0).
t=1

Because g = M/+/n, we have

NE

AL (0g) = Dy(6,,0)

o~
Il
—

(D} 1(80), D 2(80,0))

NE

o~
Il
i

[(D;,lwo), wilne — 1))’ + (0, j‘fﬁwty]

(D} (80), wil — o))+ D°(0, My
t=1

i
I,

NE

I
I

n

1
D:(6o, o) + - > (0, Muwy)',
t=1

B A i e
M=

NE

w
Il
—

1 n
where 0 is a (p+g+s+7r+2)-vector. By Lemma 4, we have — Z D¢ (60, 1o) 4 N(0,). By the

Vo

M n
weak laws of large number for stationary series, — Z wy 2 M Ew,. Thus, Q_%Afl(é’o) converges
n
t=1
in distribution to a multivariate normal distribution with mean —(0’, M Ew;)’ and covariance I.

By (5.12), we have [(0,0) converges to a noncentral chi-squared limit with one degree of freedom

and the noncentral parameter M?(Ew;)? as n — co. O

27



Data Availability Statement
From the Federal Housing Finance Agency, we collect the state-level house price index (HPT)

of California, Florida, Nevada, and Arizona from 1975 to 2018.
From Yahoo Finance, we collect the daily S&P500 and Microsoft Stock (MSFT) close prices

from August 3, 2009 to July 29, 2019.
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