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Abstract

This paper investigates the problem of computing the equilibrium of competitive
games, which is often modeled as a constrained saddle-point optimization problem
with probability simplex constraints. Despite recent efforts in understanding the
last-iterate convergence of extragradient methods in the unconstrained setting,
the theoretical underpinnings of these methods in the constrained settings, espe-
cially those using multiplicative updates, remain highly inadequate, even when
the objective function is bilinear. Motivated by the algorithmic role of entropy
regularization in single-agent reinforcement learning and game theory, we develop
provably efficient extragradient methods to find the quantal response equilibrium
(QRE)—which are solutions to zero-sum two-player matrix games with entropy
regularization—at a linear rate. The proposed algorithms can be implemented in a
decentralized manner, where each player executes symmetric and multiplicative
updates iteratively using its own payoff without observing the opponent’s actions
directly. In addition, by controlling the knob of entropy regularization, the pro-
posed algorithms can locate an approximate Nash equilibrium of the unregularized
matrix game at a sublinear rate without assuming the Nash equilibrium to be
unique. Our methods also lead to efficient policy extragradient algorithms for
solving entropy-regularized zero-sum Markov games at a linear rate. All of our
convergence rates are nearly dimension-free, which are independent of the size of
the state and action spaces up to logarithm factors, highlighting the positive role of
entropy regularization for accelerating convergence.

1 Introduction

Finding the equilibrium of competitive games, which can be viewed as constrained saddle-point
optimization problems with probability simplex constraints, lies at the heart of modern machine learn-
ing and decision making paradigms such as Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014), competitive reinforcement learning (RL) (Littman, 1994), game theory (Shapley, 1953),
adversarial training (Mertikopoulos et al., 2018b), to name a few.

In this paper, we study one of the most basic forms of competitive games, namely two-player zero-sum
games, in both the matrix setting and the Markov setting. Our goal is to find the equilibrium policies
of both players in an independent and decentralized manner (Daskalakis et al., 2020; Wei et al.,
2021a) with guaranteed last-iterate convergence. Namely, each player will execute symmetric and
independent updates iteratively using its own payoff without observing the opponent’s actions directly,
and the final policies of the iterative process should be a close approximation to the equilibrium up
to any prescribed precision. This kind of algorithms is more advantageous and versatile especially
in federated environments, as it requires neither prior coordination between the players like two-
timescale algorithms, nor a central controller to collect and disseminate the policies of all the players,
which are often unavailable due to privacy constraints.
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1.1 Last-iterate convergence in competitive games

In recent years, there have been significant progresses in understanding the last-iterate convergence
of simple iterative algorithms for unconstrained saddle-point optimization, where one is interested in
bounding the sub-optimality of the last iterate of the algorithm, rather than say, the ergodic iterate —
which is the average of all the iterations — that are commonly studied in the earlier literature. This
shift of focus is motivated, for example, by the infeasibility of averaging large machine learning
models in training GANs (Goodfellow et al., 2014). While vanilla Gradient Descent/ Ascent (GDA)
may diverge or cycle even for bilinear matrix games (Daskalakis et al., 2018), quite remarkably, small
modifications lead to guaranteed last-iterate convergence to the equilibrium in a non-asymptotic
fashion. A flurry of algorithms is proposed, including Optimistic Gradient Descent Ascent (OGDA)
(Rakhlin and Sridharan, 2013; Daskalakis and Panageas, 2018b; Wei et al., 2021b), predictive updates
(Yadav et al., 2017), implicit updates (Liang and Stokes, 2019), and more. Several unified analyses of
these algorithms have been carried out (see, e.g. Mokhtari et al. (2020a); Liang and Stokes (2019)
and references therein), where these methods in principle all make clever extrapolation of the local
curvature in a predictive manner to accelerate convergence. With slight abuse of terminology, in this
paper, we refer to this ensemble of algorithms as extragradient methods (Korpelevich, 1976; Tseng,
1995; Mertikopoulos et al., 2018a; Harker and Pang, 1990).

However, saddle-point optimization in the constrained setting, which includes competitive games as
a special case, remains largely under-explored even for bilinear matrix games. While it is possible
to reformulate constrained bilinear games to unconstrained ones using softmax parameterization of
the probability simplex, this approach falls short of preserving the bilinear structure and convex-
concave properties in the original problem, which are crucial to the convergence of gradient methods.
Therefore, there is a strong necessity of understanding and developing improved extragradient
methods in the constrained setting. Daskalakis and Panageas (2018a) proposed the optimistic variant
of the multiplicative weight updates (MWU) method (Arora et al., 2012) — which is extremely natural
and popular for optimizing over probability simplexes — called Optimistic Multiplicative Weight
Updates (OMWU), and established the asymptotic last-iterate convergence of OMWU for matrix
games. Very recently, Wei et al. (2021b) established non-asymptotic last-iterate convergences of
OMWU. However, these last-iterate convergence results require the Nash equilibrium to be unique,
and cannot be applied to problems with multiple Nash equilibria.

1.2 Our contributions

Motivated by the algorithmic role of entropy regularization in single-agent RL (Neu et al., 2017;
Geist et al., 2019; Cen et al., 2020) as well as its wide use in game theory to account for imperfect
and noisy information (McKelvey and Palfrey, 1995; Savas et al., 2019), we initiate the design and
analysis of extragradient algorithms using multiplicative updates for finding the quantal response
equilibrium (QRE), which are solutions to competitive games with entropy regularization (McKelvey
and Palfrey, 1995). While finding QRE is of interest in its own right, by controlling the knob of
entropy regularization, the QRE provides a close approximation to the Nash equilibrium (NE), and in
turn acts as a smoothing scheme for finding the NE. Our contributions are summarized below.

e Near dimension-free last-iterate convergence to QRE of entropy-regularized matrix games. We
propose two policy extragradient algorithms to solve entropy-regularized matrix games, namely the
Predictive Update (PU) and OMWU methods, where both players execute symmetric and multiplica-
tive updates without knowing the entire payoff matrix nor the opponent’s actions. Encouragingly,
we show that the last iterate of the proposed algorithms converges to the unique QRE at a linear rate
that is almost independent of the size of the action spaces. Roughly speaking, to find an e-optimal

QRE in terms of Kullback-Leibler (KL) divergence, it takes no more than O (n% log (%)) iterations,
where 5( -) hides logarithmic dependencies. Here, 7 is the regularization parameter, and 7 is the
learning rate of both players. Maximizing the learning rate, the iteration complexity is bounded by
O ((1+ ||A]leo/7)log(1/€)), where || A|| o = max; ; |A4; ;| is the £+, norm of the payoff matrix A.
e Last-iterate convergence to e-NE of unregularized matrix games without uniqueness assumption.
The QRE provides an accurate approximation to the NE by setting the entropy regularization 7

sufficiently small, therefore our result directly translates to finding a NE with last-iterate convergence
guarantee. Roughly speaking, to find an e-NE (Zhang et al., 2020, Definition 2.1), it takes no more

than O (1 + %) iterations with optimized learning rates, which is again independent of the size



Equilibri Requi
qutlylpélum Method Convergence rate | Dimension-free uniZ?lili\?E
e-QRE Pgh&ics ?vlz)/lr\ltl)U linear yes n/a
OMWU asymptotic no es
(Daskalakis and Panageas, 2018a) ymp y
e-NE (Wei Stl\;llw %21[)) sublinear + linear no yes
PghSiLs Cv)vl:)/lr\lY)U sublinear yes no

Table 1: Comparisons of last-iterate convergence of the proposed entropy-regularized PU and
OMWU methods with prior results for finding e-QRE or e-NE of competitive matrix games. We note
that the convergence rates of unregularized OMWU established in Wei et al. (2021b) are problem-
dependent, and scale at least polynomially on the size of the action spaces. Desirable features in the
last two columns are highlighted in blue.

of the action spaces up to logarithmic factors. Unlike prior literature (Daskalakis and Panageas,
2018a; Wei et al., 2021b), our last-iterate convergence guarantee does not require the NE to be unique.

o Extensions to two-player zero-sum Markov games. By connecting value iteration with matrix
games, we propose a policy extragradient method for solving infinite-horizon discounted entropy-
regularized zero-sum Markov games, which finds an e-optimal minimax soft Q-function—in terms of

{+, error—in at most 9] (ﬁ log? (%)) iterations, where v € (0, 1) is the discount factor.

To the best of our knowledge, our paper is the first that develops policy extragradient algorithms
for solving entropy-regularized competitive games with multiplicative updates and dimension-free
linear last-iterate convergence, and demonstrates entropy regularization as a smoothing technique
to find e-NE without the uniqueness assumption. Table 1 provides detailed comparisons of the
proposed methods with prior arts for solving matrix games. Our results highlight the positive role of
entropy regularization for accelerating convergence and safeguarding against imperfect information
in competitive games. We defer the complete proof of our results to Cen et al. (2021).

1.3 Related works

Our work lies at the intersection of saddle-point optimization, game theory, and reinforcement
learning. In what follows, we discuss a few topics that are closely related to ours.

Unregularized matrix game. Freund and Schapire (1999) showed that many standard methods
such as GDA and MWU have a converging average duality gap at the rate of O(1/v/T), which
is improved to O(1/T') by considering optimistic variants of these methods, such as OGDA and
OMWU (Rakhlin and Sridharan, 2013; Daskalakis et al., 2011; Syrgkanis et al., 2015). However,
the last-iterate convergence of these methods are less understood until recently (Daskalakis and
Panageas, 2018a; Wei et al., 2021b). In particular, under the assumption that the NE is unique for the
unregularized matrix game, Daskalakis and Panageas (2018a) showed the asymptotic convergence of
the last iterate of OMWU to the unique equilibrium, and Wei et al. (2021b) showed the last iterate of
OMWU achieves a linear rate of convergence after an initial phase of sublinear convergence, however
the rates therein can be highly pessimistic in terms of the problem dimension, while our rate for
entropy-regularized OMWU is dimension-free up to logarithmic factors.

Saddle-point optimization. Considerable progress has been made towards understanding OGDA
and extragradient (EG) methods in the unconstrained convex-concave saddle-point optimization with
general objective functions (Mokhtari et al., 2020a,b; Nemirovski, 2004; Liang and Stokes, 2019).
However, the last-iterate convergence of constrained convex-concave saddle-point optimization still
lacks theoretical understanding in general and most works fall short of characterizing a finite-time
convergence result. In particular, Mertikopoulos et al. (2018a) demonstrated the asymptotic last-
iterate convergence of EG, and Hsieh et al. (2019) investigated similar questions for single-call
EG algorithms. Lei et al. (2021) showed that OMWU converges to the equilibrium locally without



an explicit rate. Wei et al. (2021b) showed that the last-iterate of OGDA converges linearly for
strongly-convex strongly-concave constrained saddle-point optimization with an explicit rate.

Entropy regularization in RL and games. In single-agent RL, the role of entropy regularization as
an algorithmic mechanism to encourage exploration and accelerate convergence has been investigated
extensively (Neu et al., 2017; Geist et al., 2019; Mei et al., 2020; Cen et al., 2020; Lan, 2021; Zhan
et al., 2021). Turning to the game setting, entropy regularization is used to account for imperfect
information in the seminal work of McKelvey and Palfrey (1995) that introduced the QRE, and a
few representative works on entropy and more general regularizations in games include Savas et al.
(2019); Hofbauer and Sandholm (2002); Mertikopoulos and Sandholm (2016).

Zero-sum Markov games. There have been a significant recent interest in developing provably
efficient self-play algorithms for Markov games, including model-based algorithms (Perolat et al.,
2015; Zhang et al., 2020), value-based algorithms (Bai and Jin, 2020; Xie et al., 2020), and policy-
based algorithms (Daskalakis et al., 2020; Wei et al., 2021a; Zhao et al., 2021). The iteration
complexities in prior works (Perolat et al., 2015; Daskalakis et al., 2020; Wei et al., 2021a; Zhao
et al., 2021) depend on various notions of concentrability coefficient and therefore can scale quite
pessimistically with the problem dimension. Our approach can be regarded as a policy-based
algorithm to approximate value iteration, which can be implemented in a decentralized manner
with symmetric and multiplicative updates from both players, and the iteration complexity is almost
independent of the size of the state-action space.

Notation. We denote by A(A) the probability simplex over the set A. We overload the func-
tions such as log(-) and exp(-) to take vector inputs with the understanding that the function is
applied in an entrywise manner. For instance, given any vector z = [z;]1<i<n € R", the nota-
tion exp(z) denotes exp(z) = [exp(z;)]1<i<n; other functions are defined analogously. Given
two probability distributions p and p’ over A, the KL divergence from p’ to p is defined by

KL(p || i) =3 pea i(a)log 5'((?1))' Given a matrix A, || A|  is used to denote entrywise maximum

norm, namely, | A]| , = max; ; |A; ;|. The all-one vector is denoted as 1.

2 Zero-sum matrix games with entropy regularization

We first consider a two-player zero-sum game with bilinear objective and probability simplex
constraints, and demonstrate the positive role of entropy regularization in solving this problem.
Throughout this paper, let A = {1,...,m} and B = {1,...,n} be the action spaces of each player.

2.1 Background and problem formulation

Zero-sum two-player matrix game. The focal point of this subsection is a constrained two-player
zero-sum matrix game, which can be formulated as the following min-max problem (or saddle point
optimization problem):

. T
V)= Av, 1
W2 LNy T = A ™

where A € R™*" denotes the payoff matrix, 4 € A(A) and v € A(B) stand for the
mixed/randomized policies of each player, defined respectively as distributions over the proba-
bility simplex A(A) and A(B). A pair of policies (u*, v*) is said to be a Nash equilibrium (NE) of
()i f(u",v) > f(u"ov*) > f(uv®)  forall (u,v) € ACA) x A(B).

Entropy-regularized zero-sum two-player matrix game. There is no shortage of scenarios where
the payoff matrix A might not be known perfectly. In an attempt to accommodate imperfect knowledge
of A, McKelvey and Palfrey (1995) proposed a seminal extension to the Nash equilibrium called
the quantal response equilibrium (QRE) when the payoffs are perturbed by Gumbel-distributed
noise. Formally, this amounts to solving the following matrix game with entropy regularization
(Mertikopoulos and Sandholm, 2016):

. T .
nax, ) min fr(p,v) = p Av+17H(p) — 7H(v), 2)

where H(m) = — >, m; log(m;) denotes the Shannon entropy of a distribution 7, and 7 > 0 is the
regularization parameter. As is well known, the optimal solution (u%, v%) to (2), dubbed as the QRE,



is unique whenever 7 > 0 (due to the presence of strong concavity/convexity), which satisfies the
following fixed point equations:

pi(a) = E%"lpe(ﬁ(”ﬂ;{]?ﬁ) o exp([AvE]o /7), forall a € A,

* exp(—=[AT p]o/7) T 3)
vi(b) = ST e (AT pi ) exp(—[A" pX]p/7), forallbe B.

Goal. We aim to efficiently compute the QRE of the entropy-regularized matrix game in a decen-
tralized manner, and investigate how an efficient solver of QRE can be leveraged to find a NE of
the unregularized matrix game (1). Namely, we only assume access to “first-order information” as
opposed to full knowledge of the payoff matrix A or the actions of the opponent. The information
received by each player is formally described in the following sampling oracle.

Definition 1 (Sampling oracle for matrix games). For any policy pair (u, v) and payoff matrix A,
the sampling oracle returns the exact values of ;17 A and Av.

Additional notation. For notational convenience, we let ¢ represent the concatenation of y € RIAI
and v € RIBIl, namely, ¢ = (p,v). The solution to (2), which is specified in (3), is denoted by
¢r = (ur,vr). Forany ¢ = (u,v) and ¢’ = (1, v), we shall often abuse the notation and let
KL(¢[[¢") = KL(p|l ') + KL(v || ). The duality gap of the entropy-regularized matrix game (2)
at ( = (p,v) is defined as DualGap, (¢) = max, ca(a) fr(1',v) — mingeay fr (1, ') which
is clearly nonnegative and DualGap,.(¢*) = 0. Similarly, let the optimality gap of the entropy-
regularized matrix game (2) at ¢ = (u, v) be OptGap(¢) = ’fT(u, v) — fr(uk, u;f)|.

2.2 Proposed extragradient methods: PU and OMWU

To begin, assume we are given a pair of policies z; € A(A), zo € A(B) employed by each player
respectively. If we proceed with fictitious play, i.e. player 1 (resp. player 2) aims to optimize its
own policy by assuming the opponent’s policy is fixed as zo (resp. z1), the saddle-point optimization
problem (2) is then decoupled into two independent min/max optimization problems:
T : T
max Azo + TH(u) — 7H(2 and min 2y Av+7H(z1) — TH(v),

Jmae 1T Az + TH() - TH(z2) min (1) = TH()
which are naturally solved via mirror descent/ascent with KL divergence. Specifically, one step of
mirror descent/ascent takes the form

,u(t+1)(a) o u(t)(a)lfnr exp(n[Az]a), foralla € A, @
V) () o v @ (0) " exp(—y[AT 21]s), forallb € B,

where 7 is the learning rate. The above update rule forms the basis of our algorithm design.

Motivation: a form of implicit updates with linear convergence. It turns out, if we could select
the policy pair (21, zo) = (1) := (1) p(t+1) as the ones to be taken in the future, and call
the resulting update rule as the Implicit Update (IU) method:

p D (a) oc p® (@) " exp(n[AvtHD],),  foralla € A,
Implicit Update: - (%)
D () o v (b) " exp(—n[AT p(t*D],), forall b € B.

Though unrealistic — since it uses the future updates — it leads to a one-step convergence to the
QRE when 1 = 1/7 (see the optimality condition in (3)). Encouragingly, we have the following
linear convergence guarantee of IU when adopting a general learning rate.

Proposition 1 (Linear convergence of IU). Assume 0 < n < 1/7, then for all t > 0, the iterates
¢® = (u®,v®) of the IU method in (5) satisfy KL((x || (M) < (1 —n7)tKL(¢E || ¢©).

In words, the IU method achieves an appealing linear rate of convergence that is independent of
the problem dimension. Motivated by this observation, we seek to design algorithms where the
policies (21, z2) employed in (4) serve as good predictions of (u(*+1), v(t+1)) such that the resulting
algorithms are both practical and retain the appealing convergence rate of IU.

Proposed algorithms. We propose two extragradient algorithms for solving the entropy-regularized
matrix game, namely the Predictive Update (PU) method and the Optimistic Multiplicative Weights



1
2
3

Algorithm 1: The PU method Algorithm 2: The OMWU method

initialization: ;,(©), (0 1 initialization: ;(*) = 70 1(0) = 5(0),
fort=0,1,2,--- do 2 fort=0,1,2,--- do
Update iz and 7 according to 3 Update iz and 7 according to
A (@) ol (a) T exp(nlAv©Oa), A (@) o pl(a) T expln] A7),
P () oc M (b) " exp(—n[AT pM)]y). P (b) oc M (b) " exp(—n[AT aM)]y).
Update p and v according to 4 Update p and v according to
u () oc u®(a) " exp(n[APH,), u () o u®(a) " exp([AP ),
VD (b) o O (B) " exp(—n[AT D]y, VD (b) oc O (0) 7 exp(—n[AT D)y,

Update (OMWU) method, the latter adapted from Rakhlin and Sridharan (2013); Daskalakis et al.
(2011). Detailed procedures can be found in Algorithm 1 and Algorithm 2, respectively. On a high
level, both algorithms maintain two intertwined sequences {(u*), v())};5¢ and {(a?, 7)) };>0,
and in each iteration ¢ = 0, 1, .. ., proceed in two steps:

e The midpoint (a(“t1), 5(t+1)) serves as a prediction of (u(**1), »(**1)) by running one step of
mirror descent/ascent (cf. (4)) from either (21, z2) = (u, v®) (for PU) or (21, z2) = (2™, 7))
(for OMWU).

e The update of (1, v(+1D) then mimics the implicit update (5) using the prediction
(51, p(t+1)) obtained above.

When the proposed algorithms converge, both (u(*), v(Y)) and (7", 7(¥)) converge to the same
point. The two players are completely symmetric and adopt the same learning rate, and require only
first-order information provided by the sampling oracle. While the two algorithms resemble each
other in many aspects, a key difference lies in the query and use of the sampling oracle: in each
iteration, OMWU makes a single call to the sampling oracle for gradient evaluation, while PU calls the
sampling oracle twice. It is worth noting that, when 7 = 0 (i.e., no entropy regularization is enforced),
the OMWU method in Algorithm 2 reduces to the method analyzed in Rakhlin and Sridharan (2013);
Daskalakis and Panageas (2018a); Wei et al. (2021b) without entropy regularization.

Remark 1. It is worth highlighting that the proposed algorithms are different from Mertikopoulos
et al. (2018a), as the extragradient is only applied to the bilinear term but not the entropy regular-
ization term. This seemingly small, but important, difference leads to a more concise closed-form
update rule and a cleaner analysis, as shall be seen momentarily.

2.3 Performance guarantees

We are now positioned to present our main theorem concerning the last-iterate convergence of PU
and OMWU for solving (2).

Theorem 1 (Last-iterate convergence of PU and OMWU). Suppose that the learning rates n = npy
of PU in Algorithm I and 1 = nomwu of OMWU in Algorithm 2 satisfy

1 1
0 <npy < and 0 < nomwy < min{ } . (6)

T+2[ Al 27+ 2| All " 4114l

Then for any t > 0, the iterates () = (u®,v®) and (Y = (3™, 1)) of PU and OMWU achieve

e Linear convergence of policies in KL divergence and entrywise log-ratios:

max {KL(CE <), SKL(G1CUH0) b < (1= ) KL(CE11¢), (7a)
(t) (0)
log C—* ‘ <2(1 —nr)"||log % ‘ - %(1 — ) 2KL(¢E | C<0)>1/2. (7b)




e Linear convergence of values in optimality and duality gaps:

- - 1 (1 —n7)’

(®) 1, . * || ¢(0)
OptGap- () < T A T= =y 167 e
DualGap. (C) < (17" +2r A%, ) (1 = ) 'KL(G [ <), (7d)

Remark 2. Setting ;1'% and v to be uniform policies leads to a universal bound
KL(¢2 [[¢') = log | A| + log |B| — H(px) = H(v7) < log | A| + log |B].

Remark 3. Similar results continue to hold even when the two players use different regularization
parameters 7,7, > 0in (2), as long as the regularization parameter T is replaced by max{7,, 7, } in
the upper bounds of the learning rate, and the contraction parameter is replaced by 1 —min{r,,, 7, }n.

Theorem 1 characterizes the convergence of the last-iterates () and (¥) of PU and OMWU as long
as the learning rate lies within the specified ranges. While PU doubles the number of calls to the
sampling oracle, it also allows roughly as large as twice the learning rate compared with OMWU
(cf. (6)). Compared with the vast literature analyzing the average-iterate performance of variants
of extragradient methods, our results contribute towards characterizing the last-iterate convergence
of multiplicative update methods in the presence of entropy regularization and simplex constraints,
which to the best of our knowledge, are the first of its kind. Several remarks are in order.

Linear convergence to QRE. To achieve an e-accurate estimate of the QRE in terms of the KL
divergence, the bound (7a) tells that it is sufficient to take

1 log (log |A| + log |B|>
nt €

iterations using either PU or OMWU. Notably, this iteration complexity does not depend on any
hidden constants and only depends double logarithmically on the cardinality of action spaces, which
is almost dimension-free. Maximizing the learning rate, the iteration complexity is bounded by
(14 ||Alloo/7) log(1/€) (modulo log factors), which only depends on the ratio || Ao /7.

Entrywise error of the policy log-ratios. Both PU and OMWU enjoy strong entrywise guarantees
in the sense we can guarantee the convergence of the ¢, norm of the log-ratios between the learned
policy pair and the QRE at the same dimension-free linear rate (cf. (7b)), which suggests the policy
pair converges in a somewhat uniform manner across the entire action space.

Linear convergence of optimality and duality gaps. Our theorem also establishes the last-iterate
convergence of the game values in terms of the optimality gap (cf. (7¢)) and the duality gap (cf. (7d))
for both PU and OMWU. In particular, as will be seen, bounding the optimality gap of matrix games
turns out to be the key enabler for generalizing our algorithms to Markov games, and bounding the
duality gap allows to directly translate our results to finding a NE of unregularized matrix games.

Last-iterate convergence to approximate NE. The entropy-regularized matrix game can be thought
as a smooth surrogate of the unregularized matrix game (1); in particular, it is possible to find an e-NE
by setting 7 sufficiently small in (2). According to (Zhang et al., 2020, Definition 2.1), a policy pair
¢ = (u,v) is an e-NE if it satisfies DualGap(¢) := max,ea(a) f (1, ) —mingeasy f(p, V') < e

Observe that setting 7 = bg\Ael/W guarantees that | f (1, v) — f(u, )| < €/4 uniformly over
(1, v) € A(A) x A(B) in view of the boundedness of the Shannon entropy #(-). Theorem 7 (cf. (7d))
also ensures that our proposed algorithms find an approximate QRE ¢ (™) such that DualGap, (¢(7)) <

¢/2 after taking T = O (#
optimized learning rates. It follows immediately that

DualGap(("”) < DualGap, (¢'") + max \fT(ux ) = £ (@) = (F 7)) = £ (@, u'))\ <e

) iterations, which is no more than O (1 + %) iterations with

and therefore (™) is an e-NE. Intriguingly, unlike prior work (Daskalakis and Panageas, 2018a;
Wei et al., 2021b) that analyzed the last-iterate convergence of OMWU in the unregularized setting
(7 = 0), our last-iterate convergence does not require the NE of (1) to be unique.

Rationality. Another attractive feature of the algorithms developed above is being rational (as
introduced in Bowling and Veloso (2001)) in the sense that the algorithm returns the best-response
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Figure 1: Performance illustration of the PU and OMWU methods for solving entropy-regularized
matrix games with |A| = |B| = 100, where the entries of the payoff matrix A is generated indepen-
dently from the uniform distribution on [—1,1]. The learning rates are fixed as 7 = 0.1. The left
panel plots various error metrics of convergence w.r.t. the iteration count with 7 = 0.01, while the
right panel plots these error metrics at 1000-th iteration with different choices of 7.

policy of one player when the opponent takes any fixed stationary policy. More specially, in terms
of matrix games, when player 2 sticks to a stationary policy v, the update of player 1 reduces to

pt (@) oc p® (a)lfm exp(n[Av],). In this case, Theorem 1 can be established in exactly the
same fashion by restricting attention only to the updates of z(*).

No-regret learning of OMWU. Besides convergence to equilibria, in game-theoretical settings, it
is often desirable to design and implement no-regret algorithms, which are capable of providing
black-box guarantees over arbitrary sequences played by the opponent (Cesa-Bianchi and Lugosi,
2006; Rakhlin and Sridharan, 2013). Fortunately, it turns out that entropy regularization not only
accelerates the convergence, but also enables no-regret learning somewhat “for free”: it encourages
exploration by putting a positive mass on every action, therefore guards against adversaries. By
using a properly chosen learning rate schedule, the proposed OMWU (Algorithm 2) can be further
established as a no-regret algorithm; the details can be found in (Cen et al., 2021).

3 Zero-sum Markov games with entropy regularization

Leveraging the success of PU and OMWU in solving the entropy-regularized matrix games, this
section extends our current analysis to solve the zero-sum two-player Markov game with entropy
regularization, which is again formulated as finding the equilibrium of a saddle-point optimization
problem. We start by introducing its basic setup, which will be followed by the proposed policy
extragradient method with its theoretical guarantees.

3.1 Background and problem formulation

We consider a discounted Markov Game (MG) which is defined as M = {S, A, B, P,r, v}, with
discrete state space S, action spaces of two players A and B, transition probability P, reward
function r : S x A x B — [0, 1] and discount factor v € [0,1). A policy pt : S — A(A) (resp.
v: S — A(B)) defines how player 1 (resp. player 2) reacts to a given state s, where the probability
of taking action a € A (resp. b € B) is u(als) (resp. v(b|s)). The transition probability kernel
P: 8 x Ax B — A(S) defines the dynamics of the Markov game, where P(s’|s, a, b) specifies the
probability of transiting to state s” from state s when the players take actions a and b respectively.

Motivated by entropy regularization in Markov decision processes (MDP) (Geist et al., 2019), we
consider an entropy-regularized variant of MG, where the value function is defined as

Vir(s):=E Z’Yt (r(se, ae, by) — 7log plae|se) + 7log v(be|st)) ‘ S0 =8|, ®)
t=0

where the quantity 7 > 0 denotes the regularization parameter, and the expectation is evaluated over
the randomness of the transition kernel as well as the policies. The regularized Q-function Q" of a



policy pair (u, ) is related to V¥ as

Q¥ (s,a,0) = 1(s,a,b) + VEy o p(.|s,a.0) [VT’"”(S’)]. 9

We will call V¥ and Q#* the soft value function and soft Q-function, respectively. A policy pair
(ux, vr) is said to be the quantal response equilibrium (QRE) of the entropy-regularized MG, if its
value attains the minimax value of the entropy-regularized MG over all states s € S, i.e.

V*(s) = maxmin V*"(s) = minmax V¥ (s) := V7" (s),
moov voop

where V is called the optimal minimax soft value function, and similarly Q7 := KoV is called

the optimal minimax soft Q-function.

Goal. Our goal is to find the QRE of the entropy-regularized MG in a decentralized manner where
the players only observe its own reward without accessing the opponent’s actions. By setting the
regularization parameter sufficiently small 7, this also allows us to find an approximate NE of the
unregularized MG.

3.2 From value iteration to policy extragradient methods

Entropy-regularized value iteration. It is known that classical dynamic programming approaches
such as value iteration can be extended to solve MG (Perolat et al., 2015), where each iteration
amounts to solving a series of matrix games for each state. Similar to the single-agent case (Cen
et al., 2020), we can extend these approaches to solve the entropy-regularized MG. Setting the stage,
let us introduce the per-state Q-value matrix Q(s) := Q(s, -, -) € RMI*IBl for every s € S, where
the element indexed by the action pair (a, b) is Q(s, a, b). Similarly, we define the per-state policies
wu(s) == p(-|s) € A(A) and v(s) := v(-|s) € A(B) for both players.

In parallel to the original Bellman operator, we denote the soft Bellman operator T, as

T-(Q)(s,a,b) :=1r(s,a,b) + YEgp(.1s.a max min £ (Q(s); u(s),v(s)) |,
(Q)(s,a,b) i=r(s,a,b) P [ e min e (Q): (). ()
where for each per-state Q-value matrix Q(s), we introduce an entropy-regularized matrix game in
the form of

Jmaxwminf (Qs):(s).v() = u(s) QsI(s) — TH(u(S)) + TH(S))

The entropy-regularized value iteration then proceeds as
QU =T (QY), (10)

where Q) is an initialization. By definition, the optimal minimax soft Q-function obeys 7; (Q*) =
% and therefore corresponds to the fix point of the soft Bellman operator. Given the above entropy-
regularized value iteration, the following lemma states its iterates contract linearly to the optimal
minimax soft Q-function at a rate of the discount factor .

Proposition 2. The entropy-regularized value iteration (10) converges at a linear rate, i.e. ||Q(t) —

Qillso <7'1QY — Q|-

Approximate value iteration via policy extragradient methods. Proposition 2 suggests that the
optimal minimax soft Q-function of the entropy-regularized MG can be found by solving a series of
entropy-regularized matrix games induced by {Q(t) }i>0 in (10), a task that can be accomplished by
adopting the fast extragradient methods developed earlier. To proceed, we first define the following
sampling oracle, which makes it rigorous that the proposed algorithm does not require access to
the Q-function of the entire MG, but only its own single-agent Q-function when playing against the
opponent’s policy.

Definition 2 (Sampling oracle for Markov games). Given any policy pair i(s), v(s) and Q-value
matrix Q(s) for any s € S, the sampling oracle returns

[Q()v()]a = Epun(s) [Q(s,a,0)],  and — [Q(5) " u(s)]o = Eqmp(s) [Q(s, a, b))
foranya € Aandb € B.



[

Algorithm 3: Policy Extragradient Method for Entropy-regularized Markov Game

initialization: Q(©) = 0.
fort =0,1,2, - Tiain do
Let Q) denote

Q"W (s,a,b) = r(s,a,b) + YEyp(fs,apnV D (s). (11)

Invoke PU (Algorithm 1) or OMWU (Algorithm 2) for T}, iterations to solve the following
entropy-regularized matrix game for every state s, where the initialization is set as uniform

distributions: "
max min - D(s); u(s),v(s)).
bax o oin (@ (s); p(s), v(s))

Return the last iterate ji(t75u0) (5), 5B Toub) (),

| Set VD () = £ (QU)(s); T (5), 5 T0) 5),

Encouragingly, by judiciously setting the number of iterations in both the outer loop (for updating the
Q-value matrices) and the inner loop (for updating the QRE of the corresponding Q-value matrix),
we are guaranteed to find the QRE of the entropy-regularized MG in a small number of iterations
without solving the iteration-varying matrix games exactly, as dictated by the following theorem.

the total iterations

Theorem 2. Assume |A| > |B| and 7 < 1. Setting n = 2(1+T(101g_|1‘+1_7)),
(namely, the product Tiain - Touw) required for Algorithm 3 to achieve HQ(T‘“H“‘) - Qx Hoo < eisat

most O ((log.AH—l/T) (log log |A| )2>

(1-7)? (1—7)e

Theorem 2 ensures that within O (T(leﬁ log? (%)) iterations, Algorithm 3 finds a pair of policies

whose value is close to the optimal minimax soft Q-function @)% in an entrywise manner to a
prescribed accuracy €. Remarkably, the iteration complexity is independent of the dimensions of the
state space and the action space (up to log factors).

Remark 4 (Duality gap and solving the unregularized MG). Solving the entropy-regularized MG
provides a viable strategy to find an e-approximate NE of the unregularized MG, where the optimality
of a policy pair is typically gauged by the duality gap. Fortunately, this can be achieved similar to
the case of matrix games, and we refer interested readers to Cen et al. (2021) for details.

4 Conclusions

This paper develops provably efficient policy extragradient methods (PU and OMWU) for entropy-
regularized matrix games and Markov games, whose last iterates are guaranteed to converge linearly
to the quantal response equilibrium at a linear rate. Encouragingly, the rate of convergence is
independent of the dimension of the problem, i.e. the sizes of the space space and the action space.
In addition, the last iterates of the proposed algorithms can also be used to locate Nash equilibria
for the unregularized competitive games without assuming the uniqueness of the Nash equilibria by
judiciously tuning the amount of regularization. This work opens up interesting opportunities for
further investigations of policy extragradient methods for solving competitive games. For example,
can we develop a two-time-scale policy extragradient algorithms for Markov games where the Q-
function is updated simultaneously with the policy but potentially at a different time scale, using
samples, such as in an actor-critic algorithm (Konda and Tsitsiklis, 2000)?
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