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Abstract

Because the ARMA-GARCH model can generate data with some important properties

such as skewness, heavy tail, and volatility persistence, it has become a benchmark model in

analyzing financial and economic data. The commonly employed quasi maximum likelihood

estimation (QMLE) requires a finite fourth moment for both errors and the sequence itself to

ensure a normal limit. The self-weighted quasi maximum exponential likelihood estimation

(SWQMELE) reduces the moment constraints by assuming that the errors and their absolute

values have median zero and mean one, respectively. Therefore, it is necessary to test zero

median of errors before applying the SWQMELE, as changing zero mean to zero median

destroys the ARMA-GARCH structure. This paper develops an efficient empirical likelihood

test without estimating the GARCH model but using the GARCH structure to reduce the

moment effect. A simulation study confirms the effectiveness of the proposed test. The data

analysis shows that some financial returns do not have zero median of errors, which cautions

the use of the SWQMELE.

Keywords: ARMA-GARCH model, empirical likelihood, weighted estimation, zero median.

1 Introduction

Many economic and financial variables often exhibit skewness, heavy tail, time dependence,

and volatility persistence. For catching these stylized facts, a popular time series model is the

so-called ARMA(r,s)-GARCH(p,q) model, defined as
Xt = µ+

r∑
i=1

φiXt−i +
s∑
j=1

ψjεt−j + εt,

εt = σtηt, σ
2
t = w1 +

p∑
i=1

aiε
2
t−i +

q∑
j=1

bjσ
2
t−j ,

(1.1)
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where µ ∈ R, φi ∈ R (i = 1, · · · , r), ψj ∈ R (j = 1, · · · , s), w1 > 0, ai ≥ 0 (i = 1, 2, · · · , p),

bj ≥ 0 (j = 1, 2, · · · , q), and {ηt} is a sequence of independent and identically distributed (i.i.d.)

random variables with mean zero and variance one. Because of Eηt = 0 and Eη2
t = 1, equation

(1.1) models the conditional mean and conditional standard deviation of {Xt} parametrically.

Since the seminal papers of Engle (1982) and Bollerslev (1986), researchers have paid much

attention to the probabilistic properties and statistical inferences about GARCH and ARMA-

GARCH models. Basrak, Davis and Mikosch (2002) study the tail behavior and the sample

autocovariance function of a GARCH model. Mikosch and Starica (2000), Berkes, Horváth

and Kokoszka (2003), Chan, Peng and Zhang (2012), and Zhang, Li and Peng (2019) estimate

the tail index of a GARCH(1,1) sequence. Hall and Yao (2003) show that the quasi-maximum

likelihood estimation (QMLE) for a GARCH sequence has a stable law limit when Eη4
t = ∞.

Francq and Zaköıan (2004) prove that the QMLE for the ARMA-GARCH model has a normal

limit when both Eε4
t <∞ and Eη4

t <∞.

Real data applications show that
∑p

i=1 ai +
∑q

j=1 bj is quite close to one, indicating that

the assumption of Eε4
t < ∞ is problematic. This motivates Ling (2007) to propose a self-

weighted local quasi-maximum likelihood estimation for an ARMA-GARCH model, which has

a normal limit when Eη4
t < ∞ and E|εt|τ < ∞ for some τ > 0. It is not surprising that

an estimation based on Eηt = 0 and Eη2
t = 1 can not have a normal limit when Eη4

t = ∞.

To derive an inference with a normal limit by allowing Eη4
t = ∞ and Eε4

t = ∞, one has to

impose different conditions on ηt. A common trick is to develop a median based inference.

Peng and Yao (2003) derive the asymptotic normality of the least absolute deviation estimation

(LADE) for a GARCH sequence by assuming that the median of η2
t , rather than variance, is

one. Zhu and Ling (2011) derive the asymptotic normality of the self-weighted quasi maximum

exponential likelihood estimation (SWQMELE) for an ARMA-GARCH sequence by assuming

that the median of ηt is zero rather than Eηt = 0.

When the median of ηt in (1.1) is d0 6= 0, a simple transformation to have zero median is

Xt = µ+

r∑
i=1

φiXt−i +

s∑
j=1

ψj ε̃t−j + ε̃t +

s∑
j=1

ψjd0σt−j + d0σt, ε̃t = σt(ηt − d0),

which destroys the ARMA-GARCH structure due to the term
s∑
j=1

ψjd0σt−j + d0σt and makes

the SWQMELE not applicable. We refer to Fan, Qi and Xiu (2014) for more details on the

transformation effect for skewed data. Therefore, it is necessary to test whether ηt in (1.1) has

zero median before employing the SWQMELE to fit the model.
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Because zero median of ηt is equivalent to zero median of εt in the model (1.1), this paper

develops a robust test for zero median of εt without knowing p and q and without estimating the

unknown parameters of w1, {ai}pi=1, and {bj}qj=1. To estimate the median of εt with a normal

limit and without inferring the GARCH model, we can not use the least squares estimation

for parameter θ = (µ, φ1, · · · , φr, ψ1, · · · , ψs)′ in the ARMA model, as Zhang and Ling (2015)

show that it has a nonnormal limit when Eε4
t = ∞. Instead, we propose to estimate θ by the

weighted least squares estimation in Huang, Leng, Liu and Peng (2020) and then estimate the

median of εt by a weighted median. Because the employed weight function is designed to reduce

the moment effect of σt, although we do not infer the GARCH model, the proposed estimator

for the median of εt will have a normal limit even when Eε2
t =∞. Still, its asymptotic variance

is complicated without a surprise. Therefore, this paper develops an empirical likelihood test

without estimating the asymptotic variance. We refer to Owen (2001) for an overview of the

empirical likelihood method, which has been proved to be powerful in hypothesis tests. For

applications of the empirical likelihood method to ARMA-GARCH models, we refer to Chan

and Ling (2006) for a GARCH model, Li, Liang and He (2012) for an AR-ARCH model, and

Zhang, Li and Peng (2019) for the tail index of a GARCH(1,1) sequence.

In summary, this paper develops an empirical likelihood test for zero median of errors in an

ARMA-GARCH model to ensure a proper application of the SWQMELE. The developed test is

robust to volatility and heavy tails because we do not infer the GARCH model and allow heavy

tailed errors. The test is efficient too, as the empirical likelihood method does not estimate the

asymptotic variance explicitly and has been proved to be efficient.

We organize this paper as follows. Section 2 presents the methodologies and asymptotic

results. Sections 3 and 4 are a simulation study and some data analyses, respectively. Some

conclusions are summarized in Section 5. All proofs are put in Section 6.

2 Methodologies and Asymptotic Results

Let Ft denote the σ-field generated by {εs : s ≤ t}. Put θ = (µ, φ1, · · · , φr, ψ1, · · · , ψs)′, δ =

(w1, a1, · · · , ap, b1, · · · , bq)
′
, and γ = (θ′, δ′)′ with γ0 denoting the true value. Write ηt(γ0) = ηt,

εt(θ0) = εt, and σt(γ0) = σt. Define φ(z) = 1 −
∑r

i=1 φiz
i, ψ(z) = 1 +

∑s
j=1 ψjz

j , a(z) =∑p
i=1 aiz

i, and b(z) = 1−
∑q

j=1 bjz
j .

Given the observations {X1, · · · , Xn} and the initial values {X0, X−1, · · · } taken as zero in
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our simulation study and data analysis, we write the parametric form of (1.1) as
εt(θ) = Xt − µ−

∑r
i=1 φiXt−i −

∑s
j=1 ψjεt−j(θ),

σ2
t (γ) = w1 +

∑p
i=1 aiε

2
t−i(θ) +

∑q
j=1 bjσ

2
t−j(γ), ηt(γ) =

εt(θ)

σt(γ)
.

For testing whether εt has zero median, we can not estimate θ by the least squares estimation,

as Zhang and Ling (2015) show that it does not have a normal limit when Eε4
t = ∞. Instead,

we propose to use the weighted least squares estimation by minimizing
∑n

t=1w
−2
t−1ε

2
t (θ), which

is equivalent to solve the score equations

n∑
t=1

w−2
t−1εt(θ)

∂εt(θ)

∂θ
= 0,

where wt is Ft-measurable and will be defined later. As εt(θ) = σt(γ)ηt(γ), the estimation

procedure above employs one wt−1 to reduce the moment effect of σt in εt(θ) and another one

to reduce that in
∂εt(θ)

∂θ
. Hence, the proposed weighted least squares estimation, denoted by θ̂,

has a normal limit due to Eη2
t = 1 even when Eε2

t = ∞. Next, using θ̂, we can estimate the

median of εt by solving
n∑
t=1

w−1
t−1sgn(εt(θ̂)− d) = 0,

where sgn(x) is the sign function. Again, the weight wt−1 reduces the moment effect due to

the plug-in estimator θ̂. So, the resulted median estimator has a normal limit without requir-

ing Eε2
t < ∞, but its asymptotic variance is complicated. To avoid estimating the asymptotic

variance, we propose to employ the empirical likelihood method based on estimating equations

in Qin and Lawless (1994) as follows. Note that the empirical likelihood method is less com-

putationally intensive than a bootstrap method. The residual-based bootstrap method is not

applicable, as we do not estimate the GARCH model.

Put

Dt,1(θ) = w−2
t−1εt(θ)

∂εt(θ)

∂θ
, Dt,2(θ, d) = w−1

t−1sgn(εt(θ)−d), and Dt(θ, d) = (D
′
t,1(θ), Dt,2(θ, d))′,

where d is the median of εt(θ). Then we define the empirical likelihood function for θ and d as

L(θ, d) = sup

{ n∏
t=1

(npt) : p1 ≥ 0, · · · , pn ≥ 0,

n∑
t=1

pt = 1,

n∑
t=1

ptDt(θ, d) = 0

}
.

Using the Lagrange multiplier technique, we obtain pt =
1

n{1 + λ′Dt(θ, d)}
and the log empirical

likelihood ratio

l(θ, d) = −2 log(L(θ, d)) = 2

n∑
t=1

log{1 + λ′Dt(θ, d)},
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where λ = λ(θ, d) satisfies
n∑
t=1

Dt(θ, d)

1 + λ′Dt(θ, d)
= 0.

As we are interested in d, we consider the profile empirical likelihood ratio lp(d) = min
θ∈Θ

l(θ, d).

Because E(εt(θ0)|Ft−1) = 0 and E(Dt,2(θ0, 0)|Ft−1) = w−1
t−1E(sgn(ηt)|Ft−1) = 0 under the

model assumption of Eηt = 0 and the null hypothesis of zero median of εt, we expect that

the Wilks theorem holds for the above empirical likelihood method. However, if one tests for a

nonzero value of d, the Wilks theorem does not hold because of E(Dt,2(θ0, d)|Ft−1) 6= 0.

Let

At =



a1η
2
t + b1 b2 · · · bq−1 bq a2 a3 · · · ap

1 0 · · · 0 0 0 0 · · · 0

0 1 · · · 0 0 0 0 · · · 0
...

...
. . .

...
...

...
...

. . .
...

0 0 · · · 1 0 0 0 · · · 0

η2
t 0 · · · 0 0 0 0 · · · 0

0 0 · · · 0 0 1 0 · · · 0
...

...
. . .

...
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · 1 0



,

and γ be the Lyapunov exponent of the random matrices {At}, namely, for any norm ‖ · ‖ on

the space of (p+ q − 1)× (p+ q − 1) matrices,

γ = inf

{
1

n
E(ln ‖A1 · · ·An‖), n ∈ N

}
,

where ‖At‖ = sup
|x|=1

|Atx|. To prove the Wilks theorem of the proposed empirical likelihood test,

we need the following regularity conditions.

Assumption 1. θ0 is an interior point in Θ, and for each θ ∈ Θ, φ(z) 6= 0 and ψ(z) 6= 0 when

|z| ≤ 1, and φ(z) and ψ(z) have no common root with φr 6= 0 or ψs 6= 0.

Assumption 2. w1 > 0, γ < 0, and E ln(max(|η1|, 1)) <∞.

Assumption 3. E[w−4
t−1ξ

4
ρ,t−1] < ∞ for any ρ ∈ (0, 1), where ξρ,t = 1 +

∞∑
i=0

ρi|Xt−i|, wt is

positive and Ft-measurable, inft≥1wt > 0, and {wt} is a stationary sequence.

Assumption 4. {ηt} is a sequence of independent and identically distributed random variables

with mean zero and variance one.
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Assumption 5. {ηt} has a continuous density function g(x) satisfying g(0) > 0 and sup
x∈R

g(x) <

∞.

Assumptions 1 and 2 ensure that there exists a unique strictly stationary causal solution

to the first and second equations of (1.1), respectively (see Theorem 3.1 of Basrak, Davis, and

Mikosch (2002) for the GARCH model). Assumption 3 allows the weight to reduce the moment

effect of σt. Assumption 4 means that we consider the classical ARMA-GARCH model for

conditional mean and conditional standard deviation. Assumption 5 is the standard condition

for median estimation.

Theorem 1. Under Assumptions 1-5 and the null hypothesis of H0 : d0 = 0, lp(0) converges in

distribution to a chi-squared limit with one degree of freedom as n→∞.

For testing whether εt in (1.1) has zero median, the theorem above suggests rejecting the

null hypothesis at level α whenever lp(0) ≥ χ2
1,1−α with χ2

1,1−α denoting the (1− α)-th quantile

of a chi-squared distribution with one degree of freedom.

To investigate the local power of the proposed test, we consider the following local alternative

hypothesis

Ha : d0 =
M1√
n

for some constant M1. (2.2)

The following theorem shows that the proposed test has nontrivial power, its power tends to

one as |M1| → ∞, and the weight function impacts the test power but in a complicated way.

Theorem 2. Suppose that Assumptions 1-5 hold for model (1.1). Under the alternative hypoth-

esis of (2.2), lp(0) converges in distribution to a non-central chi-squared limit with one degree

of freedom and the noncentrality parameter

(0′, 2g(0)M1E(w−1
t−1)E(σ−1

t ))Λ−1(0′, 2g(0)M1E(w−1
t−1)E(σ−1

t ))′,

where Λ = E
{
D1(θ0, 0)D

′
1(θ0, 0)

}
.

Finally, we provide a class of weight functions. It is clear from Ling (2007), Zhu and Ling

(2011, 2015) that the key idea of choosing the weight function is to bound ξρ,t defined in Assump-

tion 3. There are many different choices, including the one in Ling (2007). Here, we propose to

employ the following weight function

wt(h) = max(C,

t−1∑
i=0

elog(h) log2(i+1)|Xt−i|) for some h ∈ (0, 1) and t = 1, · · · , n, (2.3)
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where C is chosen as the 90% quantile of {|Xt|}nt=1, and w0(h) = 1. Like He, Hou, Peng and Shen

(2020), we can show that the above weight function with the sample quantile C replaced by the

corresponding quantile (denoted by C̃) satisfies Assumption 3. Further, we can show estimators

with C and C̃ have the same asymptotic distribution. Like kernel density estimation, it is

challenging to choose h in terms of coverage probability, which requires to derive the Edgeworth

expansion for the empirical likelihood ratio. Nevertheless, our simulation study below shows

that a use of h = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 provides accurate size and good power.

3 Simulation study

In this section, we examine the finite sample performance of the proposed empirical likelihood

test in terms of size and power.

We generate 5000 random samples with sample size n = 1000 or 2000 from the ARMA(1,0)-

GARCH(1,1) and ARMA(1,1)-GARCH(1,1) models with µ = 0.1, φ1 = 0.5, ψ1 = 0.2, w1 = 0.1,

a1 = 0.2 or 0.1, b1 = 0.8, ηt = (V − E(V ))/
√

Var(V ), where

V =
I(U < δ)V1

1/(α1 − 1)
− I(U ≥ δ)V2

1/(α2 − 1)

with U ∼ Uniform(0, 1), V1 ∼ Pareto(1, α1), and V2 ∼ Pareto(1, α2) being independent. Note

that Eε2
t is finite for a1 = 0.1 and infinite for a1 = 0.2. It is easy to check that

E(V ) = 2δ − 1, E(V 2) =
2δ(α1 − 1)

α1 − 2
+

2(1− δ)(α2 − 1)

α2 − 2
,

P (ηt < 0) = 1− δ + δP (V1 <
2δ − 1

α1 − 1
) = 1− δ(1 +

2δ − 1

α1 − 1
)−α1 for 2δ − 1 ≥ 0,

and

P (ηt < 0) = δP (V2 >
1− 2δ

α2 − 1
) = δ(1 +

1− 2δ

α2 − 1
)−α2 for 2δ − 1 < 0.

Therefore, ηt has the right tail index α1, the left tail index α2, zero median if δ = 0.5, and is

asymmetric when α1 6= α2. Some calculations show that P (ηt < 0) 6= 1/2 for δ 6= 1/2, α1 > 2,

and α2 > 2, i.e., ηt has nonzero median if δ 6= 1/2. In contrast, if ηt has a standardized skewed

t distribution with mean zero and variance one, then it has the same right and left tail index

and is symmetric in the case of zero median. Therefore, the proposed distributions for ηt are

more flexible in modeling tails and asymmetry than the widely used skewed t distributions.

We take α1 = 2.2 or 4.5, α2 = 2.2, and δ = 0.3, or 0.4, or 0.5. Hence, the case of δ = 0.5

corresponds to the test size, and other choices of δ stand for the test power. We use the R
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package “emplik” to calculate the empirical likelihood function and the R function “optim” to

compute the profile empirical likelihood function. We use the weight function wt(h) in (2.3) with

h = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6. We report the empirical sizes of the profile empirical likelihood test

at levels 10%, 5%, and 1% in Table 1 and the empirical powers in Tables 2 and 3. To save space,

we only report results for h = 0.1 and 0.3 because results for other h’s are similar.

Table 1 shows that i) the size accuracy improves as the sample size becomes larger, ii) the

size for α1 = 4.5 is more accurate than that for α1 = 2.2, iii) the size is robust to h, iv) the

size for the ARMA (1,0) model is more accurate than that for the ARMA (1,1) model, and v)

the tail heaviness of ηt rather than εt has an impact on the size. Also, we conclude from Tables

2 and 3 that i) the test power improves as the sample size increases, ii) the test for δ = 0.3

has a larger power than that for δ = 0.4 as the median of errors in the former case is farther

away from zero than the latter, and iii) the test for α1 = 4.5 is more powerful than that for

α1 = 2.2. Again, the tail heaviness of ηt rather than εt impacts the power because we use the

weight function to reduce the moment effect of σt.

8



Table 1: Test sizes for ARMA(1,0)-GARCH(1,1) and ARMA(1,1)-GARCH(1,1) models with

δ = 0.5.

ARMA(1,0)-GARCH(1,1) ARMA(1,1)-GARCH(1,1)

a1 α1 n Level h = 0.1 h = 0.3 h = 0.1 h = 0.3

0.2 2.2
1000 10% 0.1282 0.1292 0.1448 0.1458

5% 0.0738 0.0752 0.0824 0.0868
1% 0.0164 0.0174 0.0250 0.0264

2000 10% 0.1194 0.1162 0.1326 0.1322
5% 0.0608 0.0604 0.0744 0.0742
1% 0.0148 0.0128 0.0212 0.0202

0.2 4.5
1000 10% 0.1160 0.1154 0.1168 0.1188

5% 0.0586 0.0590 0.0626 0.0664
1% 0.0122 0.0136 0.0194 0.0170

2000 10% 0.1012 0.1040 0.1120 0.1156
5% 0.0530 0.0520 0.0630 0.0612
1% 0.0126 0.0098 0.0156 0.0144

0.1 2.2
1000 10% 0.1276 0.1298 0.1408 0.1424

5% 0.0730 0.0708 0.0804 0.0856
1% 0.0164 0.0186 0.0230 0.0262

2000 10% 0.1194 0.1148 0.1378 0.1378
5% 0.0606 0.0580 0.0756 0.0654
1% 0.0128 0.0132 0.0208 0.0200

0.1 4.5
1000 10% 0.1144 0.1146 0.1164 0.1206

5% 0.0590 0.0608 0.0654 0.0668
1% 0.0128 0.0128 0.0172 0.0170

2000 10% 0.1002 0.1022 0.1112 0.1134
5% 0.0530 0.0492 0.0624 0.0594
1% 0.0116 0.0098 0.0150 0.0156
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Table 2: Test powers for ARMA(1,0)-GARCH(1,1) and ARMA(1,1)-GARCH(1,1) models with

δ = 0.3.

ARMA(1,0)-GARCH(1,1) ARMA(1,1)-GARCH(1,1)

a1 α1 n Level h = 0.1 h = 0.3 h = 0.1 h = 0.3

0.2 2.2
1000 10% 0.8368 0.8344 0.8358 0.8322

5% 0.7672 0.7584 0.7728 0.7648
1% 0.5960 0.5918 0.5908 0.5880

2000 10% 0.9394 0.9374 0.9478 0.9448
5% 0.9082 0.9038 0.9164 0.9160
1% 0.8110 0.8130 0.8218 0.8202

0.2 4.5
1000 10% 0.9514 0.9532 0.9498 0.9474

5% 0.9178 0.9152 0.9086 0.9078
1% 0.7806 0.7792 0.7696 0.7670

2000 10% 0.9986 0.9990 0.9976 0.9986
5% 0.9960 0.9970 0.9950 0.9952
1% 0.9812 0.9822 0.9804 0.9820

0.1 2.2
1000 10% 0.8422 0.8382 0.8460 0.8382

5% 0.7786 0.7654 0.7658 0.7734
1% 0.6118 0.6000 0.6102 0.5988

2000 10% 0.9426 0.9362 0.9508 0.9466
5% 0.9114 0.9042 0.9200 0.9176
1% 0.8252 0.8172 0.8318 0.8234

0.1 4.5
1000 10% 0.9590 0.9536 0.9584 0.9500

5% 0.9282 0.9146 0.9226 0.9120
1% 0.8040 0.7920 0.7958 0.7810

2000 10% 0.9992 0.9990 0.9984 0.9984
5% 0.9978 0.9962 0.9964 0.9962
1% 0.9848 0.9854 0.9860 0.9838
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Table 3: Test powers for ARMA(1,0)-GARCH(1,1) and ARMA(1,1)-GARCH(1,1) models with

δ = 0.4.

ARMA(1,0)-GARCH(1,1) ARMA(1,1)-GARCH(1,1)

a1 α1 n Level h = 0.1 h = 0.3 h = 0.1 h = 0.3

0.2 2.2
1000 10% 0.3926 0.3926 0.4004 0.4040

5% 0.2930 0.2958 0.3048 0.3038
1% 0.1424 0.1406 0.1400 0.1426

2000 10% 0.5632 0.5576 0.5658 0.5656
5% 0.4472 0.4462 0.4594 0.4586
1% 0.2402 0.2432 0.2658 0.2664

0.2 4.5
1000 10% 0.4326 0.4380 0.4420 0.4398

5% 0.3184 0.3264 0.3144 0.3274
1% 0.1424 0.1492 0.1358 0.1414

2000 10% 0.6854 0.6834 0.6870 0.6816
5% 0.5656 0.5722 0.5774 0.5806
1% 0.3178 0.3318 0.3346 0.3372

0.1 2.2
1000 10% 0.4022 0.3996 0.4108 0.4086

5% 0.3020 0.2996 0.3098 0.3040
1% 0.1506 0.1462 0.1484 0.1468

2000 10% 0.5708 0.5610 0.5686 0.5642
5% 0.4606 0.4488 0.4680 0.4578
1% 0.2550 0.2446 0.2658 0.2630

0.1 4.5
1000 10% 0.4544 0.4474 0.4594 0.4508

5% 0.3418 0.3324 0.3448 0.3380
1% 0.1602 0.1570 0.1498 0.1480

2000 10% 0.7048 0.6954 0.7094 0.6942
5% 0.5984 0.5826 0.6028 0.5830
1% 0.3486 0.3444 0.3676 0.3512

4 Applications

4.1 Exchange Rates

This section studies the daily HKD/USD, USD/EUD, CANADA/USD, and MEXICAN/USD

exchange rates from October 5, 2009 to October 4, 2019. Denote the log-returns (×100) of each

series by {Xt}. We first estimate the tail index of {Xt} by the Hill estimator α̂(k) in Hill (1975)

defined as

α̂(k) =

[
1

k

k∑
i=1

log

(
X(n−i+1)

X(n−k)

)]−1

with {X(t)} being the ascending order statistics of {Xt}. We plot the Hill estimates against

various k in Figure 1, indicating that the tail index of HKD/USD, CANADA/USD, and MEX-

ICAN/USD exchange rates is less than 4, i.e., EX4
t = ∞. Therefore, when we fit an ARMA-

11



GARCH model by using the QMLE, the inference may not have a normal limit. To explore the

possibility of using the SWQMELE to fit an ARMA-GARCH model, we have to test whether

the GARCH model has zero median.

To conduct such a test, we first use the function “auto.arima” in the R package “forecast”

with AIC to obtain the appropriate orders for the ARMA model. The results are an ARMA(2,2)

model for HKD/USD exchange rates, an ARMA(1,1) model for USD/EUD exchange rates, an

ARMA(5,4) model for CANADA/USD exchange rates, and an ARMA(3,2) for MEXICAN/USD

exchange rates. Next, we compute the pvalue of the proposed profile empirical likelihood test

for zero median of errors by using the weight function wt(h) in (2.3) with h = 0.1, 0.2, 0.3, 0.4,

and 0.5. Table 4 shows that the null hypothesis of zero median is rejected for MEXICAN/USD

exchange rates, while HKD/USD and USD/EDU exchange rates do not reject the null hypothe-

sis. Therefore, one should be cautious in using the SWQMELE to fit an ARMA-GARCH model

to the MEXICAN/USD exchange rates, as the ARMA part no longer models the conditional

mean.

Figure 1: The Hill estimates for the HKD/USD, USD/EUD, CANADA/USD, and MEXI-

CAN/USD exchange rates.

12



Table 4: Pvalues of the empirical likelihood test for daily exchange rates.

Exchange rate ARMA model h = 0.1 h = 0.2 h = 0.3 h = 0.4 h = 0.5

HKD/USD ARMA(2,2) 0.1754 0.2971 0.1935 0.2555 0.6919

USD/EUD ARMA(1,1) 0.6431 0.6178 0.8581 0.8583 0.9567

CANADA/USD ARMA(5,4) 0.2100 0.1267 0.1044 0.0841 0.0153

MEXICAN/USD ARMA(3,2) 0.0134 0.0157 0.0158 0.0107 0.0109

4.2 Stock Market Indices

This subsection considers the daily close prices of the following stocks and indices: the Transocean

(RIG), S&P 500, Microsoft Stock (MSFT), and Dow Jones Index (DJI) from October 28, 2009

to July 29, 2019. Like Section 4.1, we first plot the Hill estimates for each series in Figure 2,

which indicates that the tail index of S&P 500 and MSFT is less than 4. Hence, one may employ

the SWQMELE to fit an ARMA-GARCH model after confirming that the GARCH model has

zero median.

As before, we first use the function “auto.arima” with AIC to obtain the appropriate orders

for the ARMA model, and then we compute the pvalue of the proposed empirical likelihood test

for zero median of errors with h = 0.1, 0.2, 0.3, 0.4, and 0.5. Table 5 shows that we should be

cautious about using the SWQMELE to fit an ARMA-GARCH model to S&P500 and DJI, as

zero median of errors may not be true.

13



Figure 2: The Hill estimates for the RIG, S&P 500, MSFT, and DJI.

Table 5: Pvalues of the empirical likelihood tests for stocks and indices.

Stock or Index ARMA model h = 0.1 h = 0.2 h = 0.3 h = 0.4 h = 0.5

RIG ARMA(1,0) 0.9743 0.9013 0.9756 0.9811 0.7316

S&P 500 ARMA(3,1) 0.0937 0.1037 0.0996 0.0761 0.0551

MSFT ARMA(1,1) 0.9624 0.7056 0.9750 0.8013 0.4259

DJI ARMA(3,1) 0.0044 0.0675 0.2006 0.0216 0.0169

5 Conclusions

To fit an ARMA-GARCH model with fewer moments, one has to impose conditions on the

median rather than the mean of the errors. Because changing zero mean to zero median is

significant for skewed data and destroys the ARMA-GARCH structure, this paper develops an

empirical likelihood test for zero median of errors without estimating the GARCH model and

the asymptotic variance and by allowing heavy tailed errors. Hence, the proposed test is robust

14



and efficient. A simulation study confirms the good finite sample performance in terms of size

and power. The data analysis shows that some real financial data do not have zero median of

errors, which cautions the use of the SWQMELE.
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Appendix: Proofs

Before proving Theorems 1 and 2, we need some lemmas. Lemma 1 derives bounds for allowing

the use of weight functions to reduce the moment effect. Lemma 2 shows that the sample mean
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and sample variance of Dt(θ, 0) can be approximated by those of Dt(θ0, 0). Lemma 3 derives

the asymptotic normality of
∑n

t=1Dt(θ0, 0). For profiling the nuisance parameters, Lemma 4

develops an approximation for
∑n

t=1Dt,2(θ, 0).

Lemma 1. Under conditions of Theorem 1, there exist a constant ρ ∈ (0, 1), a constant C > 0,

and a neighborhood Θ0 of θ0 such that

sup
Θ0

|εt(θ)| ≤ Cξρ,t−1, sup
Θ0

∥∥∥∥∂εt(θ)

∂θ

∥∥∥∥ ≤ Cξρ,t−1, and sup
Θ0

∥∥∥∥∂2εt(θ)

∂θ∂θ′

∥∥∥∥ ≤ Cξρ,t−1,

where ξρ,t is defined in Assumption 3.

Proof. See Ling (2007).

Lemma 2. Let B0 = {θ : ‖θ − θ0‖ ≤
C0√
n
} for some constant C0 > 0. Under conditions of

Theorem 1, we have

(i) max
1≤t≤n

sup
B0
‖Dt(θ, 0)‖ = op(

√
n).

(ii)
1

n

n∑
t=1

Dt(θ, 0) =
1

n

n∑
t=1

Dt(θ0, 0) +Op(n
−1/2) holds uniformly for θ ∈ B0.

(iii)
1

n

n∑
t=1

{
Dt(θ, 0)D

′
t(θ, 0)

}
= E

{
D1(θ0, 0)D

′
1(θ0, 0)

}
+op(1) holds uniformly for θ ∈ B0.

Proof. (i) We first prove that

max
1≤t≤n

sup
B0
‖Dt,1(θ)‖ = op(

√
n). (A.1)

By Lemma 1, we have for n large enough,

sup
B0

∥∥Dt,1(θ)
∥∥ = sup

B0

∥∥∥∥w−2
t−1εt(θ)

∂εt(θ)

∂θ

∥∥∥∥ ≤ sup
B0

w−2
t−1

∥∥εt(θ)
∥∥∥∥∥∥∂εt(θ)

∂θ

∥∥∥∥ ≤ C2w−2
t−1ξ

2
ρ,t−1 =: V (t).

By the Chebyshev inequality, for any ε > 0,

P

(
max

1≤t≤n
V (t) >

√
nε

)
≤ 1

nε2

n∑
t=1

E

{
V 2(t)I(V (t) >

√
nε)

}
≤ 1

ε2
max

1≤t≤n
E

{
V 2(t)I(V (t) >

√
nε)

}
→ 0

as n→∞, where the last inequality follows from the fact that

E
(
V 2(t)

)
= C4E[w−4

t−1ξ
4
ρ,t−1] <∞,
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by Assumption 3. Hence, (A.1) follows.

Because

sup
B0

∣∣Dt,2(θ, 0)
∣∣ = sup

B0

∣∣w−1
t−1sgn(εt(θ))

∣∣ ≤ w−1
t−1 sup

B0

∣∣sgn(εt(θ))− sgn(εt)
∣∣+ w−1

t−1 ≤ 3w−1
t−1,

it follows from Assumption 3 that

max
1≤t≤n

sup
B0

∣∣Dt,2(θ, 0)
∣∣ = op(

√
n). (A.2)

Hence, by (A.1) and (A.2), we have

max
1≤t≤n

sup
B0
‖Dt(θ, 0)‖ = op(

√
n).

(ii) Note that

1

n

n∑
t=1

Dt(θ, 0)− 1

n

n∑
t=1

Dt(θ0, 0) =
1

n

n∑
t=1

(
D
′
t,1(θ)−D′t,1(θ0), Dt,2(θ, 0)−Dt,2(θ0, 0)

)′
.

For the proof of (ii), it suffices to show that

sup
B0

∥∥∥∥ 1

n

n∑
t=1

(
Dt,1(θ)−Dt,1(θ0)

)∥∥∥∥ = Op(
1√
n

)

and

sup
B0

∣∣∣∣ 1n
n∑
t=1

(
Dt,2(θ, 0)−Dt,2(θ0, 0)

)∣∣∣∣ = Op(
1√
n

).

Using Taylor expansion and Lemma 1, we have

sup
B0

∥∥Dt,1(θ)−Dt,1(θ0)
∥∥

= sup
B0

∥∥∥∥w−2
t−1εt(θ)

∂εt(θ)

∂θ
− w−2

t−1εt
∂εt(θ0)

∂θ

∥∥∥∥
= sup
B0

w−2
t−1

∥∥∥∥(εt(θ)− εt
)∂εt(θ)

∂θ
+ εt

(∂εt(θ)

∂θ
− ∂εt(θ0)

∂θ

)∥∥∥∥
= sup
B0

w−2
t−1

∥∥∥∥(θ − θ0)′
∂εt(θ

∗)

∂θ

∂εt(θ)

∂θ
+ εt

∂2εt(θ
∗∗)

∂θ∂θ′
(θ − θ0)

∥∥∥∥
≤w−2

t−1

{(
sup
B0

∥∥∥∥∂εt(θ)

∂θ

∥∥∥∥2)(
sup
B0
‖θ − θ0‖

)
+

(
sup
B0

∥∥∥∥∂2εt(θ)

∂θ∂θ′

∥∥∥∥)( sup
B0
|εt(θ)|

)(
sup
B0
‖θ − θ0‖

)}
≤2C0C

2

√
n

w−2
t−1ξ

2
ρ,t−1,

where θ∗ and θ∗∗ lie between θ0 and θ. Then, it follows from Assumption 3 that

1

n

n∑
t=1

sup
B0

∥∥Dt,1(θ)−Dt,1(θ0)
∥∥ = Op(

1√
n

).
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By Lemma 1, we have∣∣∣∣∂εt(θ∗)∂θ′
(θ − θ0)

∣∣∣∣ ≤ sup
B0

∥∥∥∥∂εt(θ)

∂θ

∥∥∥∥‖θ − θ0‖ ≤
CC0√
n
ξρ,t−1.

Thus, it follows from Taylor expansion, Assumptions 3 and 5 that

E sup
B0

w−1
t−1

∣∣sgn(εt(θ))− sgn(εt)
∣∣

= E sup
B0

w−1
t−1

[∣∣I(εt(θ) > 0)− I(εt > 0)
∣∣+
∣∣I(εt(θ) < 0)− I(εt < 0)

∣∣]
= E sup

B0
w−1
t−1

[∣∣∣∣I(∂εt(θ∗)∂θ′
(θ0 − θ) < εt ≤ 0

)
− I
(

0 < εt ≤
∂εt(θ

∗)

∂θ′
(θ0 − θ)

)∣∣∣∣
+

∣∣∣∣I(0 ≤ εt <
∂εt(θ

∗)

∂θ′
(θ0 − θ)

)∣∣∣∣− I(∂εt(θ∗)∂θ′
(θ0 − θ) ≤ εt < 0

)]
≤ 2E sup

B0
w−1
t−1I

(
|εt| ≤ |(∂εt(θ∗)/∂θ′)(θ0 − θ)|

)
= 2E

{
w−1
t−1I

(
|ηt| ≤ CC0n

− 1
2 ξρ,t−1/σt

)}
=

2g(0)CC0√
n

E

{
w−1
t−1

ξρ,t−1

σt

}
+ o(

1√
n

) = O(
1√
n

), (A.3)

where θ∗ lies between θ0 and θ. Hence, by (A.3), we have

1

n

n∑
t=1

sup
B0

∣∣Dt,2(θ, 0)−Dt,2(θ0, 0)
∣∣ =

1

n

n∑
t=1

sup
B0

w−1
t−1

∣∣sgn(εt(θ))− sgn(εt)
∣∣ = Op(

1√
n

)

and complete the proof of (ii).

(iii) For proving part (iii), it suffices to show that

sup
B0

∥∥∥∥ 1

n

n∑
t=1

{
Dt,1(θ)Dt,2(θ, 0)

}
− E

{
Dt,1(θ0)Dt,2(θ0, 0)

}∥∥∥∥ = op(1) (A.4)

because the other sums of products can be proved in the same way. Note that

Dt,1(θ) =w−2
t−1εt(θ)

∂εt(θ)

∂θ

=w−2
t−1(εt(θ)− εt)

∂εt(θ)

∂θ
+ w−2

t−1εt

(
∂εt(θ)

∂θ
− ∂εt(θ0)

∂θ

)
+ w−2

t−1εt
∂εt(θ0)

∂θ

= : L1(t) + L2(t) + L3(t)

and

Dt,2(θ, 0) = w−1
t−1sgn(εt(θ)) = w−1

t−1

{
sgn(εt(θ))− sgn(εt)

}
+ w−1

t−1sgn(εt) =: M1(t) +M2(t).

By Taylor expansion, (A.3), and Lemma 1, we have

sup
B0

∥∥L1(t) + L2(t)
∥∥ = sup

B0
w−2
t−1

∥∥∥∥(θ − θ0)′
∂εt(θ

∗)

∂θ

∂εt(θ)

∂θ
+ εt

∂2εt(θ̃)

∂θ∂θ′
(θ − θ0)

∥∥∥∥
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≤2C0C
2

√
n

w−2
t−1ξ

2
ρ,t−1, (A.5)

where θ∗ and θ̃ lie between θ0 and θ,

‖L3(t)‖ ≤ sup
B0

w−2
t−1

∥∥∥∥∂εt(θ)

∂θ

∥∥∥∥‖εt(θ)‖ ≤ C2w−2
t−1ξ

2
ρ,t−1 (A.6)

and

sup
B0
|M1(t)| = sup

B0
w−1
t−1

∣∣sgn(εt(θ))− sgn(εt)
∣∣ ≤ 2w−1

t−1I

{
|ηt| ≤ CC0n

− 1
2
ξρ,t−1

σt

}
. (A.7)

Thus, by (A.5), (A.6), (A.7), and Assumption 3, we can show that

1

n

n∑
t=1

sup
B0

{
|M1(t)|(‖L1(t) + L2(t)‖)

}
p−→ 0, (A.8)

1

n

n∑
t=1

sup
B0

{
|M1(t)|(‖L3(t)‖)

}
p−→ 0, (A.9)

and

1

n

n∑
t=1

sup
B0

{
|M2(t)|(‖L1(t) + L2(t)‖)

}
p−→ 0. (A.10)

Therefore, it follows from (A.8), (A.9), and (A.10) that

sup
B0

∥∥∥∥ 1

n

n∑
t=1

{
Dt,1(θ)Dt,2(θ, 0)

}
− E

{
Dt,1(θ0)Dt,2(θ0, 0)

}∥∥∥∥
= sup
B0

∥∥∥∥ 1

n

n∑
t=1

{
M1(t)(L1(t) + L2(t))

}
+

1

n

n∑
t=1

{
M2(t)(L1(t) + L2(t))

}
+

1

n

n∑
t=1

{
M1(t)L3(t)

}
+

1

n

n∑
t=1

{
M2(t)L3(t)

}
− E

{
Dt,1(θ0, 0)Dt,2(θ0, 0)

}∥∥∥∥
= sup
B0

∥∥∥∥ 1

n

n∑
t=1

{
M2(t)L3(t)

}
− E

{
Dt,1(θ0, 0)Dt,2(θ0, 0)

}∥∥∥∥+ op(1)

=op(1),

i.e., (A.4) holds.

Lemma 3. Suppose conditions of Theorem 1 hold. Then, as n→∞

1√
n

n∑
t=1

Dt(θ0, 0)
d→ N

(
0, E

{
D1(θ0, 0)D

′
1(θ0, 0)

})
.
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Proof. Note that Ft is the σ-filed generated by the sequence {εt, εt−1, · · · }. Then,

E
(
Dt,1(θ0)

∣∣Ft−1

)
= E

(
w−2
t−1εt

∂εt(θ0)

∂θ

∣∣∣∣Ft−1

)
= w−2

t−1

∂εt(θ0)

∂θ
E
(
εt
∣∣Ft−1

)
= 0

and

E
(
Dt,2(θ0, 0)

∣∣Ft−1

)
= E

(
w−1
t−1sgn(εt)

∣∣Ft−1

)
= 0.

Therefore, {Dt(θ0, 0)} is martingale differences.

By Lemma 2 (i) and (iii), we have

max
1≤t≤n

‖ 1√
n
Dt(θ0, 0)‖ = op(1),

1

n

n∑
t=1

{
Dt(θ0, 0)D

′
t(θ0, 0)

}
= E

{
D1(θ0, 0)D

′
1(θ0, 0)

}
+ op(1),

and the dominated convergence theorem implies that

E

∥∥∥∥ max
1≤t≤n

1

n
Dt(θ0, 0)D

′
t(θ0, 0)

∥∥∥∥ = o(1).

Therefore, the conditions of the central limit theorem of martingale differences are satisfied. The

conclusion follows from the central limit theorem of martingale differences (See page 58 of Hall

and Heyde (1980)).

Lemma 4. Under conditions of Theorem 1, as n→∞, we have

sup
B0

∥∥∥∥ 1√
n

n∑
t=1

{
w−1
t−1

[
sgn(εt(θ))− sgn(εt)

]}
− 2g(0)E

{
w−1
t−1

σt

∂εt(θ0)

∂θ′

}
[
√
n(θ − θ0)]

∥∥∥∥ = op(1).

Proof. Let

d1t(θ) = w−1
t−1

{
I
( 1

σt

∂εt(θ
∗)

∂θ′
(θ0 − θ) < ηt

)
− I
(
ηt > 0

)}
and

d2t(θ) = w−1
t−1

{
I
( 1

σt

∂εt(θ
∗)

∂θ′
(θ0 − θ) > ηt

)
− I
(
ηt < 0

)}
.

Then,
1√
n

n∑
t=1

w−1
t−1

[
sgn(εt(θ))− sgn(εt)

]
=

1√
n

n∑
t=1

[
d1t(θ)− d2t(θ)

]
.

It suffices to show that

sup
B0

∥∥∥∥ 1√
n

n∑
t=1

{
[d1t(θ)− d2t(θ)]− E

[
(d1t(θ)− d2t(θ))

∣∣Ft−1

]}∥∥∥∥ = op(1) (A.11)

and

sup
B0

∥∥∥∥ 1√
n

n∑
t=1

E
[
(d1t(θ)− d2t(θ))

∣∣Ft−1

]
− 2g(0)E

{
w−1
t−1

σt

∂εt(θ0)

∂θ′

}
[
√
n(θ − θ0)]

∥∥∥∥ = op(1). (A.12)
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For (A.11), we only need to show that

sup
B0

∥∥∥∥ 1√
n

n∑
t=1

{
dit(θ)− E[dit(θ)|Ft−1]

}∥∥∥∥ =: sup
B0
‖Mn,i(θ)‖ = op(1) (A.13)

for i = 1, 2. Using the same argument in proving Lemma 2.2 in Zhu and Ling (2011), we can

show that for any η > 0,

sup
‖θ−θ0‖<η

‖Mn,i(θ)‖
1 +
√
n‖θ − θ0‖

= op(1) (A.14)

for i = 1, 2. When θ ∈ B0, there exists an η0 > 0 such that ‖θ− θ0‖ ≤ C0/
√
n < η0. By (A.14),

we have

sup
B0
‖Mn,i(θ)‖ ≤ (C0 + 1) sup

B0

‖Mn,i(θ)‖
1 +
√
n‖θ − θ0‖

= op(1),

which implies (A.13).

Next, we prove (A.12). By Taylor expansion and Assumption 5, we have

1√
n

n∑
t=1

E
[
d1t(θ)− d2t(θ)

∣∣Ft−1

]
= 2g(0)

{
1

n

n∑
t=1

w−1
t−1

σt

∂εt(θ
∗)

∂θ′

}
[
√
n(θ − θ0)](1 + op(1)).(A.15)

Using (A.15), Theorem 3.1 in Ling and McAleer (2003), and the dominated convergence theorem,

we can easily prove (A.12). Hence, the lemma holds.

Proof of Theorem 1. Put θ = θ0 +
u√
n
, where u is a (r + s+ 1)-dimensional vector. Recall

Λ = E
{
D1(θ0, 0)D

′
1(θ0, 0)

}
in Theorem 2. Write

h(θ, 0,λ) =
1

n

n∑
t=1

Dt(θ, 0)

1 + λ′Dt(θ, 0)

and δt(θ, 0) = λ′Dt(θ, 0), where λ is a solution of the equations h(θ, 0,λ) = 0.

First, we show that ‖λ‖ = Op(1/
√
n). Write λ = %v with ‖v‖ = 1 and define Zn(θ, 0) =

max
1≤t≤n

‖Dt(θ, 0)‖ and Tn(θ, 0) =
1

n

n∑
t=1

Dt(θ, 0)D′t(θ, 0). Observe that

0 = ‖h(θ, 0, %v)‖ ≥ ‖v′h(θ, 0, %v)‖ =

∣∣∣∣ 1n
n∑
t=1

v′Dt(θ, 0)

1 + %v′Dt(θ, 0)

∣∣∣∣
=

∣∣∣∣ 1n
n∑
t=1

v′Dt(θ, 0)− 1

n

n∑
t=1

%v′Dt(θ, 0)D′t(θ, 0)v

1 + %v′Dt(θ, 0)

∣∣∣∣
≥ 1

n

∣∣∣∣ n∑
t=1

%v′Dt(θ, 0)D′t(θ, 0)v

1 + %v′Dt(θ, 0)

∣∣∣∣− 1

n

∣∣∣∣ n∑
t=1

v′Dt(θ, 0)

∣∣∣∣
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≥ %v′Tn(θ, 0)v

1 + %Zn(θ, 0)
− 1

n

∣∣∣∣ n∑
t=1

v′Dt(θ, 0)

∣∣∣∣.
Thus, it follows from Lemma 2 (ii) and Lemma 3 that

%v′Tn(θ, 0)v

1 + %Zn(θ, 0)
≤ 1

n

∣∣∣∣ n∑
t=1

v′Dt(θ, 0)

∣∣∣∣
≤ 1

n

∣∣∣∣ n∑
t=1

v′Dt(θ0, 0)

∣∣∣∣+
1

n

∣∣∣∣ n∑
t=1

v′
(
Dt(θ, 0)−Dt(θ0, 0)

)∣∣∣∣
= Op(1/

√
n)

uniformly for θ ∈ B0.

Let a be the smallest eigenvalue of Λ. By Lemma 2 (iii), we have v′Tn(θ, 0)v ≥ a + op(1)

uniformly for θ ∈ B0. Hence, it follows that

% = ‖λ‖ = Op(1/
√
n) (A.16)

uniformly for θ ∈ B0.

Secondly, we derive the solution formula for λ as a function of Dt(θ, 0). It follows from

Lemma 2 (i) and (A.16) that

max
1≤t≤n

|δt(θ, 0)| ≤ ‖λ‖ max
1≤t≤n

‖Dt(θ, 0)‖ = Op(1/
√
n)op(

√
n) = op(1) (A.17)

uniformly for θ ∈ B0. By Lemma 2 (ii) and Lemma 3, we have

1

n

n∑
t=1

Dt(θ, 0) =
1

n

n∑
t=1

Dt(θ0, 0) +Op(1/
√
n) = Op(1/

√
n) +Op(1/

√
n) = Op(1/

√
n)

uniformly for θ ∈ B0. It follows from (A.17) that

0 = h(θ, 0,λ) =
1

n

n∑
t=1

Dt(θ, 0)

(
1− λ′Dt(θ, 0) +

δ2
t (θ, 0)

1 + δt(θ, 0)

)

=
1

n

n∑
t=1

Dt(θ, 0)− Tn(θ, 0)λ+
1

n

n∑
t=1

Dt(θ, 0)δ2
t (θ, 0)

1 + δt(θ, 0)

≤ 1

n

n∑
t=1

Dt(θ, 0)− Tn(θ, 0)λ+

max
1≤t≤n

|δt(θ, 0)|2

1− max
1≤t≤n

|δt(θ, 0)|

(
1

n

n∑
t=1

Dt(θ, 0)

)

=
1

n

n∑
t=1

Dt(θ, 0)− Tn(θ, 0)λ+ op(1)Op(1/
√
n)

=
1

n

n∑
t=1

Dt(θ, 0)− Tn(θ, 0)λ+ op(1/
√
n).
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In view of Lemma 2 (iii), T−1
n (θ, 0) ≥ C with probability tending to one. Hence,

λ = T−1
n (θ, 0)

( 1

n

n∑
t=1

Dt(θ, 0)
)

+Rn,

where ‖Rn‖ = op(1/
√
n).

Thirdly, we derive an expression for l(θ, 0) as a function of Dt(θ, 0). It follows from Taylor

expansion and (A.17) that

l(θ, 0) = −2 lnL(θ, 0)

= 2
n∑
t=1

ln
(
1 + δt(θ, 0)

)
= 2λ′

( n∑
t=1

Dt(θ, 0)
)
− nλ′Tn(θ, 0)λ+ 2

n∑
t=1

Ut(θ, 0)

= 2
{[ 1

n

n∑
t=1

Dt(θ, 0)
]′
T−1
n (θ, 0) +R

′
n

}( n∑
t=1

Dt(θ, 0)
)

− n
{[ 1

n

n∑
t=1

Dt(θ, 0)
]′
T−1
n (θ, 0) +R

′
n

}
Tn(θ, 0)

{
T−1
n (θ, 0)

[ 1

n

n∑
t=1

Dt(θ, 0)
]

+Rn

}
+ 2

n∑
t=1

Ut(θ, 0)

= 2n
( 1

n

n∑
t=1

Dt(θ, 0)
)′
T−1
n (θ, 0)

( 1

n

n∑
t=1

Dt(θ, 0)
)

+ 2R
′
n

( n∑
t=1

Dt(θ, 0)
)

− n
( 1

n

n∑
t=1

Dt(θ, 0)
)′
T−1
n (θ, 0)

( 1

n

n∑
t=1

Dt(θ, 0)
)
− n

( 1

n

n∑
t=1

Dt(θ, 0)
)′
Rn

− nR′n
( 1

n

n∑
t=1

Dt(θ, 0)
)
− nR′nTn(θ, 0)Rn + 2

n∑
t=1

Ut(θ, 0)

=
( 1√

n

n∑
t=1

Dt(θ, 0)
)′
T−1
n (θ, 0)

( 1√
n

n∑
t=1

Dt(θ, 0)
)
− nR′nTn(θ, 0)Rn + 2

n∑
t=1

Ut(θ, 0),

where Ut(θ, 0) is the remainder term. Because ‖Rn‖ = op(1/
√
n), we have

nR
′
nTn(θ, 0)Rn = op(1).

For the remainder term Ut(θ, 0), we will show that

2
n∑
t=1

Ut(θ, 0) = op(1).

By Lemma 2 (iii), it follows that

n∑
t=1

‖Dt(θ, 0)‖3 ≤ max
1≤t≤n

‖Dt(θ, 0)‖
( n∑
t=1

‖Dt(θ, 0)‖2
)

= nop(
√
n)
( 1

n

n∑
t=1

D
′
t(θ, 0)Dt(θ, 0)

)
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= nop(
√
n)tr

( 1

n

n∑
t=1

D
′
t(θ, 0)Dt(θ, 0)

)
= nop(

√
n)tr

( 1

n

n∑
t=1

Dt(θ, 0)D
′
t(θ, 0)

)
= nop(

√
n)Op(1) = op(n

3
2 ),

where tr denotes the trace of a matrix. Hence, we have

|2
n∑
t=1

Ut(θ, 0)| ≤ 2B
n∑
t=1

|δt(θ, 0)|3 ≤ 2B
n∑
t=1

‖λ‖3‖Dt(θ, 0)‖3 = Op(n
− 3

2 )op(n
3
2 ) = op(1)

by noting that ‖λ‖3 = Op(n
− 3

2 ).

Hence, it follows from Lemma 2 (iii) that

l(θ, 0) =
( 1√

n

n∑
t=1

Dt(θ, 0)
)′
T−1
n (θ, 0)

( 1√
n

n∑
t=1

Dt(θ, 0)
)

+ op(1)

=
( 1√

n

n∑
t=1

Dt(θ, 0)
)′

Λ−1
( 1√

n

n∑
t=1

Dt(θ, 0)
)

+ op(1)

uniformly for θ ∈ B0. In particular, we have

l(θ0, 0) =
( 1√

n

n∑
t=1

Dt(θ0, 0)
)′

Λ−1
( 1√

n

n∑
t=1

Dt(θ0, 0)
)

+ op(1).

Finally, we derive the expansion of the minimizer θ̂ of l(θ, 0). Let Sn(θ) =
1√
n

n∑
t=1

Dt(θ, 0).

Then

l(θ, 0)− l(θ0, 0)

= S
′
n(θ)Λ−1Sn(θ)− S′n(θ0)Λ−1Sn(θ0) + op(1)

=
(
Sn(θ)− Sn(θ0)

)′
Λ−1Sn(θ) + S

′
n(θ0)Λ−1Sn(θ)

−S′n(θ0)Λ−1Sn(θ0) + op(1)

=
(
Sn(θ)− Sn(θ0)

)′
Λ−1

(
Sn(θ)− Sn(θ0)

)
+
(
Sn(θ)− Sn(θ0)

)′
Λ−1Sn(θ0)

+S
′
n(θ0)Λ−1

(
Sn(θ)− Sn(θ0)

)
+ op(1)

uniformly for θ ∈ B0. Note that

Sn(θ)− Sn(θ0) =
1√
n

n∑
t=1

(
D
′
t,1(θ)−D′t,1(θ0), Dt,2(θ, 0)−Dt,2(θ0, 0)

)′
.

Let Σ1 = E

{
∂Dt,1(θ0)

∂θ′

}
= E

{
w−2
t−1

(∂εt(θ0)

∂θ

∂εt(θ0)

∂θ′
+εt

∂2εt(θ0)

∂θ∂θ′
)}

. By Taylor expansion and

Lemma 2 (ii), it follows that

1√
n

n∑
t=1

(
Dt,1(θ)−Dt,1(θ0)

)
=

1√
n

n∑
t=1

{
∂Dt,1(θ0)

∂θ′
(θ − θ0) + op(

1√
n

)

}
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=

(
1

n

n∑
t=1

∂Dt,1(θ0)

∂θ′

)
u+ op(1)

=Σ1u+ op(1)

uniformly for θ ∈ B0. Define Σ2 = 2g(0)E

{
w−1
t−1

σt

∂εt(θ0)

∂θ′

}
. By Lemma 4, we have

1√
n

n∑
t=1

(
Dt,2(θ, 0)−Dt,2(θ0, 0)

)
=

1√
n

n∑
t=1

w−1
t−1

(
sgn(εt(θ))− sgn(εt)

)
=Σ2u+ op(1)

uniformly for θ ∈ B0.

Put Γ =
(
Σ1,Σ2

)
. Then,

Sn(θ)− Sn(θ0) =
(
Σ′1,Σ

′
2

)′
u+ op(1) = Γ′u+ op(1)

uniformly in θ ∈ B0, implying that

l(θ, 0)− l(θ0, 0) = u′ΓΛ−1Γ′u+ u′ΓΛ−1Sn(θ0) + S′n(θ0)Λ−1Γ′u+ op(1).

Like the proof of Lemma 1 of Qin and Lawless (1994), the minimizer θ̂ = θ0 +
u√
n

must lie in

B0, that is,

û = −
(
ΓΛ−1Γ′

)−1(
ΓΛ−1Sn(θ0)

)
+ op(1),

and

l(θ̂, 0) =S′n(θ0)Λ−1Sn(θ0)− (ΓΛ−1Sn(θ0))′
(
ΓΛ−1Γ′

)−1(
ΓΛ−1Sn(θ0)

)
+ op(1)

=
(
Λ−

1
2Sn(θ0)

)′(
I−Λ−

1
2 Γ′(ΓΛ−1Γ′)−1ΓΛ−

1
2
)(

Λ−
1
2Sn(θ0)

)
+ op(1).

From Lemma 3, Λ−
1
2Sn(θ0) converges in distribution to a multivariate standard normal distri-

bution, and

tr
(
I−Λ−

1
2 Γ′(ΓΛ−1Γ′)−1ΓΛ−

1
2
)

= tr(I)−tr
(
Λ−

1
2 Γ′(ΓΛ−1Γ′)−1ΓΛ−

1
2
)

= (r+s+2)−(r+s+1) = 1.

Therefore, l(θ̂, 0)
d→ χ2

1 as n→∞.

Proof of Theorem 2. Following the proof of Theorem 1, we have

l(θ̂, 0) =
(
Λ−

1
2S∗n(θ0)

)′(
I−Λ−

1
2 Γ′(ΓΛ−1Γ′)−1ΓΛ−

1
2
)(

Λ−
1
2S∗n(θ0)

)
+ op(1), (A.18)
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where S∗n(θ0) =
1√
n

n∑
t=1

Dt(θ0, 0). PutD∗t,2 = w−1
t−1{sgn(εt)−Esgn(εt)} andD∗t = (D′t,1(θ0), D∗t,2)′.

Then

S∗n(θ0)

=
1√
n

n∑
t=1

(D′t,1(θ0), Dt,2(θ0, 0))′

=
1√
n

n∑
t=1

(
D′t,1(θ0), w−1

t−1{sgn(εt)− E(sgn(εt)|Ft−1)}
)′

+
1√
n

n∑
t=1

(0′, w−1
t−1E((sgn(εt)− sgn(εt − d0))|Ft−1))′

+
1√
n

n∑
t=1

(0′, w−1
t−1E(sgn(εt − d0)|Ft−1))′

=
1√
n

n∑
t=1

D∗t +
1√
n

n∑
t=1

(0′, w−1
t−1E{(sgn(ηt)− sgn(ηt − d0/σt))|Ft−1})′

+
1√
n

n∑
t=1

(0′, w−1
t−1{E(sgn(ηt − d0/σt)|Ft−1)− Esgn(ηt − d0/σt)})′

=
1√
n

n∑
t=1

D∗t +
1√
n

n∑
t=1

(0′, 2w−1
t−1{Fη(d0/σt)− Fη(0)})′

− 1√
n

n∑
t=1

(0′, 2w−1
t−1{Fη(d0/σt)− EFη(d0/σt)})′, (A.19)

where 0 is a (r + s+ 1)-vector and Fη is the distribution of ηt.

Note that E{w−1
t−1[sgn(εt) − E(sgn(εt)|Ft−1)]|Ft−1} = 0, it follows that {D∗t } is a sequence

of martingale differences. Like Lemma 3, we can show that

1√
n

n∑
t=1

D∗t
d→ N

(
0,E

{
D1(θ0, 0)D

′
1(θ0, 0)

})

by noting that d0 → 0. On the other hand, because d0/σt ≤M/(nω1)1/2 holds uniformly for all

1 ≤ t ≤ n, it follows from Taylor expansion that∣∣∣∣ 1√
n

n∑
t=1

{
w−1
t−1(Fη(d0/σt)− Fη(0))

}
− g(0)M1E{w−1

t−1σ
−1
t }
∣∣∣∣ = op(1)

and

1√
n

n∑
t=1

w−1
t−1{Fη(d0/σt)− EFη(d0/σt)}

=
1√
n

n∑
t=1

w−1
t−1g(0)[(d0/σt)− E(d0/σt)](1 + o(1))
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=
M1g(0)

n

n∑
t=1

w−1
t−1(σ−1

t − Eσ−1
t )(1 + o(1))

= M1g(0)E{w−1
t−1(σ−1

t − Eσ−1
t )}+ op(1),

where the lase equality follows by ergodicity. Thus, Λ−
1
2S∗n(θ0) converges to a multivariate

normal distribution with mean Λ−1/2(0′, 2g(0)M1E[w−1
t−1E(σ−1

t )])′ and covariance I. By (A.18),

we have l(θ̂, 0) converges to a noncentral chi-squared limit with one degree of freedom and the

noncentrality parameter

(0′, 2g(0)M1E(w−1
t−1)E(σ−1

t ))Λ−1(0′, 2g(0)M1E(w−1
t−1)E(σ−1

t ))′.
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