
Noname manuscript No.
(will be inserted by the editor)

Leveraging Granularity: Hierarchical Reinforcement
Learning for Pedagogical Policy Induction

Guojing Zhou · Hamoon Azizsoltani ·
Markel Sanz Ausin · Tiffany Barnes ·
Min Chi

Received: date / Accepted: date

Abstract In interactive e-learning environments such as Intelligent Tutoring
Systems, pedagogical decisions can be made at different levels of granularity.
In this work, we focus on making decisions at two levels : whole problems vs.
single steps and explore three types of granularity: problem-level only (Prob-
Only), step-level only (Step-Only) and both problem and step levels (Both).
More specifically, for Prob-Only, our pedagogical agency decides whether the
next problem should be a worked example (WE) or a problem-solving (PS).
In WEs, students observe how the tutor solves a problem while in PSs stu-
dents solve the problem themselves. For Step-Only, the agent decides whether
to elicit the student’s next solution step or to tell the step directly. Here the
student and the tutor co-construct the solution and we refer to this type of
task as collaborative problem-solving (CPS). For Both, the agency first decides
whether the next problem should be a WE, a PS, or a CPS and based on the
problem-level decision, the agent then makes step-level decisions on whether
to elicit or tell each step. In a series of classroom studies, we compare the
three types of granularity under random yet reasonable pedagogical decisions.
Results showed that while Prob-Only may be less effective for High students,
Step-Only may be less effective for Low ones, Both can be effective for both
High and Low students. Motivated by these findings, we propose and apply an
offline, off-policy Gaussian Processes based Hierarchical Reinforcement Learn-
ing (HRL) framework to induce a hierarchical pedagogical policy that makes
adaptive, effective decisions at both the problem and step levels. In an empir-
ical classroom study, our results showed that the HRL policy is significantly
more effective than a Deep Q-Network (DQN) induced step-level policy and a
random yet reasonable step-level baseline policy.

Guojing Zhou · Hamoon Azizsoltani · Markel Sanz Ausin · Tiffany Barnes · Min Chi
Department of Computer Science, North Carolina State University
Raleigh, NC, 27695, USA
E-mail: {gzhou3,hazizso,msanzau,tmbarnes,mchi@ncsu.edu}

2 Guojing Zhou et al.

Keywords Hierarchical Reinforcement Learning · Decision Granularity ·
Pedagogical Policy

1 Introduction

Worked examples (WE) and problem-solving (PS) have a long history of being
used for instructional purposes [58,27]. In PS, students are given tasks to
complete either independently or with assistance; while in WEs, students are
given detailed solutions. WEs have been used as an instructional approach for
a long time [58]: early WEs were found in historical records such as Egyptian
papyri, Babylonian tablets, and later in copies of lost Chinese manuscripts
dating back to thousands of years ago [27]. At the end of the worked solutions,
it is often stated that “this way you may solve similar problems,” or “by the
same method solve all similar problems,”. Similarly, evidence of PS was also
found in early Egyptian, Babylonian, and Chinese artifacts [57]. This includes
pure collections of practice problems, reflecting the principle held by early
educators that learning is an active process in which problem-solving should
be involved. Accordingly, there has been a growing interest in utilizing WEs
and PS in e-learning environments such as intelligent tutoring systems (ITSs)
[56,31,30,29,59,38,47,33,42,70,69,68,71,67].

In STEM domains like math, probability, and logic, solving a problem often
requires producing an argument, proof, or derivation consisting of one or more
inference “steps”, each of which is the result of applying a domain principle or
rule. VanLehn described tutoring in such domains as a two-loop procedure [61]:
the outer loop governs problem-level pedagogical decisions such as selecting
the next problem or task for the student to work on while the inner loop
controls step-level pedagogical decisions such as whether to give feedback or
to prompt the student with an example. Pedagogical policies are used to decide
what action to take next in the face of alternatives. In this work, three types
of granularity are explored: problem-level only (Prob-Only), step-level only
(Step-Only), and both problem-level and step-level (Both).
Prob-Only: When a tutor determines the next problem or task, it often
decides whether to show students how to solve the next problem directly using
a WE or asks students to solve the problem on their own via PS. Presenting
a WE is more passive since it often does not require students to act much;
while PS is more active since it is expected that students would produce the
solution with or without the tutor’s assistance. Prior studies have shown that
combining WEs with PSs can be more effective than using PSs alone [31,30,
29,56]. Note that we only focus only on WE and PS in this work and there
are other similar instructional interventions such as incomplete examples or
faded worked examples (FWEs) where students are presented with an example
where certain steps are left out for them to complete [38,47].
Step-Only: Alternatively, the tutor can make decisions inside a problem to
decide whether to elicit the next solution step from the student or to show
or tell it directly. We refer to such decisions as elicit/tell. While a lecture can

HRL policies 3

be viewed as a monologue of an unbroken series of tells, human one-on-one
tutoring often interleaves elicits and tells through which students co-construct
the solution with the tutor. In the following, we refer to the interleaving of
elicits and tells as collaborative problem solving (CPS). Prior research showed
that CPS can be more effective than elicits only [42] and students sometimes
use bottom-out hints as tells to help them learn [50].
Both: Finally, a tutor can make decisions at both the problem and step levels.
In this case, it first makes a problem-level decision to decide whether the next
problem should be WE, PS, or CPS. If CPS is selected, it will make step-level
decisions on whether to elicit or tell. While WE can be seen as an extreme
case of CPS where tell is selected in every step, we argue that in reasonable
decision-making (not random), a WE is fundamentally different from an all-
tell CPS in that WE is determined at the problem level before the student
starts working on it; while tells in CPS are decided at the step level partly
based on the student’s behavior in the current problem. The same argument
applies to PS vs. all-elicit CPS.

Prior research has widely focused on either problem-only [31,30,33] or step-
only [38,47,42] decisions. However, as far as we know, no prior work has di-
rectly compared all three types of granularity. Additionally, there is no well-
established theory or consensus on how to make decisions at the two levels
effectively. In this work, we first investigate the impact of decision granular-
ity on student learning, and then, apply hierarchical reinforcement learning
(HRL) to induce pedagogical policies that make decisions at both the problem
and step levels.

1.1 Our Studies

In a series of four classroom studies conducted in the Fall 2014-2017 semesters,
we investigate the impact of granularity on student learning. In Fall 2014, we
directly compare the three types of granularity: 1) Prob-Only, 2) Step-Only,
and 3) Both with two baseline conditions: WE-only (WE) and PS-only (PS).
The study was conducted in the domain of probability, and we employed an
ITS to strictly control the content to be equivalent across the five conditions.
More specifically, all students went through the same general procedure and
studied the same materials. During ITS training, all students received the same
problems in the same order, and WE, PS, and CPS covered the same content.
The only difference between the five conditions was the decision granularity.
Results showed that decision granularity can have an impact on students’ time
on task in that: WE < Prob-Only < Step-Only, Both < PS. However, there
was no significant difference among the five conditions in learning performance.

The three follow-up studies were conducted under the same settings, but
each of them included only one or two types of granularity. To further exam-
ine the impact of decision granularity, we combined the data collected in the
four studies and conducted a post-hoc analysis focusing on the three gran-
ularity types. Overall, there was still no significant difference between the

4 Guojing Zhou et al.

three conditions in learning performance. Considering the fact that our ITS
mainly focuses on teaching a strategy for solving multiple-principle problems,
we split students into different incoming competence groups based on their pre-
test performance on single- and multiple-principle problems and conducted a
two-factor post-hoc analysis on granularity and incoming competence. Results
showed that Prob-only may be less effective for High incoming competence
students, Step-only may be less effective for Low ones, and more importantly,
Both can be effective for both High and Low students. For time on task, the
Prob-Only and Both conditions spent significantly less time than the Step-
Only condition. The results suggest that granularity indeed can have an im-
pact on student learning. This supports our hypothesis that WE, PS and CPS
are different types of learning activities. Additionally, one implication of the
results is that the impact of granularity depends on students’ competence
level, which suggests that effective interventions should adapt WE, PS and
CPS to students’ current learning state. To investigate whether adapting WE,
PS and CPS can result in improved student learning performance, we apply
hierarchical reinforcement learning (HRL) to induce pedagogical policies that
make decisions at both the problem and step levels.

In an ITS, the tutor’s decisions can be viewed as a temporal sequence, each
of which affects the student’s successive actions and performance. Its impact
on student learning often cannot be observed immediately, and the effective-
ness of one decision may also depend on subsequent decisions. Ideally, the
tutor should adapt its pedagogical decisions to meet students’ specific learn-
ing needs [2,35]. In recent years, there has been growing interest in applying
data-driven approaches, such as reinforcement learning (RL), to directly in-
duce pedagogical policies from student-system interaction logs. RL algorithms
are designed to induce decision-making policies that specify the best action to
take in any given situation so as to maximize a cumulative reward. A number
of researchers have studied applying existing RL algorithms to improve the
effectiveness of ITSs (e.g., [11,49,28,40,39,36,12,54,22,23,71,72]).

In an unpublished study, we compared the effectiveness of RL-induced
problem-level and step-level policies. The same RL algorithm was applied to
random problem- and step-level exploration data to induce these two policies.
In a classroom study, we compared the two RL policies with a random problem-
level policy and a random step-level policy. Note that since the problem level
WE/PS and the step level elicit/tell are always considered to be reasonable
interventions in our learning context, our random policies are random yet
reasonable. Results showed that there was no significant difference between
the two RL-induced policies in effectiveness, and none of them significantly
outperformed the two random baseline policies. The results suggest that RL
induced pedagogical policies that make decisions at a single granularity level
may not always be effective.

Given the findings that RL induced problem- and step-level policies may
not always be effective and motivated by the implication of the Granularity
studies that WE, PS, and CPS are different types of instructional interven-
tions, we then apply HRL to induce a policy that explicitly adapt WE/PS/CPS

HRL policies 5

at the problem level and elicit/tell at the step level. When there are decisions
to make, the HRL policy first decides whether the next problem should be
WE, PS, or CPS. If WE is selected, an all-tell step policy will be carried out;
if PS is selected, an all-elicit policy will be executed; finally, if CPS is selected,
the tutor will decide whether to elicit or tell the next step based on the corre-
sponding step-level policy. Again, the training data were collected by training
students with our ITS using random yet reasonable policies.

In a classroom study, we compare the HRL policy with a Deep Q-network
(DQN) induced step-level policy and a random yet reasonable step-level base-
line policy. The DQN policy is induced using the same data and inferred
immediate rewards that are used for inducing the HRL policy. Results showed
that the HRL policy was significantly more effective than the DQN and the
random baseline policy. For time on task, there was no significant difference
between the HRL condition and the baseline condition, but the former (HRL)
spent significantly more time than DQN. Finally, the induced HRL policy was
more likely to select PS and CPS than WE. The results suggest that HRL can
make effective pedagogical decisions to improve student learning, and HRL
can be more effective than flat RL in pedagogical policy induction.

1.2 Contributions

This paper represents an extended version of our previously-published work in
AIED 2019 [67]. It has been extended by: including the Granularity studies and
analyzing and discussing the HRL study results from the decision granularity
perspective. The contributions of this work are:

– For learning science, we investigated the impact of granularity on student
learning. Results suggest that the granularity can have an impact on stu-
dents’ time on task, and that its impact on learning performance depends
on students’ current competence level.

– From a machine learning perspective, we proposed an offline off-policy
HRL framework that can induce hierarchical pedagogical policies from pre-
collected student-system interaction data.

– The HRL study provided empirical evidence showing that HRL can induce
effective pedagogical policies, and HRL can be more effective than flat RL
in pedagogical policy induction.

– Our analysis of the HRL policy’s decision-making sheds some light on how
to leverage the impact of decision granularity to improve student learning.

2 The Granularity Studies

The Granularity studies investigate the impact of three types of granularity:
Prob-Only, Step-Only, and Both on student learning. This section describes
the background, experimental design, results, and discussion of the Granularity
studies.

6 Guojing Zhou et al.

2.1 Background – WE vs. PS vs. FWE vs. CPS

A lot of prior research has investigated the impact of worked example (WE),
problem solving (PS), faded worked example (FWE) and collaborative prob-
lem solving (CPS) on student learning [56,31,30,29,59,38,47,33,42,70,69,68,
67]. Some of the works have focused on selecting WE vs. PS at the problem
level. For example, McLaren et al. compared WE-PS pairs with PS-only [31].
Students in the WE-PS condition were given 5 WE-PS pairs, while those in
the PS-only condition were required to solve 10 problems. Experimental re-
sults showed no significant difference between the two conditions in learning
performance. However, the WE-PS condition spent significantly less time than
the PS-only condition. In a follow-up study, McLaren et al. compared three
conditions: WE-only, PS-only, and WE-PS pairs [30]. As before, there was no
significant difference among the three conditions in terms of learning perfor-
mance, but the WE condition spent significantly less time than the other two
conditions; and no significant time on task difference was found between the
PS and WE-PS conditions. In short, the two studies showed that problem-level
WEs can be as effective as PSs, and the former can take significantly less time
than the latter.

Some other work designed pedagogical policies based on the expertise re-
versal effect, which states that the relative effectiveness of instructional meth-
ods reverses as levels of learner knowledge in a domain change [24]. A widely
used design is to give WE at the beginning of training, then gradually fade
out the tell steps in an example, and finally require the student to solve the
whole problem. Renkl et al. compared WE-FWE-PS with WE-PS pairs [38].
Students in the WE-FWE-PS condition studied and completed WEs, FWEs,
and PSs in a fixed order, while those in the WE-PS condition received the
same problems in WE-PS pairs. Results showed that the former significantly
outperformed the latter in learning performance; while no significant difference
was found between them in time on task. Similarly, Schwonke et al. compared
WE-FWE-PS with PS-only [47]. Overall, there was no significant difference
between the two conditions in terms of learning outcomes, but the WE-FWE-
PS condition spent significantly less time than the PS-only condition. In sum,
the studies showed that alternating among WE, PS and FWE can be more
beneficial than using WE and PS only.

Alternatively, pedagogical decisions can be adaptively made at the prob-
lem level or the step level. Najar et al. compared adaptive WE/FWE/PS with
WE-PS pairs [33]. The former used expert rules to make decisions based on
students’ learning states. Results showed that adaptive WE/FWE/PS signif-
icantly outperformed WE-PS pairs in terms of learning outcomes, and the
former also spent significantly less time on task. In another study, Salden et
al. investigated the impact of making adaptive step-level decisions by compar-
ing three conditions: WE-FWE-PS, CPS, and PS-only [42]. The WE-FWE-
PS condition gives WEs, FWEs, and PSs in a fixed order, while the CPS
condition used an adaptive pedagogical policy – expert rules combined with
data-driven student models – to decide whether to elicit or tell the next step.

HRL policies 7

Their results showed that CPS outperformed WE-FWE-PS, which in turn
outperformed PS-only, and no significant time on task difference was found
among the three conditions. Note that in this study, only the CPS condition
involved adaptive decisions. Therefore, it is not clear whether it was the adap-
tation or the granularity that made the CPS condition more effective than
the other two conditions. In short, previous studies have shown that making
adaptive problem-level or step-level decisions can be more effective than using
pre-determined ordering.

Overall, results from previous studies suggest that effective policies can
lead to better learning performance or behavior. In addition, adaptive policies
can be more effective than fixed ones. However, all previous works focused on
either the problem-level or step-level decisions. To the best of our knowledge,
no prior study has investigated Both levels. Additionally, in prior studies, the
pedagogical decisions were made following certain fixed or adaptive policies.
Therefore, it is not clear whether the impacts were caused by policy or gran-
ularity. In the Granularity studies, we directly compare the three types of
granularity and use random policies to factor out the impact of pedagogical
policy.

2.2 Experiment Setup

2.2.1 Conditions

In a series of four classroom studies conducted in the Fall semesters of 2014-
2017, we investigate the impact of granularity on student learning by com-
paring the three types of decision granularity with two baseline conditions:
WE-only (WE) and PS-only (PS). Based on the amount of work students
need to do, the five conditions are:

– WE: where all problems are WEs;
– Prob-Only: where problem-level decisions are randomly made to decide

whether the next problem should be WE or PS;
– Step-Only: where step-level decisions are randomly made on whether to

elicit or tell the next step;
– Both: where the tutor first randomly decides whether the next problem

should be WE, PS, or CPS, and if CPS is selected, it will randomly decide
whether to elicit or tell each step;

– PS: where all problems are PSs.

The three granularity conditions use random decisions to factor out the
impact of pedagogical policies. The Fall 2014 study includes all five condi-
tions, while the following three involve one or two granularity types. In our
analysis, we first focus on the empirical Fall 2014 study and then combine
students across all four studies by their condition for post-hoc comparison.
The followings describe the experiment setup and analysis results.

8 Guojing Zhou et al.

Fig. 1 The interface of our probability tutor (Pyrenees)

2.2.2 Participants

The participants in all four studies were undergraduate students enrolled in
the discrete math class offered by the computer science department at North
Carolina State University. The study was given to them as one of the regular
homework assignments. They had one week to complete the study and were
graded based on their demonstrated effort, not performance.

2.2.3 Probability Tutor

The tutor we used in this study (named Pyrenees) is a web-based ITS that
teaches 10 probability principles such as the Addition Theorem and Bayes’
Theorem. The training is conducted by guiding students to complete train-
ing problems (See Appendix A for an example of the training problems). All
instructions, such as explanations, feedback, and hints, are presented using
natural language.

Figure 1 shows the interface of our ITS, which is divided into multiple
windows. Through the dialogue window, the tutor provides messages to the
students such as explaining an tell step, or giving hints. Students can enter
their inputs, such as writing an equation or selecting an answer, through the
response window. Any variables or equations that are defined in the training
process are displayed on left side of the screen for reference.

Target Variable Strategy: Each training problem requires applying multi-
ple principles to solve, and the tutor teaches students to use the Target Variable
Strategy (TVS) to solve problems. In the domain of probability, TVS solves
a problem by building a inference path backward from the goal to the given

HRL policies 9

events [62,9,10]. The problem solving procedure involves three main phases:
1) translating the problem statement, 2) applying principles and generating
equations, and 3) solving equations. In the first phase, each given probabil-
ity event is defined as a known variable and the goal is defined as a sought
(unknown) variable. In the second phase, probability principles are applied
to build an inference path. Each principle application involves three steps: 1)
selecting a target variable from the ones that are marked as sought, 2) select-
ing a principle to apply to the target variable, and 3) writing an equation for
the selected principle. If the equation involves any undefined variables, the
tutor or the student must define them before writing the equation. Once the
equation is generated for the target variable, the tutor will remove its sought
mark, but the new defined variables will be marked as sought. The principle
application process repeats until there is no sought variable left. In the third
phase, the tutor or the student solves the equations generated in the second
phase to determine the value of the goal events.

By using TVS, the tutor mainly teaches students the strategy for solving
multiple-principle problems. Target variable selection teaches students to de-
termine where to extend the current solution path; principle selection helps
students learn when a principle should be used; and intermediate variable def-
inition and equation writing shows the specific process about how the solution
path is extended.

Elicit vs. Tell: For each step in a problem, the tutor can either elicit it from
the student or tell it to the student directly. In an elicit step, the tutor gives a
question for the student to answer; while in a tell step, the tutor directly shows
how to complete the step. The tutor provides feedback and hint in elicit steps.
When the student gives a wrong answer, the tutor provides a feedback on it,
which consists of a short message indicating that the answer is wrong and a
hint about how to solve the step. Hints can also be requested proactively by
clicking the [Hint] button. Our ITS uses the same set of messages for incorrect-
answer hints and on-demand hints. The hint messages were organized in an
increasingly specific order. The last message in the sequence, the bottom-out
hint, shows the student exactly what to do.

2.2.4 Procedure and Grading

Procedure: All students went through four phases: 1) textbook, 2) pre-test,
3) training on the ITS, and 4) post-test. During textbook, all students read
a general description of each principle, reviewed several examples, and solved
several training problems. The students then took a pre-test, which contained
a total of 14 single- and multiple-principle problems (see Table 1 below for
example test problems). For each problem, students need to give a detailed
step-by-step solution that specifies the name of the principles applied and the
corresponding equations. No feedback was given on their answers, and they
were not allowed to go back to earlier questions (this was also true for the
post-test). During training on the ITS, all students received the same 12

10 Guojing Zhou et al.

Table 1 Single-principle Problem vs. Multiple-principle Problem

Single-principle Problem

Question: If p(A ∩B) = 0.2 and p(B) = 0.5, find P (A|B).

Answer: 1) Apply the Definition of Conditional Probability:

p(A|B) = p(A ∩B)/p(B) = 0.2/0.5 = 0.4.

Multiple-principle Problem

Question: If p(B) = 0.06, p(∼ A ∩ ∼ B) = 0.87 and p(A ∩B) = 0.03, find p(A).

Answer: 1) Apply the De Morgan’s Law: p(∼ (A ∪B)) = p(∼ A∩ ∼ B) = 0.87

2) Apply the Complement Theorem:

p(A ∪B) = 1− p(∼ (A ∪B)) = 1− 0.87 = 0.13

3) Apply the Addition Theorem for two events:

p(A ∪B) = p(A) + p(B)− p(A ∩B), p(A) = 0.13 + 0.03− 0.06 = 0.1.

problems in the same order. Each domain principle was applied at least twice
in the 12 problems, and each of the problems required 20-50 steps to solve (See
Appendix A for an example). Finally, all students took the 20-problem post-
test: 14 of them were isomorphic to the pre-test, and the remainder were non-
isomorphic multiple-principle problems. The experimental conditions differed
only in decision granularity.

Grading Criteria: The pre- and post-test problems required students to de-
rive an answer by writing and solving one or more equations. We used three
scoring rubrics for grading: binary, partial credit, and one-point-per-principle.
Under the binary rubric, a solution was worth 1 point if it was completely cor-
rect or 0 if not. Under the partial credit rubric, each problem score was defined
by the proportion of correct principle applications evident in the solution. A
student who correctly applied 4 of 5 possible principles would get a score of
0.8. The one-point-per-principle rubric in turn gave a point for each correct
principle application. All of the tests were graded in a double-blind manner
by a single experienced grader. The results presented below were based upon
the partial-credit rubric, but the same results hold for the other two. For
comparison purposes, all test scores were normalized to the range of [0, 100].

2.2.5 Single- and Multiple-Principle Problems Based Competence Split

Motivated by the aptitude treatment interaction (ATI) theory that some in-
structional interventions can be more or less effective for particular students
depending upon their specific abilities or knowledge [13,53], we split students
into multiple competence groups based on their pre-test performance. We first
conducted a median split based on students’ pre-test scores. A two-factor
analysis on granularity and incoming competence showed that there was a
marginally significant interaction effect (p = 0.077) that the impact of granu-
larity differed for the High and Low groups (see Appendix B for the results).

HRL policies 11

Specifically, problem-level granularity may be less effective for High incom-
ing competence students and step-level may be less effective for Low ones.
This suggests that the impact of granularity may depend on students’ compe-
tence level. Given the fact that our ITS mainly focuses on training students
to solve multiple-principle problems, we think the impact of granularity may
be more obvious if the split is done based on their ability to solve single- and
multiple-principle problems. Thus, we then conducted a split based on stu-
dents’ performance on single- and multiple-principle problems and conducted
a two-factor analysis. Results showed the same general trend as that found in
the median split analysis but with stronger p-values (see Section 2.4.2).

Learning in STEM domains often involves acquiring two types of knowl-
edge: declarative knowledge, which includes facts that we know, such as do-
main principles and procedural knowledge, which specifies how to retrieve and
use declarative knowledge to solve problems [1]. Procedural knowledge often
requires the interplay of many cognitive factors including but not limited to the
following five ones in order of occurrence: 1) acquisition of declarative knowl-
edge, 2) identification and retrieval of the proper declarative knowledge, 3)
application of declarative knowledge, 4) organization and production of solu-
tion plans, and 5) execution of solution plans and evaluation of answers. Here,
we argue that solving a single-principle probability problem mainly involves
factors 1-3, while solving a multiple-principle probability problem involves all
five.

Table 1 presents a comparison of a single- and a multiple-principle problem.
As the example shows, a single-principle problem can be solved by applying a
single domain principle once. The main challenge in this process is to properly
retrieve and apply the principle. A multiple-principle problem, on the other
hand, requires students to logically apply a series of domain principles to
construct a solution path. The major challenge here is to build the multi-step
inference. Generally speaking, multiple-principle problems involve a more com-
plicated problem solving procedure, and thus are harder than single-principle
problems to solve. Prior works have also viewed single- and multiple-principle
problems as different types of tasks [9,10]. In the following, we refer to students
who have clearly shown the ability to solve all the single-principle problems
and at least part of a multiple-principle problem as Multiple-principle capable
or High competence students (pre > 10/14) and those who have not clearly
shown such ability as Single-principle only or Low competence students (pre
≤ 10/14). Due to limited group size, the two-factor analysis (granularity ×
incoming competence) is only performed in the post-hoc analysis.

2.3 Fall 2014 Empirical Study Results

In the Fall 2014 study, 266 students were randomly assigned to five conditions:
31 for WE1, 58 for Prob-Only, 59 for Step-Only, 59 for Both, and 59 for PS.

1 Fewer students were assigned to the WE condition, because another purpose of this
study was to collect training data for inducing the HRL policy.

12 Guojing Zhou et al.

Table 2 Fall 2014 Empirical Study Results

Condition Pre Iso Post Post Adj Post Time (hours)

WE(21) 70.5(17.1) 79.0(18.4) 68.7(19.7) 66.8(13.5) .78(.59)

Prob(36) 67.8(18.2) 77.6(13.6) 66.6(17.1) 66.3(13.6) 1.55(.42)

Step(36) 65.1(14.5) 74.6(16.1) 62.3(15.9) 63.6(11.1) 1.87(.62)

Both(33) 69.8(19.1) 81.9(13.7) 70.5(16.2) 69.0(14.5) 1.86(.51)

PS(28) 63.9(17.5) 80.2(12.2) 68.4(14.5) 70.4(12.4) 2.46(.65)

Due to preparations for exams and the length of the experiment, 162 students
completed the study. Eight students who performed perfectly in the pre-test or
completed the study in groups were excluded from our subsequent statistical
analysis. The remaining 154 students were distributed as follows: 21 for WE,
36 for Prob-Only, 36 for Step-Only, 33 for Both and 28 for PS. A Chi-square
test showed that the participants’ completion rate did not significantly differ
by condition: χ2 (4) = 4.61, p = 0.329.

Incoming Competence: A one-way ANOVA analysis on the pre-test showed
that there was no significant difference among the five conditions: F (4, 149) =
0.78, p = 0.539, η = 0.021. This suggests that the five conditions were balanced
in incoming competence. Table 2 shows the mean and standard deviation (SD)
of students’ learning performance and total training time results. From left
to right, it shows the condition with the number of students in parentheses,
pre-test (Pre), isomorphic post-test (Iso Post), full post-test (Post), adjusted
post-test (Adj Post) (post test scores adjusted by pre-test scores based on a
linear model generated by ANCOVA analysis), and the total training time on
the ITS in hours (Time).

Isomorphic Post-test: To measure the improvement students obtained from
ITS training, we compared their isomorphic post-test and pre-test scores. A
repeated measures analysis using test type (pre-test vs. isomorphic post-test)
as a factor and test score as the dependent measure showed a main effect for
test type: F (1, 149) = 87.28, p < 0.0001, η = 0.362 in that students scored
significantly higher in the isomorphic post-test than in the pre-test. More
specifically, all five conditions scored significantly higher in the isomorphic
post-test: F (1, 20) = 8.09, p = 0.010, η = 0.288 for WE; F (1, 35) = 16.37,
p = 0.0003, η = 0.319 for Prob-Only; F (1, 35) = 18.90, p = 0.0001, η = 0.351
for Step-Only; F (1, 32) = 15.18, p = 0.0005, η = 0.322 for Both and F (1, 27) =
34.55, p < 0.0001, η = 0.561 for PS. This suggests that the basic practice
and problems, domain exposure, and interactivity of our ITS effectively help
students acquire knowledge, even when the decisions are made randomly yet
reasonably.

Learning Performance: To comprehensively evaluate students’ final perfor-
mance, we analyzed their full post-test performance, which has has six ad-
ditional multiple-principle problems. An ANCOVA analysis on the post-test

HRL policies 13

Table 3 Fall 2015-2017 Empirical Studies Results

Year Condition Pre Iso Post Post Adj Post Time (hours)

2015
Prob(38) 79.4(15.4) 86.7(17.8) 78.5(19.4) 79.0(17.0) 1.99(.75)

Step(34) 81.3(13.0) 92.4(8.6) 86.4(12.1) 85.9(11.5) 2.26(.48)

2016
Prob(31) 73.6(12.9) 87.0(12.4) 76.9(15.3) 75.6(14.8) 1.73(.66)

Step(35) 69.9(17.1) 81.2(19.5) 69.5(19.3) 70.7(13.6) 1.88(.44)

2017 Both(55) 74.5(16.8) 87.8(14.3) 78.9(17.8) 78.9(13.5) 1.81(.53)

using the pre-test score as a covariate showed no significant difference among
the five conditions: F (4, 148) = 1.32, p = 0.264, η = 0.021.

Time on Task: A one-way ANOVA analysis showed a significant difference
among the five conditions: F (4, 149) = 29.17, p < 0.0001, η = 0.439. Subse-
quent contrast analysis revealed that WE spent significantly less time than
Prob-Only (p < 0.0001), Step-Only (p < 0.0001), Both (p < 0.0001), and
PS (p < 0.0001); Prob-Only spent significantly less time than Step-Only
(p = 0.014), Both (p = 0.023), and PS (p < 0.0001); Step-Only spent sig-
nificantly less time than PS (p < 0.0001); and Both spent significantly less
time than PS (p < 0.0001). To summarize, for time on task, we have WE <
Prob-Only < Step-Only, Both < PS. This suggests that granularity can have
an impact on students’ time on task.

2.4 Post-hoc Analysis Results

2.4.1 Analysis on the Impact of Granularity

The post-hoc analysis included the data collected in the Fall 2014-2017 studies,
and students were combined by their condition. In the Fall 2015 study, 94
students were randomly assigned to the Prob-Only (N = 47) and Step-Only
(N = 47) conditions. 73 students completed the study and one student who
performed perfectly in the pre-test was excluded for subsequent analysis. For
the remaining students, 38 were in the Prob-Only condition and 34 were in
the Step-Only condition. In Fall 2016, 81 students were randomly assigned to
the Prob-Only (N = 40) and the Step-Only (N = 41) conditions, and 67 of
them completed the study. One student who got a perfect pre-test score was
excluded for statistical analysis. The remaining students were distributed as
follows: N = 31 for Prob-Only and N = 35 for Step-Only. Finally, the Fall 2017
study had 70 students assigned to the Both condition. 57 students completed
the study and two that performed perfectly in the pre-test or completed the
study in groups were excluded. Since the 2015-2017 studies did not include the
baseline WE-only and PS-only conditions, the three granularity conditions
were much larger in group size than the two baseline conditions. Thus, the
post-hoc analysis mainly focused on comparing the three types of granularity.

14 Guojing Zhou et al.

The final post-hoc analysis data set includes 298 students: N = 105 for Prob-
Only, N = 105 for Step-Only, and N = 88 for Both. A Chi-square test showed
that the participants’ completion rate did not differ significantly by condition
overall: χ2 (2) = 0.535, p = 0.765. Table 3 shows the test scores and training
time results for the 2015-2017 Fall studies.

Incoming Competence: A one-way ANOVA analysis on the pre-test score
showed no significant difference among the three conditions: F (2, 295) = 0.29,
p = 0.749, η = 0.002. This suggests that the three conditions were balanced
in incoming competence across the four years.

Isomorphic Post-test: A repeated measures analysis using test type (pre-
test vs. isomorphic post-test) as a factor and test score as the dependent
measure showed that there was a main effect for test type: F (1, 295) = 168.76,
p < 0.0001, η = 0.362 in that students scored significantly higher in the
isomorphic post-test than in the pre-test. Similarly, for each of the three con-
ditions, students scored significantly higher in the isomorphic post-test than
in the pre-test: F (1, 104) = 46.72, p < 0.0001, η = 0.310 for Prob-Only;
F (1, 104) = 63.64, p < 0.0001, η = 0.380 for Step-Only and F (1, 87) = 60.17,
p < 0.0001, η = 0.409 for Both. The results confirmed that our tutor has been
effective over the years.

Learning Performance: A One-way ANCOVA analysis on the post-test
score using the pre-test score as a covariate showed no significant difference
among the three conditions: F (2, 294) = 1.02, p = 0.362, η = 0.004.

Time on Task: A one-way ANOVA analysis showed a significant difference
among the three conditions: F (2, 295) = 4.78, p = 0.009, η = 0.031. Sub-
sequent contrast analysis revealed that Prob-Only and Both spent signifi-
cantly less time than Step-Only: t(295) = −3.00, p = 0.003, d = 0.40 and
t(295) = −2.08, p = 0.039, d = 0.32 respectively.

2.4.2 Analysis on Granularity and Incoming Competence

To investigate whether the impact of granularity differs for students with dif-
ferent incoming competence, we split students into High (Multiple-principle
capable) and Low competence (Single-principle only) groups and performed a
two-factor analysis (granularity × competence) on their learning performance
and time on task.

As expected, the High group significantly outperformed the Low group in
the pre-test: F (1, 296) = 725.98, p < 0.0001, η = 0.710. The first column in
Table 4 shows the groups with the number of students in the parentheses. As
we can see, there were relatively more students in the High groups than in the
Low groups, but a Chi-square test showed that the size of the two groups did
not differ significantly by conditions: χ2 (2) = 1.66, p = 0.436. Fortunately, the
principle-based split preserved the balance of students’ incoming competence
among the three conditions in that there was no significant difference on pre-
test among the three High or the three Low groups. Based on this split, We
then conducted a 3 × 2 analysis on the factors of granularity and incoming

HRL policies 15

Table 4 Post-hoc Analysis Results

Group Pre Iso Post Post Adj Post Time (hours)

ProbH(63) 84.5(7.6) 87.8(10.9) 78.4(14.7) 70.5(13.5) 1.83(.69)

StepH(55) 85.3(7.2) 91.7(9.0) 83.7(11.7) 75.2(10.7) 2.15(.49)

BothH(53) 84.9(6.6) 91.7(9.2) 84.1(13.4) 75.9(12.4) 1.79(.48)

ProbL(42) 57.4(11.7) 77.5(19.0) 67.3(20.8) 77.7(17.0) 1.65(.57)

StepL(50) 57.2(9.3) 72.6(18.2) 60.2(17.7) 70.8(15.5) 1.84(.56)

BothL(35) 54.2(12.4) 76.3(15.7) 63.1(15.6) 75.6(16.8) 1.88(.57)

competence to investigate their impacts on student learning performance and
time on task.

Learning Performance: Table 4 shows the test score and training time
results. A two-way ANCOVA analysis for the Full post-test on the factors
of granularity and incoming competence using the pre-test score as a co-
variate showed a significant interaction effect: F (2, 291) = 4.41, p = 0.013,
η = 0.018. But there was no significant main effect of granularity or incoming
competence. Subsequent contrast analysis revealed that for High students, the
BothH group scored significantly higher than the ProbH group: t(291) = 2.07,
p = 0.040, d = 0.42; and there was a trend that StepH scored higher than
ProbH : t(291) = 1.80, p = 0.073, d = 0.39. The StepH and BothH groups
performed similarly with no significant difference: t(291) = 0.28, p = 0.780,
d = 0.06. For Low students, the ProbL group significantly outperformed the
StepL group: t(291) = 2.34, p = 0.020, d = 0.43. BothL also scored 4.8 points
higher than StepL in the adjusted post-test, but the difference was not signifi-
cant: t(291) = 1.60, p = 0.110, d = 0.30. The ProbL and BothL groups scored
similarly with no significant difference: t(291) = −0.59, p = 0.558, d = 0.12.
The results generally suggest that problem-level granularity may be less ef-
fective for High students; step-level granularity may be less effective for Low
students; and both-level can be effective for both High and Low students.

Time on Task: A two-way ANOVA analysis on granularity and incoming
competence showed a marginally significant interaction effect: F (2, 292) =
2.90, p = 0.056, η = 0.019 and a significant main effect of granularity:
F (2, 292) = 4.91, p = 0.008, η = 0.031 in that Prob-Only and Both spent less
time than Step-Only: t(295) = −3.00, p = 0.003, d = 0.40 and t(295) = −2.08,
p = 0.039, d = 0.32 respectively. Subsequent contrast analysis revealed that
the difference mainly came from High students. Specifically, for High students:
StepH spent significantly more time than ProbH and BothH : t(292) = 3.01,
p = 0.003, d = 0.52 and t(292) = 3.25, p = 0.001, d = 0.74 respectively; but
there was no significant difference between ProbH and BothH : t(292) = 0.37,
p = 0.710, d = 0.07. For Low students, none of the contrasts was significant:
t(292) = −1.53, p = 0.126, d = 0.32 for ProbL vs. StepL; t(292) = −1.73,
p = 0.086, d = 0.39 for ProbL vs. BothL; and t(292) = −0.33, p = 0.738,
d = 0.07 for StepL vs. BothL.

16 Guojing Zhou et al.

2.5 Conclusions and Discussion for the Granularity Studies

In four studies, we explored the impact of decision granularity on student
learning by comparing three types of granularity: 1) problem-level only (Prob-
Only), 2) step-level only (Step-Only), and 3) both problem- and step-levels
(Both) with two baseline conditions: WE-only (WE) and PS-only (PS). In the
Fall 14 study, all five conditions were included, results showed that the granu-
larity can have an impact on students’ time on task in that: WE < Prob-Only
< Step-Only, Both < PS. However, there was no significant difference between
the five conditions in terms of learning performance. In three follow-up studies,
one or two granularity types were involved. We then combined students in all
four studies by their conditions and conducted a post-hoc analysis focusing on
the three granularity types. Results showed that there was still no significant
difference among the three conditions in learning performance. Though, once
we split students into different incoming competence groups, results generally
suggest that Prob-Only may be less effective for High incoming competence
students (Multiple-principle capable), Step-Only may be less effective for Low
ones (Single-principle only), and Both can be effective for both High and Low
students. For time on task, Prob-Only and Both spent significantly less time
than Step. The results suggest that granularity indeed can have an impact on
student learning, and its effects depend on students’ current competence level.

The learning performance and time on task results suggest that Step-Only
might be more difficult than Prob-Only. Our results showed that Prob-Only
may be less effective for High competence students and Step-Only may be less
effective for Low ones. Applying the Zone of Proximal Development (ZPD)
theory [8], we infer that Step-Only is harder than Prob-Only. More specifically,
the theory states that students learn best when the difficulty of the task lies in
their ZPD – not too easy and not too hard. Based on this theory, we infer that
Prob-Only lies in Low students’ ZPD, and Step-Only lies in High students’
ZPD. For time on task, results showed that the Prob-Only condition spent
significantly less time than the Step-Only condition (in both the Fall 2014
study and post-hoc analysis). This suggests that more effort is needed for
learning with Step-Only than with Prob-Only.

One possible cause that Step-Only is harder than Prob-Only could be that
the former requires students to integrate information from two sources while
the latter does not. To elaborate further upon this, when learning with Prob-
Only, students pay attention to either the tutor’s solution in WEs or their own
solution in PS. However, for Step-Only, they need to pay attention to both the
tutor’s solution and their own solution to integrate them together, which may
require extra organization work and even modification of their solution plan.
However, this is only our hypothesis; more research is needed to investigate
the exact mental work required by different granularity types.

Overall, the Granularity studies showed that decision granularity indeed
can have an impact on student learning and the impact depends on students’
competence level, which supports our hypothesis that WE, PS, and CPS are
different types of learning activities. On the other hand, all the explorations

HRL policies 17

of the impact of granularity were done with random pedagogical interventions
that do not consider the dynamic of students’ learning process. This raises
an interesting question whether adaptively provide WE, PS and CPS would
improve student learning performance. To investigate this question, we apply
HRL to induced pedagogical policies that make pedagogical decisions at both
the problem and step levels.

3 The HRL Study

To investigate the question of whether making two levels of adaptive decisions
can result in effective instructional interventions, we propose and apply an
HRL framework to induce a policy that makes decisions at both the problem
and step levels. This section describes the background of the HRL study, our
proposed method, and an empirical evaluation study where the HRL policy was
compared with a DQN-induced step-level policy and a random yet reasonable
step-level baseline policy.

3.1 Background – Applying RL to Improve the Effectiveness of ITSs

Generally speaking, RL approaches can be categorized into online and offline.
Online approaches learn a policy in real time by interacting with the envi-
ronment while offline approaches learn a policy from pre-collected training
data. Based on the relationship between the behavior policy and the estima-
tion policy, RL approaches can also be grouped into on-policy and off-policy.
The behavior policy controls how the agent explores the environment, while
the estimation policy is the one being learned. In on-policy approaches, these
two policies are the same, while in off-policy approaches, they are different,
even unrelated. Both online and offline approaches have been used for peda-
gogical policy induction in previous research, but most of them adopted an
off-policy method. Thus, we will describe prior RL work from the online vs.
offline perspective.

Prior research in online RL pedagogical policy induction has mainly re-
lied on simulations or simulated students (computational learner models that
imitate the learning process of students). One reason for that is online ap-
proaches often need large amounts of exploration to learn an effective policy,
which is often too expensive to carry out with real students. Simulations, in
contrast, provide relatively low-cost exploration opportunities as well as fast
and economy policy evaluations [15]. On the other hand, the success of these
approaches is heavily dependent on the accuracy of the simulations. Beck et
al. [7] applied an online approach, temporal difference, with off-policy ε-greedy
exploration to induce pedagogical policies that would minimize students’ time
on task. Simulated students were used for policy induction, while real stu-
dents were involved in the empirical evaluation study. Results showed that
the RL condition spent significantly less time on the training task than the

18 Guojing Zhou et al.

control condition, and there was no significant difference between them on
learning performance. In another study, Iglesias et al. applied another popular
online off-policy approach, Q-learning, to induce policies for efficient learning
[23]. Again, the policy was induced using simulations and evaluated with real
students in a classroom study. Results showed that there was no significant
difference between the RL and the control condition on learning performance,
but the RL condition spent significantly less time on task. More recently, Raf-
ferty et al. applied an online POMDP approach with off-policy tree search to
induce policies for faster learning[36]. They first trained a simulation model
based on pre-collected real student data and then induced RL policies based
on the model. Empirical study results showed that the policies can accelerate
learning as compared to baseline policies.

Offline RL approaches, on the other hand, “take advantage of previously
collected samples and generally provide robust convergence guarantees” [46].
These approaches avoid the possible errors and bias generated by simulations,
but the success of these approaches is often heavily dependent on the quality
of the training data. One common convention for offline policy induction is to
collect data by training students on an ITS that makes random yet reasonable
decisions and then apply RL to induce the policy. Shen et al. applied an offline
approach, value iteration, on a pre-collected training corpus to induce pedagog-
ical policies aimed at improving students’ learning performance [49]. Empirical
classroom study results showed that the RL induced policy was more effective
than the baseline policies for certain students. In another study, Shen et al.
applied an offline POMDP approach to induce two types of policies, one aimed
at improving students’ learning performance and the other targeted at reduc-
ing the time students spend on learning [48]. Classroom study results showed
that the learning-enhancing policy can improve the learning performance for
certain students, and the time-reducing policy can reduce the training time for
certain students. Similarly, Chi et al. applied policy iteration to induce a ped-
agogical policy aimed at improving students’ learning gains [11]. The policy
was evaluated in classroom studies, and results showed that the RL policy can
significantly improve students’ learning performance as compared to baseline
policies. Finally, Mandel et al. applied an offline POMDP approach to induce a
policy that aims to improve student performance in an educational game [28].
In an empirical study, the policy was compared with random and an expert
policy. Results showed that the POMDP policy significantly outperformed the
other two policies.

Overall, previous research suggests that RL is a promising approach for im-
proving student learning and/or behavior in ITSs. However, using RL does not
guarantee effective interventions [16], and the necessity for accurate simula-
tions (online) or large training corpora (offline) has limited the wide use of RL
for pedagogical policy induction. In addition, prior research on applying RL
(both online and offline) for pedagogical policy induction has treated all sys-
tem decisions equally or independently and has not taken decision granularity
into account. In the remainder of this paper, we will refer to these approaches
as flat RL to differentiate them from our new hierarchical RL approach.

HRL policies 19

A considerable amount of prior research has shown that hierarchical rein-
forcement learning (HRL) can be more effective and data-efficient than flat
RL approaches [14,41,34,64,25]. HRL generally breaks down a large decision-
making problem into a hierarchy of small sub-problems and induces a policy for
each of them. Since the sub-problems are small, they usually require less data
to find optimal policies. For example, Cuayáhuitl et al. applied HRL to induce
navigation policies that make decisions at three levels of granularity: buildings,
floors, and corridors. Experimental results showed that HRL converged to an
optimal policy in much fewer iterations than flat RL. Similarly, Peng et al.
applied HRL to induce locomotion control policies that make decisions at two
levels of temporal granularity for path-following and soccer-dribbling [34]. Re-
sults showed that HRL policies can complete tasks that flat RL policies could
not complete. While promising, the use of hierarchy requires additional infor-
mation, such as the transitions and rewards at different levels of granularity,
to induce a policy. A simple and effective way to collect this information is to
explore the environment during learning. Thus, most existing HRL approaches
have been online. In our work, given the great challenges for building accu-
rate simulation models, we induce pedagogical policies in an offline way from
pre-collected data, which prevents us from using online approaches. There-
fore, we propose and apply an offline, off-policy HRL framework to induce the
policy. This line of research represents the first attempts to apply HRL for
pedagogical policy induction.

3.2 Methods – Policy Induction

3.2.1 Policy Induction Data and Challenges

Prior research applying RL to induce pedagogical policies often formalized
student-system interactions as a Markov Decision Processes (MDP). The cen-
tral idea behind RL approaches is to transform the problem of inducing ef-
fective policies into a computational problem of finding an optimal policy for
choosing actions in an MDP. An MDP describes a stochastic control process
using a 4-tuple < S,A, T,R >. In pedagogical policy induction, states S are
often represented by vectors composed of relevant learning environment fea-
tures, such as the percentage of correct attempts a student has made so far
and so on. Actions A are the tutor’s possible actions, such as elicit or tell.
The reward function R is usually calculated from the system’s success mea-
sures, such as students’ learning performance. Once the < S,A,R > has been
defined, the transition probability function T is estimated from the training
corpus.

In this work, the learning environment states are represented using 142 fea-
tures extracted from system logs (See Appendix C for a list of the features).
The features can be grouped into five categories:
Autonomy (10 features): the amount of work done by a student, such as
the number of elicit steps completed nElicit or the number of elicits since the

20 Guojing Zhou et al.

last tell nElicitSinceTell. This category describes the amount of work the stu-
dent has done recently or in a certain period of time.
Temporal (29): time related information about the student’s behavior, such
as the average time per step avgStepTime, or the total time on training so
far timeOnTutoring. This category reflects the student’s working speed or the
amount of effort he/she has put on learning.
Problem Solving (35): information about the current problem solving con-
text, such as problem difficulty problemDifficulty, or the number of principles
needed to solve the problem nPrincipleInProblem. This category provides in-
formation about the current task the student is working on.
Performance (57): information about the student’s performance so far, such
as the percentage of correct principle applications pctCorrectPrin. This cate-
gory reflects the student’s current competence level.
Hints (11): information about the student’s hint usage, such as the total
number of hints requested nHint. This category describes the student’s hint
usage behavior.
The actions are WE, PS and CPS at the problem level and elicit and tell at the
step level. Since our primary interest is to improve students’ final learning, we
used Normalized Learning Gain (NLG) as the reward because it measures stu-
dents’ gain irrespective of their incoming competence. NLG = posttest−pretest√

1−pretest
2 where pretest and posttest refer to the students’ test scores before and after
the ITS training respectively, and 1 is the maximum score.

Based on the definition of < S,A,R >, we transferred system logs into

a dataset D which consists of trajectories d in the form of s1
a1,r1−−−→ s2

a2,r2−−−→
· · · sn

an,rn−−−→. Here si
ai,ri−−−→ si+1 indicates that at the ith turn in d, the learning

environment was in state si, the agent executed action ai and received reward
ri, and then the learning environment transferred into state si+1. Given that
a student’s NLG will not be available until the entire training is completed,
only terminal states have non-zero rewards. Thus for a trajectory d, r1 · · · ,
rn−1 are all equal to 0, and only the final reward rn is equal to the student’s
NLG × 100, which is in the range of (-∞, 100]. Applying this dataset for
offline HRL policy induction, we face at least two challenges: one is that the
rewards in ITSs are often much delayed, and the other is the uncertainty in
our training data. We elaborate on these two challenges below.

In RL policy induction, immediate rewards are generally more effective
than delayed rewards. This is because it is easier to assign appropriate credit
or blame when the feedback is tied to a single decision. The more we delay
the rewards or punishments, the harder it becomes to assign credit or blame
properly. The availability of immediate rewards is especially important when
the training data is limited, because it allows the agent to use the transition
information more efficiently. Immediate rewards are available when the impact
of each individual action can be observed and evaluated immediately. For ex-

2 A square root was used in this definition to reduce the variance and the difference
between different incoming competence groups, see Appendix D for a comparison of two
NLG definitions.

HRL policies 21

ample, in an automatic call center system, the agent can receive an immediate
reward for every question it asks because the impact of each question can be
assessed instantaneously [66].

On the other hand, the most appropriate reward to use in ITS (student
NLG) is typically unavailable until the entire training process is complete. This
is due to the complex nature of the learning process, which makes it difficult
to assess students’ learning moment by moment, and more importantly, many
instructional interventions that boost short-term performance may not be ef-
fective over the long-term. Besides policy effectiveness, another issue raised by
delayed rewards lies in the induction of hierarchical policies. Since each train-
ing problem in our ITS covers different knowledge components, we induce an
independent step-level sub-policy for each of them, and this requires us to
assign a reward to each problem (or each step). To tackle this challenge, we
apply a Gaussian Processes based (GP-based) approach [4] to infer “immediate
rewards” from the delayed rewards.

For the second challenge, there are two sources of uncertainty in our data:
non-determinism in the control process and imperfect observations of students’
knowledge levels. Uncertainty arises in the control process because neither sys-
tem tutorial actions nor students’ knowledge levels deterministically influence
learning outcomes. In addition, students’ underlying knowledge levels are only
indirectly and partially observed through system logs. For example, when the
student correctly applied a domain principle, the logs do not say whether the
student made it by guess or solid inference. Thus, our system logs can be seen
as imperfect observations of students’ learning states.

In recent years, a lot of approaches have been proposed for principled han-
dling of uncertainty for modeling in environments that are dynamic, noisy/
uncertain, observation-costly, and time-sensitive. Among them, GP has been
shown to be a robust, stable, computationally tractable and principled ap-
proach that naturally accommodates these real-world challenges [37]. GP han-
dles uncertainty by using a probabilistic model (a mean and a kernel function)
to represent the target function, which limits the impact of dirty data points.
In function approximation, it starts with a prior mean and kernel function,
which specifies the similarity between data points. Then, it incorporates new
information into the prior model using Bayesian inference to generate a poste-
rior estimation. This process allows us to achieve a good posterior estimation
with just relatively few data points. When applying GP to RL, it recursively
estimates the Q-value function following the Bellman equation until conver-
gence.

Figure 2 shows an overview of the policy induction procedure. From the
raw logs, we first extract student-system interaction trajectories with delayed
rewards; then immediate rewards are inferred using our Gaussian Processes
(GP) based approach; finally, the trajectories with inferred immediate rewards
are used for both HRL and DQN to induce pedagogical policies.

22 Guojing Zhou et al.

Fig. 2 Flow Chart of the HRL policy induction procedure

3.2.2 GP-Based Approach for Immediate Rewards Inference

The GP-Based immediate rewards inference approach takes state-action tra-
jectories s1

a1−→ s2
a2−→ · · · sn

an−−→ and the corresponding delayed rewards R as
the input and outputs a inferred immediate reward ri for each state-action pair
(si, ai). To infer the immediate rewards, we apply GP [37,5] to learn a reward
function that distributes inferred immediate rewards inside each trajectory by
assuming that they follow Gaussian distributions and that these rewards add
up to the delayed reward for each trajectory [4]. The learning objective is to
minimize the additive error of its output rather than the direct output error
[20].

More specifically, in the context of GP, a function can be specified by a
mean and a covariance function. In our case, we first assume a prior reward
function based on our knowledge: r ∼ N (µr,Cr) where µr is the prior mean
and Cr is the prior covariance. Then, we take the delayed rewards as obser-
vations to estimate a posterior reward function: (r|R) ∼ N (E [r|R] ,C [r|R]).
The conditional mean and covariance of the posterior function are calculated
using the theorem of conditional probability density functions for multivariate
Gaussian [17], as shown in the following two equations [4]:

E [r|R] = E [r] + CrRC−1RR (R− E [R]) (1)

C [r|R] = Crr − CrRC−1RRCRr (2)

In these equations, E [r] is the mean of the prior function; CrR and CRr are
the cross-covariance between the delayed rewards and the immediate rewards;
CRR is the covariance matrix of the delayed rewards; R is the observed de-
layed rewards; E [R] is the mean of the observed delayed rewards and Crr is the
covariance matrix of the immediate rewards. Here, E [r] = µr and Crr = Cr

are determined by the prior reward function, and CRR and CrR are estimated
using our data based on the definition of covariance and cross-variance re-
spectively [18]. Next, we will describe how CRR and CrR are calculated with
the assumption that the sum of the immediate rewards equals to the delayed
reward.

For each individual trajectory, we have R =
∑n−1

i=0 γ
iri + ε where R is the

delayed reward for the trajectory, ri is the immediate reward in the ith term,

HRL policies 23

n is the length of the trajectory, γ ∈ [0, 1] is a discount factor, and ε is a white
noise. Here, we assume that the white noise follows an Independent, Identically
Distributed Gaussian distribution with zero mean and variance ε ∼ N

(
0, σ2

R

)
,

where σ2
R is the variance of the delayed rewards. Placing all the trajectories

together, we can represent the summation relationship between immediate and
delayed rewards using matrices: R = Dr + ε where R ∈ Rm with m being the
number of trajectories in our dataset; r ∈ Rl with l =

∑m
i=1 ni, where ni is the

length of trajectory i; ε ∈ Rm is the white noise and D ∈ Rm×l is the reward
transformation matrix in the following form:

D =

n1︷ ︸︸ ︷
1 γ γ2 . . .

n2︷ ︸︸ ︷
0 . . . 0

0 . . . 0 1 γ . . . 0 . . . 0

0
. . .

 (3)

Following the relationship between immediate and delayed reards, we have
E [R] = DE [r] + E [ε] = Dµr. Based on the definition of covariance for CRR

and the definition of cross-variance for CrR, assuming the independence be-
tween r and ε, and because E [rε] = 0 and E [µrε] = 0, we have the following
two equations:

CRR = E[(R− E[R])(R− E[R])T]

= E
[
(Dr + ε−Dµr) (Dr + ε−Dµr)

T
]

= DCrD
T + σ2

RI.

(4)

CrR = E[(r− E[r])(R− E[R])T]

= E
[
(r− µr) (Dr + ε−Dµr)

T
]

= CrD
T.

(5)

Plugging equations 4 and 5 into equations 1 and 2, we can calculate the pos-
terior mean and covariance for the reward function.

3.2.3 An Offline, Off-policy GP-based HRL for Policy Induction

Most HRL research is based upon an extension of MDPs called discrete Semi-
Markov Decision Processes (SMDPs), which add a set of complex activities [6]
or options [55] to the primitive action set. The complex activities can invoke
other activities recursively, thus allowing the hierarchical policy to function.
The complex activities are distinct from the primitive actions in that a complex
activity may contain multiple primitive actions. A complex activity consists
of three elements: a policy π that maps states to each available option, a
termination condition, and an initiation set. A solution to an SMDP is an
optimal policy (π∗), a mapping from state to complex activities or primitive
actions, that maximizes the expected discounted cumulative rewards for each

24 Guojing Zhou et al.

state. In our case, WE, PS, and CPS are complex activities; while elicit and
tell are primitive actions.

Since the complex activities in SMDPs can take a variable number of low-
level activity (or actions) to execute across multiple time steps, it is necessary
to extend the state-transition function to take into account the activity length.
If an activity a in state s takes t′ time steps to be executed, then the state
transition probability function given s and a is defined by the joint distribu-
tion of the result state s′ and the number of time steps t′ the activity a takes:
P (s′, t′|s, a). Accordingly, the expected reward function needs to be extended
to accumulate over the waiting time t′ in s given activity a: R(s, a, t′, s′).
Similar to RL, HRL learns a policy through estimating the Q-value function
Q(s, a), which denotes the expected cumulative rewards the agent will receive
if it takes action a in state s and follows the policy to the end. The optimal
Q-value function Q∗ denotes the expected cumulative rewards the agent can re-
ceive if it follows the optimal policy and Q∗ satisfies the Bellman equation[55].
In SMDPs, the Bellman equation can be rewritten as:

Q∗(s, a) = R(s, a) +
∑
s′,t′

γt
′
P (s′, t′|s, a) max

a′∈A
Q(s′, a′), (6)

where 0 ≤ γ ≤ 1 is a discount factor. Once Q∗ is calculated, the optimal pol-
icy can be easily determined by simply taking the action a with the highest
Q value in state s. For HRL, learning occurs at multiple levels. Global learn-
ing generates a policy for the top-level decisions and local learning generates
a policy for each complex activity. This process retains the fundamental as-
sumptions of RL: that goals are defined by their association with rewards, and
thus the objective is to discover actions that maximize the long-term cumu-
lative reward. Local learning focuses not on learning the best policy for the
overall task but the best policy for the task defined by the complex activity
using local rewards.

In our offline off-policy HRL framework, both problem- and step-level poli-
cies were learned by recursively using the standard Gaussian Processes to
estimate the Q-value function in equation 6. The algorithm is shown in Algo-
rithm 1 (See Appendix E for computational details of using GP for Q-function
approximation). To induce the hierarchical policy, we define a problem-level
semi-MDP for determining whether the next problem should be WE, PS, or
CPS and for each of the training problems, we define a step-level semi-MDP
for inducing a step-level policy to determine elicit vs. tell if a complex activ-
ity CPS is selected for that training problem. Inferred immediate rewards are
used for all semi-MDPs. All 142 features are used to represent the state. To
equalize the impact of each feature, all features are normalized to the range
of [0,1].

Our training corpus was collected from training students on an ITS using
random (yet reasonable) pedagogical decisions at the problem and step levels.
Part of the data were collected from the Granularity studies and the rest
were collected through other data collection efforts. All data were collected
in the same class using the same material and following the same general

HRL policies 25

Algorithm 1 Learning Algorithm for GP based HRL

1: # Input: a dataset D consisting of trajectories in the form of s1
a1,r1−−−−→ s2

a2,r2−−−−→
· · · sn

an,rn−−−−→
2: # Denote the collection of state-action pairs (si, ai) appeared in D as (S̃, Ã)

3: Give each (si, ai) in (S̃, Ã) an initial Q value Q̇(si, ai); denote the resulting

(si, ai; Q̇(si, ai)) collection as (S̃, Ã; Q̃)
4: Converged ←− False
5: Policy decision queue (with capacity m) QUEUE ←− ∅
6: while not Converged do
7: Fit a Q value estimation model GP (s, a) = q based on (S̃, Ã; Q̃)
8: Generate a policy π based on GP (s, a) where π(s) = argmaxaQ(s, a)
9: if QUEUE.length == m then

10: QUEUE.popFirst()

11: Add π’s decisions on S̃ to QUEUE
12: if QUEUE is full and all elements are identical then
13: Converged ←− True

14: Update (S̃, Ã; Q̃) following the bellman equation and using the current GP model,
setting Q̇(si, ai) = r(si, ai) + γmaxa′∈AGP (si+1, a

′)

15: return π

procedure as the Granularity studies. Overall, the training corpus contains
1,118 students’ interaction logs. Each student spent around 2 hours on the ITS
and completed around 400 steps (since students received the same problems,
they all completed around 400 steps).

3.2.4 DQN for Policy Induction

The RL methods we have used for pedagogical policy induction can be roughly
divided into classic RL vs. Deep RL approaches. In classic RL approaches, the
Q-value function is represented using tables or non-neural-network models (in-
cluding GP) while in Deep RL approaches, it is represented using (deep) neural
network. In one of our previous RL studies (mentioned in Section 1.1), we ap-
plied a classic RL approach to induce pedagogical policies, but the RL induced
policies did not significantly outperform random baselines. On the other hand,
in recent years, Deep RL has achieve superhuman performance in many com-
plex tasks, including Atari games [32], Go [51], Chess/Shogi [52], Starcraft
II [63], and robotic control [3]. Deep RL combines deep learning (neural net-
works) and novel reinforcement learning algorithms to handle decision-making
problems. The use of neural networks allows it to handle large and complex
environments, such as the screen of Atari games and the board of Go. Given
that our learning environment is also large and complex (represented by 142
features), we apply Deep RL to induce the step-level policy. Note that we ex-
pect Deep RL to be more effective than classic RL, and thus we chose a weak
classic RL approach to test the effectiveness of HRL. If our classic HRL can
be more effective than DQN, we expect that a Deep HRL approach would also
be.

Prior research has proposed many Deep RL algorithms, including value-
based methods such as DQN [32], Double DQN [60] or Dueling DQN [65];

26 Guojing Zhou et al.

policy-based methods such as Trust Region Policy Optimization [44] or Prox-
imal Policy Optimization [45]; and Actor-Critic methods such as Deep Deter-
ministic Policy Gradients [26] or Soft Actor-Critic [21]. Each of these methods
has its own advantages and drawbacks. In this work, we use the offline Double-
DQN algorithm [60] with prioritized experience replay [43]. More specifically,
it uses a multi-layer perceptron neural network to approximate the Q-function.
The inputs to the neural network are the last 3 step observations of a student
and the outputs are the Q values for each possible step-level action (in our
case, elicit and tell). The network consists of two 64-unit layers with the recti-
fied linear unit (ReLU) activation function (except that the output layer has
no activation function). As a convention for this algorithm, an experience re-
play buffer and a target network are used to stabilize the training. The data
and immediate rewards used for DQN policy induction are identical to those
used for HRL.

3.3 Empirical Experiment

Similar to the Granularity studies, participants in the study were undergrad-
uate students from the discrete math class where the study was given as one
of the regular homework assignments. 180 Students were randomly assigned
into the HRL, DQN, and Baseline conditions (60 for each). Due to prepa-
rations for exams and the length of the experiment, 140 students completed
the study. 3 students who scored perfectly in the pre-test were excluded from
our subsequent analysis. In addition, 9 students who completed the study in
groups were excluded. The remaining 128 students were distributed as follows:
N = 44 for HRL, N = 45 for DQN, and N = 39 for Baseline. A Chi-square
test showed that the participants’ completion rate did not differ by condition:
χ2 (2) = 1.03, p = 0.598. The study followed exactly the same 4-phase proce-
dure as the Granularity studies, covered the same content and used the same
ITS.
Incoming Competence: Despite random assignment, a one-way ANOVA
analysis on the pre-test score showed a marginally significant difference among
the three conditions: F (2, 125) = 2.805, p = 0.064, η = 0.043. Subsequent
contrast analysis showed that DQN scored significantly higher than HRL on
the pre-test: t(125) = 2.06, p = 0.042, d = 0.46 and Baseline: t(125) = 2.01,
p = 0.046, d = 0.46; but there was no significant difference between HRL and
Baseline: t(125) = 0.02, p = 0.986, d = 0.00. The results suggest that while our
random assignment indeed balanced students’ incoming competence between
the HRL and Baseline conditions, it did not do so for the DQN condition.
Therefore, we mainly focus on comparing learning performances that consider
the pre-test differences, that is, the adjusted post-test, and NLG especially the
latter because it is the reward we used for policy induction.

Table 5 shows the mean and standard deviation (SD) of students’ learn-
ing performance and total training time results across three conditions. From
left to right, it shows the conditions with the number of students in the

HRL policies 27

Table 5 HRL Study Results

Improvement Learning Performance

Condition Pre Iso Post Iso NLG Full Post Adj Post NLG Time (h)

HRL(44) 66.4(18.8) 85.8(14.6) 33.3(15.4) 75.3(16.9) 77.1(10.3) 14.3(19.2) 2.19(.64)

DQN(45) 73.9(13.6) 85.2(13.1) 21.0(24.8) 74.2(14.6) 70.8(12.0) -2.2(29.4) 1.81(.58)

Random(39) 66.3(18.9) 80.5(19.5) 23.6(23.1) 69.0(19.6) 70.8(13.8) -0.1(35.0) 1.97(.52)

Fig. 3 Comparisons of learning performance among the HRL, DQN and Baseline conditions

parentheses, pre-test (Pre), isomorphic post-test (Iso Post), isomorphic NLG
(Iso NLG), full post-test (Full Post), adjusted post-test (Adj Post), full NLG
(NLG), and Total training time in hours (Time).

Improvement from training: Isomorphic Post-test: To measure the im-
provement students made through training, we compared their isomorphic
post-test scores with their pre-test scores. A repeated measures analysis using
test type (pre-test vs. isomorphic post-test) as a factor and test score as the
dependent measure showed a main effect for test type: F (1, 127) = 158.63,
p < 0.0001, η = 0.555 in that students scored significantly higher in the
isomorphic post-test than in the pre-test. More specifically, all three condi-
tions scored significantly higher in the isomorphic post-test than in the pre-
test: F (1, 43) = 110.74, p < 0.0001, η = 0.720 for HRL, F (1, 44) = 34.73,
p < 0.0001, η = 0.441 for DQN, and F (1, 38) = 38.47, p < 0.0001, η = 0.503
for Baseline. This suggests one more time that the ITS training is effective.

Isomorphic NLG: Based on the pre- and isomorphic post-test, we calcu-
lated the isomorphic NLG. Results showed that all three conditions had a great
learning gain with the lowest one scoring 21.0, as shown in Figure 3.b. This
suggests that our ITS indeed helps student learn. A one-way ANOVA analysis
on the isomorphic NLG showed that there was a significant difference among
the three conditions: F (2, 125) = 4.04, p = 0.020, η = 0.061. Subsequent
contrast analysis showed that the HRL condition scored significantly higher
than the DQN condition: t(125) = 2.72, p = 0.008, d = 0.60 and the Baseline
condition: t(125) = 2.06, p = 0.042, d = 0.50. The difference between DQN
and Baseline was not significant. The results suggest that the HRL policy is
significantly more effective than the DQN policy and the Baseline policy.

28 Guojing Zhou et al.

Learning Performance: Adjusted Post-test: To comprehensively evaluate
students’ learning performance, we conducted analyses on their adjusted post-
test score and NLG, which are calculated based on the pre- and full post-
test. An ANCOVA analysis on the full post-test using the pre-test score
as a covariate showed a significant difference among the three conditions:
F (2, 124) = 3.86, p = 0.024, η = 0.030. Figure 3.a shows a comparison of
the adjusted post-test scores among the three conditions, which are calculated
by adjusting the full-post test scores using the pre-test scores based on a lin-
ear model generated by ANCOVA analysis. Contrast analysis on the adjusted
post-test scores showed that the HRL condition scored significantly higher
than the DQN condition: t(125) = 2.47, p = 0.015, d = 0.56 and the Baseline
condition: t(125) = 2.37, p = 0.020, d = 0.52. No significant difference was
found between DQN and Baseline.

NLG: Similarly, a one-way ANOVA analysis showed that there was a sig-
nificant difference among the three conditions: F (2, 125) = 4.39, p = 0.014,
η = 0.066, as shown in Figure 3.c. Contrast analysis revealed that HRL scored
significantly higher than DQN: t(125) = 2.75, p = 0.007, d = 0.66 and Base-
line: t(125) = 2.30, p = 0.023, d = 0.52. Again, no significant difference was
found between DQN and Baseline. Overall, the results suggest again that the
HRL policy significantly outperformed the DQN and the Baseline policy.

Time on Task: A one-way ANOVA analysis showed a significant differ-
ence among the three conditions: F (2, 125) = 4.74, p = 0.010, η = 0.071.
More specifically, the HRL condition (M = 2.19, SD = .64 in hours) spent
significantly more time than the DQN condition (M = 1.81, SD = .58):
t(125) = 3.07, p = 0.003, d = 0.62 and marginally significantly more time
than the Baseline condition (M = 1.97, SD = .52): t(125) = −1.75, p = 0.082,
d = 0.39.

Tutor Decisions: Note that during ITS training, two of the 12 problems were
fixed to be PS and the policies made decisions on the remaining 10 problems,
which are the focus of our analysis. Figure 4 shows the problem-level decisions
each student in the HRL condition received. During training, students received
0 to 5 WEs (M = 0.95, SD = 1.16), 0 to 10 PSs (M = 5.07, SD = 2.58) and
0 to 9 CPSs (M = 3.98, SD = 2.49). The results suggest that at the problem
level, the HRL policy is more likely to choose PS and CPS than WE. Among
the 44 students in the HRL conditions, 40 distinct patterns of WE, PS, and
CPS on the 10 problems were found. This suggests that the HRL policy can
make personalized decisions.

Table 6 Step-Level Tutor Decisions

Condition Elicit Tell Pct Tell

HRL 309.0(60.4) 88.7(66.1) 22.0(15.9)

DQN 205.8(51.6) 188.9(53.0) 47.8(13.0)

Baseline 200.5(15.9) 203.5(17.4) 50.4(2.48)

HRL policies 29

Fig. 4 Problem level decisions for the HRL policy, blue for WE, red for PS and purple for
CPS. The X-axis shows the training problems in the order they appeared, and the Y-axis
shows the students ordered by their pre-test scores, with the highest on the top.

Fig. 5 Percentage of Elicit for the a. HRL, b. DQN and c. Random Baseline policies’ step-
level decisions on each problem. The higher the percentage, the darker a cell is. Problem-level
decisions in HRL were set to white. The X-axis shows the training problems in the order
they appeared, and the Y-axis shows the students ordered by their pre-test scores, with the
highest on the top.

The step-level analysis focuses on the elicits and tells students received.
To conduct an analysis across the three conditions, we transferred problem
level WE and PS into step level tells and elicits. Table 6 shows the number
of step-level decisions students received across the three conditions. Form left
to right, it shows the condition, the number of elicits (Elicit) and tells (Tell),
and finally the percentage of tells (Pct Tell). A one-way ANOVA analysis
on the percentage of tells showed a significant difference among the three
conditions: F (2, 125) = 71.47, p < 0.0001, η = 0.533. Subsequent contrast
analysis showed that the HRL condition received significantly less tells than

30 Guojing Zhou et al.

the DQN condition: t(125) = −10.00, p < 0.0001, d = 1.78 and the Baseline
condition: t(125) = −10.60, p < 0.0001, d = 2.42. In addition, HRL and DQN
had a much higher SD in tell percentage than Baseline. This suggests that the
HRL and DQN policies made more personalized decisions than the Baseline
policy.

To examine how the HRL and DQN policies tailored the step-level decisions
for individual students, we calculated the percentage of elicit on each training
problem each student received. Figure 5 shows the percentage of elicit pattern
for the HRL, DQN, and Baseline conditions respectively. From the figures we
can see that the HRL and DQN policies indeed made personalized decisions.
The HRL policy gave more elicits than tells while DQN seems to have balanced
them. Finally, as expected, the Baseline policy seems to have balanced the
amount of elicits and tells in every problem. In some cases, a CPS can turn
into a WE or PS. Among the 175 CPSs selected by the HRL policy, 45 (25.7%)
turned into PSs and 3 (1.7%) turned into WEs. For the DQN policy, 31 (6.9%)
out of 450 CPSs turned into PSs and 19 (4.2%) turned into WEs. However,
the Baseline (random) policy did not turn any CPS into WE or PS.

4 Conclusions and General Discussion

In this work, we first investigated the impact of granularity on student learning
and then explored taking decision granularity into account in data-driven ped-
agogical policy induction. In a series of classroom studies, we compared three
types of granularity: problem-level only (Prob-Only), step-level only (Step-
Only) and both the problem and step levels (Both). Overall, results showed
that there was no significant difference among the three conditions on learn-
ing performance. However, a two-factor analysis on granularity and incoming
competence showed that Prob-Only may be less effective for High students,
Step-Only may be less effective for Low ones, and Both can be effective for
both High and Low students. The results suggest that WE, PS, and CPS
are different types of learning activities, and their effects depend on students’
competence level. An implication of the results is that effective systems should
adapt WE, PS, and CPS to students’ learning state. To create such two-level
adaptive interventions, we proposed and applied an offline, off-policy GP-based
HRL framework to induce a hierarchical pedagogical policy that makes deci-
sions first at the problem level and then at the step level. When there are
decisions to make, it first decides whether the next problem should be a WE,
PS, or CPS. If CPS is selected, a corresponding HRL induced step-level policy
will be activated to decide whether to elicit or tell on each step. In an empirical
classroom study, we compared the HRL policy with a DQN-induced step-level
policy and a random step-level Baseline policy. Results showed that the HRL
policy was significantly more effective than the DQN policy and the Baseline
policy, and no significant difference was found between the latter two. For
time on task, there was no significant difference between the HRL and Base-
line conditions, but the former (HRL) spent significantly more time than the

HRL policies 31

DQN condition. Finally, log analysis suggests that both the HRL and DQN
policies made personalized decisions and that the HRL policy was more likely
to choose PS and CPS than WE.

Both the Granularity studies and the HRL study suggest that making
Both-level decisions can be more effective then using a single level. This sup-
ports our intuition that decision granularity can have an impact on student
learning. One potential explanation is that WE, PS, and CPS involve differ-
ent learning mechanisms. Here, we argue that in WEs, students learn from
observing; in PSs, students learn from doing; while in CPSs, they learn from
co-constructing the solution with the tutor. For the Granularity studies, Both-
level decisions allow students to experience all of them, which reduces the
chance that the intervention is ineffective during the entire training. For the
HRL study, explicitly selecting WE vs. PS vs. CPS at the problem level in-
creases the likelihood that the most appropriate activity is chosen. Although
step-level models can also construct WE and PS with tells and elicits, without
explicit problem-level decisions, it is less likely to do so. However, this is only
our hypothesis, and more research is needed to understand the exact learning
mechanism behind WE, PS, and CPS.

The HRL study results are in line with the prior findings that adaptive
decision-making can improve student learning [33,42]. Generally speaking,
adaptive pedagogical policies can be more effective than fixed ones because
the former can better consider students’ learning dynamics. Fixed policies are
usually designed based on assumptions of students’ knowledge change during
training. For example, the expertise reversal effect suggests providing learning
activities in the WE-FWE-PS order [38,47]. That’s based on the assumption
that students’ knowledge levels grow as the training proceeds. This is gener-
ally true, but the actual circumstance can be more complicated. Students may
start the training with different incoming competence and learn at different
rates. Thus, a pre-determined policy can hardly meet all students’ learning
needs perfectly and is generally not sensitive to unexpected situations. Adap-
tive pedagogical policies, on the other hand, make decisions based on real-time
observations of students’ learning states and thus are more likely to be effec-
tive. Prior research has also shown that adaptive policies can be more effective
than fixed ones [33,42].

Although the decisions made according to the HRL policy are effective,
the decisions cannot be well-explained by existing theories. For example, the
cognitive load theory suggests that Low competence students should be given
more WEs or tells, but we did not find such a trend in our analysis. The
expertise reversal effect suggests that decisions should be made in the WE-
FWE-PS order, but we found no trend showing this order. Results from the
Granularity studies generally suggest that step-level decisions can be relatively
more effective for High competence students, and problem-level decisions can
be relatively more effective for Low ones. However, we found no implication
that the HRL policy made decisions following this effect either. In fact, the
HRL policy did not give more CPS to High incoming competence students
nor select more CPS in the late phase of training. One possible reason for

32 Guojing Zhou et al.

that is student learning is a dynamic process. Students who had relatively
high competence at the beginning of training may not retain that level of
competence after several problems and similarly, those who had relatively low
competence in the early stage of training may not still have a lower competence
in later stages. Additionally, the training problems were organized in increasing
difficulty order. Students good at solving easy problems may not always be
good at solving difficult ones. Given that our HRL policy may consider these
dynamics in decision-making, it is not surprising that a complicated pattern
was generated. However, more investigation is needed to understand why the
HRL policy made decisions in that way.

Analysis of the HRL policy’s decision-making suggests that it indeed made
personalized decisions. Its selection of WE vs. PS vs. CPS varied a lot among
individual students. Some students received all 10 training problems as PS,
while some others received a maximum of 9 CPSs. For WE, while students in
the HRL condition received less than one on average, some received as many as
5. This suggests that from the HRL policy’s perspective, each of the activities
can be effective for certain students but ineffective for some others, and thus
individualized decision-making is desired in tutoring. In addition, the results
also suggest that WE, PS, and CPS all can be the best action to take for
the HRL policy, and thus support our hypothesis that they involve different
learning mechanisms.

Our log analysis showed that the HRL policy sometimes elicits or tells all
the steps in a problem. They may appear to be the same for students, but the
system’s underlying decision-making processes are different. When the tutor
decides step-level adaptation is not needed for a problem, it selects WE or
PS. Otherwise, it selects CPS. But in CPS, the step-level policy may decide
to elicit or tell all the steps in the problem, turning it effectively (from the
student perspective) into problem-level PS or WE. There are two possibilities
for this situation. One is that students’ learning state changed while completing
the problem, and the step-level policy adapted the intervention accordingly
for the change. The other one is that the problem- and step-level policies
have inconsistent goals. Theoretically, the problem-level policy makes decisions
to maximize students’ learning over the whole training; while each step-level
policy makes decisions to maximize the outcome for the current problem. It
is possible that in some cases, CPS is the most effective intervention for long-
term learning; while to elicit/tell all the steps is the best decision for the
current problem. Thus, a CPS is turned into a WE or PS. In this sense, while
the step-level policy can turn a CPS into a WE or PS, a problem-level policy
is still needed to make sure that the intervention is effective over the long
term. In other words, different levels of granularity contribute differently to
student learning. However, this is only our hypothesis, more research is needed
to understand why the HRL policy turned CPS into WE or PS.

From the machine learning perspective, our results are in line with prior
findings that HRL can be more effective than flat RL given the same amount
of data. In our work, the better performance of HRL may be explained by
the use of the two-level learning structure. At the problem level, a problem

HRL policies 33

is viewed as an atomic action. This abstraction aggregates the effects of all
the steps in a problem, and thus may allow the HRL agent to better capture
the effect and reward of taking a problem-level activity (WE vs. PS vs. CPS).
Additionally, it converts a long step-level sequence into a short problem-level
sequence, which may give the agent a better view of the long-term effects of
each problem. At the step level, it still allows the HRL agent to fine tailor the
instruction as flat RL approaches may do. In the policy induction procedure,
the two-level learning structure may allow sequential information to propagate
more efficiently over long trajectories and still retain the flexibility in tailoring
the instruction. Theoretically, flat RL could learn the impact of a problem by
aggregating step-level information, but there is no guarantee that it would.

As our data set contains only 1,118 students, insufficient data may be a
reason that DQN did not generate an effective policy. Since each step-level
trajectory includes hundreds of steps and there are noise and uncertainty in
the student learning data, it may be difficult for the agent to estimate the long
term impact of each action through directly propagating and accumulating
step-level information. Additionally, the deep neural network used in DQN
may require a large amount of data to reach a good convergence. In this
sense, our work showed that HRL can be more effective than flat RL when a
limited amount of data is available. It is still an open question whether the
advantage of HRL still exists with large data sets. However, given the high
cost for collecting student learning data, HRL can be a reasonable option for
inducing adaptive pedagogical policies.

Due to limited group size, in the HRL study, we were not able to split
students into different incoming competence groups for analysis. This leaves
questions about the effectiveness of HRL across different students open. Would
HRL policies benefit students at all competence levels? For which incoming
competence group(s) are HRL policies more effective than flat RL policies?
These are interesting questions for future research.

One limitation of our offline off-policy HRL framework is that it is compu-
tationally expensive. Theoretically, GP has O(n3) time complexity and O(n2)
space complexity (in our case, n is the total number of problems/steps in
the training trajectories). This makes it practically difficult to improve policy
quality through using more data as well as apply our approach to tasks with
large data sets. In the future, we will reduce the computational complexity
of our HRL approach to make it suitable for large data sets. One possible
solution towards this goal is to replace GP with methods that have lower com-
putational complexity, such as neural networks. For example, we may build a
neural network to infer the immediate rewards. The network takes state-action
sequences as input, uses a hidden neuron to generate the inferred reward for
each state-action unit in the sequence, and outputs the summation of the in-
ferred immediate rewards. During training, we train the network to minimize
the difference between the summation of the inferred rewards and the actual
delayed rewards. Once the training is done, we can use the resulting model
to infer rewards by taking the output value of the hidden neurons that gener-

34 Guojing Zhou et al.

ate immediate rewards. Similarly, we can use a regression neural network to
replace the GP Q-value function approximator in the HRL algorithm.

Another limitation lies in the interpretability of the HRL and DQN poli-
cies. Both policies are represented by a complicated non-linear model with a
lot of parameters, which performs a lot of computation to make a decision.
The complex models make it very challenging to extract simple and human-
understandable decision-making rules from those policies. As a result, it is
hard to understand how the learning environment features are used by the
models for effective decision-making. Moreover, since HRL and DQN are rep-
resented by different models with different structures, there is no existing way
to directly compare their decision-making process.

The third limitation is we did not compare our data-driven HRL policy with
a broader range of policies, such as the learning-theory-based policy designed
by Najar et al. [33]. One challenge for this type of comparison is that theory-
based policies often require additional information to function. For example,
the policy designed by Najar et al. [33] requires measurements of students’
cognitive state to make decisions. Since our training data is collected with
a procedure that does not include such measurements, currently, we cannot
directly compare an HRL policy with a learning-theory-based policy using the
same procedure. Without such comparisons, questions about the benefits of
making two-level decisions remain open. How effective HRL policies can be as
compared to theory-based policies? In what circumstances is making two-level
decisions more effective than one-level? We will investigate these questions in
the future.

To summarize, this work investigated the impact of decision granularity on
student learning and applied hierarchical reinforcement learning (HRL) to in-
duce pedagogical policies. Results from the granularity studies showed that the
impact of granularity depends on students’ competence level in that problem
level may be less effective for High incoming competence students, step level
may be less effective for Low ones, and Both levels can be effective both High
and Low students. The results suggest that adapting decision granularity to
students’ competence level may lead to better learning outcome than focusing
on one level of granularity. To test this hypothesis, we proposed and applied an
offline, off-policy Gaussian Processes based Hierarchical Reinforcement Learn-
ing (HRL) framework to induce a hierarchical pedagogical policy that makes
decisions at both the problem and step levels. Results from an empirical class-
room study showed that the HRL policy was significantly more effective than
a DQN induced step-level policy and a random yet reasonable step-level pol-
icy. Our results confirm the intuition that HRL should outperform flat RL on
pedagogical policy induction because it can simultaneously learn at two levels
of granularity - the problem-level outer loop and the step-level inner loop.

HRL policies 35

5 Acknowledgements:

This research was supported by the NSF Grants: CAREER: Improving Adap-
tive Decision Making in Interactive Learning Environments(1651909), Inte-
grated Data-driven Technologies for Individualized Instruction in STEM Learn-
ing Environments(1726550), Generalizing Data-Driven Technologies to Im-
prove Individualized STEM Instruction by Intelligent Tutors (2013502), and
Educational Data Mining for Individualized Instruction in STEM Learning
Environments (1432156).

References

1. Anderson, J.R.: Problem solving and learning. American Psychologist 48(1), 35 (1993)
2. Anderson, J.R., Corbett, A.T., Koedinger, K.R., Pelletier, R.: Cognitive tutors: Lessons

learned. The journal of the learning sciences 4(2), 167–207 (1995)
3. Andrychowicz, M., Baker, B., et al.: Learning dexterous in-hand manipulation. arXiv

preprint arXiv:1808.00177 (2018)
4. Azizsoltani, H., Kim, Y.J., Ausin, M.S., Barnes, T., Chi, M.: Unobserved is not equal

to non-existent: Using gaussian processes to infer immediate rewards across contexts.
IJCAI pp. 1974–1980 (2019)

5. Azizsoltani, H., Sadeghi, E.: Adaptive sequential strategy for risk estimation of engineer-
ing systems using gaussian process regression active learning. Engineering Applications
of Artificial Intelligence 74(July), 146–165 (2018)

6. Barto, A.G., Mahadevan, S.: Recent advances in hierarchical reinforcement learning.
Discrete event dynamic systems 13(1-2), 41–77 (2003)

7. Beck, J., Woolf, B.P., Beal, C.R.: Advisor: A machine learning architecture for intelligent
tutor construction. AAAI/IAAI 2000(552-557), 1–2 (2000)

8. Chaiklin, S., et al.: The zone of proximal development in vygotsky’s analysis of learning
and instruction. Vygotsky’s educational theory in cultural context 1, 39–64 (2003)

9. Chi, M., Vanlehn, K.: Accelerated future learning via explicit instruction of a problem
solving strategy. FRONTIERS IN ARTIFICIAL INTELLIGENCE AND APPLICA-
TIONS 158, 409 (2007)

10. Chi, M., VanLehn, K.: Meta-cognitive strategy instruction in intelligent tutoring sys-
tems: How, when, and why. Educational Technology & Society 13(1), 25–39 (2010)

11. Chi, M., VanLehn, K., Litman, D., Jordan, P.: Empirically evaluating the application of
reinforcement learning to the induction of effective and adaptive pedagogical strategies.
User Modeling and User-Adapted Interaction 21(1-2), 137–180 (2011)

12. Clement, B., Oudeyer, P.Y., Lopes, M.: A comparison of automatic teaching strategies
for heterogeneous student populations. In: EDM 16-9th International Conference on
Educational Data Mining (2016)

13. Cronbach, L.J., Snow, R.E.: Aptitudes and instructional methods: A handbook for
research on interactions. Irvington (1977)

14. Cuayáhuitl, H., Dethlefs, N., Frommberger, L., Richter, K.F., Bateman, J.: Generating
adaptive route instructions using hierarchical reinforcement learning. In: International
Conference on Spatial Cognition, pp. 319–334. Springer (2010)

15. Doroudi, S., Aleven, V., Brunskill, E.: Robust evaluation matrix: Towards a more prin-
cipled offline exploration of instructional policies. In: Proceedings of the fourth (2017)
ACM conference on learning@ scale, pp. 3–12 (2017)

16. Doroudi, S., Aleven, V., Brunskill, E.: Where’s the reward? International Journal of
Artificial Intelligence in Education 29(4), 568–620 (2019). DOI 10.1007/s40593-019-
00187-x. URL https://doi.org/10.1007/s40593-019-00187-x

17. Eaton, M.L.: Multivariate statistics: a vector space approach. JOHN WILEY & SONS,
INC., 605 THIRD AVE., NEW YORK, NY 10158, USA, 1983, 512 pp. 116–117 (1983)

18. Feller, W.: An introduction to probability theory and its applications, vol. 2. John
Wiley & Sons (2008)

36 Guojing Zhou et al.

19. Goldberg, P.W., Williams, C.K., et al.: Regression with input-dependent noise: A gaus-
sian process treatment. In: NIPS, pp. 493–499 (1998)

20. Guo, D., Shamai, S., Verdú, S.: Mutual information and minimum mean-square error in
gaussian channels. IEEE Transactions on Information Theory 51(4), 1261–1282 (2005)

21. Haarnoja, T., Zhou, A., et al.: Soft actor-critic algorithms and applications.
arXiv:1812.05905 (2018)

22. Iglesias, A., Mart́ınez, P., Aler, R., Fernández, F.: Learning teaching strategies in an
adaptive and intelligent educational system through reinforcement learning. Applied
Intelligence 31(1), 89–106 (2009)

23. Iglesias, A., Mart́ınez, P., Aler, R., Fernández, F.: Reinforcement learning of pedagogical
policies in adaptive and intelligent educational systems. Knowledge-Based Systems
22(4), 266–270 (2009)

24. Kalyuga, S., Renkl, A.: Expertise reversal effect and its instructional implications: In-
troduction to the special issue. Instructional Science 38(3), 209–215 (2010)

25. Kulkarni, T.D., Narasimhan, K., Saeedi, A., Tenenbaum, J.: Hierarchical deep reinforce-
ment learning: Integrating temporal abstraction and intrinsic motivation. In: Advances
in neural information processing systems, pp. 3675–3683 (2016)

26. Lillicrap, T.P., Hunt, J.J., et al.: Continuous control with deep reinforcement learning.
arXiv preprint arXiv:1509.02971 (2015)

27. Liz, B., Dreyfus, T., Mason, J., Tsamir, P., Watson, A., Zaslavsky, O.: Exemplification
in mathematics education. In: Proceedings of the 30th Conference of the International
Group for the Psychology of Mathematics Education, vol. 1, pp. 126–154. ERIC (2006)

28. Mandel, T., Liu, Y.E., Levine, S., Brunskill, E., Popovic, Z.: Offline policy evaluation
across representations with applications to educational games. In: Proceedings of the
2014 international conference on Autonomous agents and multi-agent systems, pp. 1077–
1084. International Foundation for Autonomous Agents and Multiagent Systems (2014)

29. McLaren, B.M., van Gog, T., Ganoe, C., Yaron, D., Karabinos, M.: Exploring the
assistance dilemma: Comparing instructional support in examples and problems. In:
Intelligent Tutoring Systems, pp. 354–361. Springer (2014)

30. McLaren, B.M., Isotani, S.: When is it best to learn with all worked examples? In:
International Conference on Artificial Intelligence in Education, pp. 222–229. Springer
(2011)

31. McLaren, B.M., Lim, S.J., Koedinger, K.R.: When and how often should worked exam-
ples be given to students? new results and a summary of the current state of research.
In: CogSci, pp. 2176–2181 (2008)

32. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves,
A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through
deep reinforcement learning. Nature 518(7540), 529 (2015)

33. Najar, A.S., Mitrovic, A., McLaren, B.M.: Adaptive support versus alternating worked
examples and tutored problems: Which leads to better learning? In: UMAP, pp. 171–
182. Springer (2014)

34. Peng, X.B., Berseth, G., Yin, K., Van De Panne, M.: Deeploco: Dynamic locomotion
skills using hierarchical deep reinforcement learning. ACM Transactions on Graphics
(TOG) 36(4), 41 (2017)

35. Phobun, P., Vicheanpanya, J.: Adaptive intelligent tutoring systems for e-learning sys-
tems. Procedia-Social and Behavioral Sciences 2(2), 4064–4069 (2010)

36. Rafferty, A.N., Brunskill, E., Griffiths, T.L., Shafto, P.: Faster teaching via pomdp
planning. Cognitive science 40(6), 1290–1332 (2016)

37. Rasmussen, C.E.: Gaussian processes in machine learning. In: Advanced lectures on
machine learning, pp. 63–71. Springer (2004)

38. Renkl, A., Atkinson, R.K., Maier, U.H., Staley, R.: From example study to problem
solving: Smooth transitions help learning. The Journal of Experimental Education
70(4), 293–315 (2002)

39. Rowe, J., Mott, B., Lester, J.: Optimizing player experience in interactive narrative
planning: a modular reinforcement learning approach. In: Tenth Artificial Intelligence
and Interactive Digital Entertainment Conference (2014)

40. Rowe, J.P., Lester, J.C.: Improving student problem solving in narrative-centered learn-
ing environments: A modular reinforcement learning framework. In: International Con-
ference on Artificial Intelligence in Education, pp. 419–428. Springer (2015)

HRL policies 37

41. Ryan, M., Reid, M.: Learning to fly: An application of hierarchical reinforcement learn-
ing. In: In Proceedings of the 17th International Conference on Machine Learning.
Citeseer (2000)

42. Salden, R.J., Aleven, V., Schwonke, R., Renkl, A.: The expertise reversal effect and
worked examples in tutored problem solving. Instructional Science 38(3), 289–307
(2010)

43. Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. arXiv
preprint arXiv:1511.05952 (2015)

44. Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P.: Trust region policy opti-
mization. In: International conference on machine learning, pp. 1889–1897 (2015)

45. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy opti-
mization algorithms. arXiv preprint arXiv:1707.06347 (2017)

46. Schwab, D., Ray, S.: Offline reinforcement learning with task hierarchies. Machine
Learning 106(9-10), 1569–1598 (2017)

47. Schwonke, R., Renkl, A., Krieg, C., Wittwer, J., Aleven, V., Salden, R.: The worked-
example effect: Not an artefact of lousy control conditions. Computers in Human Be-
havior 25(2), 258–266 (2009)

48. Shen, S., Ausin, M.S., Mostafavi, B., Chi, M.: Improving learning & reducing time: A
constrained action-based reinforcement learning approach. In: Proceedings of the 26th
Conference on User Modeling, Adaptation and Personalization, pp. 43–51. ACM (2018)

49. Shen, S., Chi, M.: Reinforcement learning: the sooner the better, or the later the better?
In: Proceedings of the 2016 Conference on User Modeling Adaptation and Personaliza-
tion, pp. 37–44. ACM (2016)

50. Shih, B., Koedinger, K.R., Scheines, R.: A response time model for bottom-out hints as
worked examples. Handbook of educational data mining pp. 201–212 (2011)

51. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering
the game of go with deep neural networks and tree search. nature 529(7587), 484
(2016)

52. Silver, D., Hubert, T., Schrittwieser, J., et al.: A general reinforcement learning algo-
rithm that masters chess, shogi, and go through self-play. Science 362(6419), 1140–1144
(2018)

53. Snow, R.E.: Aptitude-treatment interaction as a framework for research on individual
differences in psychotherapy. Journal of consulting and clinical psychology 59(2), 205
(1991)

54. Stamper, J.C., Eagle, M., Barnes, T., Croy, M.: Experimental evaluation of automatic
hint generation for a logic tutor. In: International Conference on Artificial Intelligence
in Education, pp. 345–352. Springer (2011)

55. Sutton, R.S., Precup, D., Singh, S.: Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning. Artificial intelligence 112(1-2), 181–
211 (1999)

56. Sweller, J., Cooper, G.A.: The use of worked examples as a substitute for problem
solving in learning algebra. Cognition and Instruction 2(1), 59–89 (1985)

57. Swetz, F.: To know and to teach: Mathematical pedagogy from a historical context.
Educational Studies in Mathematics 29(1), 73–88 (1995)

58. Swetz, F.J.: Capitalism and arithmetic: the new math of the 15th century, including the
full text of the Treviso arithmetic of 1478, translated by David Eugene Smith. Open
Court Publishing (1987)

59. Van Gog, T., Kester, L., Paas, F.: Effects of worked examples, example-problem, and
problem-example pairs on novices’ learning. Contemporary Educational Psychology
36(3), 212–218 (2011)

60. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double q-
learning. In: AAAI, vol. 2, p. 5. Phoenix, AZ (2016)

61. Vanlehn, K.: The behavior of tutoring systems. IJAIED 16(3), 227–265 (2006)
62. VanLehn, K., Bhembe, D., Chi, M., Lynch, C., Schulze, K., Shelby, R., Taylor, L.,

Treacy, D., Weinstein, A., Wintersgill, M.: Implicit versus explicit learning of strategies
in a non-procedural cognitive skill. In: International Conference on Intelligent Tutoring
Systems, pp. 521–530. Springer (2004)

38 Guojing Zhou et al.

63. Vinyals, O., Babuschkin, I., Czarnecki, W., et al.: Grandmaster level in starcraft ii using
multi-agent reinforcement learning. Nature 575, 350 (2019)

64. Wang, X., Chen, W., Wu, J., Wang, Y.F., Yang Wang, W.: Video captioning via hier-
archical reinforcement learning. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4213–4222 (2018)

65. Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., De Freitas, N.: Dueling
network architectures for deep reinforcement learning. arXiv preprint arXiv:1511.06581
(2015)

66. Williams, J.D.: The best of both worlds: unifying conventional dialog systems and
pomdps. In: INTERSPEECH, pp. 1173–1176 (2008)

67. Zhou, G., Azizsoltani, H., Ausin, M.S., Barnes, T., Chi, M.: Hierarchical reinforcement
learning for pedagogical policy induction. In: International Conference on Artificial
Intelligence in Education (2019)

68. Zhou, G., Chi, M.: The impact of decision agency & granularity on aptitude treatment
interaction in tutoring. In: Proceedings of the 39th annual conference of the cognitive
science society, pp. 3652–3657 (2017)

69. Zhou, G., Lynch, C., Price, T.W., Barnes, T., Chi, M.: The impact of granularity on
the effectiveness of students’ pedagogical decision. In: Proceedings of the 38th annual
conference of the cognitive science society, pp. 2801–2806 (2016)

70. Zhou, G., Price, T.W., Lynch, C., Barnes, T., Chi, M.: The impact of granularity on
worked examples and problem solving. In: Proceedings of the 37th annual conference
of the cognitive science society, pp. 2817–2822 (2015)

71. Zhou, G., Wang, J., Lynch, C., Chi, M.: Towards closing the loop: Bridging machine-
induced pedagogical policies to learning theories. In: EDM (2017)

72. Zhou, G., Yang, X., Azizsoltani, H., Barnes, T., Chi, M.: Improving student-tutor inter-
action through data-driven explanation of hierarchical reinforcement induced pedagog-
ical policies. In: In proceedings of the 28th Conference on User Modeling, Adaptation
and Personalization. ACM (2020)

HRL policies 39

Appendices

A An Example Training Problem

Table 7 shows an example of the training problem. Steps in the problem are packed as a
series of main steps. In training, students need to first select the main step to work on and
then carry it out. To reduce students’ typing and calculation load, the tutor completes the
specific “specify given” and “solve equation” procedure for them, as shown in the “Tutor”
column.

Table 7 An Example Training Problem

Given event A, B and C with p(A) = 0.8, p(B) = 0.6, p(C) = 0.9

and A, B and C are independent events, find p(∼ A∩ ∼ B∩ ∼ C).

Step Student Tutor

1 Select main step: specify given A = 0.8

2 Select main step: specify sought set p(A ∩ B ∩ C) as sought

3 Select main step: specify given B = 0.6

4 Select main step: specify given C = 0.9

5 Select main step: apply principle -

set A ∩ B ∩ C as target

6 Select principle: Independent Theorem -

7 Apply principle (enter equation1):

p(∼ A∩ ∼ B∩ ∼ C) = p(∼ A) ∗ p(∼ B) ∗ p(∼ C) -

8 Select main step: apply principle -

9 Select target variable ∼ A -

10 Select principle: Complement Theorem -

11 Apply principle: p(∼ A) + p(A) = 1 (eq2) -

12 Select main step: apply principle -

13 Select target variable ∼ B -

14 Select principle: Complement Theorem -

15 Apply principle: p(∼ B) + p(B) = 1 (eq3) -

16 Select main step: apply principle -

set ∼ C as target

17 Select principle: Complement Theorem -

18 Apply principle: p(∼ C) + p(C) = 1 (eq4) -

19 Select main step: solve equation solve eq4

20 Select main step: solve equation solve eq3

21 Select main step: solve equation solve eq2

22 Select main step: solve equation solve eq1

23 Select main step: quit move to next problem

40 Guojing Zhou et al.

B Analysis on Granularity and Incoming Competence with Median Split

Table 8 Learning Performance and Time on Task Results with Median Split

Group Pre Iso Post Post Adj Post Time (hours)

ProbH(53) 86.4(6.9) 88.9(11.0) 80.3(14.6) 71.1(14.0) 1.86(.73)

StepH(47) 87.3(5.8) 92.8(7.6) 85.2(10.8) 75.4(10.3) 2.14(.48)

BothH(47) 86.3(5.6) 92.5(8.5) 85.4(13.0) 76.3(12.2) 1.77(.49)

ProbL(52) 60.8(12.6) 78.3(17.5) 67.6(19.2) 75.7(16.4) 1.66(.54)

StepL(58) 59.5(10.4) 74.3(18.1) 62.2(17.7) 71.2(15.1) 1.88(.57)

BothL(41) 57.1(13.5) 77.6(15.5) 64.7(15.7) 75.3(16.3) 1.90(.54)

Table 8 shows the test score and training time results for the High and Low incoming
competence groups (split by the median of pre-test). A two-way ANCOVA analysis for the
Full post-test on the factors of granularity and incoming competence using the pre-test score
as a covariate showed a marginally significant interaction effect: F (2, 291) = 2.59, p = 0.077,
η = 0.011. But there was no significant main effect of granularity or incoming competence.
Subsequent contrast analysis showed that for High students, there was a trend that the
BothH group scored higher than the ProbH group: t(291) = 1.81, p = 0.071, d = 0.39.
The StepH group also scored 4.3 points higher than the ProbH group, but the difference
was not significant: t(291) = −1.53, p = 0.127, d = 0.35. The StepH and BothH groups
scored similarly with no significant difference: t(291) = 0.28, p = 0.782, d = 0.07. For
Low students, there was a trend that the ProbL group scored higher than the StepL group:
t(291) = 1.66, p = 0.098, d = 0.29. BothL also seems to score higher than StepL, but the
difference was not significant: t(291) = 1.38, p = 0.168, d = 0.26. ProbL and BothL scored
similarly with no significant difference: t(291) = −0.16, p = 0.870, d = 0.02.

For time on task, a two-way ANOVA analysis on granularity and incoming compe-
tence showed a significant interaction effect: F (2, 292) = 3.15, p = 0.044, η = 0.020
and a significant main effect of granularity: F (2, 292) = 4.89, p = 0.008, η = 0.031 in
that Prob-Only and Both spent less time than Step-Only: t(295) = −3.00, p = 0.003,
d = 0.40 and t(295) = −2.08, p = 0.039, d = 0.32 respectively. Subsequent contrast anal-
ysis showed that for High students, StepH spent significantly more time than ProbH and
BothH : t(292) = 2.47, p = 0.014, d = 0.45 and t(292) = 3.20, p = 0.002, d = 0.77 respec-
tively; but there was no significant difference between ProbH and BothH : t(292) = −0.83,
p = 0.406, d = 0.15. For Low students, StepL and BothL spent significantly more time
than ProbL: t(292) = 2.07, p = 0.039, d = 0.40 and t(292) = 2.00, p = 0.047, d = 0.44 re-
spectively; but there was no significant difference between StepL and BothL: t(292) = 0.11,
p = 0.915, d = 0.02.

C Features Used for State Representation

C.1 Autonomy

Autonomy features describe the amount of work the student or the tutor has done, either
recently or over a long period. The following 4 features describe the amount of work the
student or the tutor has done recently.

– ntellsSinceElicit: The number of tells the student has received since the last elicit.
– ntellsSinceElicitKC: ntellsSinceElicit for the current KC.

HRL policies 41

– nElicitSinceTell: The number of elicits the student has received since the last tell.
– nElicitSinceTellKC: nElicitSinceTell for the current KC.

The following 6 features describe the amount of work the student or the tutor has done over
a long period.

– pctElicit: The total number of elicit steps divided by the total number of steps the
students have received so far.

– pctElicitKC: pctElicit for the current KC.
– pctElicitSession: pctElicit for the current session.
– pctElicitKCSession: pctElicit for the current KC and the current session.
– nTellSession: the total number of tells the student has has received so far in the current

session.
– nTellKCSession: nTellSession for the current KC.

C.2 Temporal

Temporal features describe time-related information, such as the amount of time the student
has spent on the current session or on a specific KC. The following five features are calculated
based on the difference between the two timestamps, such as the difference between the
current timestamp and the beginning of the current session.

– durationKCBetweenDecision: The time since the last tutorial decision was made on the
current KC.

– timeInSession: The time that has elapsed since the start of the current session.
– timeBetweenSession: The time elapsed between the end of the previous session and the

beginning of the current one.
– timeOnCurrentProblem: The time elapsed since the start of the current problem.
– timeOnLastStepKCElicit: the time the student spent on the last elicit step with the

same KC as the current step.

In the following, the total time is defined as the summation of the time student has spent
on certain steps that were the focus of the training. All other intervals, such as between
problem intervals or time spent on irrelevant steps, were excluded. The following 12 features
describe the total amount of time the student has spent on certain materials.

– timeOnTutoring: The total time the student has spent on the tutoring.
– timeOnTutoringTell: The total time the student has spent on tells.
– timeOnTutoringElicit: The total time the student has spent on Elicits.
– timeOnTutoringKC: The total time the student has spent on the current KC.
– timeOnTutoringKCTell: The total time the student has spent on the current KC with

tell.
– timeOnTutoringKCElicit: The total time the student has spent on the current KC with

elicit.
– timeOnTutoringSession: The total time the student has spent on the current session.
– timeOnTutoringSessionTell: timeOnTutoringSession with tells.
– timeOnTutoringSessionElicit: timeOnTutoringSession with elicits.
– timeOnTutoringProblem: The total time the student has spent on the current problem.
– timeOnTutoringProblemTell: timeOnTutoringProblem with tells.
– timeOnTutoringProblemElicit: timeOnTutoringProblem with elicits.

The following 12 features describe the student’s working speed.

– avgTimeOnStep: The average time the student spent on each step.
– avgTimeOnStepTell: The average time the student spent on each tell step.
– avgTimeOnStepElicit: The average time the student spent on each elicit step.
– avgTimeOnStepKC: avgTimeOnStep for the current KC.
– avgTimeOnStepKCTell: avgTimeOnStepTell for the current KC.
– avgTimeOnStepKCElicit: avgTimeOnStepElicit for the current KC.
– avgTimeOnStepSession: avgTimeOnStep for the current session.
– avgTimeOnStepSessionTell: avgTimeOnStepTell for the current session.
– avgTimeOnStepSessionElicit: avgTimeOnStepElicit for the current session.
– avgTimeOnStepProblem: avgTimeOnStep for the current problem.
– avgTimeOnStepProblemTell: avgTimeOnStepTell for the current problem.
– avgTimeOnStepProblemElicit: avgTimeOnStepElicit for the current problem.

42 Guojing Zhou et al.

C.3 Problem Solving

Problem solving features describe the context of the learning environment, such as the
difficulty of the current problem and the students’ progress. The following seven features
describe the student’s progress and the amount of practice they have done.

– stepOrdering: The total number of steps the student has received so far.
– stepOrderingSession: stepOrdering for the current session.
– stepOrderingPb: stepOrdering for the current problem.
– nKCs: The number of steps the student has completed for the current KC.
– nKCsAsElicit: The number of elicit steps the student has completed for the current KC.
– nKCsSession: nKCs for the current session.
– nKCsSessionElicit: nKCsAsElicit for the current session.

The following nine features describe the category and difficulty level of the current problem
or step.

– earlyTraining: For the first two problems and the first conditional probability problem,
the value is 1 and for the rest, the value is 0.

– simpleProblem: For the first two problems and the first two conditional probability
problems, the value is 1 and for the rest, the value is 0.

– newLevelDifficulty: If the current problem is more complicated than the prior problem,
the value is 1; otherwise, the value is 0. In our case, the value is one for the first, third,
fifth, eighth, tenth, and twelfth problem.

– performanceDifficulty: Students’ average performance on the current KC (calculated
based on our historical data). More specifically correct elicits

total elicits
across all students.

– principleDifficulty: The difficulty of the principle needed for the current step, which
depends on the equation of the principle. If the step does not require a probability
principle, the value is 1 (easiest).

– principleCategory: If the current step requires a probability theorem principle, the value
is 1; if it requires a conditional probability principle, the value is 2; and if it does not
require a probability principle the value is 0.

– problemDifficulty: The difficulty of the current problem, which is calculated based on
the principles needed to solve the problem.

– problemComplexity: The value of this feature is determined by the number of princi-
ple applications needed to solve the current problem, 2 for easy problems (first, eighth,
eleventh), 3 for medium problems (second, third, ninth and tenth) and 4 for hard prob-
lems (fourth, fifth, sixth, seventh, and twelfth).

– problemCategory: If the problem does not require any conditional probability principle
to solve, the value is 0, otherwise the value is 1.

The following three features describe the number of principles that appeared in the current
problem or session.

– nPrincipleInProblem: The number of principles needed to solve the current problem
(some principles may be applied more than once).

– nDistinctPrincipleInSession: The total number of distinct principles that have appeared
in the current session.

– nPrincipleInSession: The total number of principles appeared in the current session.

The following nine features describe the tutor’s use of words and probability concepts.

– nTutorConceptsSession: The number of probability concepts the tutor has mentioned
so far in the current session.

– tutAverageConcepts: The average number of probability concepts the tutor has men-
tioned in each step.

– tutAverageConceptsSession: tutAverageConcepts for the current session.
– tutConceptsToWords: The number of probability concepts the tutor has mentioned di-

vided by the total number of words the tutor has used so far.
– tutConceptsToWordsSession: tutConceptsToWords for the current session.
– tutAverageWords: the average number of words the tutor used in each step.
– tutAverageWordsSession: tutAverageWords for the current session.

HRL policies 43

– tutAverageWordsElicit: the average number of words the tutor used in each elicit step.
– tutAverageWordsSessionElicit: tutAverageWordsElicit for the current session.

The following feature is about quantitative and qualitative steps.

– quantitativeDegree: The number of quantitative steps (select principle and apply prin-
ciple) the student has received divided by the total number of steps the student has
completed.

The following six features describe the number of each probability principles needed to
solve the current problem. Conditional probability principles are not included because they
are not heavily needed for problem solving (in terms of occurrence), and the conditional
probability problems appear late in the training process.

– nAdd2Prob: The number of times the Addition Theorem for Two Events is needed to
solve the current problem.

– nAdd3Prob: The number of times the Addition Theorem for Three Events is needed to
solve the current problem.

– nDeMorProb: The number of times the De Morgan’s Theorem is needed to solve the
current problem.

– nIndeProb: The number of times the Independent Theorem is needed to solve the current
problem.

– nCompProb: The number of times the Complement Theorem is needed to solve the
current problem.

– nMutualProb: The number of times the Mutually Exclusive Theorem is needed to solve
the current problem.

C.4 Performance

Performance features describe the students’ competence level. The following twelve features
describe the performance measures calculated based on the number of correct/incorrect
steps or the percentage of correct steps.

– pctCorrect: The number of elicit steps the student has correctly solved (on the first
attempt) divided by the total number of elicit steps the student has received so far.

– pctOverallCorrect: Denote the number of tell steps the student has received so far as
tells, the number of elicit steps the student has correctly solved as correct elicits, and
the total number of steps the student has received so far as steps. The feature value is
calculated following the equation tells+correct elicits

steps
.

– nCorrectKC: The total number of elicit steps the student has correctly solved for the
current KC so far.

– nIncorrectKC: The total number of elicit steps the student failed to solve on the first
attempt for the current KC so far.

– pctCorrectKC: pctCorrect for the current KC.
– pctOverallCorrectKC: pctOverallCorrect for the current KC.
– nCorrectKCSession: nCorrectKC for the current session.
– nIncorrectKCSession: nIncorrectKC for the current session.
– pctCorrectSession: pctCorrect for the current session.
– pctCorrectKCSession: pctCorrectKC for the current session.
– pctOverallCorrectSession: pctOverallCorrect for the current session.
– pctOverallCorrectKCSession: pctOverallCorrectKC for the current session.

The following twelve features describe certain types of steps the student has received since
the last wrong elicit step.

– nStepSinceLastWrong: The number of steps (both elicit and tell) the student has com-
pleted since the last wrong elicit step (where the student failed the first attempt).

– nStepSinceLastWrongKC: nStepSinceLastWrong for the current KC.
– nTellsSinceLastWrong: The number of tell steps the student has received since the last

wrong elicit step.
– nTellsSinceLastWrongKC: nTellsSinceLastWrong for the current KC.
– nStepSinceLastWrongSession: nStepSinceLastWrong for the current session.

44 Guojing Zhou et al.

– nStepSinceLastWrongKCSession: nStepSinceLastWrong for the current KC in the cur-
rent session.

– nTellsSinceLastWrongSession: nTellsSinceLastWrong for the current session.
– nTellsSinceLastWrongKCSession: nTellsSinceLastWrong for the current KC in the cur-

rent session.
– timeSinceLastWrongStepKC: The time that has elapsed since the last wrong elicit step

for the current KC.
– nCorrectElicitStepSinceLastWrong: The number of elicit steps the student has success-

fully solved since the last wrong elicit step.
– nCorrectElicitStepSinceLastWrongKC: nCorrectElicitStepSinceLastWrong for the cur-

rent KC.
– nCorrectElicitStepSinceLastWrongKCSession: nCorrectElicitStepSinceLastWrong for the

current KC in the current session.

The following eight features describe students’ performance on the steps that require a
probability principle (the select- or apply-principle steps).

– pctCorrectPrin: pctCorrect for the steps that require a probability principle.
– pctCorrectPrinSession: pctCorrectPrin for the current session.
– nStepSinceLastWrongPrin: nStepSinceLastWrong for the steps that require a probabil-

ity principle.
– nTellsSinceLastWrongPrin: nTellsSinceLastWrong for the steps that require a probabil-

ity principle.
– nStepSinceLastWrongPrinSession: nStepSinceLastWrongPrin for the current session.
– nTellsSinceLastWrongPrinSession: nTellsSinceLastWrongPrin for the current session.
– nCorrectElicitStepSinceLastWrongPrin: nCorrectElicitStepSinceLastWrong for the steps

that require a probability principle.
– nCorrectElicitStepSinceLastWrongPrinSession: nCorrectElicitStepSinceLastWrongPrin

for the current session.

The following four features describe students’ performance on the first occurred select- and
apply-principle steps in each problem, which are more complicated than the rest of principle-
realted steps.

– pctCorrectFirst: pctCorrect for the first occurred select- and apply-principle steps in
each problem.

– nStepsSinceLastWrongFirst: nStepSinceLastWrong for the first occurred select- and
apply-principle steps in each problem.

– nTellsSinceLastWrongFirst: nTellsSinceLastWrong for the first occurred select- and apply-
principle steps in each problem.

– nCorrectElicitStepSinceLastWrongFirst: nCorrectElicitStepSinceLastWrong for the first
occurred select- and apply-principle steps in each problem.

The following two features describe students performance on the last problem.

– pctCorrectLastProb: pctCorrect for all the steps in the last problem.
– pctCorrectLastProbPrin: pctCorrect for all the steps that require a probability principle

in the last problem.

The following 18 features describe students’ current competence on the six probability prin-
ciples.

– pctCorrectAdd2Select: pctCorrect for the select-principle steps that require selecting
the Addition Theorem for Two Events.

– pctCorrectAdd3Select: pctCorrect for the select-principle steps that require selecting
the Addition Theorem for Three Events.

– pctCorrectCompSelect: pctCorrect for the select-principle steps that require selecting
the Complement Theorem.

– pctCorrectDeMorSelect: pctCorrect for the select-principle steps that require selecting
the De Morgan’s Law.

– pctCorrectIndeSelect: pctCorrect for the select-principle steps that require selecting the
Independent Theorem.

HRL policies 45

– pctCorrectMutualSelect: pctCorrect for the select-principle steps that require selecting
the Mutually Exclusive Theorem.

– pctCorrectAdd2Apply: pctCorrect for the apply-principle steps that require entering
the equation of the Addition Theorem for Two Events.

– pctCorrectAdd3Apply: pctCorrect for the apply-principle steps that require entering
the equation of the Addition Theorem for Three Events.

– pctCorrectCompApply: pctCorrect for the apply-principle steps that require entering
the equation of the Complement Theorem.

– pctCorrectDeMorApply: pctCorrect for the apply-principle steps that require entering
the equation of the De Morgan’s Law.

– pctCorrectIndeApply: pctCorrect for the apply-principle steps that require entering the
equation of the Independent Theorem.

– pctCorrectMutualApply: pctCorrect for the apply-principle steps that require entering
the equation of the Mutually Exclusive Theorem.

– pctCorrectAdd2All: pctCorrect for the select- or apply-principle steps that require the
Addition Theorem for Two Events.

– pctCorrectAdd3All: pctCorrect for the select- or apply-principle steps that require the
Addition Theorem for Three Events.

– pctCorrectCompAll: pctCorrect for the select- or apply-principle steps that require the
Complement Theorem.

– pctCorrectDeMorAll: pctCorrect for the select- or apply-principle steps that require the
De Morgan’s Law.

– pctCorrectIndeAll: pctCorrect for the select- or apply-principle steps that require the
Independent Theorem.

– pctCorrectMutualAll: pctCorrect for the select- or apply-principle steps that require the
Mutually Exclusive Theorem.

The following feature describes students’ competence in selecting main steps.

– pctCorrectSelectMain: pctCorrect for the steps that require the student to select the
next main step.

C.5 Hints

The following five features describe the number of hints the student requested in a certain
period.

– nTotalHint: The total number of hints the student has requested so far.

– nTotalHintSession: nTotalHint for the current session.

– nHintKC: nTotalHint for the current KC.

– nHintSessionKC: nTotalHint for current KC in the current session.

– nTotalHintProblem: nTotalHint for the current problem.

The following six features describe the student’s hint request behavior or working behavior
in hint-requested steps.

– AvgTimeOnStepWithHint: The average time the students spent on each hint-requested
step.

– durationSinceLastHint: The time that has elapsed since the last hint was requested.

– stepsSinceLastHint: The number of steps the student has completed since the last hint-
requested step.

– stepsSinceLastHintKC: stepsSinceLastHint for the current KC.

– totalTimeStepsHint: The total time the student has spent on hint-requested steps.

– totalStepsHint: The total number of steps where hints were requested.

46 Guojing Zhou et al.

D Two NLG Definitions

In order to choose a reliable reward measure, we compared two NLG definitions posttest−pretest
1−pretest

and posttest−pretest√
1−pretest , using the data collected in the Granularity studies. Table 9 shows a

comparison of the two NLG scores for the High and Low groups respectively (to be consis-
tent with the score range in the main paper, all numbers are timed 100). As expected, the
square root can reduce the variance, especially for the High group (from 120.24 to 35.18).
In addition, the square root rose the average of High from -35.79 to -10.04 and reduced the
average of Low from 15.23 to 10.15, which reduced the difference between the High and Low
groups from 51.02 to 20.19.

Table 9 A Comparison of the Two NLG Definitions

Definition High Low

posttest−pretest
1−pretest -35.79(120.24) 15.23(38.73)

posttest−pretest√
1−pretest -10.04(35.18) 10.15(24.98)

E Gaussian Processes for Q-function Approximation

The standard GP Regression is used to approximate the Q function. Remind that in the
context of GP, a function can be specified by the mean and a covariance function. In Q-
function approximation, it takes state-action-Q observations (S,A)→ Q and a prior covari-
ance function (kernel) as input and specifies the Q-function’s posterior mean and covariance:

ˆ(Q
π

)
′ ∼ N

(
ˆ(Q
π

)′ , COV(ˆ(Q
π

)
′
)

)
. To model possible uncertainty, we add an Independent

and Identically-Distributed noise to the prior covariance function: E ∼ N
(
0,σ2

n

)
. Accord-

ing to the theorem of conditional probability density functions for multivariate Gaussians

[37], the mean, ˆ(Q
π

)′ , and covariance COV(ˆ(Q
π

)
′
) of the posterior distribution can be

calculated using the following two equations [19,37]:

ˆ(Q
π

)′ = K
(
X

′
,X
) [
K (X,X) + σ2

nI
]−1 ˆ(Q

π
) (7)

COV(ˆ(Q
π

)
′
) = K

(
X

′
,X

′)
+ CQ̂π −K

(
X

′
,X
)

[
K (X,X) + σ2

nI
]−1

K
(
X,X

′)
.

(8)

where X is the observation points (the state-action pairs (S,A) in our training data), ˆ(Q
π

)
and CQ̂π are the mean and covariance matrix of the corresponding observed Q values for

the (S,A) pairs, X
′

is the approximation points (the state-action pairs whose Q-value GP
estimates), σ2

n is a parameter, K (X,X) is a covariance matrix evaluated on the obser-

vation points, K
(
X

′
,X

′
)

is a covariance matrix evaluated on the approximation points,

and K
(
X,X

′
)

is a covariance matrix evaluated on the observation and approximation

points [37].

