
Tackling the Credit Assignment Problem in
Reinforcement Learning-Induced Pedagogical

Policies with Neural Networks

Markel Sanz Ausin[0000−0002−4526−9252], Mehak Maniktala,
Tiffany Barnes, and Min Chi[0000−0003−1765−7837]

North Carolina State University, Raleigh, NC, 27695, USA
{msanzau,mmanikt,tmbarnes,mchi}@ncsu.edu

Abstract. Intelligent Tutoring Systems (ITS) provide a powerful tool
for students to learn in an adaptive, personalized, and goal-oriented man-
ner. In recent years, Reinforcement Learning (RL) has shown to be ca-
pable of leveraging previous student data to induce effective pedagogical
policies for future students. One of the most desirable goals of these poli-
cies is to maximize student learning gains while minimizing the training
time. However, this metric is often not available until a student has com-
pleted the entire tutor. For this reason, the reinforcement signal of the
effectiveness of the tutor is delayed. Assigning credit for each intermedi-
ate action based on a delayed reward is a challenging problem denoted
the temporal Credit Assignment Problem (CAP). The CAP makes it
difficult for most RL algorithms to assign credit to each action. In this
work, we develop a general Neural Network-based algorithm that tack-
les the CAP by inferring immediate rewards from delayed rewards. We
perform two empirical classroom studies, and the results show that this
algorithm, in combination with a Deep RL agent, can improve student
learning performance while reducing training time.

Keywords: Pedagogical Agent · Credit Assignment Problem · Deep Re-
inforcement Learning.

1 Introduction

Recent advances in Machine Learning have enabled the creation of algorithms
that allow us to optimize certain desired metrics, for a large and diverse pool
of users. Reinforcement Learning (RL), in particular, has shown great promise
in the last few years, due to its effectiveness in inducing a policy to maximize a
reward function while interacting with a non-stationary environment. In recent
years, the combination of RL with deep neural networks has enabled solving
very complex tasks. Deep RL (DRL) has achieved notable successes in a variety
of complex tasks such as robotic control [2] and the game of Go [32]. Despite
DRL’s great success, there are still many challenges preventing DRL from being
applied more broadly in practice, including applying it to educational systems
such as Intelligent Tutoring Systems (ITSs).

2 M. Sanz Ausin et al.

ITSs and other educational software tools have gained popularity in recent
years. These systems allow educators to provide a personalized learning process
to each student, without needing to personally supervise the process. These
e-learning environments often rely on pedagogical policies to decide how each
problem or each part of the system is going to be displayed for a given user. The
sequential decision-making nature of DRL, combined with its ability to learn
from a reward function, makes it a perfect fit to induce pedagogical policies for
ITSs and optimize the learning process for each student individually. However,
most ITSs have a delayed reward function by design. These systems need to assess
the overall learning process of each student, and they generally follow a standard
structure of pre-test, training on the ITS, and post-test, where the learning
improvement is measured. In this situation, discovering which of the tutor’s
actions are responsible for the delayed outcome can present a challenge. Because
of this, the ability of DRL to be broadly effective in real-world applications is
still unproven. In such delayed reinforcement tasks, a reward rt obtained at time
t, may have been affected by all the actions leading to that time-step: a0, a1,
..., at−1, and at. Assigning credit or blame for each of those actions individually
is known as the (temporal) Credit Assignment Problem (CAP) [19]. The
CAP is particularly relevant for real-world tasks, where we need to learn effective
policies from small, limited training datasets. In prior work, one way to mitigate
the impact of the CAP is to use model-based RL [33, 6] or simulations, which
allow collecting vast amounts of data. However, in many real-life domains such as
healthcare and education, building accurate simulations is especially challenging
because disease progression and student learning are rather complex processes.

The most appropriate rewards to use in education are the student learning
outcomes, which are typically unobservable until the entire training process or
trajectory is complete. This is because, in human learning progressions, it is dif-
ficult to assess student knowledge moment by moment, and more importantly,
many instructional interventions that boost short-term performance may not be
effective over the long term. To address the CAP, we present a general neu-
ral network-based algorithm to infer the immediate rewards from the delayed
reward, and then use those inferred immediate rewards for pedagogical policy
induction. In this work, we used an ITS that is designed to teach students how
to solve logic proofs. We applied DRL to induce a pedagogical policy on one of
the most widely studied types of tutorial decisions: whether to present a problem
as a Problem Solving (PS) or a Worked Example (WE) [35, 16, 23, 26, 21,
24, 12, 40, 13, 31, 27, 29].

In this work, we compared two DRL-based pedagogical policies against an
Expert baseline policy and a PS-only policy, in two empirical classroom studies
with college students. During the Spring 2019 semester, the DRL pedagogical
policy first inferred the immediate rewards from the delayed rewards using a
Gaussian Processes approach introduced by Azizsoltani et al. [5], and then a
DQN agent [20] used those rewards to induce a pedagogical policy, referred to
as InferGP in the future. InferGP is compared against an Expert-crafted policy
that alternates between PS and WE. Next, during the Spring 2020 semester, we

Tackling the CAP in RL-Induced Pedagogical Policies 3

inferred the immediate rewards using InferNet, the algorithm we present in this
paper, and then trained a Dueling-DQN agent [39] to induce a policy; InferNet
is compared against a PS-only policy because most conventional ITSs are PS
only. As the two DQN-based policies used different scores as reward functions for
training, they cannot be directly compared with one another. Rather, we compare
each of those RL-induced policies to the two control groups: Expert and PS-
only. Our results show that while no significant difference was found between
InferGP, Expert and PS-only in terms of learning gains or learning efficiency,
InferNet outperforms the Expert group in terms of learning performance, and
InferNet also outperforms the PS-only group in terms of learning efficiency. In
short, our proposed InferNet in conjunction with a Dueling-DQN policy results
in better and more efficient learning than traditional pedagogical strategies such
as Expert-crafted policies or PS-only policies.

2 Background and Related Work

Prior research has applied both online RL and offline RL to induce data-driven
pedagogical policies. In online RL, the agent learns a policy while interacting
with either real or simulated student data, while offline RL approaches “use pre-
viously collected samples, and generally provide robust convergence guarantees”
[25] and thus, the success of these offline RL approaches depends heavily on
the quality of the training data. Furthermore, prior work can be divided into
traditional RL vs. DRL approaches. In the former, for instance, Iglesias et al.
applied Q-learning to induce policies for efficient learning [10, 11]. More recently,
Rafferty et al. applied an online partially observable Markov decision process
(POMDP) to induce policies for faster learning [22]. Shen et al. employed of-
fline value iteration and least square policy iteration to induce a pedagogical
policy that improved student learning [30, 28]. Chi et al. applied offline policy
iteration to induce a pedagogical policy aimed at improving students’ learning
gain [7]. Mandel et al. [15] used an offline POMDP to induce a policy which
aims to improve student performance in an educational game. All the models
described above were evaluated in classroom studies and were found to yield
certain improved student learning or performance relative to a baseline policy.

The DRL approaches have been motivated by the recent growth in using Deep
Neural Networks as function approximation. For instance, the Deep Q-Network
(DQN) algorithm [20] takes advantage of convolutional neural networks to learn
to play Atari games observing the pixels directly. Since then, DRL has achieved
success in various complex tasks such as the games of Go [32], Chess/Shogi [33],
Starcraft II [37], and robotic control [2]. One major challenge of these methods is
sample inefficiency, where RL policies need large sample sizes to learn optimal,
generalizable policies. DRL has also been applied to ITSs. Wang et al. applied
an online DRL approach to induce a policy for adaptive narrative generation in
an educational game using simulations [38]; the resulting DRL-induced policies
were evaluated via simulations only. Sanz Ausin et al. used offline DRL to induce
pedagogical policies and showed that they can improve student learning, and
can be more effective than expert-designed baseline policies [3, 4]. Much prior

4 M. Sanz Ausin et al.

Algorithm 1 InferNet + DRL Offline

1: Input: Training dataset D, Number of training steps K
2: for step← 1 to K do
3: Sample mini-batch of episodes B ∼ D with Delayed Rewards Rdel

4: Train InferNet on B: L(θ) = (Rdel −
∑T−1

t=0
f(st, at)|θ))2

5: end for
6: for ep← 1 to |D| do
7: Use the trained InferNet to infer immediate rewards for episode ep
8: Replace original rewards with the new InferNet rewards
9: end for

10: Train DRL agent

work has induced a pedagogical policy by using DRL directly, while this work
combines a mechanism that tackles the CAP, and a DRL algorithm to induce
more effective policies.

3 InferNet

The ultimate goal of InferNet is to tackle the temporal CAP by inferring the
immediate rewards from the delayed rewards. We model the environment as a
standard Markov Decision Process. At time-step t, the environment is in some
state st, the agent takes an action at, and receives a scalar reward rt, which in
the case of delayed rewards is zero unless it is the last reward in the episode,
i.e., at the end of the entire trajectory (the delayed reward). We denote the
immediate rewards as r and the delayed rewards as Rdel.

The idea behind InferNet is rather straightforward. It uses a deep neural
network to predict the immediate reward at each time-step, for an episode
that contains T steps. At each time step t, InferNet receives a state st and
its corresponding action at as inputs, and it outputs the predicted scalar re-
ward rt for that time-step: rt = f(st, at|θ), where θ indicates the neural net-
work parameters (weights and biases). To train the neural network, InferNet
distributes the final delayed reward among all the states in the episode. More
precisely, the neural network is trained to predict the immediate rewards from
the delayed reward with a constraint: the sum of all the predicted immediate
rewards in each episode must be equal to the delayed reward of that episode:
Rdel = f(s0, a0|θ) + f(s1, a1|θ) + ... + f(sT−1, aT−1|θ). By doing so, the net-
work is tasked with modeling the reward function, conditioned on the state and
actions that were passed as inputs. InferNet is trained by minimizing the loss
between the sum of predicted rewards and the delayed reward.

For the implementation, the TimeDistributed layer available on TensorFlow
Keras [1, 8] was employed. This layer allows repeating the same neural network
operation across multiple time-steps, sharing weights across time, and we use
it to pass the entire episode at once to the neural network, as a sequence of
states and action pairs. It should be noted that there is no internal state in
InferNet, despite sharing weights across time as in a recurrent neural network.

Tackling the CAP in RL-Induced Pedagogical Policies 5

Each predicted reward is only dependent on the state and action passed as inputs
at that timestep. The loss function that is used to train InferNet is shown in
Equation 1. Algorithm 1 shows the pseudo-code for training InferNet offline in
conjunction with a DRL algorithm.

Loss(θ) = (Rdel −
T−1∑
t=0

f(st, at|θ))2 (1)

4 GridWorld With Delayed Reinforcement

The effectiveness of InferNet is investigated on a simple GridWorld task where
the immediate rewards are known. This allows us to compare the predicted
inferred rewards to the true immediate rewards, and measure the error. This
environment consists of a 14x7 grid, with five positive rewards (+1) and four
negative rewards (-1), located randomly, but always in the same locations. All
other states have a reward of zero. The initial state is located at the bottom-
right corner of the grid, and the agent’s goal is to reach the terminal state,
located at the top-left corner while collecting the positive rewards and avoiding
the negative ones. The three available actions are to move up, left, and down.
The highest total return that can be collected is +5, while the lowest one is -4.

We compare four reward settings: 1) Immediate rewards: when available,
they are the gold standard. 2) Delayed rewards: these rewards are used as a
baseline; here all the intermediate rewards will be zero and the delayed reward
that indicates how good or bad the intermediate actions are is provided at the
end of the episode. In other words, we simulate the delayed rewards by “hiding”
the immediate rewards and providing the sum of all the immediate rewards at
the end of the episode. 3) InferGP rewards: the inferred immediate rewards using
the GP algorithm proposed in [5]. 4) InferNet rewards: the inferred immediate
rewards through InferNet.

In this experiment, we compared different reward settings using both online
and offline RL. InferNet can be trained online and offline, while InferGP can
only be applied for offline RL. For online RL, we used an online RL algorithm
known for being capable of solving the CAP, the TD(λ) algorithm; while for
offline RL, we used Q-learning, which is one of the best known RL approaches.
Online TD(λ): TD(λ) is known to be one of the strongest methods to solve the
CAP [34] in that it takes advantage of the benefits of Temporal Difference (TD)
learning methods, and includes eligibility traces, which allows the agent to look
at all the future rewards to estimate the value of each state. Here we compared
InferNet against the delayed and immediate rewards because InferGP cannot
be applied for online RL. Figure 1 (Left) shows that by minimizing the training
error in Eq. 1 (the difference between the delayed reward and the sum of inferred
immediate rewards) (red line), InferNet minimizes the true error (the difference
between the inferred immediate rewards and the true immediate rewards) (blue
line) when trained online. This shows that our method can effectively approxi-
mate the true immediate rewards from the delayed reward.

Figure 1 (Right) shows that when the rewards are delayed, TD(λ) is not able
to learn as effectively as the agent with the true immediate rewards. However, by

6 M. Sanz Ausin et al.

Fig. 1. Online Training. Left: Training InferNet online. Right: Performance of a TD(λ)
agent on the GridWorld environment.

Fig. 2. Offline Training. Left: Performance of Q-Learning agents as a function of the
number of training episodes. Right: Empirical time complexity comparison between
InferNet and InferGP.

applying InferNet first on the delayed rewards, the InferNet agent achieves the
same performance as using the immediate rewards; both converge to the optimal
policy. Each experiment is repeated five times with different random seeds, and
Figure 1 (Right) shows the mean and standard deviation of those runs.

Offline Q-Learning: In this experiment, we compared all four reward settings.
We first generate random gameplay data with immediate rewards from the Grid-
World; then sum the immediate rewards in each episode to get its corresponding
delayed reward; and finally, apply InferGP and InferNet to infer the correspond-
ing rewards from the delayed reward. To compare the four reward settings, we
train a tabular Q-learning agent offline for 5000 iterations on the dataset corre-
sponding to each reward setting. For each of the four reward settings, once its
corresponding RL policy is induced, its effectiveness is evaluated by interacting
with the GridWorld environment directly for 50 episodes. Figure 2 (left) shows
the mean and standard deviation of the performance of the agent, as a function
of the number of episodes available in the training dataset. It shows that, as
expected, the delayed policy performs poorly, while the Immediate policy can
converge to the optimal policy after only 10 episodes of data; additionally, Infer-
Net and InferGP are comparable and both can converge to the optimal policy
but they need more training data (around 150 episodes) than the Immediate
policy.

Tackling the CAP in RL-Induced Pedagogical Policies 7

Time Complexity: Despite the fact that the performance of InferNet and
InferGP is comparable for offline RL, Figure 2 (Right) shows that the training
time of InferGP increases cubically O(n3) as the training data increases, while
InferNet has a time complexity of O(n), where n is the amount of training
data. This is because InferNet only needs to be trained for a constant number
of epochs. Furthermore, InferGP has an asymptotic space complexity of O(n2),
while InferNet has a space complexity of O(f ∗ l), where f is the number of
features in the state and action that are passed as inputs, and l is the length of
the episode that is passed as input.

In short, InferNet is equivalent to InferGP in performance (as shown by the
results in the GridWorld), but its time and space complexity are much better
than those of InferGP. InferNet can be applied for both offline and online RL,
which makes it much more effective and general, and RL algorithms can benefit
greatly from using it to tackle the CAP.

5 Pedagogical Policy Induction

Next we describe how we use InferNet to induce pedagogical policies for an
intelligent tutor. We focus on training a pedagogical policy to decide how to show
a problem in one of two ways: Problem-Solving (PS) vs. Worked Example (WE).
If PS is chosen, students are shown a problem, which they need to complete. In
WE, the students are provided with an expert, step-by-step solution to the
problem. A great deal of prior research has investigated the effectiveness of
PS vs. WE as educational interventions [35, 18, 17, 16, 23, 26, 21, 24]. In general,
evidence indicates that showing WEs can significantly reduce the total time on
task while not hurting the learning performance too much [18, 17, 16]. On the
other hand, alternating between PS and WE can be more effective than PS only
[35, 16, 23, 26, 21, 24]. Despite all the prior studies, there is no clear consensus
about how or when these two interventions should be combined to optimize
student learning. As a result, most existing ITSs always choose PS [14, 36].
Training Corpus: Our training dataset contains 786 student trajectories, col-
lected over five different semesters. Students spend around 2-3 hours on the
ITS completing problems. To represent the state of the learning environment,
142 features from five categories are extracted. We have 10 Autonomy features
describing the amount of work done by the student; 29 Temporal features in-
cluding total time spent, time spent on PS, time spent on WE, and so on; 35
Problem-Solving features describing the difficulty of the problem, the number of
easy and difficult problems solved, and so on; 57 Performance features such as
the number of incorrect steps; and 11 Hint-related features including the total
number of hints requested, among others.
Reward Functions: Our goal is to create an RL-induced pedagogical policy
to improve student Learning Gain while minimizing the training time. In other
words, we want to maximize learning efficiency. In our empirical studies with
students, we used two different reward functions and both rewards are only cal-
culated for the post-test problems. The first one, which we will denote as S19
(due to the semester and year when it was used, Spring 2019), uses the number of

8 M. Sanz Ausin et al.

incorrect rule applications made by the students, as well as the speed, measured
by the time spent on the post-test problems. The second reward function, de-
noted S20, uses the solution length (number of logic statements in the solution),
the solution accuracy (proportion of correct rule applications), and the speed. In
this work, we applied InferGP to infer the immediate rewards from the delayed
rewards using the S19 scoring metric; and InferNet to infer the immediate re-
wards from the delayed rewards using the S20 scoring metric. Once the inferred
immediate rewards are inferred, we train a DQN-based agent [20] to induce the
corresponding policies.
Deep Q-Network (DQN) [20] is a version of Q-Learning which uses neural
networks for function approximation. DQN uses two neural networks with iden-
tical architectures. The main network (represented by the weights θ) is used to
estimate the Q-values of the current state s; while the target network (repre-
sented by the weights θ−) is used to estimate the Q-values of the next state s′

in the Bellman Equation: Q(s, a|θ) = r + γmaxa′ Q(s′, a′|θ−)
Dueling-DQN [39] is an improved version of DQN that splits the Q-value
estimation into a value function and an advantage function, and then sums both
of them to get the final Q-values. The relation between the value V (s), advantage
A(s, a) and Q-value Q(s, a) is defined as A(s, a) = Q(s, a) - V(s). We combined
the Dueling-DQN algorithm with a Long Short-Term Memory (LSTM) [9] neural
network, which is suitable for tasks with long temporal dependencies.

6 Empirical Experiments

Our ITS teaches how to solve logic proofs. It is used as a graded homework assign-
ment in the undergraduate Discrete Mathematics class at NC State University.
To complete a problem, students must iteratively apply rules to logic statement
nodes in order to derive the conclusion node. The system automatically checks
the correctness of each step and provides immediate feedback on any rule that is
applied incorrectly. The ITS consists of a pre-test section, a training phase, and
a post-test. The pre-test is used to evaluate the incoming knowledge of the stu-
dents, and it contains four problems. The pedagogical policy does not take any
decisions here. The training phase contains five levels, with four problems per
level. The pedagogical policy decides whether to show PS or WE to each student
during this phase. However, the policy must follow some constraints determined
by the course instructor, who is a professor with over 15 years of experience in
the field, to guarantee that every student sees at least one PS and one WE per
level. Finally, the post-test consists of six problems, which are used to evaluate
the improvement in each student’s performance, after undergoing the training
stage. The post-test is designed to evaluate the skills of each student, following
the requirements of the course. In the end, a score is assigned to each student
using one of the two reward functions described in section 5.

We performed two empirical experiments with college students, one in Spring
of 2019 (S19) and the other one in Spring of 2020 (S20). For the S19 study,
our pedagogical policy was determined by a DQN agent, and the immediate
rewards in the training dataset were inferred using InferGP. In the S20 study, we

Tackling the CAP in RL-Induced Pedagogical Policies 9

used a Dueling-DQN agent, with immediate rewards inferred using the InferNet
algorithm. Both agents used the exact same neural network architecture and
hyper-parameters. It is important to note that the reward functions of S19 and
S20 are not directly comparable to each other and thus the induced InferGP and
InferNet policies cannot be directly compared to each other, because they were
trained to maximize different metrics.

In the S19 study, we denote our groups as InferGP, and Expert (for the
expert-designed policy that alternates between PS and WE); 64 students were
randomly assigned to the two groups and 53 students completed the tutor, with
N = 30 for InferGP and N = 23 for Expert. For the S20 study, we denote our
groups as InferNet, and PS-only (for the policy that always provides PS). 84
students were randomly assigned to the two groups and 74 students completed
the tutor, with N = 36 for InferNet and N = 38 for PS-only. A χ2 test showed no
significant difference between the completion rates of the four different groups:
χ2 (3,N = 148) = 0.598, p = 0.896.

7 Results

We analyzed two key metrics that allow us to evaluate the performance of the stu-
dents and measure their learning: post-test performance and learning efficiency.
Post-test performance evaluates how much the students have learned after using
the ITS during the training phase. The learning efficiency also accounts for the
time spent in the training phase; it divides the post-test score by the training
time, which results in a measurement of how much time they needed to reach a
certain knowledge level. We want our policies to help the students learn as much
as possible in as little training time as needed.
InferGP: In this analysis, we compared the performance of the InferGP policy
against the Expert and the PS-only policies using the S19 scoring metric. A one-
way ANOVA test showed no significant difference in the pre-test scores among
the three groups: F (2, 88) = 0.202, p = 0.650. That is, our pre-test analysis
shows that all three groups were balanced in incoming competence.

Next, we analyzed the post-test score performance. A one-way ANCOVA
test using the group as a factor and the pre-test score as a covariate showed no
significant difference in the post-test scores: F (2, 87) = 0.019, p = 0.889. When
analyzing the learning efficiency, a one-way ANCOVA test using the group as a
factor and the pre-test score as a covariate, also showed no significant difference
in the post-test learning efficiency: F (2, 87) = 2.017, p = 0.159. In short, our
analysis found no significant differences between the students in the InferGP
group and the PS-only and Expert groups.
InferNet: Table 1 shows the mean and SD of the performance of the InferNet
policy against the Expert and the PS-only policies using the S20 scoring metric.
A one-way ANOVA test showed no significant difference in the pre-test scores
among the three groups: F (2, 93) = 1.099, p = 0.297. Again, our pre-test analysis
shows that all three groups were balanced in incoming competence.

We analyzed the post-test score performance. A one-way ANCOVA test us-
ing the group as a factor and the pre-test score as a covariate showed a marginal

10 M. Sanz Ausin et al.

Table 1. Results by group for the InferNet study.

Pre-Test Score Post-Test Score Learning Efficiency

InferNet 0.73 (0.27) 0.72 (0.09) 0.34 (0.27)

PS-only 0.67 (0.25) 0.70 (0.12) 0.18 (0.16)

Expert 0.67 (0.27) 0.51 (0.10) 0.23 (0.17)

difference in the post-test scores: F (2, 92) = 3.182, p = 0.077. Subsequent pair-
wise one-way ANCOVA tests showed a significant difference between the PS-
only and the Expert groups (F (1, 57) = 42.336, p < 0.001, d = 1.720) as well
as between the InferNet group and the Expert group (F (1, 55) = 58.200, p <
0.001, d = 2.207); no significant difference was found between InferNet and
PS-only (F (1, 69) = 0.331, p = 0.567). Finally, we analyze the learning effi-
ciency. A one-way ANCOVA test using the group as a factor and the pre-test
score as a covariate showed a significant difference in the post-test learning effi-
ciency: F (1, 92) = 8.839, p = 0.003. Subsequent pairwise one-way ANCOVA tests
showed a significant difference in the learning efficiency between the InferNet and
PS-only groups (F (1, 69) = 7.910, p = 0.006, d = 0.721) and no significant dif-
ference was found between InferNet and Expert (F (1, 55) = 2.340, p = 0.132) or
between PS-only and Expert (F (1, 57) = 1.489, p = 0.227).

To summarize, our results show that the students in the InferNet group
achieved a significantly superior post-test score performance than the students
in the Expert group, and they were also significantly more efficient than the
students in the PS-Only group. This means that they learned more than the
students in the Expert group, and they learned more in less time than the
students in the PS-only group.

8 Conclusion

In this work, we developed a new method, InferNet, to solve the temporal CAP
and help RL agents learn more effectively in delayed reinforcement tasks. We
compared our method to immediate and delayed rewards, as well a previous
method denoted InferGP, in a simulated GridWorld task, both online and offline,
and showed that InferNet can effectively infer the true immediate rewards from
the delayed rewards. We also showed that the InferNet rewards can be more
effective than the delayed rewards in all cases. Furthermore, we evaluated the
effectiveness of the InferNet rewards in two empirical classroom studies with real
students, and the results showed that when combining a Deep RL agent with
InferNet, the students in the InferNet group achieved a significantly superior
post-test score performance than the students in the Expert group, and they
were also significantly more efficient than the students in the PS-Only group.
These empirical results indicate that our method is effective at helping students
learn more in less time. Our method provides a robust and general way to induce
a pedagogical policy that can improve student learning.
Acknowledgements: This research was supported by the NSF Grants: #1726550,
#1651909, #1937037 and #2013502.

Tackling the CAP in RL-Induced Pedagogical Policies 11

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E.: TensorFlow: Large-scale machine
learning on heterogeneous systems (2015), https://www.tensorflow.org/, software
available from tensorflow.org

2. Andrychowicz, M., Baker, B., et al.: Learning dexterous in-hand manipulation.
arXiv:1808.00177 (2018)

3. Ausin, M.S.: Leveraging deep reinforcement learning for pedagogical policy induc-
tion in an intelligent tutoring system. In: In: Proceedings of the 12th International
Conference on Educational Data Mining (EDM 2019), (2019)

4. Ausin, M.S., Maniktala, M., Barnes, T., Chi, M.: Exploring the impact of simple
explanations and agency on batch deep reinforcement learning induced pedagogical
policies. In: International Conference on Artificial Intelligence in Education. pp.
472–485. Springer (2020)

5. Azizsoltani, H., et al.: Unobserved is not equal to non-existent: Using gaussian
processes to infer immediate rewards across contexts. In: In Proceedings of the
28th IJCAI (2019)

6. Chen, B., Xu, M., Li, L., Zhao, D.: Delay-aware model-based reinforcement learning
for continuous control. arXiv preprint arXiv:2005.05440 (2020)

7. Chi, M., VanLehn, K., Litman, D., Jordan, P.: Empirically evaluating the applica-
tion of reinforcement learning to the induction of effective and adaptive pedagogical
strategies. User Modeling and User-Adapted Interaction 21(1-2), 137–180 (2011)

8. Chollet, F.: Keras. https://keras.io (2015)
9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation

9(8), 1735–1780 (1997)
10. Iglesias, A., Mart́ınez, P., Aler, R., Fernández, F.: Learning teaching strategies

in an adaptive and intelligent educational system through reinforcement learning.
Applied Intelligence 31(1), 89–106 (2009)

11. Iglesias, A., Mart́ınez, P., Aler, R., Fernández, F.: Reinforcement learning of peda-
gogical policies in adaptive and intelligent educational systems. Knowledge-Based
Systems 22(4), 266–270 (2009)

12. Ju, S., Chi, M., Zhou, G.: Pick the moment: Identifying critical pedagogi-
cal decisions using long-short term rewards. In: Rafferty, A.N., Whitehill, J.,
Romero, C., Cavalli-Sforza, V. (eds.) Proceedings of the 13th International
Conference on Educational Data Mining, EDM 2020, Fully virtual confer-
ence, July 10-13, 2020. International Educational Data Mining Society (2020),
https://educationaldatamining.org/files/conferences/EDM2020/papers/paper 167.pdf

13. Ju, S., Zhou, G., Azizsoltani, H., Barnes, T., Chi, M.: Identifying critical pedagog-
ical decisions through adversarial deep reinforcement learning. In: EDM. Interna-
tional Educational Data Mining Society (IEDMS) (2019)

14. Koedinger, K.R., Anderson, J.R., Hadley, W.H., Mark, M.A.: Intelligent tutoring
goes to school in the big city. International Journal of Artificial Intelligence in
Education (IJAIED) 8, 30–43 (1997)

15. Mandel, T., Liu, Y.E., Levine, S., Brunskill, E., Popovic, Z.: Offline policy evalu-
ation across representations with applications to educational games. In: Proceed-
ings of the 2014 international conference on Autonomous agents and multi-agent
systems. pp. 1077–1084. International Foundation for Autonomous Agents and
Multiagent Systems (2014)

16. McLaren, B.M., van Gog, T., et al.: Exploring the assistance dilemma: Comparing
instructional support in examples and problems. In: Intelligent Tutoring Systems.
pp. 354–361. Springer (2014)

12 M. Sanz Ausin et al.

17. McLaren, B.M., Isotani, S.: When is it best to learn with all worked examples? In:
AIED. pp. 222–229. Springer (2011)

18. McLaren, B.M., Lim, S.J., Koedinger, K.R.: When and how often should worked
examples be given to students? new results and a summary of the current state
of research. In: Proceedings of the 30th annual conference of the cognitive science
society. pp. 2176–2181 (2008)

19. Minsky, M.: Steps toward artificial intelligence. Proceedings of the IRE 49, 8–30
(1961)

20. Mnih, V., Kavukcuoglu, K., Silver, D., et al.: Human-level control through deep
reinforcement learning. Nature 518(7540), 529 (2015)

21. Najar, A.S., Mitrovic, A.: Learning with intelligent tutors and worked examples:
selecting learning activities adaptively leads to better learning outcomes than a
fixed curriculum. UMUAI 26(5), 459–491 (2016)

22. Rafferty, A.N., Brunskill, E., et al.: Faster teaching via pomdp planning. Cognitive
science 40(6), 1290–1332 (2016)

23. Renkl, A., Atkinson, R.K., et al.: From example study to problem solving: Smooth
transitions help learning. The Journal of Experimental Education 70(4), 293–315
(2002)

24. Salden, R.J., Aleven, V., Schwonke, R., Renkl, A.: The expertise reversal effect and
worked examples in tutored problem solving. Instructional Science 38(3), 289–307
(2010)

25. Schwab, D., Ray, S.: Offline reinforcement learning with task hierarchies. Machine
Learning 106(9-10), 1569–1598 (2017)

26. Schwonke, R., Renkl, A., Krieg, C., Wittwer, J., Aleven, V., Salden, R.: The
worked-example effect: Not an artefact of lousy control conditions. Computers in
Human Behavior 25(2), 258–266 (2009)

27. Shen, S., Ausin, M.S., Mostafavi, B., Chi, M.: Improving learning & reducing time:
A constrained action-based reinforcement learning approach. In: UMAP. pp. 43–
51. ACM (2018)

28. Shen, S., Chi, M.: Aim low: Correlation-based feature selection for model-based
reinforcement learning. International Educational Data Mining Society (2016)

29. Shen, S., Chi, M.: Reinforcement learning: the sooner the better, or the later the
better? In: UMAP. pp. 37–44. ACM (2016)

30. Shen, S., Chi, M.: Reinforcement learning: the sooner the better, or the later the
better? In: UMAP. pp. 37–44. ACM (2016)

31. Shen, S., Mostafavi, B., Lynch, C.F., Barnes, T., Chi, M.: Empirically evaluating
the effectiveness of POMDP vs. MDP towards the pedagogical strategies induction.
In: AIED (2). Lecture Notes in Computer Science, vol. 10948, pp. 327–331. Springer
(2018)

32. Silver, D., Huang, A., Maddison, C.J., et al.: Mastering the game of go with deep
neural networks and tree search. nature 529(7587), 484 (2016)

33. Silver, D., Hubert, T., Schrittwieser, J., et al.: A general reinforcement learning
algorithm that masters chess, shogi, and go through self-play. Science 362(6419),
1140–1144 (2018)

34. Sutton, R.S.: Learning to predict by the methods of temporal differences. Machine
learning 3(1), 9–44 (1988)

35. Sweller, J., Cooper, G.A.: The use of worked examples as a substitute for problem
solving in learning algebra. Cognition and Instruction 2(1), 59–89 (1985)

36. VanLehn, K., Graesser, A.C., et al.: When are tutorial dialogues more effective
than reading? Cognitive science 31(1), 3–62 (2007)

Tackling the CAP in RL-Induced Pedagogical Policies 13

37. Vinyals, O., Babuschkin, I., Czarnecki, W., et al.: Grandmaster level in starcraft
ii using multi-agent reinforcement learning. Nature 575, 350 (2019)

38. Wang, P., Rowe, J., Min, W., Mott, B., Lester, J.: Interactive narrative personal-
ization with deep reinforcement learning. In: IJCAI (2017)

39. Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., De Freitas, N.:
Dueling network architectures for deep reinforcement learning. arXiv:1511.06581
(2015)

40. Zhou, G., Azizsoltani, H., Ausin, M.S., Barnes, T., Chi, M.: Hierarchical reinforce-
ment learning for pedagogical policy induction (extended abstract). In: IJCAI. pp.
4691–4695. ijcai.org (2020)

