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Abstract

The softmax policy gradient (PG) method, which performs gradient ascent under softmax policy

parameterization, is arguably one of the de facto implementations of policy optimization in mod-

ern reinforcement learning. For γ-discounted infinite-horizon tabular Markov decision processes

(MDPs), remarkable progress has recently been achieved towards establishing global convergence

of softmax PG methods in finding a near-optimal policy. However, prior results fall short of de-

lineating clear dependencies of convergence rates on salient parameters such as the cardinality of

the state space S and the effective horizon 1

1−γ
, both of which could be excessively large. In this

paper, we deliver a pessimistic message regarding the iteration complexity of softmax PG meth-

ods, despite assuming access to exact gradient computation. Specifically, we demonstrate that the

softmax PG method with stepsize η can take

1

η
|S|2

Ω

(

1

1−γ

)

iterations

to converge, even in the presence of a benign policy initialization and an initial state distribution

amenable to exploration (so that the distribution mismatch coefficient is not exceedingly large).

This is accomplished by characterizing the algorithmic dynamics over a carefully-constructed MDP

containing only three actions. Our exponential lower bound hints at the necessity of carefully

adjusting update rules or enforcing proper regularization in accelerating PG methods. 1
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