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Abstract

Because the ARMA-GARCH model can generate data with some important properties
such as skewness, heavy tail, and volatility persistence, it has become a benchmark model in
analyzing financial and economic data. The commonly employed quasi maximum likelihood
estimation (QMLE) requires a finite fourth moment for both errors and the sequence itself to
ensure a normal limit. The self-weighted quasi maximum exponential likelihood estimation
(SWQMELE) reduces the moment constraints by assuming that the errors and their absolute
values have median zero and mean one, respectively. Therefore, it is necessary to test zero
median of errors before applying the SWQMELE, as changing zero mean to zero median
destroys the ARMA-GARCH structure. This paper develops an efficient empirical likelihood
test without estimating the GARCH model but using the GARCH structure to reduce the
moment effect. A simulation study confirms the effectiveness of the proposed test. The data
analysis shows that some financial returns do not have zero median of errors, which cautions

the use of the SWQMELE.
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1 Introduction

Many economic and financial variables often exhibit skewness, heavy tail, time dependence,

and volatility persistence. For catching these stylized facts, a popular time series model is the

so-called ARMA (r,s)-GARCH(p,q) model, defined as
Xe=p+ > 0iXei+ > jer—j+ ey,
i=1 j=1

p q
_ 2 2 2
€L =0y, OF = w1+ ) g+ Y, bjat—jv
i=1 j=1
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where p € R, ¢ e R (i =1,---,7),¢; e R(j =1,---,5), w1 >0,a;, >0 (i =1,2,---,p),
b; >0(j=1,2,---,q), and {1} is a sequence of independent and identically distributed (i.i.d.)
random variables with mean zero and variance one. Because of En; = 0 and En? = 1, equation
(1.1) models the conditional mean and conditional standard deviation of {X;} parametrically.

Since the seminal papers of Engle (1982) and Bollerslev (1986), researchers have paid much
attention to the probabilistic properties and statistical inferences about GARCH and ARMA-
GARCH models. Basrak, Davis and Mikosch (2002) study the tail behavior and the sample
autocovariance function of a GARCH model. Mikosch and Starica (2000), Berkes, Horvath
and Kokoszka (2003), Chan, Peng and Zhang (2012), and Zhang, Li and Peng (2019) estimate
the tail index of a GARCH(1,1) sequence. Hall and Yao (2003) show that the quasi-maximum
likelihood estimation (QMLE) for a GARCH sequence has a stable law limit when En} = co.
Francq and Zakoian (2004) prove that the QMLE for the ARMA-GARCH model has a normal
limit when both Fe} < oo and En} < occ.

Real data applications show that Z?:l a; + Z?:l b;j is quite close to one, indicating that
the assumption of Ee} < oo is problematic. This motivates Ling (2007) to propose a self-
weighted local quasi-maximum likelihood estimation for an ARMA-GARCH model, which has
a normal limit when Enf < oo and Ele|” < oo for some 7 > 0. It is not surprising that
an estimation based on En; = 0 and En? = 1 can not have a normal limit when En} = oc.
To derive an inference with a normal limit by allowing En} = oo and Ee} = oo, one has to
impose different conditions on 7. A common trick is to develop a median based inference.
Peng and Yao (2003) derive the asymptotic normality of the least absolute deviation estimation
(LADE) for a GARCH sequence by assuming that the median of 7?7, rather than variance, is
one. Zhu and Ling (2011) derive the asymptotic normality of the self-weighted quasi maximum
exponential likelihood estimation (SWQMELE) for an ARMA-GARCH sequence by assuming
that the median of 7; is zero rather than En, = 0.

When the median of 7 in (1.1) is dg # 0, a simple transformation to have zero median is

T S S
Xe=pn+y ¢iXeity ey +E+ Y didooe;+door, & = ouln —do),
i=1 j=1 j=1

S
which destroys the ARMA-GARCH structure due to the term ) ¢;dyos—; + dopoy and makes
j=1
the SWQMELE not applicable. We refer to Fan, Qi and Xiu (2014) for more details on the
transformation effect for skewed data. Therefore, it is necessary to test whether 7; in (1.1) has

zero median before employing the SWQMELE to fit the model.



Because zero median of 7; is equivalent to zero median of ; in the model (1.1), this paper
develops a robust test for zero median of €; without knowing p and ¢ and without estimating the
unknown parameters of wi, {a;};_;, and {b;}7_,. To estimate the median of &; with a normal
limit and without inferring the GARCH model, we can not use the least squares estimation
for parameter 0 = (p, ¢1,- -, dp, 1, -+ ,1s)" in the ARMA model, as Zhang and Ling (2015)
show that it has a nonnormal limit when Fe} = co. Instead, we propose to estimate 8 by the
weighted least squares estimation in Huang, Leng, Liu and Peng (2020) and then estimate the
median of ¢; by a weighted median. Because the employed weight function is designed to reduce
the moment effect of o, although we do not infer the GARCH model, the proposed estimator
for the median of ¢; will have a normal limit even when Ee? = oco. Still, its asymptotic variance
is complicated without a surprise. Therefore, this paper develops an empirical likelihood test
without estimating the asymptotic variance. We refer to Owen (2001) for an overview of the
empirical likelihood method, which has been proved to be powerful in hypothesis tests. For
applications of the empirical likelihood method to ARMA-GARCH models, we refer to Chan
and Ling (2006) for a GARCH model, Li, Liang and He (2012) for an AR-ARCH model, and
Zhang, Li and Peng (2019) for the tail index of a GARCH(1,1) sequence.

In summary, this paper develops an empirical likelihood test for zero median of errors in an
ARMA-GARCH model to ensure a proper application of the SWQMELE. The developed test is
robust to volatility and heavy tails because we do not infer the GARCH model and allow heavy
tailed errors. The test is efficient too, as the empirical likelihood method does not estimate the
asymptotic variance explicitly and has been proved to be efficient.

We organize this paper as follows. Section 2 presents the methodologies and asymptotic
results. Sections 3 and 4 are a simulation study and some data analyses, respectively. Some

conclusions are summarized in Section 5. All proofs are put in Section 6.

2 Methodologies and Asymptotic Results

Let F; denote the o-field generated by {es : s < t}. Put @ = (i, ¢1,--- ,¢p,%1,--- ,9s), 6 =
(wn,an,- - ay by, ,bq)/, and v = (6',§") with 4 denoting the true value. Write n(vo) = 1y,
et(80) = e, and a(y0) = oy Define ¢(2) = 1 — 371, ¢iz’, d(2) = 1+ 235,97, a(z) =
Sy iz, and b(2) = 1= 329_, b;.

Given the observations {X7i,---, X, } and the initial values {Xo, X_1,---} taken as zero in



our simulation study and data analysis, we write the parametric form of (1.1) as

er(0) = Xo — = Dy diXe—i — D5y bje—;(0),

of(v) = wn + 30y i (8) + i1 bjoi;(7), m(y) = =(6)

or(y)

For testing whether €; has zero median, we can not estimate @ by the least squares estimation,

as Zhang and Ling (2015) show that it does not have a normal limit when Ee} = oo. Instead,
we propose to use the weighted least squares estimation by minimizing > 7, w; % e2(6), which

is equivalent to solve the score equations

L e (0
Zwt—ngt(e) Et( ) - 07
t=1

00

where w; is Fi-measurable and will be defined later. As £,(0) = o (y)m(7), the estimation
procedure above employs one w;_; to reduce the moment effect of o4 in €,(0) and another one
O0c+(0 .

5(0 ) Hence, the proposed weighted least squares estimation, denoted by 6,

has a normal limit due to Ent2 = 1 even when E’z—:? = oo. Next, using é, we can estimate the

to reduce that in

median of ; by solving

> w;sgn(e(8) —d) =0,

t=1
where sgn(z) is the sign function. Again, the weight w;—; reduces the moment effect due to

the plug-in estimator 6. So, the resulted median estimator has a normal limit without requir-
ing Fe? < oo, but its asymptotic variance is complicated. To avoid estimating the asymptotic
variance, we propose to employ the empirical likelihood method based on estimating equations
in Qin and Lawless (1994) as follows. Note that the empirical likelihood method is less com-
putationally intensive than a bootstrap method. The residual-based bootstrap method is not
applicable, as we do not estimate the GARCH model.

Put

———=, D;2(0,d) = wt__llsgn(et(e)—d), and Dy(0,d) = (D;71(9), Dy 2(0,d)),

where d is the median of £,(6). Then we define the empirical likelihood function for @ and d as

n

L(0,d) = sup { H(npt) ip1 >0, ,pp > O,Zpt = 1,ZptDt(0,d) = 0}.

t=1 t=1 t=1
1
n{1+ XN D;(6,d)}

Using the Lagrange multiplier technique, we obtain p; = and the log empirical

likelihood ratio

1(0,d) = —2log(L(6,d)) =2 ilog{l + X' Dy(6,d)},
t=1



where A = A(0, d) satisfies

i Dt(07 d) — 0
1+ XNDy(6,d)

As we are interested in d, we consider the profile empirical likelihood ratio I,(d) = gleig 1(0,d).
Because E(g;(80)|Fi—1) = 0 and E(D;2(60¢,0)|Fi—1) = w; ', E(sgn(n;)|Fi—1) = 0 under the

model assumption of Ern; = 0 and the null hypothesis of zero median of £;, we expect that

the Wilks theorem holds for the above empirical likelihood method. However, if one tests for a

nonzero value of d, the Wilks theorem does not hold because of E(D;2(60y,d)|Fi—1) # 0.

Let
am? + bl bg cee bq_l bq a2 a3 -+ Qp
1 o - 0 0 0 O 0
0 1 -0 0 0 O 0
A= 0 0 1 0 0 0 0 |
un 0 0 0 0 O 0
0 0 0 0 1 0 0
0 o - 0 O 0 --- 1 O
and v be the Lyapunov exponent of the random matrices {A;}, namely, for any norm | - || on

the space of (p+¢q— 1) x (p+ g — 1) matrices,
) 1
y=inf{ —E(ln|A1---A,l]),n e Np,
n
where || A¢|| = sup |Aix|. To prove the Wilks theorem of the proposed empirical likelihood test,
|z|=
we need the following regularity conditions.

Assumption 1. g is an interior point in ©, and for each 8 € O, ¢(z) # 0 and V¥ (z) # 0 when
|z| <1, and ¢(2) and ¥ (z) have no common root with ¢, # 0 or 15 # 0.

Assumption 2. w; >0, v <0, and Eln(max(|n,1)) < oco.

0 .
Assumption 3. E[w;‘llf;{t_l] < oo for any p € (0,1), where &,y = 14 > p'| Xy—i|, wy is

=0
positive and Fy-measurable, infi>1 wy > 0, and {w} is a stationary sequence.

Assumption 4. {n;} is a sequence of independent and identically distributed random variables

with mean zero and variance one.



Assumption 5. {n:} has a continuous density function g(x) satisfying g(0) > 0 and sup g(z) <
- z€eR
Assumptions 1 and 2 ensure that there exists a unique strictly stationary causal solution
to the first and second equations of (1.1), respectively (see Theorem 3.1 of Basrak, Davis, and
Mikosch (2002) for the GARCH model). Assumption 3 allows the weight to reduce the moment
effect of o;. Assumption 4 means that we consider the classical ARMA-GARCH model for

conditional mean and conditional standard deviation. Assumption 5 is the standard condition

for median estimation.

Theorem 1. Under Assumptions 1-5 and the null hypothesis of Hy : dg = 0, 1,,(0) converges in

distribution to a chi-squared limit with one degree of freedom as n — oc.

For testing whether &; in (1.1) has zero median, the theorem above suggests rejecting the
null hypothesis at level a whenever [,,(0) > X%,l— o With Xil—a denoting the (1 — «)-th quantile
of a chi-squared distribution with one degree of freedom.

To investigate the local power of the proposed test, we consider the following local alternative
hypothesis

My
H, : dy = —= for some constant M. (2.2)

NLD
The following theorem shows that the proposed test has nontrivial power, its power tends to

one as |Mj| — oo, and the weight function impacts the test power but in a complicated way.

Theorem 2. Suppose that Assumptions 1-5 hold for model (1.1). Under the alternative hypoth-
esis of (2.2), 1,(0) converges in distribution to a non-central chi-squared limit with one degree

of freedom and the noncentrality parameter
(0',29(0) ML E(w, ) )E(o; 1) A1 (0, 2g(0) My E(w, ) )E(o; 1)),
where A = E{D1(6o,0)D(6o,0)}.

Finally, we provide a class of weight functions. It is clear from Ling (2007), Zhu and Ling
(2011, 2015) that the key idea of choosing the weight function is to bound &, ; defined in Assump-
tion 3. There are many different choices, including the one in Ling (2007). Here, we propose to
employ the following weight function

t—1
wi(h) = max(C, Y 8 M e x, ) for some h € (0,1) and t=1,-+- ,n, (2.3)
=0



where C'is chosen as the 90% quantile of {|X¢|}}_;, and wo(h) = 1. Like He, Hou, Peng and Shen
(2020), we can show that the above weight function with the sample quantile C replaced by the
corresponding quantile (denoted by 6’) satisfies Assumption 3. Further, we can show estimators
with C' and C have the same asymptotic distribution. Like kernel density estimation, it is
challenging to choose h in terms of coverage probability, which requires to derive the Edgeworth
expansion for the empirical likelihood ratio. Nevertheless, our simulation study below shows

that a use of h =0.1,0.2,0.3,0.4,0.5,0.6 provides accurate size and good power.

3 Simulation study

In this section, we examine the finite sample performance of the proposed empirical likelihood
test in terms of size and power.

We generate 5000 random samples with sample size n = 1000 or 2000 from the ARMA(1,0)-
GARCH(1,1) and ARMA(1,1)-GARCH(1,1) models with x = 0.1,¢; = 0.5,¢1 = 0.2, w; = 0.1,
a1 =0.2o0r 0.1, by = 0.8, n, = (V — E(V))/+/Var(V), where

B () ()
(-1 1(a2-1)

with U ~ Uniform(0,1), V; ~ Pareto(1,aq), and Vo ~ Pareto(1, a2) being independent. Note

that Fe? is finite for a; = 0.1 and infinite for a; = 0.2. It is easy to check that

BV) =251, B < D=1 20 -5 —1)

a; —2 ag —2 ’
20 —1 20 —1
Py <0)=1-06+dP(V1 < )=1-6(1+ )" for 26 —1 >0,
a1 — 051—1
and
1-29 1-29
P(y <0)=0P(Vo > )=0(1+ )72 for 26 — 1 < 0.
052—1 042—1

Therefore, 1; has the right tail index «y, the left tail index «s, zero median if § = 0.5, and is
asymmetric when a; # ag. Some calculations show that P(n, < 0) # 1/2 for 6 # 1/2, aq > 2,
and ag > 2, i.e., 7; has nonzero median if § # 1/2. In contrast, if 7; has a standardized skewed
t distribution with mean zero and variance one, then it has the same right and left tail index
and is symmetric in the case of zero median. Therefore, the proposed distributions for 7, are
more flexible in modeling tails and asymmetry than the widely used skewed t distributions.
We take a; = 2.2 or 4.5, ap = 2.2, and § = 0.3, or 0.4, or 0.5. Hence, the case of 4 = 0.5

corresponds to the test size, and other choices of § stand for the test power. We use the R



package “emplik” to calculate the empirical likelihood function and the R function “optim” to
compute the profile empirical likelihood function. We use the weight function w¢(h) in (2.3) with
h =0.1,0.2,0.3,0.4,0.5,0.6. We report the empirical sizes of the profile empirical likelihood test
at levels 10%, 5%, and 1% in Table 1 and the empirical powers in Tables 2 and 3. To save space,
we only report results for A = 0.1 and 0.3 because results for other h’s are similar.

Table 1 shows that i) the size accuracy improves as the sample size becomes larger, ii) the
size for ay = 4.5 is more accurate than that for oy = 2.2, iii) the size is robust to h, iv) the
size for the ARMA (1,0) model is more accurate than that for the ARMA (1,1) model, and v)
the tail heaviness of 7, rather than ¢; has an impact on the size. Also, we conclude from Tables
2 and 3 that i) the test power improves as the sample size increases, ii) the test for § = 0.3
has a larger power than that for § = 0.4 as the median of errors in the former case is farther
away from zero than the latter, and iii) the test for a; = 4.5 is more powerful than that for
a1 = 2.2. Again, the tail heaviness of 7; rather than ¢; impacts the power because we use the

weight function to reduce the moment effect of oy.



Table 1: Test sizes for ARMA(1,0)-GARCH(1,1) and ARMA(1,1)-GARCH(1,1) models with
0 =0.5.

ARMA(1,0-GARCH(1,1) ARMA(1,1)-GARCH(1,1)

a1 o n Level h=0.1 h=0.3 h=0.1 h=0.3
0.2 22

1000  10% 0.1282 0.1292 0.1448 0.1458

5% 0.0738 0.0752 0.0824 0.0868

1% 0.0164 0.0174 0.0250 0.0264

2000  10% 0.1194 0.1162 0.1326 0.1322

5% 0.0608 0.0604 0.0744 0.0742

1% 0.0148 0.0128 0.0212 0.0202
0.2 4.5

1000  10% 0.1160 0.1154 0.1168 0.1188

5% 0.0586 0.0590 0.0626 0.0664

1% 0.0122 0.0136 0.0194 0.0170

2000  10% 0.1012 0.1040 0.1120 0.1156

5% 0.0530 0.0520 0.0630 0.0612

01 29 1% 0.0126 0.0098 0.0156 0.0144

1000  10% 0.1276 0.1298 0.1408 0.1424

5% 0.0730 0.0708 0.0804 0.0856

1% 0.0164 0.0186 0.0230 0.0262

2000  10% 0.1194 0.1148 0.1378 0.1378

5% 0.0606 0.0580 0.0756 0.0654

01 45 1% 0.0128 0.0132 0.0208 0.0200

1000  10% 0.1144 0.1146 0.1164 0.1206

5% 0.0590 0.0608 0.0654 0.0668

1% 0.0128 0.0128 0.0172 0.0170

2000  10% 0.1002 0.1022 0.1112 0.1134

5% 0.0530 0.0492 0.0624 0.0594

1% 0.0116 0.0098 0.0150 0.0156




Table 2: Test powers for ARMA(1,0)-GARCH(1,1) and ARMA(1,1)-GARCH(1,1) models with
0 =0.3.

ARMA(1,0-GARCH(1,1) ARMA(1,1)-GARCH(1,1)

a1 a1 n Level h=0.1 h=0.3 h=0.1 h=0.3
0.2 2.2

1000 10% 0.8368 0.8344 0.8358 0.8322

5% 0.7672 0.7584 0.7728 0.7648

1% 0.5960 0.5918 0.5908 0.5880

2000 10% 0.9394 0.9374 0.9478 0.9448

5% 0.9082 0.9038 0.9164 0.9160

09 45 1% 0.8110 0.8130 0.8218 0.8202

1000 10% 0.9514 0.9532 0.9498 0.9474

5% 0.9178 0.9152 0.9086 0.9078

1% 0.7806 0.7792 0.7696 0.7670

2000 10% 0.9986 0.9990 0.9976 0.9986

5% 0.9960 0.9970 0.9950 0.9952

01 29 1% 0.9812 0.9822 0.9804 0.9820

1000 10% 0.8422 0.8382 0.8460 0.8382

5% 0.7786 0.7654 0.7658 0.7734

1% 0.6118 0.6000 0.6102 0.5988

2000 10% 0.9426 0.9362 0.9508 0.9466

5% 0.9114 0.9042 0.9200 0.9176

01 45 1% 0.8252 0.8172 0.8318 0.8234

1000 10% 0.9590 0.9536 0.9584 0.9500

5% 0.9282 0.9146 0.9226 0.9120

1% 0.8040 0.7920 0.7958 0.7810

2000 10% 0.9992 0.9990 0.9984 0.9984

5% 0.9978 0.9962 0.9964 0.9962

1% 0.9848 0.9854 0.9860 0.9838
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Table 3: Test powers for ARMA(1,0)-GARCH(1,1) and ARMA(1,1)-GARCH(1,1) models with
0 =0.4.

ARMA(1,0-GARCH(1,1) ARMA(1,1)-GARCH(1,1)

a1 a1 n Level h=0.1 h=0.3 h=0.1 h=0.3
0.2 2.2

1000 10% 0.3926 0.3926 0.4004 0.4040

5% 0.2930 0.2958 0.3048 0.3038

1% 0.1424 0.1406 0.1400 0.1426

2000 10% 0.5632 0.5576 0.5658 0.5656

5% 0.4472 0.4462 0.4594 0.4586

09 45 1% 0.2402 0.2432 0.2658 0.2664

1000 10% 0.4326 0.4380 0.4420 0.4398

5% 0.3184 0.3264 0.3144 0.3274

1% 0.1424 0.1492 0.1358 0.1414

2000 10% 0.6854 0.6834 0.6870 0.6816

5% 0.5656 0.5722 0.5774 0.5806

01 29 1% 0.3178 0.3318 0.3346 0.3372

1000 10% 0.4022 0.3996 0.4108 0.4086

5% 0.3020 0.2996 0.3098 0.3040

1% 0.1506 0.1462 0.1484 0.1468

2000 10% 0.5708 0.5610 0.5686 0.5642

5% 0.4606 0.4488 0.4680 0.4578

01 45 1% 0.2550 0.2446 0.2658 0.2630

1000 10% 0.4544 0.4474 0.4594 0.4508

5% 0.3418 0.3324 0.3448 0.3380

1% 0.1602 0.1570 0.1498 0.1480

2000 10% 0.7048 0.6954 0.7094 0.6942

5% 0.5984 0.5826 0.6028 0.5830

1% 0.3486 0.3444 0.3676 0.3512

4 Applications

4.1 Exchange Rates

This section studies the daily HKD/USD, USD/EUD, CANADA/USD, and MEXICAN/USD
exchange rates from October 5, 2009 to October 4, 2019. Denote the log-returns (x100) of each
series by {X;}. We first estimate the tail index of {X;} by the Hill estimator &(k) in Hill (1975)
defined as

o= [ ()]

(

(n—k)
with {X(;)} being the ascending order statistics of {X;}. We plot the Hill estimates against
various k in Figure 1, indicating that the tail index of HKD/USD, CANADA /USD, and MEX-

ICAN/USD exchange rates is less than 4, i.e., EX} = co. Therefore, when we fit an ARMA-

11



GARCH model by using the QMLE, the inference may not have a normal limit. To explore the
possibility of using the SWQMELE to fit an ARMA-GARCH model, we have to test whether
the GARCH model has zero median.

To conduct such a test, we first use the function “auto.arima” in the R package “forecast”
with AIC to obtain the appropriate orders for the ARMA model. The results are an ARMA(2,2)
model for HKD/USD exchange rates, an ARMA(1,1) model for USD/EUD exchange rates, an
ARMA(5,4) model for CANADA /USD exchange rates, and an ARMA(3,2) for MEXICAN/USD
exchange rates. Next, we compute the pvalue of the proposed profile empirical likelihood test
for zero median of errors by using the weight function wy(h) in (2.3) with A~ = 0.1, 0.2, 0.3, 0.4,
and 0.5. Table 4 shows that the null hypothesis of zero median is rejected for MEXICAN/USD
exchange rates, while HKD /USD and USD/EDU exchange rates do not reject the null hypothe-
sis. Therefore, one should be cautious in using the SWQMELE to fit an ARMA-GARCH model
to the MEXICAN/USD exchange rates, as the ARMA part no longer models the conditional

mearn.

DEXHKUS DEXUSEU
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Figure 1: The Hill estimates for the HKD/USD, USD/EUD, CANADA /USD, and MEXI-
CAN/USD exchange rates.
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Table 4: Pvalues of the empirical likelihood test for daily exchange rates.

Exchange rate ARMA model A=01 h=02 h=03 h=04 h=05

HKD,/USD ARMA(2.2)  0.1754 0.2971 0.1935 0.2555  0.6919
USD/EUD ARMA(1,1)  0.6431 0.6178 0.8581 0.8583  0.9567
CANADA/USD  ARMA(
(

4) 0.2100  0.1267 0.1044 0.0841 0.0153
MEXICAN/USD ARMA(3,2)

5
3, 0.0134 0.0157 0.0158 0.0107  0.0109

4.2 Stock Market Indices

This subsection considers the daily close prices of the following stocks and indices: the Transocean
(RIG), S&P 500, Microsoft Stock (MSFT), and Dow Jones Index (DJI) from October 28, 2009
to July 29, 2019. Like Section 4.1, we first plot the Hill estimates for each series in Figure 2,
which indicates that the tail index of S&P 500 and MSF'T is less than 4. Hence, one may employ
the SWQMELE to fit an ARMA-GARCH model after confirming that the GARCH model has
zero median.

As before, we first use the function “auto.arima” with AIC to obtain the appropriate orders
for the ARMA model, and then we compute the pvalue of the proposed empirical likelihood test
for zero median of errors with h = 0.1, 0.2, 0.3, 0.4, and 0.5. Table 5 shows that we should be
cautious about using the SWQMELE to fit an ARMA-GARCH model to S&P500 and DJI, as

zero median of errors may not be true.
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Figure 2: The Hill estimates for the RIG, S&P 500, MSFT, and DJI.

Table 5: Pvalues of the empirical likelihood tests for stocks and indices.

Stock or Index ARMA model hA=01 h=02 h=03 h=04 h=05
RIG ARMA(1,0) 0.9743 0.9013 0.9756 0.9811 0.7316
S&P 500 ARMA(3,1)  0.0937 0.1037 0.0996 0.0761  0.0551
MSFT ARMA(1,1)  0.9624 0.7056 0.9750 0.8013  0.4259
DJI ARMA(3,1)  0.0044 0.0675 0.2006 0.0216  0.0169

5 Conclusions

To fit an ARMA-GARCH model with fewer moments, one has to impose conditions on the
median rather than the mean of the errors. Because changing zero mean to zero median is
significant for skewed data and destroys the ARMA-GARCH structure, this paper develops an
empirical likelihood test for zero median of errors without estimating the GARCH model and

the asymptotic variance and by allowing heavy tailed errors. Hence, the proposed test is robust

14



and efficient. A simulation study confirms the good finite sample performance in terms of size
and power. The data analysis shows that some real financial data do not have zero median of

errors, which cautions the use of the SWQMELE.
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Appendix: Proofs

Before proving Theorems 1 and 2, we need some lemmas. Lemma 1 derives bounds for allowing

the use of weight functions to reduce the moment effect. Lemma 2 shows that the sample mean
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and sample variance of Dy(0,0) can be approximated by those of D;(6p,0). Lemma 3 derives
the asymptotic normality of >} | D;(68p,0). For profiling the nuisance parameters, Lemma 4

develops an approximation for Y ;' ; D;2(0,0).

Lemma 1. Under conditions of Theorem 1, there exist a constant p € (0,1), a constant C' > 0,

and a neighborhood ©¢ of 8y such that

Oc (0 0%¢4(0
supler(0) < Cpior. sup| 57| < C6pin, and sup |G| < 6,
where &, is defined in Assumption 3.
Proof. See Ling (2007). O

C
Lemma 2. Let By = {6 : |6 — 6] < \%} for some constant Cy > 0. Under conditions of
n

Theorem 1, we have

O 2 100 = only)

ZDt 0,0) ZDt 00,0) + Op(n ~1/2 holds uniformly for 6 € By.

1
(131) — g {D.(6 ,0)D,(8,0) )} = E{Dx(6o, 0)D} (69,0 )} +0p(1) holds uniformly for 6 € By.
n
t=1

Proof. (i) We first prove that

max sup || Dy,1(0)]| = op(v/n). (A.1)

1<t<n g,

By Lemma 1, we have for n large enough,

8615

w; 2 (6)

&et )H

sup HDM(B)H = sup ” < supwt 1H€ H’ < C?w *21£pt 1 =: V().
Bo BO

By the Chebyshev inequality, for any ¢ > 0,

P< max V(t) > \/ﬁe>

1<t<n
E:E{V2 V(t) > fe)}
gé max E{VQ(t)I(V(t) > \/ﬁe)} -0

as n — 0o, where the last inequality follows from the fact that

E(V2(t)) = C4E[w;41§;{t_1] < 00,
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by Assumption 3. Hence, (A.1) follows.

Because
sglp |Dt2(0,0)| = s;p }w;_llsgn(gt(e))‘ <w Y sglp |sgn(e:(6)) — sgn(er)| + w; Y, < 3w,
0 0 0
it follows from Assumption 3 that

11;1%)%8113101) |Dt2(0,0)| = op(v/n). (A.2)

Hence, by (A.1) and (A.2), we have

1215 gy 1D¢(8,0)[| = op(v/n).

(ii) Note that

n

1< 1 ¢ 1 : :
- ; Dy(6,0) - — ; Dy(60,0) =~ ; (D;,1(8) — D, 1(60), Dy.2(6,0) — D12(65,0))".

For the proof of (ii), it suffices to show that

s ; (D1 (0) - Dtl(eo))H _ op(\}ﬁ)
and
sup| LS (D12(6,0) — Dis(6 0))‘ —0,(-1),
Bo | —1 ’ ’ ’ ’ P \/ﬁ

Using Taylor expansion and Lemma 1, we have

Sllglp HDt,l(o) - Dt,l(aO)H

8@(0) _92 8€t(00)

:ng w; 2 0(6) 00 W15t 59

—sup i (u0) — o) ) + (2 - 20|

it (o |5 ) et~ o+ (i) cptecontgpro-
<2OOO2 L

2
w
— \/ﬁ t—lé.p,tfh

where 8% and 0** lie between 6y and 0. Then, it follows from Assumption 3 that

% > sup [ D11(6) - DeaB0)]| = Op( 7).
t=1 0

1
n
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By Lemma 1, we have

0e4(6) CCo
50 HHO — 6o < N §pt—1-

Thus, it follows from Taylor expansion, Assumptions 3 and 5 that

D=.(6*)

(6 60)

< sup
Bo

Esgp w; |sgn(e:(6)) — sgn(ey)]

0

= ESllglpwt;ll [‘I(&t(e) > 0) —I(ﬁt > O)| + ‘I(&t(g) < 0) — I(St < 0)’]

_ 0e(0%) e (6%)
= Esuopwt_ll[l( 59, (90—0)<Et§0)—1<0<8t§ 50/ (6p — 0)
8Et(9*) 8Et(9*)
+‘I<0§Et< 96’ (90—9))‘—[( BIY (90—9)§6t<0

< 2F sgp wt__llf(\st| < (04(0%)/00")(6y — 0)\)
0

= 2E{w;11[(\nt\ < C’C’on_%fw_l/at)}

_ 6O0CCpf 1 bl Ly oL
= 2Oplu B o =01, .

where 6* lies between 6y and 6. Hence, by (A.3), we have

1 @ 1 @ _
— "sup|Dy2(0,0) — Dy 2(00,0)| = = > supw, !y sgn(=4(6)) — sgn(er)| = Op(—=)
iz Bo i Bo

Ell

and complete the proof of (ii).

(iii) For proving part (iii), it suffices to show that

sup
Bo

’:l Z {D;1(0)D;2(6,0)} — E{Dy1(60)D:2(60,0)} H = 0,(1) (A.4)
t=1

because the other sums of products can be proved in the same way. Note that

8815(0)
00

=w; % (e1(6) — &)

Dy 1(0) =w; % 24(6)

a9 W1t THg 99 ) TU1ttT 5

=:Li(t) + La(t) + L3(t)

86,5(0) _9 (8&(0) _ Ost(00)> _92 8875(90)

and
D;2(0,0) = w;_llsgn(st(e)) = w;_ll{sgn(et(ﬂ)) - sgn(et)} + w;_llsgn(et) =: M (t) + My(t).

By Taylor expansion, (A.3), and Lemma 1, we have

,8€t(0*) 86,5(0) 62675(9)
96 96 ' o006

(6 —60) (6 —6o)

sup || L1 (t) + La(t) || =supw; 4
Bo BO
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2C,C?  _
< NG wt—Zlfg,t—h

where 0* and 6 lie between 6y and 6,

(%t

[1L3(8)|| < supw
Bo

H\ o) < CPu%e2,

and

1 _
sup [Ma(6)] = sup w; !y [sgn(=:(0)) — sen(er)| < 2w;ﬁf{|m| < comi 28 }
0 0 t

Thus, by (A.5), (A.6), (A.7), and Assumption 3, we can show that

ZSHP{’Ml (L (t )+L2(t)H)} =0,

111;SEf{|M1<t>I(IIL3(t)||)} LN

and

% ;ng {’M2(t)’(HL1(t) + L2(t)”)} 2

Therefore, it follows from (A.8), (A.9), and (A.10) that

Z {D;1(8)D;2(0,0)} — E{Dt71(00)Dt72(00,0)}H

sup
=sup i; {Mi(t)(La(t) + La(t)} + = ! ; {My(t)(L1(t) + La(t))}

+ - ;{Ml )Ly(t)} + = ;{MQ )L3(t)} — E{D¢,1(80,0)Dy2(60,0 }H
=sup | - Z{M2 (t)L3(t)} — E{D;1(60,0) Dy 2(60,0) }H+op 1)

=0p(1),

i.e., (A.4) holds.

Lemma 3. Suppose conditions of Theorem 1 hold. Then, as n — oo

\/15 3" Dy(6,,0) % N(O, E{D1(6o,0)D (6o, 0)})-
t=1

20
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Proof. Note that F; is the o-filed generated by the sequence {&;,e¢—1,---}. Then,

0e(6p) _o 0g4(09)
500 ]-"t1> = w;? 500 E(=|Fi1) =0

E(D,;l(ao)‘]:t,l) = E(wt215t

and
(th 00, ‘ft 1) E<wt_115gn(5t)‘}-t1> = 0.

Therefore, {D;(6y,0)} is martingale differences.

By Lemma 2 (i) and (iii), we have

rnax

i [|7=D(00.0)] = oy(1).
LS {Du(06,0)D;(80,0)} = B{D1(60,0)D} (60, 0)} + 0,(1)
=1

and the dominated convergence theorem implies that

E

max ~D,(6,0)D, (6, )H o(1).

1<t<nn
Therefore, the conditions of the central limit theorem of martingale differences are satisfied. The

conclusion follows from the central limit theorem of martingale differences (See page 58 of Hall

and Heyde (1980)). O

Lemma 4. Under conditions of Theorem 1, as n — oo, we have

wt_ll 0g¢(00)

sup ‘ \f Z {wt:l]L [sgn(at(O)) — sgn(at)]} — 2g(O)E{ 0_; 20 }[\/ﬁ(e — 00)]H = o0p(1).
=1
Proof. Let
_1 1 0e4(0*)
d1:(8) = w;” 1{1((” 0% (00— 0) <)~ 1(n. > o)}
and
1 1 0e4(0%)
do(0) = w,_ 1{[(% 26’ (6o —0) >m) —I(n < 0)}
Then, .
\/15 Zwt__ll [sgn(e:(0)) — sgn(er)] = Z d1:(0) — d2(0)].
t=1

It suffices to show that

sup
Bo =1
and
n w—l .
sup |~ 3 E[(d(6) - ax®))7i1] - 200008 { "L e - 00| = o, 1), (A12)




For (A.11), we only need to show that

sup

) Z (01(6) ~ Elda @)1 711} | = sup [M,,0)]| = 1) (A13)

for i = 1,2. Using the same argument in proving Lemma 2.2 in Zhu and Ling (2011), we can

show that for any n > 0,

M, (0
wp 180)]

— 0,(1) (A.14)
16-6ufj<y L+ VIO = 8oll T

for i = 1,2. When 0 € By, there exists an 79 > 0 such that ||@ — 0¢|| < Co/v/n < no. By (A.14),

we have

[ Mn,i(6) |
M, ; < (Co+1
ngll @)l < (Co )Sup1+\f|‘0 o

which implies (A.13).

= 0p(1),

Next, we prove (A.12). By Taylor expansion and Assumption 5, we have

n n w_l t .
\/15 ; E[d(0) — du(8)| Fi1] = 2g<0){i ; L ‘%8(;,' ) }[\/ﬁ(a — 00)](1 + 0,(1)).(A.15)

Using (A.15), Theorem 3.1 in Ling and McAleer (2003), and the dominated convergence theorem,

we can easily prove (A.12). Hence, the lemma holds. O

Proof of Theorem 1. Put 8 = 6, + el
vn’

A= E{D1 6o, )D1 69,0 } in Theorem 2. Write

where u is a (r + s + 1)-dimensional vector. Recall

n

1 Dy(6,0)
h(6,0,A) = Zm

and 0,(0,0) = N Dy(0,0), where X is a solution of the equations h(6,0,) = 0.
First, we show that ||A| = (1/f) Write A = pv with ||v]| = 1 and define Z,,(0,0) =

max ||Dt(0 0)|| and T3,(6,0) ZDt 6,0)D}(8,0). Observe that
t 1

1 n
0 = [|1h(6.0, gv) | > [[&/h(6.0. ov)]| = )nZ

’U/Dt(a, 0)
1+ Q'UIDt(O, 0)

0v'Dy(0,0)D}(8,0)v
Dy(6,
Z” «(6,0) Z 1+ 0v'Dy(6,0)

Z’UDtGO‘

Z ov'Dy(6,0) Dt(0 0)v
14 0v'Dy(6,0)
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>Q’UT 00 1
14 0Z,(

ZUDtOO‘

Thus, it follows from Lemma 2 (ii) and Lemma 3 that

ov'T,(6,0)v 1
1+ 07,(6,0) —

©.0)

n

> v'(Di(6,0) — Dy(6,0))

t=1

(90,0)' +%

= 0p(1/V/n)

uniformly for @ € By.
Let a be the smallest eigenvalue of A. By Lemma 2 (iii), we have v'T,(0,0)v > a + op(1)

uniformly for 8 € By. Hence, it follows that

o= |Al = 0p(1/vn) (A.16)

uniformly for 8 € By.
Secondly, we derive the solution formula for A as a function of D:(6,0). It follows from

Lemma 2 (i) and (A.16) that
s 15,0, 0)] < N s 1Du(6,0)] = O,(1/Vw)op (V) = oy(1) (A17)
uniformly for 8 € By. By Lemma 2 (ii) and Lemma 3, we have
- ZDt 0,0) ZDt 60,0) + O,(1/v/n) = 0,(1/v/n) + 0,(1/v/n) = O,(1//n)
uniformly for 8 € By. It follows from (A.17) that

0 = h(6,0,\) ZDt (@ 0)(1 —X'Dy(6,0) + %)

1 & Dy(6,0)5%(8,0)
=—) D0 (0,0)A
7 2 Di(6.0) ~ T, (0,001 + Z 1+0,(6,0)

1 n 1IE?<X |5t(0 0)|2 1 n

- _T -
- > " Dy(6,0) — T,(6,0)A + T max 15,8.0)] (n Zmo,m)
t=1 1<t<n t=1

IN

— % Zn: Dy(6,0) — T,,(6,0)A + 0,(1)0,(1/y/n)
t=1

_ % Zn: Dy(8,0) — T;,(8,0)A + 0,(1/v/n).
t=1
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In view of Lemma 2 (iii), T);1(6,0) > C with probability tending to one. Hence,

A="T,%8,0) (% zn: D.(0,0)) + R
t=1

where ||R,| = 0,(1/y/n).
Thirdly, we derive an expression for [(0,0) as a function of D;(6,0). It follows from Taylor
expansion and (A.17) that

1(6,0) = —21n L(8,0)

= ZZn:ln (1+6:(0,0))

t=1

=2X () Dy(6,0)) — nX'T,,(6,0)A+2> Uy(6,0)
t=1 t=1

:2{[2%&(9,0] 1(0,0) + R, }(ZDt G 0)
{[ ZDtOO] ~1(9,0) + R} (00){ (,0)[iiDt(0,0)}+Rn}

:2n(:bzn:Dt(0,0))/Tn (0, ( ZDt 0 0)) + 2R, (ZDt 0 0))

t=1 t=1

- n(% Zn: D,(0.0)) T, (6.0) (g Z D,(0.0)) - n<g Z D,(0.0)) R,

1 ' 1 < : o
=(—= Dy«6,0)) T:10,0)(—= > D(6,0)) —nR,T,(0,0)R, +2) U8,0),
(7 2o Di(0.0) n<,>(ﬁ; 10,0)) = nR,T,(6,0) +23_U(6.0)
where U;(0,0) is the remainder term. Because | R, || = o,(1/+/n), we have
nR,T,(0,0)R,, = o0,(1).
For the remainder term U;(8,0), we will show that
2) U(6,0) = 0p(1).
t=1
By Lemma 2 (iii), it follows that

> IDA0.0)" < i [D.(0.0)] (32 1DA0.011) = noy(/i)(; 3 Di(0.0D1(6.0)

t=1 t=1 t=1
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= noy(Va)ir (- > D}(6,0)Dy(6,0)) = noy(Va)tr (- > Dy(6,0)D}(6,0))
t=1

t=1

= n0y(V) Op(1) = 0p(n?),

where tr denotes the trace of a matrix. Hence, we have

23" U(0,0)| < 2B Y [5:(6,0)* < 2By | AIP|Dy(8,0)[|* = Op(n"2)oy(n
t=1

t=1 t=1
by noting that ||A[|> = Op(n"2).

Hence, it follows from Lemma 2 (iii) that

1(6,0) = IZDteo 1(0,0)( IZDteo +0p(1)

= (% ; D;(,0))' A (% ; Dy(6,0)) + 0p(1)

uniformly for @ € By. In particular, we have

1(6,0) = ZDteo, *(%ZD&HO,O)H%(U.
t=1

R 1 &
Finally, we derive the expansion of the minimizer 6 of 1(6,0). Let S,,(0) = 7 Z D,(6,0).

Then

1(6,0) — 1(6y,0)
= S,(0)A7"S,(6) — 5,(60)A™"Su(60) + 0p(1)
= (5,(0) — Sn(60)) A15,(8) + S, (60) A1 S,,(8)
~5,,(80)A™" S, (80) + 0p(1)
= (5,(8) — S,(60)) A"1(Sn(8) — S1(60)) + (Sn(8) — Sn(60)) A1, (80)

+5,,(00) A7 (S,(0) — Sn(60)) + 0p(1)

uniformly for @ € By. Note that

1 o ) '
5n(6) = Sn(60) = —= > <Dt 1(8) — Dy 1(60), Dy 2(6,0) — Dy (6o, 0)) .
t=1
0Dy, 1(6y) ACHEEC 0%¢4(6 )
Let 3 = 57‘19/0 { t@OO) 5(0/0) + &t 86%0(’)) ) } By Taylor expansion and

Lemma 2 (ii), it follows that
1 O dD,1(6p)
=" (Dw.1(6) - D § j —
Vn =1 (D:1(8) £1(60)) \f { oo’ (6= 60) +Op(\f)}
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(L mam,

t=1

=3u + op(1)

w;, Dey(6p)
Ot 39/

uniformly for @ € By. Define 3y = 2g(0)E{ } By Lemma 4, we have

\/15 ; (Dr2(0,0) — Dy 2(60,0)) _\/1?1 ; w; Y (sgn(e4(0)) — sgn(er))
=3ou + op(1)

uniformly for 6 € By.
Put ' = (£, %5). Then,

Sn(0) = Sn(80) = (21, 35) u+ 0p(1) = T'u+ 0,(1)
uniformly in 8 € By, implying that
1(0,0) —1(69,0) = w'TA 'T'u + w'TA'S,,(80) + S, (60)A™'T'u + 0,(1).

Like the proof of Lemma 1 of Qin and Lawless (1994), the minimizer 8 = 6, + % must lie in
n
By, that is,
@ =—(TA'T) (TA'S,(60)) + 0p(1),

and

1(6,0) =S/, (80)A"1S,,(80) — (TA~'S,,(6p)) (TA™'T') " (TA'5,,(60)) + 0p(1)

—(A"25,(60))' (1 — A 2T/(TA™'TY)"'TA %) (A2 8,(80)) + 0p(1).

From Lemma 3, A_%Sn(eo) converges in distribution to a multivariate standard normal distri-

bution, and

tr(I-—A"2T(TA™'T) " 'TA"2) = tr(D)—tr(A 2 T/(TA™'T') 'TA™2) = (r+5+42)— (r+s+1) = 1.
Therefore, l(é, 0) LA X3 as n — oo. O
Proof of Theorem 2. Following the proof of Theorem 1, we have

1(6,0) = (A"28%(80)) (T — A 2T/ (TA™'TY)"'TA"2) (A" 285(6))) + 0,(1),  (A.18)
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n
where S (6y) = Z +(60,0). Put D}, = wt__l1 {sgn(e;)—Esgn(e¢)} and Df = (D;J(eo), D;Q)’.
Then =

S,,(6o)

_ \}HZ(DLl(Go),DtQ(eOaO))I

_ fz (D} (80), w; ! fsgn(er) — Esgn(e)| Fio1)})’

+ﬁ ;(Ola w; L E((sgn(er) — sgn(ey — do))|Fi1))’
+\/17; ;(0/7 w; L E(sgn(e; — do)|Fi-1))’

S Dp+ \/15 D (0w Eon(n) — senn — dofon)l i)Y

t=1

_ Sl

Tz (0', w; ' {E(sgn(n; — do/ov)| Fi-1) — Esgn(n: — do/o1)})'

— Z Z (0, 2w, ' {F,(do/ot) — Fp(0)})

3\

fz (0, 2w, {F,(do /o) — EF,(do/ov)}), (A.19)

where 0 is a (7 + s + 1)-vector and F;, is the distribution of n;.
Note that E{w; " [sgn(e;) — E(sgn(e;)|Fi—1)]|Fi—1} = 0, it follows that {D}} is a sequence

of martingale differences. Like Lemma 3, we can show that

\}ﬁ zn: D; % N(o, E{D1(60,0)D; (60, 0)}>
t=1

by noting that dy — 0. On the other hand, because dy/oy < M/(nw;)'/? holds uniformly for all

1 <t < n, it follows from Taylor expansion that

- Z{w Fdofo0) = F(0)} - 9O Mo )| = op(1)

and

Zw 1y (do/oy) — EF,(do/oy) }
- Zwt 19(0)[(do/ov) = E(do/a0)](1 + o(1))
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= MO S (o~ Eor )1+ of1)

n
t=1
= Mig(0)E{w; ' (o," = Eoy ")} + 0p(1),

where the lase equality follows by ergodicity. Thus, A_%S:(Bo) converges to a multivariate
normal distribution with mean A=1/2(0’,2¢(0)M;E[w; ", E(co; 1)])’ and covariance I. By (A.18),
we have [ (é, 0) converges to a noncentral chi-squared limit with one degree of freedom and the

noncentrality parameter

(0',29(0) ML E(w; " )E(o; ) ATH(0', 29(0) MiE(w; ' E (o 1))
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